On the (linear) MDS conjecture

J. De Beule
(joint work with Simeon Ball and Ameera Chowdury)

Department of Mathematics
Vrije Universiteit Brussel
October 19th, 2015
Gent

Codes

- Alphabet A_{q} with $q \in \mathbb{N}$ characters,
- Words: concatenations of characters, preferably of a fixed length $n \in \mathbb{N}$
- Code C : collection of $M \in \mathbb{N}$ words
- If C is a q-ary code of length n (i.e. all words have length $n)$, then $M \leq q^{n}$.
- Hamming distance between two codewords: number of positions in which the two words differ.

Coding/Decoding

Let C be a code of length n.

- Minimum distance of $C, d(C)$,
- determines the number of transmission errors that can be detected/corrected.
Fundamental problem of coding theory: construct codes with "optimized parameters".

Linear codes

- The alphabet A_{q} is the set of elements of a finite field \mathbb{F}_{q} of order $q, q=p^{h}, p$ prime, $h \geq 1$.
- A linear q-ary code of length n is a subspace of \mathbb{F}_{q}^{n}.
- For a linear code C, its minimum distance equals its minimum weight.

The Singleton bound

Theorem (Singleton bound)

Let C be a q-ary (n, M, d) code. Then $M \leq q^{n-d+1}$.

Corollary
 Let C be a linear $[n, k, d]$-code. Then $k \leq n-d+1$.

Definition

A linear $[n, k, d]$ code C over \mathbb{F}_{q} is an MDS code if it satisfies $k=n-d+1$

The Singleton bound

Theorem (Singleton bound)

Let C be a q-ary (n, M, d) code. Then $M \leq q^{n-d+1}$.

Corollary

Let C be a linear $[n, k, d]$-code. Then $k \leq n-d+1$.

Definition

A linear $[n, k, d]$ code C over \mathbb{F}_{q} is an MDS code if it satisfies $k=n-d+1$.

Special sets of vectors

Lemma

An MDS code of dimension k and length n is equivalent with a set S of n vectors of \mathbb{F}_{q}^{r} with the property that every r vectors of S form a basis of \mathbb{F}_{q}^{r}, with $r=n-k$.

Definition - Examples

Definition

An arc of a vector space \mathbb{F}_{q}^{r} is a set S of vectors with the property that every r vectors of S form a basis of \mathbb{F}_{q}^{r}.
(1) Let $\left\{e_{1}, \ldots, e_{r}\right\}$ be a basis of \mathbb{F}_{q}^{r}. Then $\left\{e_{1}, \ldots, e_{r}, e_{1}+e_{2}+\cdots+e_{r}\right\}$ is an arc of size $r+1$.
(2) Let $S=\left\{\left(1, t, t^{2}, \ldots, t^{r-1}\right) \| t \in \mathbb{F}_{q}\right\} \cup\{(0,0, \ldots, 0,1)\} \subset \mathbb{F}_{q}^{r}$. Then S is an arc of size $q+1$.

One of the first results

Theorem (Bush 1952)
 Let S be an arc of size n of $\mathbb{F}_{q}^{r}, r>q$. Then $n \leq q+1$ and if $n=q+1$, then S is equivalent to example (1)

From now on we may assume $r \leq q$.

One of the first results

Theorem (Bush 1952)

Let S be an arc of size n of $\mathbb{F}_{q}^{r}, r>q$. Then $n \leq q+1$ and if $n=q+1$, then S is equivalent to example (1)

From now on we may assume $r \leq q$.

The (linear) MDS conjecture

Conjecture

Let $r \leq q$. For an arc of size n in $\mathbb{F}_{q}^{r}, n \leq q+1$ unless $r=3$ or $r=q-1$ and q is even, in which case $n \leq q+2$.

Questions of Segre (1955)

(i) Given r, q, what is the maximal value of I for which an $I-\operatorname{arc}$ exists?
(ii) For which values of $r, q, r \leq q$, is each $(q+1)$-arc in $\operatorname{PG}(r-1, q)$ a normal rational curve?
(iii) For a given $r, q, r<q$, which arcs of $\operatorname{PG}(r-1, q)$ are extendable to a $(q+1)$-arc?

Early results

In the following list, $q=p^{h}$, and we consider an l-arc in $\operatorname{PG}(r-1, q)$.

- Bose (1947): $l \leq q+1$ if $p \geq r=3$.
- Segre (1955): a $(q+1)$-arc in $\operatorname{PG}(2, q), q$ odd, is a conic.
- $q=2, r=3$: hyperovals are $(q+2)$-arcs.

more (recent) results

- Conjecture is known to be true for all $q \leq 27$, for all $r \leq 5$ and $k \geq q-3$ and for $r=6,7, q-4, q-5$, see overview paper of J. Hirschfeld and L. Storme, pointing to results of Segre, J.A. Thas, Casse, Glynn, Bruen, Blokhuis, Voloch, Storme, Hirschfeld and Korchmáros.
- many examples of hyperovals, see e.g. Cherowitzo's hyperoval page, pointing to examples of Segre, Glynn, Payne, Cherowitzo, Penttila, Pinneri, Royle and O'Keefe.

more (recent) results

- An example of a $(q+1)$-arc in $\mathrm{PG}(4,9)$, different from a normal rational curve, (Glynn):

$$
\mathcal{K}=\left\{\left(1, t, t^{2}+\eta t^{6}, t^{3}, t^{4}\right) \mid t \in \mathbb{F}_{9}, \eta^{4}=-1\right\} \cup\{(0,0,0,0,1)\}
$$

- An example of a $(q+1)$-arc in $\operatorname{PG}(3, q), q=2^{h}$, $\operatorname{gcd}(r, h)=1$, different from a normal rational curve, (Hirschfeld):

$$
\mathcal{K}=\left\{\left(1, t, t^{2^{r}}, t^{2^{2}+1}\right) \mid t \in \mathbb{F}_{q}\right\} \cup\{(0,0,0,1)\}
$$

Observations

Lemma

Let S be an arc of size n of \mathbb{F}_{q}^{r}. Let $Y \subset S$ be of size $r-2$. There are exactly $t=q+r-1-n$ hyperplanes of \mathbb{F}_{q}^{r} with the property that $H \cap S=Y$.

Corollary

An arc of \mathbb{F}_{q}^{3} has size at most $q+2$.

Theorem (Segre)

An arc of \mathbb{F}_{q}^{3}, q odd, has size at most $q+1$, in case of equality, it is equivalent with example (2).

arcs in PG(2, q)

tangent lines through

$$
\begin{aligned}
& p_{1}=(1,0,0): X_{1}=a_{i} X_{2} \\
& p_{2}=(0,1,0): X_{2}=b_{i} X_{0} \\
& p_{3}=(0,0,1): X_{0}=c_{i} X_{1}
\end{aligned}
$$

Lemma (B. Segre)

arcs in PG(2, q)

tangent lines through

$$
\begin{aligned}
& p_{1}=(1,0,0): X_{1}=a_{i} X_{2} \\
& p_{2}=(0,1,0): X_{2}=b_{i} X_{0} \\
& p_{3}=(0,0,1): X_{0}=c_{i} X_{1}
\end{aligned}
$$

Lemma (B. Segre)

$$
\prod_{i=1}^{t} a_{i} b_{i} c_{i}=-1
$$

Tangent functions

- Let S be an arc of \mathbb{F}_{q}^{r}, choose an arbitrary ordering on the elements, $|S|=n$.
- Let $A \subset S$ of size $r-2$.
- Then there are $t=q+r-1-n$ tangent hyperplanes on A to S.
- Let α^{i} be t linear forms on \mathbb{F}_{q}^{r} such that $\operatorname{ker}\left(\alpha^{i}\right)$ are these t tangent hyperplanes

Definition

For a subset $A \subset S$ of size $r-2$, define its tangent function as

$$
f_{A}(x):=\prod_{i=1}^{t} \alpha^{i}(x)
$$

Interpolation

Let C be a subset of S of size $r-1$. Denote $d_{C}(x):=\operatorname{det}(x, C)$.

