Old and new results on the MDS-conjecture

J. De Beule
(joint work with Simeon Ball)

Department of Mathematics
Ghent University

February 9, 2012
Incidence Geometry and Buildings 2012

Definitions

Definition

An arc of a projective space $\operatorname{PG}(k-1, q)$ is a set \mathcal{K} of points such that no k points of \mathcal{K} are incident with a common hyperplane. An arc \mathcal{K} is also called a n-arc if $|\mathcal{K}|=n$.

Definition

A linear $[n, k, d]$ code C over \mathbb{F}_{q} is an MDS code if it satisfies $k=n-d+1$.

Lemma

Suppose that C is a linear $[n, k, d]$ over \mathbb{F}_{q} with parity check matrix H. Then C is an MDS-code if and only if every collection of $n-k$ columns of H is linearly indepent.

Corollary
Linear MDS codes are equivalent with arcs in projective spaces.

Lemma

Suppose that C is a linear $[n, k, d]$ over \mathbb{F}_{q} with parity check matrix H. Then C is an MDS-code if and only if every collection of $n-k$ columns of H is linearly indepent.

Corollary

Linear MDS codes are equivalent with arcs in projective spaces.

fundamental questions

- What is the largest size of an arc in $\operatorname{PG}(k-1, q)$?
- For which values of $k-1, q, q>k$, is each $(q+1)$-arc in $\operatorname{PG}(k-1, q)$ a normal rational curve?

$$
\left\{\left(1, t, \ldots, t^{k-1}\right) \mid t \in \mathbb{F}_{q}\right\} \cup\{(0, \ldots, 0,1)\}
$$

- For a given $k-1, q, q>k$, which arcs of $\operatorname{PG}(k-1, q)$ are extendable to a $(q+1)$-arc?

Early results

In the following list, $q=p^{h}$, and we consider an $/$-arc in
$\operatorname{PG}(k-1, q)$.

- Bose (1947): $I \leq q+1$ if $p \geq k=3$.
- Segre (1955): a ($q+1$)-arc in $\operatorname{PG}(2, q), q$ odd, is a conic.

Lemma (Bush, 1952)

An arc in $\mathrm{PG}(k-1, q), k \geq q$, has size at most $k+1$. An arc attaining this bound is equivalent to a frame of $\operatorname{PG}(k-1, q)$.

- $q=2, k=3$: hyperovals are $(q+2)$-arcs.

MDS-conjecture

Conjecture

An arc of $\operatorname{PG}(k-1, q), k \leq q$, has size at most $q+1$, unless q is even and $k=3$ or $k=q-1$, in which case it has size at most $q+2$.

more (recent) results

- Conjecture is known to be true for all $q \leq 27$, for all $k \leq 5$ and $k \geq q-3$ and for $k=6,7, q-4, q-5$, see overview paper of J. Hirschfeld and L. Storme, pointing to results of Segre, J.A. Thas, Casse, Glynn, Bruen, Blokhuis, Voloch, Storme, Hirschfeld and Korchmáros.
- many examples of hyperovals, see e.g. Cherowitzo's hyperoval page, pointing to examples of Segre, Glynn, Payne, Cherowitzo, Penttila, Pinneri, Royle and O'Keefe.

more (recent) results

- An example of a $(q+1)$-arc in $\operatorname{PG}(4,9)$, different from a normal rational curve, (Glynn):

$$
\mathcal{K}=\left\{\left(1, t, t^{2}+\eta t^{6}, t^{3}, t^{4}\right) \mid t \in \mathbb{F}_{9}, \eta^{4}=-1\right\} \cup\{(0,0,0,0,1)\}
$$

- An example of a $(q+1)$-arc in $\operatorname{PG}(3, q), q=2^{h}$, $\operatorname{gcd}(r, h)=1$, different from a normal rational curve, (Hirschfeld):

$$
\mathcal{K}=\left\{\left(1, t, t^{2^{r}}, t^{2^{r}+1}\right) \mid t \in \mathbb{F}_{q}\right\} \cup\{(0,0,0,1)\}
$$

arcs in $\mathrm{PG}(2, q)$

tangent lines through
$p_{1}=(1,0,0): X_{1}=a_{i} X_{2}$
$p_{2}=(0,1,0): X_{2}=b_{i} X_{0}$
$p_{3}=(0,0,1): X_{0}=c_{i} X_{1}$
Lemma (B. Segre)

