

The Hermitian variety H(5,4) has no ovoid

Jan De Beule

Ghent University

joint work with: Klaus Metsch

Gießen University

Introduction

The Hermitian variety $H(d, q^2)$ is the set of points of $PG(d, q^2)$ satisfying the equation

$$X_0^{q+1} + X_1^{q+1} + \dots X_d^{q+1} = 0$$

When d = 2n + 1, 2n respectively, $H(d, q^2)$ contains points, lines, ..., *n*-dimensional subspaces of $PG(d, q^2)$, (n - 1)-dimensional subspaces of $PG(d, q^2)$ respectively. The Hermitian variety $H(d, q^2)$ is a example of a so-called classical polar space. The subspaces of maximal dimension are also called generators.

An ovoid of a Hermitian variety $H(d, q^2)$ is a set \mathcal{O} of points of $H(d, q^2)$ such that every generator meets \mathcal{O} in exactly one point.

An ovoid of a Hermitian variety $H(d, q^2)$ is a set \mathcal{O} of points of $H(d, q^2)$ such that every generator meets \mathcal{O} in exactly one point.

If $H(d-2,q^2)$ has no ovoids, then $H(d,q^2)$ has no ovoids.

Known results

J. A. Thas: the Hermitian variety $H(2n, q^2)$, n > 1, has no ovoids.

The Hermitian variety H(5, 4) has no ovoid – p.4/8

Known results

J. A. Thas: the Hermitian variety $H(2n, q^2)$, n > 1, has no ovoids.

G.E. Moorhouse: $H(2n + 1, q^2)$, $q = p^h$, p prime, h > 1 has no ovoids if

$$p^{2n+1} > \binom{2n+p}{2n+1}^2 - \binom{2n+p-1}{2n+1}^2$$

Ovoids of $H(5, q^2)$ are not excluded.

Known results

J. A. Thas: the Hermitian variety $H(2n, q^2)$, n > 1, has no ovoids.

G.E. Moorhouse: $H(2n + 1, q^2)$, $q = p^h$, p prime, h > 1 has no ovoids if

$$p^{2n+1} > \binom{2n+p}{2n+1}^2 - \binom{2n+p-1}{2n+1}^2$$

Ovoids of $H(5, q^2)$ are not excluded.

A. Klein: $H(2n+1,q^2)$ has no ovoids if $n > q^3$.

Suppose that \mathcal{O} is an ovoid of H(3,4). There exists a plane π , $\pi \cap H(3,4) = H(2,4)$, such that either

- 6 $\pi \cap \mathrm{H}(3,4) = \mathrm{H}(2,4) = \mathcal{O}$, or
- 6 $\mathcal{O} = (\mathrm{H}(2,4) \setminus L) \cup (L^{\perp} \cap \mathrm{H}(3,4)), L \text{ a line of } \pi, L \cap \mathrm{H}(3,4) = \mathrm{H}(1,4).$

Suppose that \mathcal{O} is an ovoid of H(3,4). There exists a plane π , $\pi \cap H(3,4) = H(2,4)$, such that either

- 6 $\pi \cap \mathrm{H}(3,4) = \mathrm{H}(2,4) = \mathcal{O}$, or
- 6 $\mathcal{O} = (\mathrm{H}(2,4) \setminus L) \cup (L^{\perp} \cap \mathrm{H}(3,4)), L \text{ a line of } \pi, L \cap \mathrm{H}(3,4) = \mathrm{H}(1,4).$

Every *partial ovoid* of H(3,4) containing 8 points can be extended to an ovoid of H(3,4).

Suppose that \mathcal{O} is an ovoid of H(3,4). There exists a plane π , $\pi \cap H(3,4) = H(2,4)$, such that either

- 6 $\pi \cap \mathrm{H}(3,4) = \mathrm{H}(2,4) = \mathcal{O}$, or
- 6 $\mathcal{O} = (\mathrm{H}(2,4) \setminus L) \cup (L^{\perp} \cap \mathrm{H}(3,4)), L \text{ a line of } \pi, L \cap \mathrm{H}(3,4) = \mathrm{H}(1,4).$

Every *partial ovoid* of H(3, 4) containing 8 points can be extended to an ovoid of H(3, 4). Every plane π meets \mathcal{O} in 0, 1, 2, 3 or 6 points.