Lemma

Let $A \subset B \subset S,|B|=t+r-1$. Then

$$
f_{A}(x)=\sum_{e \in B \backslash A} f_{A}(e) \prod_{u \in B \backslash(A \cup e)} \frac{d_{A, u}(x)}{d_{A, u}(e)}
$$

Interpolation

Corollary

Let $A \subset E \subset S,|E|=t+r$. Then

$$
\sum_{e \in E \backslash A} f_{A}(e) \prod_{u \in E \backslash(A \cup e)} d_{A, e}(u)^{-1}=0
$$

Segre's lemma

Lemma (S. Ball, [1])

Let S be an arc of \mathbb{F}_{q}^{r}. For a subset $D \subset S$ of size $r-3$ and $\{x, y, z\} \subset S \backslash D$,

$$
\begin{array}{r}
F_{D \cup\{x\}}(y) F_{D \cup\{y\}}(z) F_{D \cup\{z\}}(x)= \\
(-1)^{t+1} F_{D \cup\{x\}}(z) F_{D \cup\{y\}}(x) F_{D \cup\{z\}}(y)
\end{array}
$$

Theorem (Ball, [1])
Let S be an arc of $\mathbb{F}_{q}^{r}, r \leq q$. then
$|S| \leq q+r+1-\min (r, p)$

Segre's lemma

Lemma (S. Ball, [1])

Let S be an arc of \mathbb{F}_{q}^{r}. For a subset $D \subset S$ of size $r-3$ and $\{x, y, z\} \subset S \backslash D$,

$$
\begin{array}{r}
F_{D \cup\{x\}}(y) F_{D \cup\{y\}}(z) F_{D \cup\{z\}}(x)= \\
(-1)^{t+1} F_{D \cup\{x\}}(z) F_{D \cup\{y\}}(x) F_{D \cup\{z\}}(y)
\end{array}
$$

Theorem (Ball, [1])

Let S be an arc of $\mathbb{F}_{q}^{r}, r \leq q$. then

$$
|S| \leq q+r+1-\min (r, p)
$$

The Segre product

Let $A \subset E \subset S,|E|=t+r$, define

$$
g_{A}(x):=f_{A}(x) \prod_{u \in E \backslash(A \cup x)} d_{A, u}(x)^{-1}
$$

Let F be the first $r-2$ elements of E with respect to the ordering of S, define

$$
\alpha_{A}:=\prod_{i=1}^{s} \frac{g_{D \cup\left\{z_{s}, \ldots, z_{i}, x_{i-1}, \ldots, x_{1}\right\}}\left(x_{i}\right)}{g_{D \cup\left\{z_{s}, \ldots, z_{i+1}, x_{i}, \ldots, x_{1}\right\}}\left(z_{i}\right)}
$$

where $D=A \cap F, A \backslash F=\left\{x_{1}, \ldots, x_{s}\right\}$ and $F \backslash A=\left\{z_{1}, \ldots, z_{s}\right\}$.

The Segre product

Theorem

Let $E \subset S,|E|=r+t$. For any subset A of E of size $r-2$,

$$
\sum \alpha_{C}=0
$$

where the sum runs over the subsets C of E of size $r-1$ containing A.

Theorem (Ball, DB [2])

Let S be an arc of $\mathbb{F}_{q}^{r}, q=p^{h}, p$ odd, $r \leq 2 p-2$. then

$$
|S| \leq q+1
$$

Small dimensions

Consider the set $\{1, \ldots, n\}$. Define

- row indices: subsets of size a of $\{1, \ldots, n\}$
- column indices: subsets of size b of $\{1, \ldots, n\}$
- $I_{n}(a, b)$: matrix, has 1 in entry $(A, B) \Longleftrightarrow A \subset B$ and 0 otherwise.
Define

$$
T=\left\{i \mid 0 \leq i \leq b,\binom{a-i}{b-i} \neq 0 \bmod p\right\}
$$

Small dimensions

Lemma (Wilson's formula for the p-rank)
If $n \geq a+b$ then the p-rank of $I_{n}(a, b)$ is

$$
\sum_{i \in T}\left(\binom{n}{i}-\binom{n}{i-1}\right)
$$

Introduction
Arcs of vector spaces
Towards the MDS conjecture
Algebraic hypersurfaces

MDS conjecture for $r \leq p$

Theorem
 The MDS-conjecture is true for $r \leq p$.

