Old and new results on the MDS-conjecture
 Jan De Beule
 Ghent University
 (Joint work with Simeon Ball)

An arc of a projective space $\operatorname{PG}(k-1, q)$ is a set of points \mathcal{K} such that any k points of \mathcal{K} span the whole space. The set

$$
S=\left\{\left(1, t, t^{2}, \ldots, t^{k-1}\right) \mid t \in \operatorname{GF}(q)\right\} \cup\{(0, \ldots, 0)\}
$$

is a set of $q+1$ points in $\operatorname{PG}(k-1, q)$ satisfying the required property. It is well known that linear MDS codes and arcs of projective spaces are equivalent objects. The following conjecture goes back to a series of questions of Segre in [1].

Conjecture 1. An arc of $\mathrm{PG}(k-1, q), k \leq q$, has size at most $q+1$, unless q is even and $k=3$ or $k=q-1$, in which case it has size at most $q+2$.

In the talk, we will overview old results and some examples of arcs different from the above one, and discuss the most recent result showing the MDS-conjecture for $k \leq 2 p-2$, with $q=p^{h}, h \geq 1$, which is joint work with Simeon Ball.

References

[1] Beniamino Segre. Curve razionali normali e k-archi negli spazi finiti. Ann. Mat. Pura Appl. (4), 39:357-379, 1955.

