Direction problems in affine spaces

Jan De Beule

Department of Mathematics, Ghent University and
Department of Mathematics, Vrije Universiteit Brussel

Academy Contact Forum "Galois geometries and
applications" Brussels, 5 October 2012

Notation

- Let $\operatorname{AG}(n, q)$ denote the n-dimensional affine space over the finite field $\mathrm{GF}(q)$.
- Let $\operatorname{PG}(n, q)$ denote the n-dimensional projective space over the finite field $\mathrm{GF}(q)$.

Directions

- A point at infinitiy of $\operatorname{AG}(n, q)$ is called a direction.

> Definition
> Consider a set U of points of $\mathrm{AG}(n, q)$. A direction is called determined by U if and only if it is the point at infinity of the line determined by two points of U. Denote by U_{D} the set of directions determined by U.

Corollary

If $|U|>a^{n-1}$, then all directions are determined by U

Directions

- A point at infinitiy of $\operatorname{AG}(n, q)$ is called a direction.

Definition

Consider a set U of points of $\operatorname{AG}(n, q)$. A direction is called determined by U if and only if it is the point at infinity of the line determined by two points of U. Denote by U_{D} the set of

If |U|
then all directions are determined by U

Directions

- A point at infinitiy of $\operatorname{AG}(n, q)$ is called a direction.

Definition

Consider a set U of points of $\operatorname{AG}(n, q)$. A direction is called determined by U if and only if it is the point at infinity of the line determined by two points of U. Denote by U_{D} the set of directions determined by U.

Directions

- A point at infinitiy of $\operatorname{AG}(n, q)$ is called a direction.

Definition

Consider a set U of points of $\operatorname{AG}(n, q)$. A direction is called determined by U if and only if it is the point at infinity of the line determined by two points of U. Denote by U_{D} the set of directions determined by U.

Corollary

If $|U|>q^{n-1}$, then all directions are determined by U.

direction problems

We are interested in the following research questions.
(1) What are the possible sizes of U_{D} given that $|U|=q^{n-1}$? What is the possible structure of U_{D} ?
(2) What are the possible sets $U,|U|=q^{n-1}$, given that U_{D} (or its complement in π_{∞}) or only $\left|U_{D}\right|$ is known?
(3) Given that a set N of directions is not determined by a set

$\left|U^{\prime}\right|=q^{n-1}$, such that U^{\prime} does not determine the given set
N ?

direction problems

We are interested in the following research questions.
(1) What are the possible sizes of U_{D} given that $|U|=q^{n-1}$? What is the possible structure of U_{D} ?
(2) What are the possible sets $U,|U|=q^{n-1}$, given that U_{D} (or its complement in π_{∞}) or only $\left|U_{D}\right|$ is known?
(3) Given that a set N of directions is not determined by a set

direction problems

We are interested in the following research questions.
(1) What are the possible sizes of U_{D} given that $|U|=q^{n-1}$? What is the possible structure of U_{D} ?
(2) What are the possible sets $U,|U|=q^{n-1}$, given that U_{D} (or its complement in π_{∞}) or only $\left|U_{D}\right|$ is known?
(3) Given that a set N of directions is not determined by a set $U,|U|=q^{n-1}-\epsilon$, can U be extended to a set U^{\prime}, $\left|U^{\prime}\right|=q^{n-1}$, such that U^{\prime} does not determine the given set N ?

Blocking sets

Definition

A blocking set of $\operatorname{PG}(2, q)$ is a set B of points such that every line meets B in at least one point. A blocking set is called non-trivial if it does not contain a line. A blocking set B is minimal if $B \backslash\{p\}$ is not a blocking set for any $p \in B$.

Blocking sets

Definition

A blocking set of $\operatorname{PG}(2, q)$ is a set B of points such that every line meets B in at least one point. A blocking set is called non-trivial if it does not contain a line.
minimal if $B \backslash\{p\}$ is not a blocking set for any $p \in B$.

Blocking sets

Definition

A blocking set of $\operatorname{PG}(2, q)$ is a set B of points such that every line meets B in at least one point. A blocking set is called non-trivial if it does not contain a line. A blocking set B is minimal if $B \backslash\{p\}$ is not a blocking set for any $p \in B$.

Blocking sets and directions

Directions in affine spaces
Results in k-spaces stability in higher dimension
blocking sets
Results AG(2, q)

Blocking sets and directions

Directions in affine spaces
Results in k-spaces stability in higher dimension
blocking sets
Results AG(2, q)

Blocking sets and directions

Directions in affine spaces
Results in k-spaces stability in higher dimension
blocking sets
Results AG(2, q)

Blocking sets and directions

Directions in affine spaces
Results in k-spaces stability in higher dimension
blocking sets
Results AG(2, q)

Blocking sets and directions

Directions in affine spaces
Results in k-spaces stability in higher dimension
blocking sets
Results AG(2, q)

Blocking sets and directions

Directions in affine spaces
Results in k-spaces stability in higher dimension

Blocking sets and directions

Blocking sets and directions

blocking sets of Rédei type

Definition

Let B be a blocking set of $\operatorname{PG}(2, q)$ of size $q+n$. Then B is a blocking set of Rédei-type if there exists a line meeting B in n points.

> Theorem (Blokhuis, Brouwer and Szónyi (1995))
> Let B be a non-trivial blocking set of Rédei-type in $\operatorname{PG}(2, q), q$
> an odd prime. Then $|B|$

\square
Theorem (Blokhuis (1994))
Let B be a non-trivial blocking set of Rédei-type in $\operatorname{PG}(2, q), q$
an odd prime. Then $|B|$

blocking sets of Rédei type

Definition

Let B be a blocking set of $\operatorname{PG}(2, q)$ of size $q+n$. Then B is a blocking set of Rédei-type if there exists a line meeting B in n points.

Theorem (Blokhuis, Brouwer and Szőnyi (1995))

Let B be a non-trivial blocking set of Rédei-type in $\operatorname{PG}(2, q), q$ an odd prime. Then $|B| \geq \frac{3(q+1)}{2}$.

Theorem (Blokhuis (1994))
Let B be a non-trivial blocking set of Rédei-type in $\operatorname{PG}(2, q), q$
an odd prime. Then $|B|$

blocking sets of Rédei type

Definition

Let B be a blocking set of $\operatorname{PG}(2, q)$ of size $q+n$. Then B is a blocking set of Rédei-type if there exists a line meeting B in n points.

Theorem (Blokhuis, Brouwer and Szőnyi (1995))

Let B be a non-trivial blocking set of Rédei-type in $\operatorname{PG}(2, q)$, q an odd prime. Then $|B| \geq \frac{3(q+1)}{2}$.

Theorem (Blokhuis (1994))

Let B be a non-trivial blocking set of Rédei-type in $\operatorname{PG}(2, q)$, q an odd prime. Then $|B| \geq \frac{3(q+1)}{2}$.

blocking sets of Rédei type

- Let q be an odd prime.
- Define $U:=\left\{\left.\left(x, x^{\frac{q+1}{2}}\right) \right\rvert\, x \in \operatorname{GF}(q)\right\}$.
- Then $U \cup U_{D}$ is a blocking set of size $q+\frac{q+3}{2}=\frac{3(q+1)}{2}$.
- This blocking set is sometimes called the projective triangle.

Question 1 in $\operatorname{AG}(2, q)$

Theorem (Ball (2003))

Let U be a point set of $\mathrm{AG}(2, q)$ of size $q=p^{h}$, p prime, $h \geq 1$. Let $s=p^{e}, 0 \leq e \leq n$, be maximal such that any line with with slope in U_{D} meets U in a multiple of s points. Then one of the following holds:

Parts of this theorem were shown by Blokhuis, Ball, Brouwer, Storme and Szőnyi in 1999.

Question 1 in $\mathrm{AG}(2, q)$

Theorem (Ball (2003))

Let U be a point set of $\operatorname{AG}(2, q)$ of size $q=p^{h}$, p prime, $h \geq 1$. Let $s=p^{e}, 0 \leq e \leq n$, be maximal such that any line with with slope in U_{D} meets U in a multiple of s points. Then one of the following holds:
(1) $s=1$ and $(q+3) / 2 \leq\left|U_{D}\right| \leq q+1$,
(2) $e \mid h$, and $\frac{q}{s}+1 \leq\left|U_{D}\right| \leq \frac{(q-1)}{\left(p^{e}-1\right)}$,
(3) $s=q$ and $\left|U_{D}\right|=1$.

Moreover, if $s>2$ then U is GF(s)-linear (and all possibilities for $\left|U_{D}\right|$ can in principle be determined).

Parts of this theorem were shown by Blokhuis, Ball, Brouwer, Storme and Szőnyi in 1999.

Question 1 in $\mathrm{AG}(2, q)$

Theorem (Ball (2003))

Let U be a point set of $\mathrm{AG}(2, q)$ of size $q=p^{h}$, p prime, $h \geq 1$. Let $s=p^{e}, 0 \leq e \leq n$, be maximal such that any line with with slope in U_{D} meets U in a multiple of s points. Then one of the following holds:
(1) $s=1$ and $(q+3) / 2 \leq\left|U_{D}\right| \leq q+1$,
(2) $e \mid h$, and $\frac{q}{s}+1 \leq\left|U_{D}\right| \leq \frac{(q-1)}{\left(p^{e}-1\right)}$,
(3) $s=q$ and $\left|U_{D}\right|=1$.

Moreover, if $s>2$ then U is GF(s)-linear (and all possibilities for $\left|U_{D}\right|$ can in principle be determined).

Parts of this theorem were shown by Blokhuis, Ball, Brouwer, Storme and Szőnyi in 1999.

Directions in affine spaces
Results in k-spaces
stability in higher dimension

Question 2 in the plane

Theorem (Szőnyi (1996))

Suppose that U is a set of $a-k$ points, $k \leq \frac{\sqrt{q}}{2}$, such that $\left|U_{D}\right|<\frac{q+1}{2}$. Then U can be extended to a set $Y,|Y|=q$ and $Y_{D}=U_{D}$.

Question 2 in the plane

Theorem (Szőnyi (1996))

Suppose that U is a set of $q-k$ points, $k \leq \frac{\sqrt{q}}{2}$, such that $\left|U_{D}\right|<\frac{q+1}{2}$. Then U can be extended to a set $Y,|Y|=q$ and $Y_{D}=U_{D}$.

Early results

Theorem (Ball and Lavrauw (2006))

Let U be a set of q^{k-1} points of $\mathrm{AG}(k, q), q=p^{h}$. If U does not determine at least $p^{e} q$ directions, $0 \leq e$, then every hyperplane meets U in $0 \bmod p^{e+1}$ points.

Theorem (Ball (2008))
Let $q=p^{h}$, p prime, $h \geq 1$ and $1 \leq p^{e}<q^{k-2}$, where e is a
non-negative integer. If there are more than $p^{e}(q-1)$
directions not determined by a set U of q^{k-1} points in $\mathrm{AG}(k, q)$ then every hyperplane meets U in $0 \bmod p^{e+1}$ points.

Early results

Theorem (Ball and Lavrauw (2006))

Let U be a set of q^{k-1} points of $\mathrm{AG}(k, q), q=p^{h}$. If U does not determine at least $p^{e} q$ directions, $0 \leq e$, then every hyperplane meets U in $0 \bmod p^{e+1}$ points.

Theorem (Ball (2008))

Let $q=p^{h}, p$ prime, $h \geq 1$ and $1 \leq p^{e}<q^{k-2}$, where e is a non-negative integer. If there are more than $p^{e}(q-1)$ directions not determined by a set U of q^{k-1} points in $\operatorname{AG}(k, q)$ then every hyperplane meets U in $0 \bmod p^{e+1}$ points.

The Rédei polynomial approach

(i) $U=\left\{\left(a_{i}, b_{i}, c_{i}, 1\right) \| i=1 \ldots q^{2}\right\}$

$$
\begin{equation*}
R(X, Y, Z, W)=\prod_{i=1}\left(X+a_{i} Y+b_{i} Z+c_{i} W\right) \tag{1}
\end{equation*}
$$

(iii) if $y X_{1}+z X_{2}+w X_{2}=X_{3}=0$ is a line containing a non-determined direction, then

$$
R(X, y, z, w) \mid\left(X^{q}-X\right)^{q}
$$

The Rédei polynomial approach

(i) $U=\left\{\left(a_{i}, b_{i}, c_{i}, 1\right) \| i=1 \ldots q^{2}\right\}$

$$
\begin{equation*}
R(X, Y, Z, W)=\prod_{i=1}\left(X+a_{i} Y+b_{i} Z+c_{i} W\right) \tag{1}
\end{equation*}
$$

(iii) if $y X_{1}+z X_{2}+w X_{2}=X_{3}=0$ is a line containing a non-determined direction, then

$$
R(X, y, z, w) \mid\left(X^{q}-X\right)^{q}
$$

The Rédei polynomial approach

(i) $U=\left\{\left(a_{i}, b_{i}, c_{i}, 1\right) \| i=1 \ldots q^{2}\right\}$
(ii)

$$
\begin{align*}
R(X, Y, Z, W) & =\quad \prod_{i=1}^{q^{2}}\left(X+a_{i} Y+b_{i} Z+c_{i} W\right) \tag{1}\\
& =\quad X^{q^{2}}+\sum_{j=1}^{q^{2}} \sigma_{j}(Y, Z, W) X^{q^{2}-j} \tag{2}
\end{align*}
$$

(iii) if $y X_{1}+z X_{2}+w X_{2}=X_{3}=0$ is a line containing a non-determined direction, then

$$
R(X, y, z, w) \mid\left(X^{q}-X\right)^{q}
$$

The Rédei polynomial approach

(i) $U=\left\{\left(a_{i}, b_{i}, c_{i}, 1\right) \| i=1 \ldots q^{2}\right\}$
(ii)

$$
\begin{align*}
R(X, Y, Z, W) & =\quad \prod_{i=1}^{q^{2}}\left(X+a_{i} Y+b_{i} Z+c_{i} W\right) \tag{1}\\
& =\quad X^{q^{2}}+\sum_{j=1}^{q^{2}} \sigma_{j}(Y, Z, W) X^{q^{2}-j} \tag{2}
\end{align*}
$$

(iii) if $y X_{1}+z X_{2}+w X_{2}=X_{3}=0$ is a line containing a non-determined direction, then

$$
R(X, y, z, w) \mid\left(X^{q}-X\right)^{q}
$$

The Rédei polynomial approach

(iv) $\sigma_{j}(Y, Z, W) \equiv 0, j=1 \ldots q-1$
(v) $\frac{\partial R}{\partial X}(X, y, z, w)=\sum_{i=1}^{q^{2}} \frac{R(X, y, z, w)}{\left(X+a_{i} y+b_{i} z+c_{i} w\right)}$
(vi) $R(X, y, z, w) \left\lvert\,\left(X^{q}-X\right) \frac{\partial R}{\partial X}(X, y, z, w)\right.$ implies $\frac{\partial R}{\partial X}(X, y, z, w) \equiv 0$

The Rédei polynomial approach

(iv) $\sigma_{j}(Y, Z, W) \equiv 0, j=1 \ldots q-1$
(v) $\frac{\partial R}{\partial X}(X, y, z, w)=\sum_{i=1}^{q^{2}} \frac{R(X, y, z, w)}{\left(X+a_{i} y+b_{i} z+c_{i} w\right)}$
(vi) $R(X, y, z, w) \left\lvert\,\left(X^{q}-X\right) \frac{\partial R}{\partial X}(X, y, z, w)\right.$ implies $\frac{\partial R}{\partial X}(X, y, z, w) \equiv 0$

The Rédei polynomial approach

(iv) $\sigma_{j}(Y, Z, W) \equiv 0, j=1 \ldots q-1$
(v) $\frac{\partial R}{\partial X}(X, y, z, w)=\sum_{i=1}^{q^{2}} \frac{R(X, y, z, w)}{\left(X+a_{i} y+b_{i} z+c_{i} w\right)}$
(vi) $R(X, y, z, w) \left\lvert\,\left(X^{q}-X\right) \frac{\partial R}{\partial X}(X, y, z, w)\right.$ implies $\frac{\partial R}{\partial X}(X, y, z, w) \equiv 0$

The Rédei polynomial approach

(vii) $R(X, y, z, w)$ is a p-th power for all $(x, y, z) \in \operatorname{GF}(q) \backslash\{(0,0,0)\}$.
A plane $y X_{0}+z X_{1}+w X_{2}+x X_{3}=0$ contains $0 \bmod p$ points of U.

The Rédei polynomial approach

(vii) $R(X, y, z, w)$ is a p-th power for all $(x, y, z) \in \mathrm{GF}(q) \backslash\{(0,0,0)\}$.
(viii) A plane $y X_{0}+z X_{1}+w X_{2}+x X_{3}=0$ contains $0 \bmod p$ points of U.

more results in 3 spaces

Theorem (Sziklai (2006))

Let U be a pointset in $\operatorname{AG}(3, p), p>3$, of size p^{2}. Then one of the following possibilities hold
(1) U is a plane and $\left|U_{D}\right|=p+1$
(2) U is a cylinder with the affine part of the projective triangle as a base and $\left|U_{D}\right|=1+p \frac{p+3}{2}$
(3) $\left|U_{D}\right|=p+p \frac{p+3}{2}$.

stability in $\operatorname{AG}(3, q)$

Theorem (DB and Gács (2008))

Let U be a set of $q^{2}-2$ points in $\operatorname{AG}(3, q), q=p^{h}, p$ an odd prime, and suppose that U does not determine a set of $p+2$ directions. Then U can be extended to a set of q^{2} points determining the same directions.

> Theorem (Ball (2012))
> Let U be a set of $q^{k-1}-2$ points in $\operatorname{AG}(k-1, q), q=p^{h}, p$ an
> odd prime, and suppose that U does not determine a set of
> $p+2$ directions. Then U can be extended to a set of q^{k-1} points determining the same directions.

stability in $\operatorname{AG}(3, q)$

Theorem (DB and Gács (2008))

Let U be a set of $q^{2}-2$ points in $\operatorname{AG}(3, q), q=p^{h}, p$ an odd prime, and suppose that U does not determine a set of $p+2$ directions. Then U can be extended to a set of q^{2} points determining the same directions.

Theorem (Ball (2012))

Let U be a set of $q^{k-1}-2$ points in $\operatorname{AG}(k-1, q), q=p^{h}, p$ an odd prime, and suppose that U does not determine a set of $p+2$ directions. Then U can be extended to a set of q^{k-1} points determining the same directions.

more stability

Can more stability be obtained if more non-determined directions are assumed?

Theorem (DB, Sziklai and Takáts)

Let $n \geq 3$. Let $U \subset \operatorname{AG}(n, q) \subset \operatorname{PG}(n, q),|U|=q^{n-1}-2$. Let
$D \subseteq H_{\infty}$ be the set of directions determined by U and put
$N=H_{\infty} \backslash D$ the set of non-determined directions. Then U can be extended to a set $\bar{U} \supseteq U,|\bar{U}|=q^{n-1}$ determining the same directions only, or the points of N are collinear and $|N| \leq\left\lfloor\frac{q+3}{2}\right\rfloor$, or the points of N are on a (planar) conic curve.

more stability

Theorem (DB, Sziklai and Takáts)

Let $U \subset \operatorname{AG}(3, q) \subset \operatorname{PG}(2, q),|U|=q^{2}-\varepsilon$, where $\varepsilon<p$. Let $D \subseteq H_{\infty}$ be the set of directions determined by U and put $N=H_{\infty} \backslash D$ the set of non-determined directions. Then N is contained in a plane curve of degree $\varepsilon^{4}-2 \varepsilon^{3}+\varepsilon$ or U can be extended to a set $\bar{U} \supseteq U,|\bar{U}|=q^{2}$.

motivation in 3 space

- A set of q^{2} points in $\operatorname{AG}(3, q)$ not determining the points of a conic at infinity is equivalent with an ovoid of the generalized quadrangle $\mathrm{Q}(4, q)$, see e.g. Ball and Lavrauw (2004/2006)
- Intersection numbers have led to the complete classification of ovoids of $\mathrm{Q}(4, q), q$ prime, Ball, Govaerts and Storme (2006)
- Stability results are related to (maximal) partial ovoids, DB and Gács (2008).

intersecion numbers revisited

(i) $U=\left\{\left(a_{i}, b_{i}, c_{i}, 1\right) \| i=1 \ldots k\right\}$
(ii) $R(X, Y, Z, W)=\prod_{i=1}^{k}\left(X+a_{i} Y+b_{i} Z+c_{i} W\right)=$ $X^{k}+\sum_{j=1}^{k} \sigma_{j}(Y, Z, W) X^{k-j}$
(iii) assume we can compute $\sigma_{j}(Y, Z, W)$ for $j=1 \ldots q-1$,
(iv) then we can compute
$S_{j}(Y, Z, W):=\sum_{i=1}^{k}\left(a_{i} Y+b_{i} Z+c_{i} W\right)^{j}$, and
$P(X, Y, Z, W):=\quad \sum\left(X+a_{i} Y+b_{i} Z+c_{i} W\right)^{q-1}$

intersecion numbers revisited

(i) $U=\left\{\left(a_{i}, b_{i}, c_{i}, 1\right) \| i=1 \ldots k\right\}$
(ii) $R(X, Y, Z, W)=\prod_{i=1}^{k}\left(X+a_{i} Y+b_{i} Z+c_{i} W\right)=$ $X^{k}+\sum_{j=1}^{k} \sigma_{j}(Y, Z, W) X^{k-j}$
(iii) assume we can compute $\sigma_{j}(Y, Z, W)$ for $j=1 \ldots q-1$, then we can compute
$S_{j}(Y, Z, W):=\sum_{i=1}^{k}\left(a_{i} Y+b_{i} Z+c_{i} W\right)^{j}$, and

intersecion numbers revisited

(i) $U=\left\{\left(a_{i}, b_{i}, c_{i}, 1\right) \| i=1 \ldots k\right\}$
(ii) $R(X, Y, Z, W)=\prod_{i=1}^{k}\left(X+a_{i} Y+b_{i} Z+c_{i} W\right)=$ $X^{k}+\sum_{j=1}^{k} \sigma_{j}(Y, Z, W) X^{k-j}$
(iii) assume we can compute $\sigma_{j}(Y, Z, W)$ for $j=1 \ldots q-1$,
(iv) then we can compute

$$
S_{j}(Y, Z, W):=\sum_{i=1}^{k}\left(a_{i} Y+b_{i} Z+c_{i} W\right)^{j}, \text { and }
$$

intersecion numbers revisited

(i) $U=\left\{\left(a_{i}, b_{i}, c_{i}, 1\right) \| i=1 \ldots k\right\}$
(ii) $R(X, Y, Z, W)=\prod_{i=1}^{k}\left(X+a_{i} Y+b_{i} Z+c_{i} W\right)=$ $X^{k}+\sum_{j=1}^{k} \sigma_{j}(Y, Z, W) X^{k-j}$
(iii) assume we can compute $\sigma_{j}(Y, Z, W)$ for $j=1 \ldots q-1$,
(iv) then we can compute

$$
S_{j}(Y, Z, W):=\sum_{i=1}^{k}\left(a_{i} Y+b_{i} Z+c_{i} W\right)^{j}, \text { and }
$$

$$
\begin{equation*}
P(X, Y, Z, W):=\quad \sum_{i=1}^{k}\left(X+a_{i} Y+b_{i} Z+c_{i} W\right)^{q-1} \tag{3}
\end{equation*}
$$

intersecion numbers revisited

(v) $P(x, y, z, w)=k-|\pi \cap U| \bmod p$ with $\pi: y X_{0}+z X_{1}+w X_{2}+x X_{3}=0$.

hypothesis on intersection numbers

Suppose that $P(X, Y, Z, W)=0$.
Conjecture (strong cylinder conjecture)
Suppose that U is a set of q^{2} points in $\operatorname{AG}(3, q)$, q prime, such that every plane intersects U in 0 mod q points. Then U is a cylinder, i.e. the set of q^{2} points on q distinct lines in one parallel class.

A general equality

Lemma

Suppose that $R\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{d}\left(a_{i}^{1} X_{1}+\ldots+a_{i}^{n} X_{n}\right)$, $a_{i}^{j} \in \mathbb{F}_{q}, \in \mathbb{N}$, and consider
$P\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=1}^{d}\left(a_{i}^{1} X_{1}+\ldots+a_{i}^{n} X_{n}\right)^{q-1}$. Then

A general equality

Lemma

Suppose that $R\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{d}\left(a_{i}^{1} X_{1}+\ldots+a_{i}^{n} X_{n}\right)$, $a_{i}^{j} \in \mathbb{F}_{q}, \in \mathbb{N}$, and consider
$P\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=1}^{d}\left(a_{i}^{1} X_{1}+\ldots+a_{i}^{n} X_{n}\right)^{q-1}$. Then

$$
P \cdot R=X_{1}^{q} \frac{\partial R}{\partial X_{1}}+\ldots+X_{n}^{q} \frac{\partial R}{\partial X_{n}}
$$

If we also suppose that U does not determine $q+1$ directions, assuming $P(X, Y, Z, W)=0$ implies

$$
\begin{array}{r}
\sigma_{k}(Y, Z, W) \equiv 0, k=I q+1 \ldots(I+1) q-I, \\
I=0 \ldots q-1
\end{array}
$$

$(-j+1) \sigma_{j+q-1}(Y, Z, W)+\left(Y^{q} \frac{\partial \sigma_{j}}{\partial Y}\right.$

If we also suppose that U does not determine $q+1$ directions, assuming $P(X, Y, Z, W)=0$ implies

$$
\begin{array}{r}
\sigma_{k}(Y, Z, W) \equiv 0, k=I q+1 \ldots(I+1) q-I \\
I=0 \ldots q-1 \\
(-j+1) \sigma_{j+q-1}(Y, Z, W)+\left(Y^{q} \frac{\partial \sigma_{j}}{\partial Y}+Z^{q} \frac{\partial \sigma_{j}}{\partial Z}+W^{q} \frac{\partial \sigma_{j}}{\partial W}\right) \equiv 0 \\
j=q+1 \ldots q^{2}-q
\end{array}
$$

