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Notation

Let AG(n,q) denote the n-dimensional affine space over
the finite field GF(q).

Let PG(n,q) denote the n-dimensional projective space
over the finite field GF(q).
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Directions

A point at infinitiy of AG(n,q) is called a direction.

Definition

Consider a set U of points of AG(n,q). A direction is called
determined by U if and only if it is the point at infinity of the line
determined by two points of U. Denote by UD the set of
directions determined by U.

Corollary

If |U| > qn−1, then all directions are determined by U.
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direction problems

We are interested in the following research questions.
1 What are the possible sizes of UD given that |U| = qn−1?

What is the possible structure of UD?
2 What are the possible sets U, |U| = qn−1, given that UD (or

its complement in π∞) or only |UD| is known?
3 Given that a set N of directions is not determined by a set

U, |U| = qn−1 − ǫ, can U be extended to a set U ′,
|U ′| = qn−1, such that U ′ does not determine the given set
N?
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Blocking sets

Definition

A blocking set of PG(2,q) is a set B of points such that every
line meets B in at least one point. A blocking set is called
non-trivial if it does not contain a line. A blocking set B is
minimal if B \ {p} is not a blocking set for any p ∈ B.
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Blocking sets and directions

l∞
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blocking sets of Rédei type

Definition

Let B be a blocking set of PG(2,q) of size q + n. Then B is a
blocking set of Rédei-type if there exists a line meeting B in n
points.

Theorem (Blokhuis, Brouwer and Szőnyi (1995))

Let B be a non-trivial blocking set of Rédei-type in PG(2,q), q
an odd prime. Then |B| ≥ 3(q+1)

2 .

Theorem (Blokhuis (1994))

Let B be a non-trivial blocking set of Rédei-type in PG(2,q), q
an odd prime. Then |B| ≥ 3(q+1)

2 .
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blocking sets of Rédei type

Let q be an odd prime.

Define U := {(x , x
q+1

2 )|x ∈ GF(q)}.

Then U ∪ UD is a blocking set of size q + q+3
2 = 3(q+1)

2 .

This blocking set is sometimes called the projective
triangle.
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Question 1 in AG(2, q)

Theorem (Ball (2003))

Let U be a point set of AG(2,q) of size q = ph, p prime, h ≥ 1.
Let s = pe, 0 ≤ e ≤ n, be maximal such that any line with with
slope in UD meets U in a multiple of s points. Then one of the
following holds:

1 s = 1 and (q + 3)/2 ≤ |UD| ≤ q + 1,

2 e | h, and q
s + 1 ≤ |UD| ≤

(q−1)
(pe−1) ,

3 s = q and |UD| = 1.

Moreover, if s > 2 then U is GF(s)-linear (and all possibilities
for |UD| can in principle be determined).

Parts of this theorem were shown by Blokhuis, Ball, Brouwer,
Storme and Szőnyi in 1999.
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Question 2 in the plane

Theorem (Szőnyi (1996))

Suppose that U is a set of q − k points, k ≤
√

q
2 , such that

|UD| <
q+1

2 . Then U can be extended to a set Y , |Y | = q and
YD = UD.
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Theorem (Szőnyi (1996))

Suppose that U is a set of q − k points, k ≤
√

q
2 , such that

|UD| <
q+1

2 . Then U can be extended to a set Y , |Y | = q and
YD = UD.

Jan De Beule direction problems



university-logo

Directions in affine spaces
Results in k-spaces

stability in higher dimension

Early results

Theorem (Ball and Lavrauw (2006))

Let U be a set of qk−1 points of AG(k ,q), q = ph. If U does not
determine at least peq directions, 0 ≤ e, then every hyperplane
meets U in 0 mod pe+1 points.

Theorem (Ball (2008))

Let q = ph, p prime, h ≥ 1 and 1 ≤ pe < qk−2, where e is a
non-negative integer. If there are more than pe(q − 1)
directions not determined by a set U of qk−1 points in AG(k ,q)
then every hyperplane meets U in 0 mod pe+1 points.
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The Rédei polynomial approach

(i) U = {(ai ,bi , ci ,1)‖i = 1 . . .q2}

(ii)

R(X ,Y ,Z ,W ) =

q2∏

i=1

(X + aiY + biZ + ciW ) (1)

= X q2
+

q2∑

j=1

σj(Y ,Z ,W )X q2−j (2)

