The Hermitian variety $H(5,4)$ has no ovoid

Jan De Beule
Ghent University
joint work with: Klaus Metsch
Gießen University

Introduction

The Hermitian variety $\mathrm{H}\left(d, q^{2}\right)$ is the set of points of $\mathrm{PG}\left(d, q^{2}\right)$ satisfying the equation

$$
X_{0}^{q+1}+X_{1}^{q+1}+\ldots X_{d}^{q+1}=0
$$

When $d=2 n+1,2 n$ respectively, $\mathrm{H}\left(d, q^{2}\right)$ contains points, lines, \ldots, n-dimensional subspaces of $\mathrm{PG}\left(d, q^{2}\right)$, ($n-1$)-dimensional subspaces of $\mathrm{PG}\left(d, q^{2}\right)$ respectively.
The Hermitian variety $\mathrm{H}\left(d, q^{2}\right)$ is a example of a so-called classical polar space. The subspaces of maximal dimension are also called generators.

Ovoids

An ovoid of a Hermitian variety $\mathrm{H}\left(d, q^{2}\right)$ is a set \mathcal{O} of points of $\mathrm{H}\left(d, q^{2}\right)$ such that every generator meets \mathcal{O} in exactly one point.

Ovoids

An ovoid of a Hermitian variety $\mathrm{H}\left(d, q^{2}\right)$ is a set \mathcal{O} of points of $\mathrm{H}\left(d, q^{2}\right)$ such that every generator meets \mathcal{O} in exactly one point.

If $\mathrm{H}\left(d-2, q^{2}\right)$ has no ovoids, then $\mathrm{H}\left(d, q^{2}\right)$ has no ovoids.

Known results

J. A. Thas: the Hermitian variety $\mathrm{H}\left(2 n, q^{2}\right), n>1$, has no ovoids.

Known results

J. A. Thas: the Hermitian variety $\mathrm{H}\left(2 n, q^{2}\right), n>1$, has no ovoids.
G.E. Moorhouse: $\mathrm{H}\left(2 n+1, q^{2}\right), q=p^{h}, p$ prime, $h>1$ has no ovoids if

$$
p^{2 n+1}>\binom{2 n+p}{2 n+1}^{2}-\binom{2 n+p-1}{2 n+1}^{2}
$$

Ovoids of $\mathrm{H}\left(5, q^{2}\right)$ are not excluded.

Known results

J. A. Thas: the Hermitian variety $\mathrm{H}\left(2 n, q^{2}\right), n>1$, has no ovoids.
G.E. Moorhouse: $\mathrm{H}\left(2 n+1, q^{2}\right), q=p^{h}, p$ prime, $h>1$ has no ovoids if

$$
p^{2 n+1}>\binom{2 n+p}{2 n+1}^{2}-\binom{2 n+p-1}{2 n+1}^{2}
$$

Ovoids of $\mathrm{H}\left(5, q^{2}\right)$ are not excluded.
A. Klein: $\mathrm{H}\left(2 n+1, q^{2}\right)$ has no ovoids if $n>q^{3}$.

Ovoids of $\mathrm{H}(3,4)$

Suppose that \mathcal{O} is an ovoid of $\mathrm{H}(3,4)$. There exists a plane $\pi, \pi \cap \mathrm{H}(3,4)=\mathrm{H}(2,4)$, such that either

$$
\begin{aligned}
& \quad \pi \cap \mathrm{H}(3,4)=\mathrm{H}(2,4)=\mathcal{O}, \text { or } \\
& \text { © } \mathcal{O}=(\mathrm{H}(2,4) \backslash L) \cup\left(L^{\perp} \cap \mathrm{H}(3,4)\right), L \text { a line of } \pi, \\
& L \cap \mathrm{H}(3,4)=\mathrm{H}(1,4) .
\end{aligned}
$$

Ovoids of $\mathrm{H}(3,4)$

Suppose that \mathcal{O} is an ovoid of $\mathrm{H}(3,4)$. There exists a plane $\pi, \pi \cap \mathrm{H}(3,4)=\mathrm{H}(2,4)$, such that either

$$
\begin{aligned}
& \quad \pi \cap \mathrm{H}(3,4)=\mathrm{H}(2,4)=\mathcal{O}, \text { or } \\
& \mathcal{O}=(\mathrm{H}(2,4) \backslash L) \cup\left(L^{\perp} \cap \mathrm{H}(3,4)\right), L \text { a line of } \pi, \\
& L \cap \mathrm{H}(3,4)=\mathrm{H}(1,4) .
\end{aligned}
$$

Every partial ovoid of $\mathrm{H}(3,4)$ containing 8 points can be extended to an ovoid of $\mathrm{H}(3,4)$.

Ovoids of $\mathrm{H}(3,4)$

Suppose that \mathcal{O} is an ovoid of $\mathrm{H}(3,4)$. There exists a plane $\pi, \pi \cap \mathrm{H}(3,4)=\mathrm{H}(2,4)$, such that either

$$
\begin{aligned}
& \quad \pi \cap \mathrm{H}(3,4)=\mathrm{H}(2,4)=\mathcal{O}, \text { or } \\
& \mathcal{O}=(\mathrm{H}(2,4) \backslash L) \cup\left(L^{\perp} \cap \mathrm{H}(3,4)\right), L \text { a line of } \pi, \\
& L \cap \mathrm{H}(3,4)=\mathrm{H}(1,4) .
\end{aligned}
$$

Every partial ovoid of $\mathrm{H}(3,4)$ containing 8 points can be extended to an ovoid of $\mathrm{H}(3,4)$.
Every plane π meets \mathcal{O} in $0,1,2,3$ or 6 points.

