Abstract

The Hermitian variety H(5,4) has no ovoid

Jan De Beule

Department of Pure Mathematics and Computeralgebra Ghent University Galglaan 2 B 9000 Gent Belgium jdebeule@cage.ugent.be Joint work with Klaus Metsch

We consider the Hermitian varieties $H(2n + 1, q^2)$. An ovoid \mathcal{O} is a set of points of $H(2n + 1, q^2)$ such that every generator of $H(2n + 1, q^2)$ meets the set \mathcal{O} in exactly one point.

In general, a lot of research has been done to prove the existence or nonexistence of ovoids of classical polar spaces. One of the open cases are the Hermitian varieties $H(2n+1, q^2)$. For n = 1, every Hermitian curve $H(2, q^2)$ contained in $H(3, q^2)$ constitutes an ovoid of $H(3, q^2)$, and even different examples can be found. On the other hand, no Hermitian variety $H(2n + 1, q^2)$, $n \ge 2$ having ovoids is known. Furthermore, it is known ([1]) that $H(2n + 1, q^2)$, $q = p^h$, pprime has no ovoid when

$$p^{2n+1} > {\binom{2n+p}{2n+1}}^2 - {\binom{2n+p-1}{2n+1}}^2.$$

From this it follows that for each prime p there exists an integer n_p such that $H(2n+1,q^2)$ with $n \ge n_p$ has no ovoid. All obtained integers n_p are larger than two. Thus, for no polar space $H(5,q^2)$ the existence of an ovoid has been decided. We introduce a combinatorial approach that shows that H(5,4) has no ovoid.

References

 G. Eric Moorhouse. Some *p*-ranks related to Hermitian varieties. *J. Statist. Plann. Inference*, 56(2):229–241, 1996. Special issue on orthogonal arrays and affine designs, Part II.