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Finite Generalized Quadrangles

A finite generalized quadrangle (GQ) is a point-line geometry
S = S = (P,B, I) such that

(i) Each point is incident with 1 + t lines (t > 1) and two
distinct points are incident with at most one line.

(ii) Each line is incident with 1 + s points (s > 1) and two
distinct lines are incident with at most one point.

(iii) If x is a point and L is a line not incident with x , then there
is a unique pair (y , M) ∈ P × B for which x I M I y I L.
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Finite classical GQs: associated to sesquilinear or
quadratic forms on a vectorspace over a finite field of Witt
index two.

Q(4, q): set of points of PG(4, q) satisfying

X 2
0 + X1X2 + X3X4 = 0

Complete lines of PG(4, q) are contained in this point set,
but no planes . . .

. . . these points and lines constitute a GQ of order q.
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Ovoids and partial ovoids

Definition

An ovoid of a GQ S is a set O of points of S such that every line
of S contains exactly one point of O.

Definition

A partial ovoid of a GQ S is a set O of points of S such that
every line of S contains at most one point of S. A partial ovoid
is maximal if it cannot be extended to a larger partial ovoid.
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Existence

Q(4, q) has always ovoids.

partial ovoids of size q2 can always be extended to an
ovoid

We are interested in partial ovoids of size q2 − 1 . . .

. . . which exist for q = 3, 5, 7, 11 and which do not exist for
q = 9.

When q is even, maximal partial ovoids of size q2 − 1 do
not exist.

Theorem (Payne and Thas)

Let S = (P,B, I) be a GQ of order (s, t). Any (st − ρ)-partial
ovoid of S with 0 ≤ ρ < t

s is contained in an uniquely defined
ovoid of S.
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T2(C)

Directions

The GQ T2(C)

Definition

An oval of PG(2, q) is a set of q + 1 points C, such that no three
points of C are collinear.

Let C be an oval of PG(2, q) and embed PG(2, q) as a
hyperplane in PG(3, q). We denote this hyperplane with π∞.
Define points as

(i) the points of PG(3, q) \ PG(2, q),
(ii) the hyperplanes π of PG(3, q) for which |π ∩ C| = 1, and
(iii) one new symbol (∞).
Lines are defined as
(a) the lines of PG(3, q) which are not contained in PG(2, q)

and meet C (necessarily in a unique point), and
(b) the points of C.
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T2(C) and Q(4, q)

Theorem

When C is a conic of PG(2, q), T2(C) ∼= Q(4, q).

Theorem

All ovals of PG(2, q) are conics, when q is odd.

Corollary

When q is odd, T2(C) ∼= Q(4, q).

Suppose now that q is odd and O is a partial ovoid of
Q(4, q) ∼= T2(C). We may assume that (∞) ∈ O.
If O has size k , then O = {(∞)} ∪ U, where U is a set of k − 1
points of type (i).
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T2(C)

Directions

Directions in AG(3, q)

U set of affine points, not determining q + 1 points at
infinity.

Suppose that |U| = q2 − 2, can U be extended, such that
none of the given directions is determined?

Denote by D the set of directions determined by U, denote
by O the set of points π∞ \ D.
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The Rédei polynomial

Classical theorems

Proposition

q + 1 points of AG(2, q) determine all directions.

Theorem (Szőnyi)

Suppose that S is a set of points of AG(2, q), |S| ≥ q −√
q/2,

determining at most q−1
2 directions. Then |S| can be extended

to a set of q points determining the same directions

Theorem (Rédei)

A set of p points of AG(2, p), p prime, not on a line, determines
at least p+3

2 directions.
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The Rédei polynomial

Choose π∞ : X3 = 0. Set
U = {(ai , bi , ci , 1) : i = 1, . . . , k} ⊂ AG(3, q), then
D = {(ai − aj , bi − bj , ci − cj , 0) : i 6= j}
Define

R(X , Y , Z , W ) =
k∏

i=1

(X + aiY + biZ + ciW )

then

R(X , Y , Z , W ) = X k +

k∑

i=1

σi(Y , Z , W )X k−i

with σi(X , Y , Z ) the i-th elementary symmetric polynomial of
the set {aiY + biZ + ciW |i = 1 . . . k}.

