Point sets in $\operatorname{AG}(n, q)$ (not) determining certain directions

Jan De Beule

Department of Mathematics
Ghent University
June 12, 2010
Baer Colloquium Summer 2010, Gent

Directions in $\operatorname{AG}(n, q)$

Definition

Consider $\operatorname{AG}(n, q)$ with plane at infinity π. Given a point set $U \subseteq \operatorname{AG}(n, q)$, then a point $p \in \pi$ is a determined direction of U if and only if there exists a line of $\operatorname{AG}(n, q)$ through p, meeting U in at least two points. Denote the set of all determined directions of U by D_{U}.

Corollary
If $|U|>q^{n}$, then D_{U} contains all points of π.

Directions in $\operatorname{AG}(n, q)$

Definition

Consider $\operatorname{AG}(n, q)$ with plane at infinity π. Given a point set $U \subseteq \operatorname{AG}(n, q)$, then a point $p \in \pi$ is a determined direction of U if and only if there exists a line of $\operatorname{AG}(n, q)$ through p, meeting U in at least two points. Denote the set of all determined directions of U by D_{U}.

Corollary

If $|U|>q^{n}$, then D_{U} contains all points of π.

Blocking sets of $\operatorname{PG}(2, q)$

Definition

A point set $B \subseteq \operatorname{PG}(2, q)$ is called a blocking set if every line of $\operatorname{PG}(2, q)$ contains at least one point of B.

A line of $\operatorname{PG}(2, q)$ is an example of a blocking set, but such a blocking set is called trivial

Definition

A blocking set B is called minimal if $B \backslash\{p\}$ is not a blocking set for any $p \in B$.

[^0]
Blocking sets of $\operatorname{PG}(2, q)$

Definition

A point set $B \subseteq \operatorname{PG}(2, q)$ is called a blocking set if every line of $\operatorname{PG}(2, q)$ contains at least one point of B.

A line of $\mathrm{PG}(2, q)$ is an example of a blocking set, but such a blocking set is called trivial

Definition

A blocking set B is called minimal if $B \backslash\{p\}$ is not a blocking set for any $p \in B$.

Blocking sets of $\operatorname{PG}(2, q)$

Definition

A point set $B \subseteq \operatorname{PG}(2, q)$ is called a blocking set if every line of $\operatorname{PG}(2, q)$ contains at least one point of B.

A line of $\mathrm{PG}(2, q)$ is an example of a blocking set, but such a blocking set is called trivial

Definition

A blocking set B is called minimal if $B \backslash\{p\}$ is not a blocking set for any $p \in B$.

Theorem (Bruen, 1971)

If B is a minimal blocking set of a projective plane of order n, then $|B| \geq n+\sqrt{n}+1$.

Let p be prime. Let

$$
f=\prod_{i=1}^{p+k}\left(X+a_{i} Y+b_{i}\right)
$$

> and suppose that there are at least $(p+1) / 2+k \leq p-1$ elements s of \mathbb{F}_{p} with the property that $X^{p}-X \mid f(X, s)$.

Let p be prime. Let

$$
f=\prod_{i=1}^{p+k}\left(X+a_{i} Y+b_{i}\right)
$$

and suppose that there are at least $(p+1) / 2+k \leq p-1$ elements s of \mathbb{F}_{p} with the property that $X^{p}-X \mid f(X, s)$.

Lemma

Suppose that $f(X)=g(X) X^{q}+h(X)$ is a polynomial in $\mathbb{F}_{q}[X]$ factorising completely into linear factors in $\mathbb{F}_{q}[X]$. If $\max (\operatorname{deg}(g), \operatorname{deg}(h)) \leq(q-1) / 2$ then $f(X)=g(X)\left(X^{q}-X\right)$ or $f(X)=\operatorname{gcd}(f, g) e\left(X^{p}\right)$ for $e \in \mathbb{F}_{q}[X]$, where $q=p^{h}$.

Theorem

Let p be prime. Let

$$
f=\prod_{i=1}^{p+k}\left(X+a_{i} Y+b_{i}\right)
$$

and suppose that there are at least $(p+1) / 2+k \leq p-1$ elements s of \mathbb{F}_{p} with the property that $X^{p}-X \mid f(X, s)$. Then f contains a factor

$$
\prod_{x_{i} \in \mathbb{F}_{q}}\left(X+x_{i} Y+m x_{i}+c\right)
$$

blocking sets

Corollary

Let U be a set of points of $\mathrm{AG}(2, p)$. If there are at least $|U|-(p-1) / 2$ and at most $p-1$ parallel classes for which the lines of these parallel classes are all incident with at least one point of U, then U contains all points of a line.

