Lower and upper bounds of maximal partial ovoids of orthogonal polar spaces

J. De Beule A. Klein K. Metsch L. Storme

Department of Pure Mathematics and Computer Algebra Ghent University

Geometric and algebraic combinatorics 4

Quadrics

Quadrics

- in $\operatorname{PG}(2 n, q), n \geq 2$,

$$
\mathrm{Q}(2 n, q): X_{0}^{2}+X_{1} X_{2}+\ldots X_{2 n-1} X_{2 n}=0
$$

- in $\operatorname{PG}(2 n+1, q), n \geq 2$,
$\mathrm{Q}^{-}(2 n+1, q): f\left(X_{0}, X_{1}\right)+X_{2} X_{3}+\ldots X_{2 n} X_{2 n+1}=0$, $f\left(X_{0}, X_{1}\right)$: irreducible, homogeneous, of degree 2 .
- in $\operatorname{PG}(2 n+1, q), n \geq 2$,

$$
\mathrm{Q}^{+}(2 n+1, q): X_{0} X_{1}+X_{2} X_{3}+\ldots X_{2 n} X_{2 n+1}=0
$$

Quadrics

Rank

- $\mathrm{Q}(2 n, q)$: rank n.
- $\mathrm{Q}^{-}(2 n+1, q)$: rank n.
- $\mathrm{Q}^{+}(2 n+1, q)$: rank $n+1$.

Ovoids

Let \mathcal{P} be a finite classical polar space.

Definition

ovoid: every generator meets \mathcal{O} in exactly one point.
First question: existence?

Existence

Existence of ovoids (low rank)

Existence

Existence of ovoids (low rank)

$\mathrm{Q}^{-}(5, q)$	no (J.A. Thas)
$\mathrm{Q}(4, q)$	yes
$\mathrm{Q}^{+}(3, q)$	yes

Existence

Existence of ovoids (high rank)

$\mathbf{Q}^{-}(7, q)$	no
$Q^{-}(2 n+1, q), n \geq 2$	no (slicing)
$Q^{+}(5, q)$	yes
$Q(6, q)$	no, $q>3$ odd prime
$Q(6, q)$	(S. Ball, P. Govaerts, L. Storme)
$Q(6, q)$	examples known when $q=3^{h}$
$Q(8, q)$	no q even (J.A. Thas)

Existence

Existence of ovoids (high rank)

$\mathrm{Q}^{-}(7, q)$ $\mathrm{Q}^{-}(2 n+1, q), n \geq 2$	no no (slicing)
$\mathrm{Q}^{+}(5, q)$	yes
$\mathrm{Q}(6, q)$	no, $q>3$ odd prime
$\mathrm{Q}(6, q)$	(S. Ball, P. Govaerts, L. Storme)
$Q(6, q)$	examples known when $q=3^{h}$
$Q(8, q)$	no, q even (J.A. Thas)
$Q(2 n, q), n \geq 4$	no (A. Gunawardena, E. Moorhouse)
no (slicing)	

Existence

Existence of ovoids (high rank)

$\mathrm{Q}^{-}(7, q)$ $\mathrm{Q}^{-}(2 n+1, q), n \geq 2$	no no (slicing)
$\mathrm{Q}^{+}(5, q)$	yes
$\mathrm{Q}(6, q)$	no, $q>3$ odd prime
	(S. Ball, P. Govaerts, L. Storme)
$\mathrm{Q}(6, q)$	examples known when $q=3^{h}$
$Q(6, q)$	no, q even (J.A. Thas)
$Q(8, q)$	no (A. Gunawardena, E. Moorhouse)
$\mathrm{Q}(2 n, q), n \geq 4$	no (slicing)

Existence

Existence of ovoids (high rank)

$\mathrm{Q}^{-}(7, q)$ $\mathrm{Q}^{-}(2 n+1, q), n \geq 2$	no no (slicing)
$\mathrm{Q}^{+}(5, q)$	yes
$\mathrm{Q}(6, q)$	no, $q>3$ odd prime
	(S. Ball, P. Govaerts, L. Storme)
$\mathrm{Q}(6, q)$	examples known when $q=3^{h}$
$\mathrm{Q}(6, q)$	no, q even (J.A. Thas)
$\mathrm{Q}(8, q)$	no (A. Gunawardena, E. Moorhouse)
$\mathrm{Q}(2 n, q), n \geq 4$	no (slicing)

Existence

Existence of ovoids (high rank)

$\mathrm{Q}^{-}(7, q)$ $\mathrm{Q}^{-}(2 n+1, q), n \geq 2$	no no (slicing)
$\mathrm{Q}^{+}(5, q)$	yes
$\mathrm{Q}(6, q)$	no, $q>3$ odd prime (S. Ball, P. Govaerts, L. Storme) examples known when $q=3^{h}$
$\mathrm{Q}(6, q)$	no, q even (J.A. Thas)

Existence

Existence of ovoids (high rank)

\(\left.$$
\begin{array}{|c|c|}\hline \begin{array}{c}\mathrm{Q}^{-}(7, q) \\
\mathrm{Q}^{-}(2 n+1, q), n \geq 2\end{array} & \begin{array}{c}\text { no } \\
\text { no (slicing) }\end{array}
$$

\hline \hline \mathrm{Q}^{+}(5, q) \& yes

\hline \hline \mathrm{Q}(6, q) \& no, q>3 odd prime

\mathrm{Q}(6, q) \& (S. Ball, P. Govaerts, L. Storme)

\mathrm{examples} known when q=3^{h}\end{array}\right]\)| no, q even (J.A. Thas) |
| :---: |

Existence

Existence of ovoids (high rank)

$\mathrm{Q}^{-}(7, q)$ $\mathrm{Q}^{-}(2 n+1, q), n \geq 2$	no no (slicing)
$\mathrm{Q}^{+}(5, q)$	yes
$\mathrm{Q}(6, q)$	no, $q>3$ odd prime
	(S. Ball, P. Govaerts, L. Storme)
$\mathrm{Q}(6, q)$	examples known when $q=3^{h}$
$\mathrm{Q}(6, q)$	no, q even (J.A. Thas)
$\mathrm{Q}(8, q)$	no (A. Gunawardena, E. Moorhouse)
$\mathrm{Q}(2 n, q), n \geq 4$	no (slicing)

Existence

Existence of ovoids (high rank)

$\mathrm{Q}^{+}(2 n+1, q), n \geq 3, q=p^{h}:$ no, if

$$
p^{n}>\binom{2 n+p}{2 n+1}-\binom{2 n+p-2}{2 n+1}
$$

$\mathrm{Q}^{+}(7, q)$: yes if q is odd prime or $q \equiv 0$ or $2 \bmod 3$

Questions

- If there is no ovoid, what is the (size of) the largest partial ovoid?
- If there are ovoids, what is the (size of) the largest maximal partial ovoid different from an ovoid?
- What is the (size of) the smallest maximal partial ovoids?

Questions

- If there is no ovoid, what is the (size of) the largest partial ovoid?
- If there are ovoids, what is the (size of) the largest maximal partial ovoid different from an ovoid?
- What is the (size of) the smallest maximal partial ovoids?

Definition

Let \mathcal{P} be a finite classical polar space.

Definition

partial ovoid: every generator meets \mathcal{O} in at most one point.

Definition
 \mathcal{O} is maximal: \mathcal{O} cannot not be extended.

Definition
\mathcal{O} is maximal: P^{\perp} meets \mathcal{O} in at least one point.

Definition

Let \mathcal{P} be a finite classical polar space.

Definition

partial ovoid: every generator meets \mathcal{O} in at most one point.

Definition

\mathcal{O} is maximal: \mathcal{O} cannot not be extended.
Definition
\mathcal{O} is maximal: P^{\perp} meets \mathcal{O} in at least one point.

How to obtain a lower bound

$n_{i}:=$ number of points of $\mathrm{Q}(d, q)$ collinear with i points of \mathcal{O}.

How to obtain a lower bound

$n_{i}:=$ number of points of $\mathrm{Q}(d, q)$ collinear with i points of \mathcal{O}.

$$
\sum n_{i}=\left|\mathrm{Q}^{ \pm}(2 n+1, q)\right|-w
$$

How to obtain a lower bound

$n_{i}:=$ number of points of $\mathrm{Q}(d, q)$ collinear with i points of \mathcal{O}.

$$
\sum n_{i}=\left|\mathrm{Q}^{ \pm}(2 n+1, q)\right|-w
$$

$$
\sum i n_{i}=w q\left|\mathrm{Q}^{ \pm}(2 n-1, q)\right|
$$

How to obtain a lower bound

$n_{i}:=$ number of points of $\mathrm{Q}(d, q)$ collinear with i points of \mathcal{O}.

$$
\begin{gathered}
\sum n_{i}=\left|\mathrm{Q}^{ \pm}(2 n+1, q)\right|-w \\
\sum i n_{i}=w q\left|\mathrm{Q}^{ \pm}(2 n-1, q)\right| \\
\sum i(i-1) n_{i}=w(w-1)\left|\mathrm{Q}^{ \pm}(2 n-1, q)\right| \\
\sum i(i-1)(i-2) n_{i}=w(w-1)(w-2)|\mathrm{Q}(2 n-2, q)|
\end{gathered}
$$

How to obtain a lower bound

$n_{i}:=$ number of points of $\mathrm{Q}(d, q)$ collinear with i points of \mathcal{O}.

$$
\begin{gathered}
\sum n_{i}=\left|\mathrm{Q}^{ \pm}(2 n+1, q)\right|-w \\
\sum i n_{i}=w q\left|\mathrm{Q}^{ \pm}(2 n-1, q)\right| \\
\sum i(i-1) n_{i}=w(w-1)\left|\mathrm{Q}^{ \pm}(2 n-1, q)\right| \\
\sum i(i-1)(i-2) n_{i}=w(w-1)(w-2)|\mathrm{Q}(2 n-2, q)|
\end{gathered}
$$

Lower bounds

Counting

Using the equations ...

$$
\begin{aligned}
0 \leq & \sum_{i} n_{i}(i-1)(i-a)(i-a-1) \\
= & \sum_{i} n_{i}(i-1)(i-2)-(2 a-1) \sum_{i} n_{i} i(i-1) \\
& +\left(a^{2}+a\right) \sum_{i} n_{i}(i-1)
\end{aligned}
$$

Resulting bounds for $\mathrm{Q}^{-}(5, q)$ and $\mathrm{Q}^{+}(5, q)$

Theorem

$$
\begin{gathered}
\mathrm{Q}^{-}(5, q): q \geq 4 \Rightarrow w \geq 2 q+2, q<4 \Rightarrow w \geq 2 q+1 \\
\mathrm{Q}^{-}(2 n+1, q): n \geq 3 \Rightarrow w \geq 2 q+1
\end{gathered}
$$

Resulting bounds for $\mathrm{Q}^{-}(5, q)$ and $\mathrm{Q}^{+}(5, q)$

Theorem

$$
\begin{gathered}
\mathrm{Q}^{-}(5, q): q \geq 4 \Rightarrow w \geq 2 q+2, q<4 \Rightarrow w \geq 2 q+1 \\
\mathrm{Q}^{-}(2 n+1, q): n \geq 3 \Rightarrow w \geq 2 q+1 \\
\mathrm{Q}^{+}(5, q): w \geq 2 q \\
\mathrm{Q}^{+}(2 n+1, q): n \geq 3 \Rightarrow w \geq 2 q+1
\end{gathered}
$$

How to obtain a lower bound

$n_{i}:=$ number of points of $\mathrm{Q}(d, q)$ collinear wit i points of \mathcal{O}.

$$
\begin{gathered}
\sum n_{i}=|\mathrm{Q}(2 n, q)|-w \\
\sum i n_{i}=w q|\mathrm{Q}(2 n-2, q)| \\
\sum i(i-1) n_{i}=w(w-1)|\mathrm{Q}(2 n-2, q)|
\end{gathered}
$$

How to obtain a lower bound

$n_{i}:=$ number of points of $\mathrm{Q}(d, q)$ collinear wit i points of \mathcal{O}.

