The smallest minimal blocking set of Q(6,q), q even

Jan De Beule joint work with Leo Storme

– Typeset by Foil $T_{\!E\!} \! X$ –

Definitions

An ovoid \mathcal{O} of Q(2n,q) is a set of points such that every generator meets \mathcal{O} in exactly one point.

A blocking set \mathcal{K} of Q(2n,q) is a set of points such that every generator meets \mathcal{K} in at least one point. \mathcal{K} is minimal iff $\mathcal{K} \setminus \{p\}$ is not a blocking set $\forall p \in \mathcal{K}$.

 \mathcal{O} is an ovoid of Q(4,q) (resp. Q(6,q)), then $|\mathcal{O}| = q^2 + 1$ (resp. $|\mathcal{O}| = q^3 + 1$)

 \mathcal{K} is an ovoid of Q(4,q) (resp. Q(6,q)), then $|\mathcal{K}| = q^2 + 1 + r$ (resp. $|\mathcal{K}| = q^3 + 1 + r$)

Lines with many points

Theorem 1. (Eisfeld, Storme, Szőnyi and Sziklai) A blocking set of Q(4,q), q even, $q \ge 32$, of size $q^2 + 1 + r$, with $0 < r \le \sqrt{q}$, contains an ovoid.

Theorem 2. (Bichara and Korchmáros) If S is a (q+2)-set in PG(2,q), q even, and if S has r internal nuclei, r > q/2, then every point of Ω is an internal nucleus.

Towards the known blocking set

Lemma 1. Let C be a minimal cover of Q(4,q), $|C| = q^2 + 1 + r$, $0 < r \leq q - 1$. If each multiple point has excess at least \sqrt{q} , then the set E of multiple points is a sum of lines, with the sum of the weights of the lines equal to r.

Final Theorem

Theorem 3. Let \mathcal{K} be a minimal blocking set of Q(6,q), q even, $|\mathcal{K}| \leq q^3 + q$, $q \geq 32$. Then there is a point $p \in Q(6,q) \setminus \mathcal{K}$ with the following property: $T_p(Q(6,q)) \cap Q(6,q) =$ pQ(4,q) and \mathcal{K} consists of all the points of the lines L on p meeting Q(4,q) in an ovoid \mathcal{O} , minus the point p itself, and $|\mathcal{K}| = q^3 + q$.