If we also suppose that U does not determine $q+1$ directions, assuming $P(X, Y, Z, W)=0$ implies

$$
\begin{array}{r}
\sigma_{k}(Y, Z, W) \equiv 0, k=I q+1 \ldots(I+1) q-I \\
I=0 \ldots q-1 \\
(-j+1) \sigma_{j+q-1}(Y, Z, W)+\left(Y^{q} \frac{\partial \sigma_{j}}{\partial Y}+Z^{q} \frac{\partial \sigma_{j}}{\partial Z}+W^{q} \frac{\partial \sigma_{j}}{\partial W}\right) \equiv 0 \\
j=q+1 \ldots q^{2}-q \\
Y^{q} \frac{\partial \sigma_{j}}{\partial Y}+Z^{q} \frac{\partial \sigma_{j}}{\partial Z}+W^{q} \frac{\partial \sigma_{j}}{\partial W} \equiv 0 \\
j=q^{2}-q+1 \ldots q^{2}
\end{array}
$$

Intersections with lines

Substitution $Y:=s Z+t W$ enables to use $R(X, Y, Z, W)$ to investigate intersections with the q^{2} lines through $(0,1,-s,-t)$.

$$
\begin{array}{r}
\sigma_{k}^{s, t}(Z, W) \equiv 0, k=I q+1 \ldots(I+1) q-I \\
I=0 \ldots q-1 \\
(-j+1) \sigma_{j+q-1}^{s, t}(Z, W)+\left(Z^{q} \frac{\partial \sigma_{j}^{s, t}}{\partial Z}+W^{q} \frac{\partial \sigma_{j}^{s, t}}{\partial W}\right) \equiv 0 \\
j=q+1 \ldots q^{2}-q \\
Z^{q} \frac{\partial \sigma_{j}^{s, t}}{\partial Z}+W^{q} \frac{\partial \sigma_{j}^{s, t}}{\partial W} \equiv 0 \\
j=q^{2}-q+1 \ldots q^{2}
\end{array}
$$

References

圊 S．Ball．
The polynomial method in Galois geometries．
In Current research topics in Galois geometry，chapter 5， pages 103－128．Nova Sci．Publ．，New York， 2012.

围 Simeon Ball．
The number of directions determined by a function over a finite field．
J．Combin．Theory Ser．A，104（2）：341－350， 2003.
Simeon Ball．
On the graph of a function in many variables over a finite field．
Des．Codes Cryptogr．，47（1－3）：159－164， 2008.
围 Simeon Ball，András Gács，and Peter Sziklai．
On the number of directions determined by a nair of

References

- Simeon Ball, Patrick Govaerts, and Leo Storme.

On ovoids of parabolic quadrics.
Des. Codes Cryptogr., 38(1):131-145, 2006.
嗇 Simeon Ball and Michel Lavrauw.
How to use Rédei polynomials in higher dimensional spaces.
Matematiche (Catania), 59(1-2):39-52 (2006), 2004.
围 Simeon Ball and Michel Lavrauw.
On the graph of a function in two variables over a finite field.
J. Algebraic Combin., 23(3):243-253, 2006.
(R. A. Blokhuis, S. Ball, A. E. Brouwer, L. Storme, and
T. Szőnyi.

On the number of slones of the aranh of a function defined

References

（ A．Blokhuis，A．E．Brouwer，and T．Szőnyi．
The number of directions determined by a function f on a finite field．
J．Combin．Theory Ser．A，70（2）：349－353， 1995.
圊 Aart Blokhuis．
On the size of a blocking set in $\operatorname{PG}(2, p)$ ．
Combinatorica，14（1）：111－114， 1994.
击 Jan De Beule and András Gács．
Complete arcs on the parabolic quadratic $\mathrm{Q}(4, q)$ ．
Finite Fields Appl．，14（1）：14－21， 2008.
圊 Peter Sziklai．
Directions in $\operatorname{AG}(3, p)$ and their applications．
Note Mat．，26（1）：121－130， 2006.

References

Peter Sziklai and Leo Storme.
Linear point sets and rédei type k-blocking sets in $\mathrm{pg}(\mathrm{n}, \mathrm{q})$. J. Algebraic Combin., 14:221-228, Oct 2001.

圊 Tamás Szőnyi.
On the number of directions determined by a set of points in an affine Galois plane.
J. Combin. Theory Ser. A, 74(1):141-146, 1996.