(iii) if yX1 + zX2 + wX2 = X3 = 0 is a line containing a
non-determined direction, then

R(X , y , z,w) | (X q − X )q
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The Rédei polynomial approach

(iv) σj(Y ,Z ,W ) ≡ 0, j = 1 . . . q − 1

(v) ∂R
∂X (X , y , z,w) =

∑q2

i=1
R(X ,y ,z,w)

(X+ai y+biz+ci w)

(vi) R(X , y , z,w) | (X q − X )∂R
∂X (X , y , z,w) implies

∂R
∂X (X , y , z,w) ≡ 0

Jan De Beule direction problems



university-logo

Directions in affine spaces
Results in k-spaces

stability in higher dimension

The Rédei polynomial approach

(iv) σj(Y ,Z ,W ) ≡ 0, j = 1 . . . q − 1

(v) ∂R
∂X (X , y , z,w) =

∑q2

i=1
R(X ,y ,z,w)

(X+ai y+biz+ci w)

(vi) R(X , y , z,w) | (X q − X )∂R
∂X (X , y , z,w) implies

∂R
∂X (X , y , z,w) ≡ 0

Jan De Beule direction problems



university-logo

Directions in affine spaces
Results in k-spaces

stability in higher dimension

The Rédei polynomial approach

(iv) σj(Y ,Z ,W ) ≡ 0, j = 1 . . . q − 1

(v) ∂R
∂X (X , y , z,w) =

∑q2

i=1
R(X ,y ,z,w)

(X+ai y+biz+ci w)

(vi) R(X , y , z,w) | (X q − X )∂R
∂X (X , y , z,w) implies

∂R
∂X (X , y , z,w) ≡ 0

Jan De Beule direction problems



university-logo

Directions in affine spaces
Results in k-spaces

stability in higher dimension

The Rédei polynomial approach

(vii) R(X , y , z,w) is a p-th power for all
(x , y , z) ∈ GF(q) \ {(0,0,0)}.

(viii) A plane yX0 + zX1 + wX2 + xX3 = 0 contains 0 mod p
points of U.
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more results in 3 spaces

Theorem (Sziklai (2006))

Let U be a pointset in AG(3,p), p > 3, of size p2. Then one of
the following possibilities hold

1 U is a plane and |UD| = p + 1
2 U is a cylinder with the affine part of the projective triangle

as a base and |UD| = 1 + p p+3
2

3 |UD| = p + p p+3
2 .
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stability in AG(3, q)

Theorem (DB and Gács (2008))

Let U be a set of q2 − 2 points in AG(3,q), q = ph, p an odd
prime, and suppose that U does not determine a set of p + 2
directions. Then U can be extended to a set of q2 points
determining the same directions.

Theorem (Ball (2012))

Let U be a set of qk−1 − 2 points in AG(k − 1,q), q = ph, p an
odd prime, and suppose that U does not determine a set of
p + 2 directions.Then U can be extended to a set of qk−1 points
determining the same directions.

Jan De Beule direction problems



university-logo

Directions in affine spaces
Results in k-spaces

stability in higher dimension

stability in AG(3, q)

Theorem (DB and Gács (2008))

Let U be a set of q2 − 2 points in AG(3,q), q = ph, p an odd
prime, and suppose that U does not determine a set of p + 2
directions. Then U can be extended to a set of q2 points
determining the same directions.

Theorem (Ball (2012))

Let U be a set of qk−1 − 2 points in AG(k − 1,q), q = ph, p an
odd prime, and suppose that U does not determine a set of
p + 2 directions.Then U can be extended to a set of qk−1 points
determining the same directions.

Jan De Beule direction problems



university-logo

Directions in affine spaces
Results in k-spaces

stability in higher dimension

more stability

Can more stability be obtained if more non-determined
directions are assumed?