Ovoids of $\mathrm{H}(3,4)$

Suppose that \mathcal{O} is an ovoid of $\mathrm{H}(3,4)$. There exists a plane $\pi, \pi \cap \mathrm{H}(3,4)=\mathrm{H}(2,4)$, such that either

$$
\begin{aligned}
& \text { 6 } \pi \cap \mathrm{H}(3,4)=\mathrm{H}(2,4)=\mathcal{O} \text {, or } \\
& \text { 6 } \mathcal{O}=(\mathrm{H}(2,4) \backslash L) \cup\left(L^{\perp} \cap \mathrm{H}(3,4)\right), L \text { a line of } \pi \text {, } \\
& L \cap \mathrm{H}(3,4)=\mathrm{H}(1,4) \text {. }
\end{aligned}
$$

Every partial ovoid of $\mathrm{H}(3,4)$ containing 8 points can be extended to an ovoid of $\mathrm{H}(3,4)$.
Every plane π meets \mathcal{O} in $0,1,2,3$ or 6 points.
If π is a plane, $|\pi \cap \mathcal{O}|=3$, then the points of $\pi \cap \mathcal{O}$ are collinear.

Ovoids of $\mathrm{H}(5,4)$

Suppose that \mathcal{O} is an ovoid of $\mathrm{H}(5,4)$. Let p be a point of $\mathrm{H}(5,4) \backslash \mathcal{O}$. Then $\left|p^{\perp} \cap \mathcal{O}\right|=9$. If π is a plane in p^{\perp}, $\pi \cap H(5,4)=\mathrm{H}(2,4)$, then $|\langle p, \pi\rangle| \in\{0,1,2,3,6,9\}$

Ovoids of $\mathrm{H}(5,4)$

Suppose that \mathcal{O} is an ovoid of $\mathrm{H}(5,4)$. Let p be a point of $\mathrm{H}(5,4) \backslash \mathcal{O}$. Then $\left|p^{\perp} \cap \mathcal{O}\right|=9$. If π is a plane in p^{\perp}, $\pi \cap H(5,4)=\mathrm{H}(2,4)$, then $|\langle p, \pi\rangle| \in\{0,1,2,3,6,9\}$ Suppose that \mathcal{O} is an ovoid of $H\left(5, q^{2}\right)$. Consider a plane π that meets the variety in $\mathrm{H}\left(2, q^{2}\right)$ and put $m:=|\pi \cap \mathcal{O}|$. Suppose furthermore that $1 \leq m<q^{3}+1$. Let A, resp. B, be the set consisting of all points $x \in \mathcal{O} \backslash \pi$ such that $\langle\pi, x\rangle$ meets $\mathrm{H}\left(5, q^{2}\right)$ in a cone $s \mathrm{H}\left(2, q^{2}\right)$, resp. an $\mathrm{H}\left(3, q^{2}\right)$.

We have $|A|=\left(q^{2}-1\right)\left(q^{2}-1+m\right)$ and
$|B|=q^{2}\left(q^{3}-q^{2}+2-m\right)$.
6- If $q=2$ and x is a point of $(\pi \cap \mathrm{H}(5,4)) \backslash \mathcal{O}$, then

$$
\left|x^{\perp} \cap B\right| \in\{0,3,6,7,8,9\} .
$$

The last steps

Suppose that \mathcal{O} is an ovoid of $\mathrm{H}(5,4)$. Then $|\pi \cap \mathcal{O}| \leq 3$ for every plane $\pi, \pi \cap \mathrm{H}(5,4)=\mathrm{H}(2,4)$ and $|\alpha \cap \mathcal{O}|<6$ for every 3-dimensional space $\alpha, \alpha \cap \mathrm{H}(5,4)=\mathrm{H}(3,4)$.

The last steps

Suppose that \mathcal{O} is an ovoid of $\mathrm{H}(5,4)$. Then $|\pi \cap \mathcal{O}| \leq 3$ for every plane $\pi, \pi \cap \mathrm{H}(5,4)=\mathrm{H}(2,4)$ and $|\alpha \cap \mathcal{O}|<6$ for every 3-dimensional space $\alpha, \alpha \cap \mathrm{H}(5,4)=\mathrm{H}(3,4)$.

The Hermitian variety $\mathrm{H}(5,4)$ has no ovoids

References

[1] A. Klein. Partial Ovoids in Classical Finite Polar Spaces. Des. Codes Cryptogr., 31:221-226, 2004.
[2] G. Eric Moorhouse. Some p-ranks related to Hermitian varieties. J. Statist. Plann. Inference, 56(2):229-241, 1996. Special issue on orthogonal arrays and affine designs, Part II.
[3] J. A. Thas. Ovoids and spreads of finite classical polar spaces. Geom. Dedicata, 10(1-4):135-143, 1981.
[4] J. A. Thas. Ovoids, spreads and m-systems of finite classical polar spaces. In Surveys in combinatorics, 2001 (Sussex), volume 288 of London Math. Soc. Lecture Note Ser., pages 241-267. Cambridge Univ. Press, Cambridge, 2001.