Corollary (Blokhuis, 1994)

Let B be a blocking set of $\mathrm{PG}(2, p)$. If $|B| \leq(3 p+1) / 2$, then B contains all the points of a line.

one of the original theorems

Theorem (Rédei, 1973)

A function $\phi: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ determining less than $(q+3) / 2$ directions is linear over a subfield of \mathbb{F}_{q}.

Theorem (Szőnyi, 1996)

A set U of $q-k>q-\sqrt{q} / 2$ points of $\operatorname{AG}(2, q)$ which does not determine a set E of more than $(q+1) / 2$ directions, can be extended to a set of q points not determining the set E.

particular point sets of $\mathrm{AG}(3, q)$

Theorem

Let U be a point set of $\operatorname{AG}(3, q),=p^{h},|U|=q^{2}$, and suppose that U does not determine the directions on a conic at infinity. Then every hyperplane of $\mathrm{AG}(3, q)$ intersects U in $0(\bmod p)$ points.

Corollary (Ball, 2004; Bal, Govaerts, Storme, 2006)
Consider $Q(4, q)$. When $q=p$ prime, any ovoid of $Q(4, q)$ is contained in a hyperplane section, and so it is necessarily an elliptic quadric $Q^{-}(3, q)$

particular point sets of $\mathrm{AG}(3, q)$

Theorem

Let U be a point set of $\operatorname{AG}(3, q),=p^{h},|U|=q^{2}$, and suppose that U does not determine the directions on a conic at infinity. Then every hyperplane of $\operatorname{AG}(3, q)$ intersects U in $0(\bmod p)$ points.

particular point sets of $\mathrm{AG}(3, q)$

Theorem

Let U be a point set of $\operatorname{AG}(3, q),=p^{h},|U|=q^{2}$, and suppose that U does not determine the directions on a conic at infinity. Then every hyperplane of $\operatorname{AG}(3, q)$ intersects U in $0(\bmod p)$ points.

Corollary (Ball, 2004; Ball, Govaerts, Storme, 2006)
Consider $Q(4, q)$. When $q=p$ prime, any ovoid of $Q(4, q)$ is contained in a hyperplane section, and so it is necessarily an elliptic quadric $Q^{-}(3, q)$.

a generalization of the direction result

Theorem (Ball)

Let U be a set of q^{n-1} points of $\operatorname{AG}(n, q), q=p^{n}$. Suppose that for $0 \leq e \leq(n-2) h-1$, more than $p^{e}(q-1)$ directions are not determined by U. Then every hyperplane of $\mathrm{AG}(3, q)$ is incident with a multiple of p^{e+1} points.

Theorem (DB, Gács, 2005)

Let U be a set of $q^{2}-2$ points of $\mathrm{AG}(3, q), q=p^{h}$, $h>1$. If U does not determine a set E of $p+2$ directions at infinity, then U can be extended to a set of size q^{2}, not determining the directions of E.

Theorem
Let U be a set of $q^{n}-2$ points of $\mathrm{AG}(n, q), q=p^{h}, h>1$. If U does not determine a set E of $p+2$ directions at infinity, then U can be extended to a set of size q^{n}, not determining the directions of E.

Theorem (DB, Gács, 2005)

Let U be a set of $q^{2}-2$ points of $\mathrm{AG}(3, q), q=p^{h}, h>1$. If U does not determine a set E of $p+2$ directions at infinity, then U can be extended to a set of size q^{2}, not determining the directions of E.

Theorem

Let U be a set of $q^{n}-2$ points of $\operatorname{AG}(n, q), q=p^{h}, h>1$. If U does not determine a set E of $p+2$ directions at infinity, then U can be extended to a set of size q^{n}, not determining the directions of E.

application for $Q(4, q)$

Corollary (DB, Gács, 2005)

A partial ovoid of $Q(4, q), q=p^{h}, h>1$, of size $q^{2}-1$ can be extended to an ovoid.

sets of size $q^{2}-\epsilon$

Lemma (DB, Tákats, Sziklai, 20XX)
Let U be a point set of $\operatorname{AG}(3, q)$, of size $q^{2}-\epsilon$, such that E is the set of non-determined directions. If U cannot be extended without determining directions of E, then E is contained in a planar algebraic curve of degree $\epsilon^{4}-4 \epsilon^{3}+\epsilon$.

sets of size $q^{2}+\epsilon$

Can we characterise such a set for small ϵ ? (motivated by an application?)

[^0]: Theorem (Bruen, 1971)
 If B is a minimal blockina set of a projective plane of order n, then $|B|$

