Point sets in AG(n, q) (not) determining certain directions

Jan De Beule

Department of Mathematics Ghent University

June 12, 2010 Baer Colloquium Summer 2010, Gent

2

Directions in AG(n, q)

Definition

Consider AG(n, q) with plane at infinity π . Given a point set $U \subseteq AG(n, q)$, then a point $p \in \pi$ is a *determined direction* of U if and only if there exists a line of AG(n, q) through p, meeting U in at least two points. Denote the set of all determined directions of U by D_U .

Corollary

If $|U| > q^n$, then D_U contains all points of π .

イロト 不得 トイヨト イヨト 三臣

Directions in AG(n, q)

Definition

Consider AG(n, q) with plane at infinity π . Given a point set $U \subseteq AG(n, q)$, then a point $p \in \pi$ is a *determined direction* of U if and only if there exists a line of AG(n, q) through p, meeting U in at least two points. Denote the set of all determined directions of U by D_U .

Corollary

If $|U| > q^n$, then D_U contains all points of π .

ヘロト 人間 ト くほ ト くほ トー

a characterisation a stability result

Blocking sets of PG(2, q)

Definition

A point set $B \subseteq PG(2, q)$ is called a *blocking set* if every line of PG(2, q) contains at least one point of *B*.

A line of PG(2, q) is an example of a blocking set, but such a blocking set is called *trivial*

Definition

A blocking set *B* is called *minimal* if $B \setminus \{p\}$ is not a blocking set for any $p \in B$.

Theorem (Bruen, 1971)

If *B* is a minimal blocking set of a projective plane of order *n*, then $|B| \ge n + \sqrt{n} + 1$.

a characterisation a stability result

Blocking sets of PG(2, q)

Definition

A point set $B \subseteq PG(2, q)$ is called a *blocking set* if every line of PG(2, q) contains at least one point of *B*.

A line of PG(2, q) is an example of a blocking set, but such a blocking set is called *trivial*

Definition

A blocking set *B* is called *minimal* if $B \setminus \{p\}$ is not a blocking set for any $p \in B$.

Theorem (Bruen, 1971)

If *B* is a minimal blocking set of a projective plane of order *n*, then $|B| \ge n + \sqrt{n} + 1$.

a characterisation a stability result

Blocking sets of PG(2, q)

Definition

A point set $B \subseteq PG(2, q)$ is called a *blocking set* if every line of PG(2, q) contains at least one point of *B*.

A line of PG(2, q) is an example of a blocking set, but such a blocking set is called *trivial*

Definition

A blocking set *B* is called *minimal* if $B \setminus \{p\}$ is not a blocking set for any $p \in B$.

Theorem (Bruen, 1971)

If B is a minimal blocking set of a projective plane of order n, then $|B| \ge n + \sqrt{n} + 1$.

a characterisation a stability result

Let *p* be prime. Let

$$f=\prod_{i=1}^{p+k}(X+a_iY+b_i)\,,$$

and suppose that there are at least $(p + 1)/2 + k \le p - 1$ elements *s* of \mathbb{F}_p with the property that $X^p - X \mid f(X, s)$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

a characterisation a stability result

Let *p* be prime. Let

$$f=\prod_{i=1}^{p+k}(X+a_iY+b_i),$$

and suppose that there are at least $(p+1)/2 + k \le p-1$ elements *s* of \mathbb{F}_p with the property that $X^p - X \mid f(X, s)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

a characterisation a stability result

Lemma

Suppose that $f(X) = g(X)X^q + h(X)$ is a polynomial in $\mathbb{F}_q[X]$ factorising completely into linear factors in $\mathbb{F}_q[X]$. If $max(deg(g), deg(h)) \le (q-1)/2$ then $f(X) = g(X)(X^q - X)$ or $f(X) = gcd(f, g)e(X^p)$ for $e \in \mathbb{F}_q[X]$, where $q = p^h$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

a characterisation a stability result

Theorem

Let p be prime. Let

$$f=\prod_{i=1}^{p+k}(X+a_iY+b_i),$$

and suppose that there are at least $(p+1)/2 + k \le p-1$ elements s of \mathbb{F}_p with the property that $X^p - X \mid f(X, s)$. Then f contains a factor

$$\prod_{x_i\in\mathbb{F}_q}(X+x_iY+mx_i+c)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

a characterisation a stability result

blocking sets

Corollary

Let U be a set of points of AG(2, p). If there are at least |U| - (p-1)/2 and at most p-1 parallel classes for which the lines of these parallel classes are all incident with at least one point of U, then U contains all points of a line.

Corollary (Blokhuis, 1994)

Let B be a blocking set of PG(2, p). If $|B| \le (3p + 1)/2$, then B contains all the points of a line.