arcs in $\mathrm{PG}(2, q)$

tangent lines through
$p_{1}=(1,0,0): X_{1}=a_{i} X_{2}$
$p_{2}=(0,1,0): X_{2}=b_{i} X_{0}$
$p_{3}=(0,0,1): X_{0}=c_{i} X_{1}$
Lemma (B. Segre)

$$
\prod_{i=1}^{t} a_{i} b_{i} c_{i}=-1
$$

coordinate free version

$$
\begin{aligned}
& T_{\left\{p_{1}\right\}}:=\prod\left(X_{1}-a_{i} X_{2}\right) \\
& T_{\left\{p_{2}\right\}}:=\prod\left(X_{2}-b_{i} X_{0}\right) \\
& T_{\left\{p_{3}\right\}}:=\prod\left(X_{0}-c_{i} X_{1}\right)
\end{aligned}
$$

Lemma

$$
T_{\left\{p_{1}\right\}}\left(p_{2}\right) T_{\left\{p_{2}\right\}}\left(p_{3}\right) T_{\left\{p_{3}\right\}}\left(p_{1}\right)=(-1)^{t+1} T_{\left\{p_{1}\right\}}\left(p_{3}\right) T_{\left\{p_{2}\right\}}\left(p_{1}\right) T_{\left\{p_{3}\right\}}\left(p_{2}\right)
$$

coordinate free version in $\operatorname{PG}(k-1, q)$

Lemma (S. Ball)

Choose $S \subset \mathcal{K},|S|=k-3$, choose $p_{1}, p_{2}, p_{3} \in \mathcal{K} \backslash S$.

$$
\begin{array}{r}
T_{S \cup\left\{p_{1}\right\}}\left(p_{2}\right) T_{S \cup\left\{p_{2}\right\}}\left(p_{3}\right) T_{S \cup\left\{p_{3}\right\}}\left(p_{1}\right) \\
=(-1)^{t+1} T_{S \cup\left\{p_{1}\right\}}\left(p_{3}\right) T_{S \cup\left\{p_{2}\right\}}\left(p_{1}\right) T_{S \cup\left\{p_{3}\right\}}\left(p_{2}\right)
\end{array}
$$

Interpolation

Lemma (S. Ball)

Let $|\mathcal{K}| \geq k+t>k$. Choose $Y=\left\{y_{1}, \ldots, y_{k-2}\right\} \subset \mathcal{K}$ and $E \subset \mathcal{K} \backslash Y,|E|=t+2$. Then

$$
0=\sum_{a \in E} T_{Y}(a) \prod_{z \in E \backslash\{a\}} \operatorname{det}\left(a, z, y_{1}, \ldots, y_{k-2}\right)^{-1}
$$

Exploiting interpolation and Segre's lemma

Let $|\mathcal{K}| \geq k+t>k$. Choose $Y=\left\{y_{1}, \ldots, y_{k-2}\right\} \subset \mathcal{K}$ and
$E \subset \mathcal{K} \backslash Y,|E|=t+2, r \leq \min (k-1, t+2)$. Let
$\theta_{i}=\left(a_{1}, \ldots, a_{i-1}, y_{i}, \ldots, y_{k-2}\right)$ denote an ordered sequence, for the elements $a_{1}, \ldots, a_{i-1} \in E$

Lemma (S. Ball)

$$
0=\sum_{a_{1}, \ldots, a_{r} \in E}\left(\prod_{i=1}^{r-1} \frac{T_{\theta_{i}}\left(a_{i}\right)}{T_{\theta_{i+1}}\left(y_{i}\right)}\right) T_{\theta_{r}}\left(a_{r}\right) \prod_{z \in(E \cup Y) \backslash\left(\theta_{r} \cup\left\{a_{r}\right\}\right)} \operatorname{det}\left(a_{r}, z, \theta_{r}\right)^{-1}
$$

The $r!$ terms in the sum for which $\left\{a_{1}, \ldots, a_{r}\right\}=A, A \subset E$, $|A|=r$, are the same.

Exploiting interpolation and Segre's lemma

Let $|\mathcal{K}| \geq k+t>k$. Choose $Y=\left\{y_{1}, \ldots, y_{k-2}\right\} \subset \mathcal{K}$ and
$E \subset \mathcal{K} \backslash Y,|E|=t+2, r \leq \min (k-1, t+2)$. Let
$\theta_{i}=\left(a_{1}, \ldots, a_{i-1}, y_{i}, \ldots, y_{k-2}\right)$ denote an ordered sequence, for the elements $a_{1}, \ldots, a_{i-1} \in E$

Lemma (S. Ball)

$$
0=r!\sum_{a_{1}<\ldots<a_{r} \in E}\left(\prod_{i=1}^{r-1} \frac{T_{\theta_{i}}\left(a_{i}\right)}{T_{\theta_{i+1}}\left(y_{i}\right)}\right) T_{\theta_{r}}\left(a_{r}\right) \prod_{z \in(E \cup Y) \backslash\left(\theta_{r} \cup\left\{a_{r}\right\}\right)} \operatorname{det}\left(a_{r}, z, \theta_{r}\right)^{-1} .
$$

avoiding some restriction

Lemma

Suppose that \mathcal{K} is an arc in $\operatorname{PG}(k-1, q)$, then one can construct an arc \mathcal{K}^{\prime} in $\operatorname{PG}(|\mathcal{K}|-k-1, q)$, with $|\mathcal{K}|=\left|\mathcal{K}^{\prime}\right|$.

Segre product

Let $A=\left(a_{1}, \ldots, a_{n}\right)$ and $B=\left(b_{0}, \ldots, b_{n-1}\right)$ be two
subsequences of \mathcal{K} of the same length n and let D be a subset of $\mathcal{K} \backslash(A \cup B)$ of size $k-n-1$.

Definition

$$
P_{D}(A, B)=\prod_{i=1}^{n} \frac{T_{D \cup\left\{a_{1}, \ldots, a_{i-1}, b_{i}, \ldots, b_{n-1}\right\}}\left(a_{i}\right)}{T_{D \cup\left\{a_{1}, \ldots, a_{i-1}, b_{i}, \ldots, b_{n-1}\right\}}\left(b_{i-1}\right)}
$$

and $P_{D}(\emptyset, \emptyset)=1$.

Using Segre's lemma again

Lemma

$$
\begin{aligned}
& P_{D}\left(A^{*}, B\right)=(-1)^{t+1} P_{D}(A, B), \\
& P_{D}\left(A, B^{*}\right)=(-1)^{t+1} P_{D}(A, B),
\end{aligned}
$$

where the sequence X^{*} is obtained from X by interchanging two elements.

Interpolation again

- Suppose that $|\mathcal{K}|=q+2$.
- Let L of size $p-1, \Omega$ of size $p-2, X$ and Y both of size $k-p$ be disjoint ordered sequences of \mathcal{K}. Let S_{τ} denote the sequence $\left(s_{\tau(i)} \mid i \in \tau\right), \tau \subseteq\{1,2, \ldots,|S|\}$ for any sequence S.
- Let $\sigma\left(X_{\tau}, X\right)$ denote the number of transpositions needed to map X onto X_{τ}.
- $M=\{1, \ldots, k-p\}$

Lemma

$$
0=\sum_{\tau \subseteq M}(-1)^{|\tau|+\sigma\left(X_{\tau}, X\right)} P_{L \cup X_{M \backslash \tau}}\left(Y_{\tau}, X_{\tau \in \Omega \cup X_{\tau} \cup Y_{M \backslash \tau}} \prod_{z,} \operatorname{det}\left(z, X_{M \backslash \tau}, Y_{\tau}, L\right)^{-1}\right.
$$

Interpolation again

- Let $E \subset \Omega,|E|=2 p-k-2$.
- Let $W=\left(w_{1}, \ldots, w_{2 n}\right)$ be an ordered subssequence of \mathcal{K} disjoint from $L \cup X \cup Y \cup E$.

Corollary

$$
0=\prod_{i=1}^{n} \operatorname{det}\left(y_{n+1-i}, X, L\right) \prod_{z \in E \cup Y \cup W_{2 n}} \operatorname{det}(z, X, L)^{-1}
$$

... which is a contradiction

Corollary (Ball and DB)

An arc in $\operatorname{PG}(k-1, q), q=p^{h}, p$ prime, $h>1, k \leq 2 p-2$ has size at most $q+1$.
B. Cherowitzo.

Bill Cherowtizo's Hyperoval Page.
http://www-math. cudenver.edu/~wcherowi/research/ 1999.

B
J. W. P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory and finite projective spaces: update 2001, in Developments in Mathematics, 3, Kluwer Academic Publishers. Finite Geometries, Proceedings of the Fourth Isle of Thorns Conference, pp. 201-246.

