The smallest minimal blocking set of $\mathrm{Q}(6, q), q$ even

Jan De Beule
joint work with Leo Storme

Definitions

An ovoid \mathcal{O} of $\mathrm{Q}(2 n, q)$ is a set of points such that every generator meets \mathcal{O} in exactly one point.

A blocking set \mathcal{K} of $\mathrm{Q}(2 n, q)$ is a set of points such that every generator meets \mathcal{K} in at least one point. \mathcal{K} is minimal iff $\mathcal{K} \backslash\{p\}$ is not a blocking set $\forall p \in \mathcal{K}$.
\mathcal{O} is an ovoid of $\mathrm{Q}(4, q)$ (resp. $\mathrm{Q}(6, q))$, then $|\mathcal{O}|=q^{2}+1\left(\right.$ resp. $\left.|\mathcal{O}|=q^{3}+1\right)$
\mathcal{K} is an ovoid of $\mathrm{Q}(4, q)$ (resp. $\mathrm{Q}(6, q))$, then $|\mathcal{K}|=q^{2}+1+r\left(\right.$ resp. $\left.|\mathcal{K}|=q^{3}+1+r\right)$

Lines with many points

Theorem 1. (Eisfeld, Storme, Szőnyi and Sziklai) A blocking set of $\mathrm{Q}(4, q), q$ even, $q \geqslant 32$, of size $q^{2}+1+r$, with $0<r \leq \sqrt{q}$, contains an ovoid.

Theorem 2. (Bichara and Korchmáros) If S is a $(q+2)$-set in $\mathrm{PG}(2, q), q$ even, and if S has r internal nuclei, $r>q / 2$, then every point of Ω is an internal nucleus.

Towards the known blocking set

Lemma 1. Let \mathcal{C} be a minimal cover of $\mathrm{Q}(4, q),|\mathcal{C}|=q^{2}+1+r, 0<r \leqslant q-1$. If each multiple point has excess at least \sqrt{q}, then the set E of multiple points is a sum of lines, with the sum of the weights of the lines equal to r.

Final Theorem

Theorem 3. Let \mathcal{K} be a minimal blocking set of $\mathrm{Q}(6, q), q$ even, $|\mathcal{K}| \leqslant q^{3}+q, q \geqslant 32$. Then there is a point $p \in \mathrm{Q}(6, q) \backslash \mathcal{K}$ with the following property: $T_{p}(\mathrm{Q}(6, q)) \cap \mathrm{Q}(6, q)=$ $p \mathrm{Q}(4, q)$ and \mathcal{K} consists of all the points of the lines L on p meeting $\mathrm{Q}(4, q)$ in an ovoid \mathcal{O}, minus the point p itself, and $|\mathcal{K}|=q^{3}+q$.