Suppose that \mathcal{O} is an ovoid of H(3,4). There exists a plane π , $\pi \cap H(3,4) = H(2,4)$, such that either

- 6 $\pi \cap \mathrm{H}(3,4) = \mathrm{H}(2,4) = \mathcal{O}$, or
- 6 $\mathcal{O} = (\mathrm{H}(2,4) \setminus L) \cup (L^{\perp} \cap \mathrm{H}(3,4)), L \text{ a line of } \pi, L \cap \mathrm{H}(3,4) = \mathrm{H}(1,4).$

Every *partial ovoid* of H(3, 4) containing 8 points can be extended to an ovoid of H(3, 4). Every plane π meets \mathcal{O} in 0, 1, 2, 3 or 6 points.

If π is a plane, $|\pi \cap \mathcal{O}| = 3$, then the points of $\pi \cap \mathcal{O}$ are collinear.

Suppose that \mathcal{O} is an ovoid of H(5,4). Let p be a point of $H(5,4) \setminus \mathcal{O}$. Then $|p^{\perp} \cap \mathcal{O}| = 9$. If π is a plane in p^{\perp} , $\pi \cap H(5,4) = H(2,4)$, then $|\langle p, \pi \rangle| \in \{0, 1, 2, 3, 6, 9\}$

Suppose that \mathcal{O} is an ovoid of $\mathrm{H}(5,4)$. Let p be a point of $\mathrm{H}(5,4) \setminus \mathcal{O}$. Then $|p^{\perp} \cap \mathcal{O}| = 9$. If π is a plane in p^{\perp} , $\pi \cap H(5,4) = \mathrm{H}(2,4)$, then $|\langle p, \pi \rangle| \in \{0,1,2,3,6,9\}$ Suppose that \mathcal{O} is an ovoid of $H(5,q^2)$. Consider a plane π that meets the variety in $\mathrm{H}(2,q^2)$ and put $m := |\pi \cap \mathcal{O}|$. Suppose furthermore that $1 \leq m < q^3 + 1$. Let A, resp. B, be the set consisting of all points $x \in \mathcal{O} \setminus \pi$ such that $\langle \pi, x \rangle$ meets $\mathrm{H}(5,q^2)$ in a cone $s\mathrm{H}(2,q^2)$, resp. an $\mathrm{H}(3,q^2)$.

- 6 We have $|A| = (q^2 1)(q^2 1 + m)$ and $|B| = q^2(q^3 q^2 + 2 m)$.
- 6 If q = 2 and x is a point of $(\pi \cap H(5, 4)) \setminus \mathcal{O}$, then $|x^{\perp} \cap B| \in \{0, 3, 6, 7, 8, 9\}.$

The last steps

Suppose that \mathcal{O} is an ovoid of H(5,4). Then $|\pi \cap \mathcal{O}| \leq 3$ for every plane π , $\pi \cap H(5,4) = H(2,4)$ and $|\alpha \cap \mathcal{O}| < 6$ for every 3-dimensional space α , $\alpha \cap H(5,4) = H(3,4)$.

The Hermitian variety H(5, 4) has no ovoid – p.7/8

The last steps

Suppose that \mathcal{O} is an ovoid of H(5,4). Then $|\pi \cap \mathcal{O}| \leq 3$ for every plane π , $\pi \cap H(5,4) = H(2,4)$ and $|\alpha \cap \mathcal{O}| < 6$ for every 3-dimensional space α , $\alpha \cap H(5,4) = H(3,4)$.

The Hermitian variety H(5,4) has no ovoids

References

- [1] A. Klein. Partial Ovoids in Classical Finite Polar Spaces. *Des. Codes Cryptogr.*, 31:221–226, 2004.
- [2] G. Eric Moorhouse. Some *p*-ranks related to Hermitian varieties. J. Statist. Plann. Inference, 56(2):229–241, 1996. Special issue on orthogonal arrays and affine designs, Part II.
- [3] J. A. Thas. Ovoids and spreads of finite classical polar spaces. *Geom. Dedicata*, 10(1-4):135–143, 1981.
- [4] J. A. Thas. Ovoids, spreads and *m*-systems of finite classical polar spaces. In Surveys in combinatorics, 2001 (Sussex), volume 288 of London Math. Soc. Lecture Note Ser., pages 241–267. Cambridge Univ. Press, Cambridge, 2001.