Theorem (DB, Sziklai and Takáts)

Let n ≥ 3. Let U ⊂ AG(n,q) ⊂ PG(n,q), |U| = qn−1 − 2. Let
D ⊆ H∞ be the set of directions determined by U and put
N = H∞ \ D the set of non-determined directions. Then U can
be extended to a set Ū ⊇ U, |Ū| = qn−1 determining the same
directions only, or the points of N are collinear and |N| ≤ ⌊q+3

2 ⌋,
or the points of N are on a (planar) conic curve.
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more stability

Theorem (DB, Sziklai and Takáts)

Let U ⊂ AG(3,q) ⊂ PG(2,q), |U| = q2 − ε, where ε < p. Let
D ⊆ H∞ be the set of directions determined by U and put
N = H∞ \ D the set of non-determined directions. Then N is
contained in a plane curve of degree ε4 − 2ε3 + ε or U can be
extended to a set Ū ⊇ U, |Ū| = q2.
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motivation in 3 space

A set of q2 points in AG(3,q) not determining the points of
a conic at infinity is equivalent with an ovoid of the
generalized quadrangle Q(4,q), see e.g. Ball and Lavrauw
(2004/2006)

Intersection numbers have led to the complete
classification of ovoids of Q(4,q), q prime, Ball, Govaerts
and Storme (2006)

Stability results are related to (maximal) partial ovoids, DB
and Gács (2008).
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intersecion numbers revisited

(i) U = {(ai ,bi , ci ,1)‖i = 1 . . . k}

(ii) R(X ,Y ,Z ,W ) =
∏k

i=1(X + aiY + biZ + ciW ) =

X k +
∑k

j=1 σj(Y ,Z ,W )X k−j

(iii) assume we can compute σj(Y ,Z ,W ) for j = 1 . . . q − 1,

(iv) then we can compute
Sj(Y ,Z ,W ) :=

∑k
i=1(aiY + biZ + ciW )j , and

P(X ,Y ,Z ,W ) :=
k∑

i=1

(X + aiY + biZ + ciW )q−1 (3)
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(i) U = {(ai ,bi , ci ,1)‖i = 1 . . . k}

(ii) R(X ,Y ,Z ,W ) =
∏k

i=1(X + aiY + biZ + ciW ) =

X k +
∑k

j=1 σj(Y ,Z ,W )X k−j

(iii) assume we can compute σj(Y ,Z ,W ) for j = 1 . . . q − 1,

(iv) then we can compute
Sj(Y ,Z ,W ) :=

∑k
i=1(aiY + biZ + ciW )j , and

P(X ,Y ,Z ,W ) :=
k∑

i=1

(X + aiY + biZ + ciW )q−1 (3)
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intersecion numbers revisited

(v) P(x , y , z,w) = k − |π ∩ U| mod p
with π : yX0 + zX1 + wX2 + xX3 = 0.
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hypothesis on intersection numbers

Suppose that P(X ,Y ,Z ,W ) = 0.

Conjecture (strong cylinder conjecture)

Suppose that U is a set of q2 points in AG(3,q), q prime, such
that every plane intersects U in 0 mod q points. Then U is a
cylinder, i.e. the set of q2 points on q distinct lines in one
parallel class.
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A general equality

Lemma

Suppose that R(X1, . . . ,Xn) =
∏d

i=1(a
1
i X1 + . . . + an

i Xn),
aj

i ∈ Fq, ∈ N, and consider
P(X1, . . . ,Xn) =

∑d
i=1(a

1
i X1 + . . .+ an

i Xn)
q−1. Then

P · R = X q
1
∂R
∂X1

+ . . . + X q
n
∂R
∂Xn
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If we also suppose that U does not determine q + 1 directions,
assuming P(X ,Y ,Z ,W ) = 0 implies

σk (Y ,Z ,W ) ≡ 0 , k = lq + 1 . . . (l + 1)q − l ,

l = 0 . . . q − 1

(−j + 1)σj+q−1(Y ,Z ,W ) + (Y q ∂σj

∂Y
+ Z q ∂σj

∂Z
+ W q ∂σj

∂W
) ≡ 0 ,

j = q + 1 . . . q2 − q

Y q ∂σj

∂Y
+ Z q ∂σj

∂Z
+ W q ∂σj

∂W
≡ 0 ,

j = q2 − q + 1 . . . q2
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Intersections with lines

Substitution Y := sZ + tW enables to use R(X ,Y ,Z ,W ) to
investigate intersections with the q2 lines through (0,1,−s,−t).

σs,t
k (Z ,W ) ≡ 0 , k = lq + 1 . . . (l + 1)q − l ,

l = 0 . . . q − 1

(−j + 1)σs,t
j+q−1(Z ,W ) + (Z q

∂σs,t
j

∂Z
+ W q

∂σs,t
j

∂W
) ≡ 0 ,

j = q + 1 . . . q2 − q

Z q
∂σs,t

j

∂Z
+ W q

∂σs,t
j

∂W
≡ 0 ,

j = q2 − q + 1 . . . q2
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