Jan De Beule (q2
− 1)-partial ovoids of Q(4, q)



university-logo

Introduction
Another representation
Directions in AG(2, q)

Another representation

The Rédei polynomial

The Rédei polynomial

Choose π∞ : X3 = 0. Set
U = {(ai , bi , ci , 1) : i = 1, . . . , k} ⊂ AG(3, q), then
D = {(ai − aj , bi − bj , ci − cj , 0) : i 6= j}
Define

R(X , Y , Z , W ) =
k∏

i=1

(X + aiY + biZ + ciW )

then

R(X , Y , Z , W ) = X k +

k∑

i=1

σi(Y , Z , W )X k−i

with σi(X , Y , Z ) the i-th elementary symmetric polynomial of
the set {aiY + biZ + ciW |i = 1 . . . k}.

Jan De Beule (q2
− 1)-partial ovoids of Q(4, q)



university-logo

Introduction
Another representation
Directions in AG(2, q)

Another representation

The Rédei polynomial

The Rédei polynomial

Lemma

For any x , y , z, w ∈ GF (q), (y , z, w) 6= (0, 0, 0), the multiplicity
of −x in the multi-set {yai + zbi + wci : i = 1, . . . , k} is the
same as the number of common points of U and the plane
yX0 + zX1 + wX2 + xX3 = 0.

Jan De Beule (q2
− 1)-partial ovoids of Q(4, q)



university-logo

Introduction
Another representation
Directions in AG(2, q)

Another representation

The Rédei polynomial

The Rédei polynomial

We may assume that
∑

ai =
∑

bi =
∑

ci = 0, implying
σ1(X , Y , Z ) = 0.
Consider a line L in π∞:

L : yX0 + zX1 + wX2 = X3 = 0

Suppose that L ∩ O 6= ∅ then
R(X , y , z, w)(X 2 − σ2(y , z, w)) = (X q − X )q .
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Relations for σ

Define
Sk (Y , Z , W ) =

∑

i

(aiY + biZ + ciW )k

Lemma

If the line with equation yX0 + zX1 + wX2 = X3 = 0 has at least
one common point with O, then Sk (y , z, w) = 0 for odd k and
Sk (y , z, w) = −2σ

k/2
2 (y , z, w) for even k.
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The result for q non prime

Theorem

If |U| = q2 − 2, q = ph and |O| ≥ p + 2, then U can be
extended by two points to a set of q2 points determining the
same directions.
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A property of (q2 − 1)-partial ovoids

Theorem

Let S = (P,B, I) be a GQ of order (s, t). Let K be a maximal
partial ovoid of size st − t

s of S. Let B′ be the set of lines
incident with no point of K, and let P ′ be the set of points on at
least one line of B′ and let I′ be the restriction of I to points of
P ′ and lines of B′. Then S ′ = (P ′,B′, I′) is a subquadrangle of
order (s, ρ = t

s ).

Corollary

Suppose that O is a maximal (q2 − 1)-partial ovoid of Q(4, q),
then the lines of Q(4, q) not meeting O are the lines of a
hyperbolic quadric Q+(3, q) ⊂ Q(4, Q).
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Elements of SL(2, q)

Q(4, q): X1X3 − X2X4 = X 2
0 .

π : X0 = O intersects Q(4, q) in a hyperbolic quadric

If P(x0, x1, x2, x3, x4) ∈ O, then x1x3 − x2x4 = 1.

Elements of O are elements of SL(2, q).

Question: does the set of elements of O constitute a
subgroup of SL(2, q)?
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