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We consider the Hermitian varietiesH(2n+ 1, q2). An ovoidO is a set of points
of H(2n + 1, q2) such that every generator ofH(2n + 1, q2) meets the setO in
exactly one point.

In general, a lot of research has been done to prove the existence or non-
existence of ovoids of classical polar spaces. One of the open cases are the Hermi-
tian varietiesH(2n+1, q2). Forn = 1, every Hermitian curveH(2, q2) contained
in H(3, q2) constitutes an ovoid ofH(3, q2), and even different examples can be
found. On the other hand, no Hermitian varietyH(2n + 1, q2), n ≥ 2 having
ovoids is known. Furthermore, it is known ([1]) thatH(2n + 1, q2), q = ph, p
prime has no ovoid when
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.

From this it follows that for each primep there exists an integernp such that
H(2n+ 1, q2) with n ≥ np has no ovoid. All obtained integersnp are larger than
two. Thus, for no polar spaceH(5, q2) the existence of an ovoid has been decided.
We introduce a combinatorial approach that shows thatH(5, 4) has no ovoid.
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