MDS conjecture for $r \leq p$

Proof.

- We may assume that $r \leq \frac{|S|}{2}$
- Let $|S|=q+2$, then $t=q+r-1-n=r-3$
- Let $M=I_{r+t}(r-1, r-2)$, then M is a square matrix.
- Let v be a vector with entry α_{C} at position $C, C \subset E$, $|E|=r+t$.
- Then $v M=0$ (this is $\sum \alpha_{C}=0$)
- But M has full rank when $r \leq p$ and $\alpha_{C} \neq 0$, a contradiction

slightly larger dimension

Generalize the "matrix approach"

- Let G be a subset of size $r+t+m, m>0$.
- row indices: subsets $C \subset G,|C|=r-1$
- column indices: pairs $(A, U), U \subset G,|U|=m$, $A \subset E(U):=G \backslash U,|A|=r-2$.
- entry $(C,(A, U))$ has value $\prod_{u \in U} \operatorname{det}(u, C)$.
- Call this matrix $M_{r-3}^{\uparrow m}$.

slightly larger dimension

Lemma

If v is a vector whose corrdinates are indexed by the subsets C of G of size $r-1$ and whose C coordinate is $\alpha_{C} \prod_{u \in U} \operatorname{det}(u, C)^{-1}$, then $v M_{t}^{\uparrow m}=0$

Lemma

If $r \leq 2 p-2$, there exists a vector of weight one in the column space of $M_{r-3}^{\uparrow 1}$

slightly larger dimension

Theorem (Ball, DB)

The MDS-conjecture is true for $r \leq 2 p-2$.

possible generalisations

we have actually observed that (for q odd)

- if $r \leq p$, then $M^{\uparrow 0}$ has full rank, which leads to a contradiction assuming the existence of a $q+2$-arc,
- if $r \leq 2 p-2$, then $M^{\uparrow 1}$ has full rank, which leads to the above conclusion again.
Computational results indicate that for odd q, and $r \leq p+m(p-2), M^{\uparrow m}$ has full rank. If this is the case, it could
prove the MDS-conjecture for $r \leq q / 3$ (and hence also for

possible generalisations

we have actually observed that (for q odd)

- if $r \leq p$, then $M^{\uparrow 0}$ has full rank, which leads to a contradiction assuming the existence of a $q+2$-arc,
- if $r \leq 2 p-2$, then $M^{\uparrow 1}$ has full rank, which leads to the above conclusion again.
Computational results indicate that for odd q, and $r \leq p+m(p-2), M^{\uparrow m}$ has full rank. If this is the case, it could prove the MDS-conjecture for $r \leq q / 3$ (and hence also for $r \geq 2 q / 3$.

q even

Lemma (Segre (1967), Blokhuis, Bruen and Thas (1990))

Let S be an arc of \mathbb{F}_{q}^{r}, q even. Then there is a polynomial $\phi\left(v_{1}, \ldots, v_{r}\right)$ of degree t such that $\phi(C)=0$ if $|C \cap S|=r-2$.

It seems that this is connected with the Segre product!
Lemma

q even

Lemma (Segre (1967), Blokhuis, Bruen and Thas (1990))
Let S be an arc of \mathbb{F}_{q}^{r}, q even. Then there is a polynomial $\phi\left(v_{1}, \ldots, v_{r}\right)$ of degree t such that $\phi(C)=0$ if $|C \cap S|=r-2$.

It seems that this is connected with the Segre product!

Lemma

$\phi(C)=\alpha_{C}$ if $|C \cap S|=r-1$.

References

R. Ball, On sets of vectors of a finite vector space in which every subset of basis size is a basis, Journal European Math. Soc., 14, 733-748, 2012
R. Ball, and J. De Beule. On sets of vectors of a finite vector space in which every subset of basis size is a basis II. Des. Codes Cryptogr., 65(1-2):5-14, 2012.