$$
\begin{aligned}
\sum n_{i} & =|\mathrm{Q}(2 n, q)|-w \\
\sum i n_{i} & =w q|\mathrm{Q}(2 n-2, q)| \\
\sum i(i-1) n_{i} & =w(w-1)|\mathrm{Q}(2 n-2, q)|
\end{aligned}
$$

$$
\sum i(i-1)(i-2) n_{i} \leq w(w-1)(w-2)\left|\mathrm{Q}^{+}(2 n-3, q)\right|
$$

Resulting bounds for $\mathrm{Q}(2 n, q)$

Theorem

$$
\begin{gathered}
\mathrm{Q}(4, q): q o d d \Rightarrow w \geq 1.419 q \\
\mathrm{Q}(6, q): q \in\{3,5,7\} \Rightarrow w \geq 2 q, q \geq 9 \Rightarrow w \geq 2 q-1 \\
\mathrm{Q}(8,3): w \geq 2 q \\
\mathrm{Q}(2 n, q): n \geq 4: \geq 2 q+1
\end{gathered}
$$

A lower bound for $\mathrm{Q}(2 n, q), q$ even

- $\mathrm{Q}(2 n, q), q$ even has a nucleus
- Projecting from this nucleus yields the symplectic polar space $\mathrm{W}(2 n-1, q)$.

Theorem
 The smallest maximal partial ovoids of $\mathrm{W}(2 n-1, q)$ are the hyperbolic lines

Theorem

The smalles maximal partial ovoids of $\mathrm{Q}(2 n, q)$ are conics whose nucleus coincides with the nucleus of $\mathrm{Q}(2 n, q)$.

A lower bound for $\mathrm{Q}(2 n, q), q$ even

- $\mathrm{Q}(2 n, q), q$ even has a nucleus
- Projecting from this nucleus yields the symplectic polar space $\mathrm{W}(2 n-1, q)$.

Theorem
 The smalles maximal partial ovoids of W $(2 n-1, q)$ are the hyperbolic lines

Theorem
The smalles maximal partial ovoids of $\mathrm{Q}(2 n, q)$ are conics whose nucleus coincides with the nucleus of $\mathrm{Q}(2 n, q)$.

A lower bound for $\mathrm{Q}(2 n, q), q$ even

- $\mathrm{Q}(2 n, q), q$ even has a nucleus
- Projecting from this nucleus yields the symplectic polar space $\mathrm{W}(2 n-1, q)$.

Theorem

The smallest maximal partial ovoids of $\mathrm{W}(2 n-1, q)$ are the hyperbolic lines

Theorem
The smallest maximal partial ovoids of $\mathrm{Q}(2 n, q)$ are conics whose nucleus coincides with the nucleus of $\mathrm{Q}(2 n, q)$.

A lower bound for $\mathrm{Q}(2 n, q), q$ even

- $\mathrm{Q}(2 n, q), q$ even has a nucleus
- Projecting from this nucleus yields the symplectic polar space $\mathrm{W}(2 n-1, q)$.

Theorem

The smallest maximal partial ovoids of $\mathrm{W}(2 n-1, q)$ are the hyperbolic lines

Theorem

The smallest maximal partial ovoids of $\mathrm{Q}(2 n, q)$ are conics whose nucleus coincides with the nucleus of $\mathrm{Q}(2 n, q)$.

Upper bounds

An upper bound for $\mathrm{Q}^{+}(2 n+1, q)$

- $|\mathcal{O}|=q^{n}+1-\delta$.
- $\left|P^{\perp} \cap \mathcal{O}\right| \geq q^{n-1}+1-\delta$
- $n_{i}=0$ for $i<q^{n-1}+1-\delta$ and $i>q^{n-1}+1$
- $0 \leq \sum_{i} n_{i}\left(i-q^{n-1}-1\right)\left(i-q^{n-1}\right)\left(i-q^{n-1}-1+\delta\right)$

Theorem

A maximal partial ovoid O of $Q^{+}(2 n+1, q)$, that is not an ovoid, has at most $q^{n}-q^{(n-1) / 2}$ points.

Upper bounds

An upper bound for $\mathrm{Q}^{+}(2 n+1, q)$

- $|\mathcal{O}|=q^{n}+1-\delta$.
- $\left|P^{\perp} \cap \mathcal{O}\right| \geq q^{n-1}+1-\delta$
- $n_{i}=0$ for $i<q^{n-1}+1-\delta$ and $i>q^{n-1}+1$
- $0 \leq \sum_{i} n_{i}\left(i-q^{n-1}-1\right)\left(i-q^{n-1}\right)\left(i-q^{n-1}-1+\delta\right)$

Theorem

A maximal partial ovoid \mathcal{O} of $Q^{+}(2 n+1, q)$, that is not an ovoid, has at most $q^{n}-q^{(n-1) / 2}$ points.

Upper bounds

An upper bound for $\mathrm{Q}^{+}(2 n+1, q)$

- $|\mathcal{O}|=q^{n}+1-\delta$.
- $\left|P^{\perp} \cap \mathcal{O}\right| \geq q^{n-1}+1-\delta$
- $n_{i}=0$ for $i<q^{n-1}+1-\delta$ and $i>q^{n-1}+1$
- $0 \leq \sum_{i} n_{i}\left(i-q^{n-1}-1\right)\left(i-q^{n-1}\right)\left(i-q^{n-1}-1+\delta\right)$

Theorem

A maximal partial ovoid O of $Q^{+}(2 n+1, q)$, that is not an ovoid, has at most $q^{n}-q^{(n-1) / 2}$ points.

Upper bounds

An upper bound for $\mathrm{Q}^{+}(2 n+1, q)$

- $|\mathcal{O}|=q^{n}+1-\delta$.
- $\left|P^{\perp} \cap \mathcal{O}\right| \geq q^{n-1}+1-\delta$
- $n_{i}=0$ for $i<q^{n-1}+1-\delta$ and $i>q^{n-1}+1$
- $0 \leq \sum_{i} n_{i}\left(i-q^{n-1}-1\right)\left(i-q^{n-1}\right)\left(i-q^{n-1}-1+\delta\right)$

Theorem

A maximal partial ovoid \mathcal{O} of $Q^{+}(2 n+1, q)$, that is not an ovoid, has at most $q^{n}-q^{(n-1) / 2}$ points.

An upper bound for $\mathrm{Q}^{+}(2 n+1, q)$

- $|\mathcal{O}|=q^{n}+1-\delta$.
- $\left|P^{\perp} \cap \mathcal{O}\right| \geq q^{n-1}+1-\delta$
- $n_{i}=0$ for $i<q^{n-1}+1-\delta$ and $i>q^{n-1}+1$
- $0 \leq \sum_{i} n_{i}\left(i-q^{n-1}-1\right)\left(i-q^{n-1}\right)\left(i-q^{n-1}-1+\delta\right)$

Theorem

A maximal partial ovoid \mathcal{O} of $Q^{+}(2 n+1, q)$, that is not an ovoid, has at most $q^{n}-q^{(n-1) / 2}$ points.

Upper bounds

An upper bound for $\mathrm{Q}(2 n, q), q$ odd non prime

Lemma

Consider $\mathrm{Q}(2 n, q) \subseteq Q^{+}(2 n+1, q), n \geq 3$, q not a prime, and suppose that $\mathrm{Q}^{+}(2 n+1, q)$ has an ovoid with $q^{n}+1-\delta, \delta>0$, points in $\mathrm{Q}(2 n, q)$. Then $\delta \geq 2\left(q^{n-2}+q^{n-3}+\ldots+q+1\right)+1$

Theorem (A. Gács and JDB)

$\mathrm{Q}(4, q)$ has no maximal partial ovoids when q is odd and non prime.

Corollary

$\mathrm{O}(6, a)$, a not a prime, does not have a maximal partial ovoid of size $q^{3}+1-\delta$ with $0<\delta<q+1$.

An upper bound for $\mathrm{Q}(2 n, q)$, q odd non prime

Lemma

Consider $\mathrm{Q}(2 n, q) \subseteq \mathrm{Q}^{+}(2 n+1, q), n \geq 3, q$ not a prime, and suppose that $\mathrm{Q}^{+}(2 n+1, q)$ has an ovoid with $q^{n}+1-\delta, \delta>0$, points in $\mathrm{Q}(2 n, q)$. Then $\delta \geq 2\left(q^{n-2}+q^{n-3}+\ldots+q+1\right)+1$.

Theorem (A. Gács and JDB)
 $\mathrm{Q}(4, q)$ has no maximal partial ovoids when q is odd and non prime.

Corollary

Q(6,q), q not a prime, does not have a maximal partial ovoid of size $q^{3}+1-\delta$ with 0

An upper bound for $\mathrm{Q}(2 n, q), q$ odd non prime

Lemma

Consider $\mathrm{Q}(2 n, q) \subseteq \mathrm{Q}^{+}(2 n+1, q), n \geq 3, q$ not a prime, and suppose that $\mathrm{Q}^{+}(2 n+1, q)$ has an ovoid with $q^{n}+1-\delta, \delta>0$, points in $\mathrm{Q}(2 n, q)$. Then $\delta \geq 2\left(q^{n-2}+q^{n-3}+\ldots+q+1\right)+1$.

Theorem (A. Gács and JDB)

$\mathrm{Q}(4, q)$ has no maximal partial ovoids when q is odd and non prime.

Corolary

$\mathrm{Q}(6, q), q$ not a prime, does not have a maximal partial ovoid of size $a^{3}+1-\delta$ with $0<\delta<a+1$

An upper bound for $\mathrm{Q}(2 n, q), q$ odd non prime

Lemma

Consider $\mathrm{Q}(2 n, q) \subseteq \mathrm{Q}^{+}(2 n+1, q), n \geq 3, q$ not a prime, and suppose that $\mathrm{Q}^{+}(2 n+1, q)$ has an ovoid with $q^{n}+1-\delta, \delta>0$, points in $\mathrm{Q}(2 n, q)$. Then $\delta \geq 2\left(q^{n-2}+q^{n-3}+\ldots+q+1\right)+1$.

Theorem (A. Gács and JDB)

$\mathrm{Q}(4, q)$ has no maximal partial ovoids when q is odd and non prime.

Corollary

$Q(6, q), q$ not a prime, does not have a maximal partial ovoid of size $q^{3}+1-\delta$ with $0<\delta<q+1$.

An upper bound for $\mathrm{Q}(2 n, q), q$ odd prime

Theorem (S. Ball, P. Govaerts and L. Storme)

Every ovoid of $\mathrm{Q}(4, q)$, q prime, is an elliptic quadric $\mathrm{Q}^{-}(3, q)$.

Theorem

Every partial ovoid of $\mathrm{Q}(6, q), q>13$ prime, contains at most $q^{3}-2 q+1$ points.

An upper bound for $\mathrm{Q}(2 n, q), q$ odd prime

Theorem (S. Ball, P. Govaerts and L. Storme)

Every ovoid of $\mathrm{Q}(4, q)$, q prime, is an elliptic quadric $\mathrm{Q}^{-}(3, q)$.

Theorem

Every partial ovoid of $\mathrm{Q}(6, q), q>13$ prime, contains at most $q^{3}-2 q+1$ points.

An upper bound for $\mathrm{Q}^{-}(5, q)$

Theorem

Let \mathcal{S} be a partial spread of $\mathrm{H}\left(3, q^{2}\right)$. Then $|\mathcal{S}| \leq \frac{1}{2}\left(q^{3}+q+2\right)$.
This dualizes to an upper bound for partial ovoids of $\mathrm{Q}^{-}(5, q)$.

An upper bound for $\mathrm{Q}^{-}(5, q)$

Theorem

Let \mathcal{S} be a partial spread of $\mathrm{H}\left(3, q^{2}\right)$. Then $|\mathcal{S}| \leq \frac{1}{2}\left(q^{3}+q+2\right)$.
This dualizes to an upper bound for partial ovoids of $\mathrm{Q}^{-}(5, q)$.

Inductive bounds

\mathcal{P}_{n} denotes a finite classical polar space of rank n.

Theorem

If partial ovoids of \mathcal{P}_{r} have deficiency ϵ_{r}, then partial ovoids of \mathcal{P}_{r+1} have deficiency at least $q \epsilon_{r}$.

