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Introduction

The Hermitian variety H(d, q2) is the set of points of
PG(d, q2) satisfying the equation
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0 + X
q+1

1 + . . . X
q+1

d = 0

When d = 2n + 1, 2n respectively, H(d, q2) contains points,
lines, . . . , n-dimensional subspaces of PG(d, q2),
(n − 1)-dimensional subspaces of PG(d, q2) respectively.

The Hermitian variety H(d, q2) is a example of a so-called

classical polar space. The subspaces of maximal dimen-

sion are also called generators.
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Ovoids

An ovoid of a Hermitian variety H(d, q2) is a set O of points
of H(d, q2) such that every generator meets O in exactly
one point.
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Ovoids

An ovoid of a Hermitian variety H(d, q2) is a set O of points
of H(d, q2) such that every generator meets O in exactly
one point.

If H(d − 2, q2) has no ovoids, then H(d, q2) has no ovoids.
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Known results

J. A. Thas: the Hermitian variety H(2n, q2), n > 1, has no
ovoids.

The Hermitian variety H(5, 4) has no ovoid – p.4/8



Known results

J. A. Thas: the Hermitian variety H(2n, q2), n > 1, has no
ovoids.

G.E. Moorhouse: H(2n + 1, q2), q = ph, p prime, h > 1 has
no ovoids if
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Ovoids of H(5, q2) are not excluded.
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J. A. Thas: the Hermitian variety H(2n, q2), n > 1, has no
ovoids.

G.E. Moorhouse: H(2n + 1, q2), q = ph, p prime, h > 1 has
no ovoids if

p2n+1 >

(

2n + p
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)2

−

(

2n + p − 1

2n + 1

)2

Ovoids of H(5, q2) are not excluded.

A. Klein: H(2n + 1, q2) has no ovoids if n > q3.
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Ovoids of H(3, 4)

Suppose that O is an ovoid of H(3, 4). There exists a plane
π, π ∩ H(3, 4) = H(2, 4), such that either

π ∩ H(3, 4) = H(2, 4) = O, or

O = (H(2, 4) \ L) ∪ (L⊥ ∩ H(3, 4)), L a line of π,
L ∩ H(3, 4) = H(1, 4).
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Every partial ovoid of H(3, 4) containing 8 points can be
extended to an ovoid of H(3, 4).
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Ovoids of H(3, 4)

Suppose that O is an ovoid of H(3, 4). There exists a plane
π, π ∩ H(3, 4) = H(2, 4), such that either

π ∩ H(3, 4) = H(2, 4) = O, or

O = (H(2, 4) \ L) ∪ (L⊥ ∩ H(3, 4)), L a line of π,
L ∩ H(3, 4) = H(1, 4).

Every partial ovoid of H(3, 4) containing 8 points can be
extended to an ovoid of H(3, 4).
Every plane π meets O in 0, 1, 2, 3 or 6 points.

If π is a plane, |π ∩ O| = 3, then the points of π ∩ O are

collinear.
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Ovoids of H(5, 4)

Suppose that O is an ovoid of H(5, 4). Let p be a point of
H(5, 4) \ O. Then |p⊥ ∩O| = 9. If π is a plane in p⊥,
π ∩ H(5, 4) = H(2, 4), then |〈p, π〉| ∈ {0, 1, 2, 3, 6, 9}
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Ovoids of H(5, 4)

Suppose that O is an ovoid of H(5, 4). Let p be a point of
H(5, 4) \ O. Then |p⊥ ∩O| = 9. If π is a plane in p⊥,
π ∩ H(5, 4) = H(2, 4), then |〈p, π〉| ∈ {0, 1, 2, 3, 6, 9}
Suppose that O is an ovoid of H(5, q2). Consider a plane π

that meets the variety in H(2, q2) and put m := |π ∩O|.
Suppose furthermore that 1 ≤ m < q3 + 1. Let A, resp. B,
be the set consisting of all points x ∈ O \ π such that 〈π, x〉
meets H(5, q2) in a cone sH(2, q2), resp. an H(3, q2).

We have |A| = (q2 − 1)(q2 − 1 + m) and
|B| = q2(q3 − q2 + 2 − m).

If q = 2 and x is a point of (π ∩ H(5, 4)) \ O, then
|x⊥ ∩ B| ∈ {0, 3, 6, 7, 8, 9}.
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The last steps

Suppose that O is an ovoid of H(5, 4). Then |π ∩O| ≤ 3 for
every plane π, π ∩ H(5, 4) = H(2, 4) and |α ∩ O| < 6 for
every 3-dimensional space α, α ∩ H(5, 4) = H(3, 4).
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