イロン 不得 とくほ とくほ とう

a characterisation a stability result

one of the original theorems

Theorem (Rédei, 1973)

A function $\phi : \mathbb{F}_q \to \mathbb{F}_q$ determining less than (q+3)/2 directions is linear over a subfield of \mathbb{F}_q .

イロト イポト イヨト イヨト 一座

a characterisation a stability result

Theorem (Szőnyi, 1996)

A set U of $q - k > q - \sqrt{q}/2$ points of AG(2, q) which does not determine a set E of more than (q + 1)/2 directions, can be extended to a set of q points not determining the set E.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

a characterisation a stability result

particular point sets of AG(3, q)

Theorem

Let U be a point set of AG(3, q), $= p^h$, $|U| = q^2$, and suppose that U does not determine the directions on a conic at infinity. Then every hyperplane of AG(3, q) intersects U in 0 (mod p) points.

Corollary (Ball, 2004; Ball, Govaerts, Storme, 2006)

Consider Q(4, q). When q = p prime, any ovoid of Q(4, q) is contained in a hyperplane section, and so it is necessarily an elliptic quadric $Q^{-}(3, q)$.

イロト イポト イヨト イヨト 三日

a characterisation a stability result

particular point sets of AG(3, q)

Theorem

Let U be a point set of AG(3, q), = p^h , $|U| = q^2$, and suppose that U does not determine the directions on a conic at infinity. Then every hyperplane of AG(3, q) intersects U in 0 (mod p) points.

Corollary (Ball, 2004; Ball, Govaerts, Storme, 2006)

Consider Q(4, q). When q = p prime, any ovoid of Q(4, q) is contained in a hyperplane section, and so it is necessarily an elliptic quadric $Q^{-}(3, q)$.

イロト イポト イヨト イヨト 三日

a characterisation a stability result

particular point sets of AG(3, q)

Theorem

Let U be a point set of AG(3, q), = p^h , $|U| = q^2$, and suppose that U does not determine the directions on a conic at infinity. Then every hyperplane of AG(3, q) intersects U in 0 (mod p) points.

Corollary (Ball, 2004; Ball, Govaerts, Storme, 2006)

Consider Q(4,q). When q = p prime, any ovoid of Q(4,q) is contained in a hyperplane section, and so it is necessarily an elliptic quadric $Q^{-}(3,q)$.

イロン 不得 とくほ とくほ とう

a characterisation a stability result

a generalization of the direction result

Theorem (Ball)

Let U be a set of q^{n-1} points of AG(n, q), $q = p^h$. Suppose that for $0 \le e \le (n-2)h-1$, more than $p^e(q-1)$ directions are not determined by U. Then every hyperplane of AG(3, q) is incident with a multiple of p^{e+1} points.

イロト 不得 トイヨト イヨト 三臣

Introduction point sets of AG(2, q)point sets in AG(n, q) a stability result

Theorem (DB, Gács, 2005)

Let U be a set of $q^2 - 2$ points of AG(3, q), $q = p^h$, h > 1. If U does not determine a set E of p + 2 directions at infinity, then U can be extended to a set of size q^2 , not determining the directions of E.

Theorem

Let U be a set of $q^n - 2$ points of AG(n, q), $q = p^h$, h > 1. If U does not determine a set E of p + 2 directions at infinity, then U can be extended to a set of size q^n , not determining the directions of E.

イロト 不得 とくほと くほとう

Introduction point sets of AG(2, q)point sets in AG(n, q) a stability result

Theorem (DB, Gács, 2005)

Let U be a set of $q^2 - 2$ points of AG(3, q), $q = p^h$, h > 1. If U does not determine a set E of p + 2 directions at infinity, then U can be extended to a set of size q^2 , not determining the directions of E.

Theorem

Let U be a set of $q^n - 2$ points of AG(n, q), $q = p^h$, h > 1. If U does not determine a set E of p + 2 directions at infinity, then U can be extended to a set of size q^n , not determining the directions of E.

イロト イポト イヨト イヨト

a characterisation a stability result

application for Q(4, q)

Corollary (DB, Gács, 2005)

A partial ovoid of Q(4, q), $q = p^h$, h > 1, of size $q^2 - 1$ can be extended to an ovoid.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

a characterisation a stability result

sets of size
$$q^2 - \epsilon$$

Lemma (DB, Tákats, Sziklai, 20XX)

Let U be a point set of AG(3, q), of size $q^2 - \epsilon$, such that E is the set of non-determined directions. If U cannot be extended without determining directions of E, then E is contained in a planar algebraic curve of degree $\epsilon^4 - 4\epsilon^3 + \epsilon$.

イロト 不得 トイヨト イヨト 三臣

a characterisation a stability result

sets of size
$$q^2 + \epsilon$$

Can we characterise such a set for *small* ϵ ? (motivated by an application?)

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで