On the structure of the directions not determined by large affine point sets

J. De Beule (joint work with Péter Sziklai and Marcella Tákats)

Department of Mathematics Ghent University

June 19, 2011 Finite Geometries 2011, third Irsee Conference

< ロ > < 同 > < 回 > < 回 > < 回 > <

• Consider any point set $U \subseteq AG(n, q)$.

- Call π_{∞} the hyperplane at infinity of AG(*n*, *q*).
- A point *p* ∈ π is called a *direction* determind by *U* iff at least one affine line on *p* contains at least two points of *U*.
- Denote by U_D the set of directions determined by U
- If $|U| > q^{n-1}$, then all points of π_{∞} are determined.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Consider any point set $U \subseteq AG(n, q)$.
- Call π_{∞} the hyperplane at infinity of AG(*n*, *q*).
- A point *p* ∈ π is called a *direction* determind by *U* iff at least one affine line on *p* contains at least two points of *U*.
- Denote by U_D the set of directions determined by U
- If $|U| > q^{n-1}$, then all points of π_{∞} are determined.

< ロ > < 同 > < 回 > < 回 > .

- Consider any point set $U \subseteq AG(n, q)$.
- Call π_{∞} the hyperplane at infinity of AG(n, q).
- A point p ∈ π is called a *direction* determind by U iff at least one affine line on p contains at least two points of U.
- Denote by U_D the set of directions determined by U
- If $|U| > q^{n-1}$, then all points of π_{∞} are determined.

イロト 人間 ト イヨト イヨト

- Consider any point set $U \subseteq AG(n, q)$.
- Call π_{∞} the hyperplane at infinity of AG(n, q).
- A point p ∈ π is called a *direction* determind by U iff at least one affine line on p contains at least two points of U.
- Denote by U_D the set of directions determined by U
- If $|U| > q^{n-1}$, then all points of π_{∞} are determined.

< ロ > < 同 > < 回 > < 回 > .

- Consider any point set $U \subseteq AG(n, q)$.
- Call π_{∞} the hyperplane at infinity of AG(n, q).
- A point p ∈ π is called a *direction* determind by U iff at least one affine line on p contains at least two points of U.
- Denote by U_D the set of directions determined by U
- If $|U| > q^{n-1}$, then all points of π_{∞} are determined.

affine plane

Theorem (Szőnyi)

Let $U \subseteq AG(2, q)$ be a set of affine points of size $q - \varepsilon > q - \sqrt{q}/2$, which does not determine a set N of more than (q + 1)/2 directions. Then U can be extended to a set of size q, not determining the set N of directions.

proof is based on:

- bounds on the number of points of an algebraic curve defined over 𝔽_q.
- use of the *Rédei-polynomial* associated to the point set *U*.

◆ロト ◆聞 と ◆ 国 と ◆ 国 と 。

affine plane

Theorem (Szőnyi)

Let $U \subseteq AG(2, q)$ be a set of affine points of size $q - \varepsilon > q - \sqrt{q}/2$, which does not determine a set N of more than (q + 1)/2 directions. Then U can be extended to a set of size q, not determining the set N of directions.

proof is based on:

- bounds on the number of points of an algebraic curve defined over 𝔽_q.
- use of the *Rédei-polynomial* associated to the point set *U*.

< □ > < 同 > < 回 > <

the Rédei-polynomial

• $U = \{(s_1, s_2)\}, U_D \subseteq \{(1, -x) | x \in GF(q)\} \cup \{(0, 1)\},\$

- $(1, -x) \in U_D$ means $xs_1 + s_2 = xt_1 + t_2$
- $R(X_1, X_2) := \prod (X_1 + s_1 X_2 + s_2)$
- Recall that $|U| \leq q$
- $(1, -x) \notin U_D$ means $xs_1 + s_2 \neq xt_1 + t_2$, hence, $R(X_1, x) \mid X_1^q - X_1$

the Rédei-polynomial

• $U = \{(s_1, s_2)\}, U_D \subseteq \{(1, -x) | x \in GF(q)\} \cup \{(0, 1)\},\$

- $(1, -x) \in U_D$ means $xs_1 + s_2 = xt_1 + t_2$
- $R(X_1, X_2) := \prod (X_1 + s_1 X_2 + s_2)$
- Recall that $|U| \leq q$
- $(1, -x) \notin U_D$ means $xs_1 + s_2 \neq xt_1 + t_2$, hence, $R(X_1, x) \mid X_1^q - X_1$

the Rédei-polynomial

- $U = \{(s_1, s_2)\}, U_D \subseteq \{(1, -x) | x \in GF(q)\} \cup \{(0, 1)\},\$
- $(1, -x) \in U_D$ means $xs_1 + s_2 = xt_1 + t_2$
- $R(X_1, X_2) := \prod (X_1 + s_1 X_2 + s_2)$
- Recall that $|U| \leq q$
- $(1, -x) \notin U_D$ means $xs_1 + s_2 \neq xt_1 + t_2$, hence, $R(X_1, x) \mid X_1^q - X_1$

the Rédei-polynomial

- $U = \{(s_1, s_2)\}, U_D \subseteq \{(1, -x) | x \in GF(q)\} \cup \{(0, 1)\},\$
- $(1, -x) \in U_D$ means $xs_1 + s_2 = xt_1 + t_2$
- $R(X_1, X_2) := \prod (X_1 + s_1 X_2 + s_2)$
- Recall that $|U| \leq q$
- $(1, -x) \notin U_D$ means $xs_1 + s_2 \neq xt_1 + t_2$, hence, $R(X_1, x) \mid X_1^q - X_1$

• $U = \{(s_1, s_2)\}, U_D \subseteq \{(1, -x) | x \in GF(q)\} \cup \{(0, 1)\},\$

•
$$(1, -x) \in U_D$$
 means $xs_1 + s_2 = xt_1 + t_2$

•
$$R(X_1, X_2) := \prod (X_1 + s_1 X_2 + s_2)$$

• Recall that $|U| \leq q$

•
$$(1, -x) \notin U_D$$
 means $xs_1 + s_2 \neq xt_1 + t_2$, hence,
 $R(X_1, x) \mid X_1^q - X_1$

affine 3-space

Theorem (DB and Gács)

Let $q = p^h$, p an odd prime, and let $U \subseteq AG(3, q)$, be a set of affine points of size $q^2 - 2$, which does not determine a set N of at least p + 2 directions. Then U can be extended to a set of size q, not determining the set N of directions.

proof is based on:

- use of the Rédei-polynomial
- arguments on coefficients of this polynomial

< ロ > < 同 > < 回 > < 回 > .

affine 3-space

Theorem (DB and Gács)

Let $q = p^h$, p an odd prime, and let $U \subseteq AG(3, q)$, be a set of affine points of size $q^2 - 2$, which does not determine a set N of at least p + 2 directions. Then U can be extended to a set of size q, not determining the set N of directions.

proof is based on:

- use of the Rédei-polynomial
- arguments on coefficients of this polynomial

< ロ > < 同 > < 回 > < 回 > .

• $R(X, Y, Z, W) := \prod (X + a_i Y + b_i Z + c_i W) =$ $X^{|U|} + \sum_{i=1}^{|U|} \sigma_i(Y, Z, W)$

- σ_i(Y,Z, W): *i*th elementary symmetric polynomial of the set {a_iY + b_iZ + c_iW)}.
- $\sigma_i(Y, Z, W)$ defines algebraic curve in PG(2, q).
- properties can be derived by
 R(X, y, z, w) | X^q X if (y, z, w) is a line containing a non determined direction

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

•
$$R(X, Y, Z, W) := \prod (X + a_i Y + b_i Z + c_i W) =$$

 $X^{|U|} + \sum_{i=1}^{|U|} \sigma_i(Y, Z, W)$

- σ_i(Y, Z, W): *i*th elementary symmetric polynomial of the set {a_iY + b_iZ + c_iW)}.
- $\sigma_i(Y, Z, W)$ defines algebraic curve in PG(2, q).

properties can be derived by
 R(X, y, z, w) | X^q - X if (y, z, w) is a line containing a non determined direction

•
$$R(X, Y, Z, W) := \prod (X + a_i Y + b_i Z + c_i W) =$$

 $X^{|U|} + \sum_{i=1}^{|U|} \sigma_i(Y, Z, W)$

- σ_i(Y,Z, W): *i*th elementary symmetric polynomial of the set {a_iY + b_iZ + c_iW)}.
- $\sigma_i(Y, Z, W)$ defines algebraic curve in PG(2, q).
- properties can be derived by
 R(X, y, z, w) | X^q X if (y, z, w) is a line containing a non determined direction

general dimension

Theorem (Ball)

Let $q = p^h$, p an odd prime, and let $U \subseteq AG(n, q)$, be a set of affine points of size $q^{n-1} - 2$, which does not determine a set D of at least p + 2 directions. Then U can be extended to a set of size q, not determining the set D of directions.

proof is based on:

- representing $AG(n,q) = \mathbb{F}_q \times \mathbb{F}_{q^{n-1}}$
- use of the Rédei-polynomial
- arguments on coefficients of this polynomial

< ロ > < 同 > < 回 > < 回 > .

general dimension

Theorem (Ball)

Let $q = p^h$, p an odd prime, and let $U \subseteq AG(n, q)$, be a set of affine points of size $q^{n-1} - 2$, which does not determine a set D of at least p + 2 directions. Then U can be extended to a set of size q, not determining the set D of directions.

proof is based on:

- representing $AG(n, q) = \mathbb{F}_q \times \mathbb{F}_{q^{n-1}}$
- use of the Rédei-polynomial
- arguments on coefficients of this polynomial

< ロ > < 同 > < 回 > < 回 > .

problem

Stability for point sets of size $q^{n-1} - \epsilon$?

- standard representation: Rédei polynomial in n (or n + 1) variables, its coefficients define algebraic surfaces in AG(n 1, q) (or PG(n 1, q)).
- AG(n, q) = 𝔽_q × 𝔽_{qⁿ⁻¹}: Rédei polynomial in 2 variables, situation comparable to theorem of Szőnyi, but polynomial is defined over larger field!

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

problem

Stability for point sets of size $q^{n-1} - \epsilon$?

- standard representation: Rédei polynomial in n (or n + 1) variables, its coefficients define algebraic surfaces in AG(n 1, q) (or PG(n 1, q)).
- AG(n, q) = 𝔽_q × 𝔽_{qⁿ⁻¹}: Rédei polynomial in 2 variables, situation comparable to theorem of Szőnyi, but polynomial is defined over larger field!

ヘロト 人間 ト イヨト イヨト

problem

Stability for point sets of size $q^{n-1} - \epsilon$?

- standard representation: Rédei polynomial in n (or n + 1) variables, its coefficients define algebraic surfaces in AG(n 1, q) (or PG(n 1, q)).
- AG(n, q) = 𝔽_q × 𝔽_{qⁿ⁻¹}: Rédei polynomial in 2 variables, situation comparable to theorem of Szőnyi, but polynomial is defined over larger field!

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Some lemma's

Suppose $U \subseteq AG(n, q)$ is a point set of size $q^{n-1} - \epsilon$.

Lemma

Let $0 \le r \le n-2$. Let $\alpha = (0, \alpha_1, \alpha_2, \alpha_3, ..., \alpha_n) \in N$ be a non-determined direction. Then each of the affine subspaces of dimension r + 1 through α contain at most q^r points of U.

Corollary

Let $T \subseteq H_{\infty}$ be a subspace of dimension $r \leq n-2$ containing $\alpha \in N$. Then there are precisely ε deficient subspaces of dimension r + 1 (counted possibly with multiplicity) through T (a subspace with deficiency t is counted with multiplicity t).

ヘロト 人間 ト イヨト イヨト

э

Some lemma's

Corollary

There are precisely ε affine lines through α not containing any point of U (and $q^{n-1} - \varepsilon$ lines with 1 point of U each).

イロト 人間 ト イヨト イヨト

3

the Rédei polynomial

•
$$U = \{(1, a_1^i, a_2^i, a_3^i, \dots, a_n^i) : i = 1, \dots, q^{n-1} - \varepsilon\}.$$

•
$$R(X_0, X_1, X_2, ..., X_n) = \prod_{i=1}^{q^{n-1}-\varepsilon} (X_0 + a_1^i X_1 + a_2^i X_2 + ... + a_n^i X_n)$$

•
$$S(X_1, X_2, ..., X_n) = \{a_1^i X_1 + a_2^i X_2 + ... + a_n^i X_n : i = 1, ..., q^{n-1} - \varepsilon\}$$

•
$$R(X_0, X_1, X_2, ..., X_n) = \sum_{j=0}^{q^{n-1}-\varepsilon} \sigma_{q^{n-1}-\varepsilon-j}(X_1, X_2, ..., X_n) X_0^j$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

€ 990

Using the Rédei polynomial

$$R(X_0, X_1, X_2, ..., X_n)f(X_0, X_1, ..., X_n) = (X_0^q - X_0)^{q^{n-2}}$$

$$f(X_0, X_1, \ldots, X_n) = X_0^{\varepsilon} + \sum_{k=1}^{\varepsilon} f_k(\sigma_1, \ldots, \sigma_k) X_0^{\varepsilon - k}$$

• π_{∞} : $X_0 = 0$

- any hyperplane: $s_0X_0 + s_1X_1 + ... + s_nX_n = 0$
- π_{n-2} : (n-2)-dimensional subspace in π_{∞} : $[s_1, \ldots, s_n]$.
- If π_{n-2} contains (α) = (0, α₁,..., α_n) ∈ N, then f(X₀, s₁,..., s_n) is a fully reducible polynomial of degree ε.

イロト イポト イヨト イヨト

3

Using the Rédei polynomial

$$R(X_0, X_1, X_2, ..., X_n)f(X_0, X_1, ..., X_n) = (X_0^q - X_0)^{q^{n-2}}$$

$$f(X_0, X_1, \ldots, X_n) = X_0^{\varepsilon} + \sum_{k=1}^{\varepsilon} f_k(\sigma_1, \ldots, \sigma_k) X_0^{\varepsilon - k}$$

• π_{∞} : $X_0 = 0$

- any hyperplane: $s_0X_0 + s_1X_1 + ... + s_nX_n = 0$
- π_{n-2} : (n-2)-dimensional subspace in π_{∞} : $[s_1, \ldots, s_n]$.
- If π_{n-2} contains (α) = (0, α₁,..., α_n) ∈ N, then f(X₀, s₁,..., s_n) is a fully reducible polynomial of degree ε.

イロト 不得 トイヨト イヨト ニヨー

Using the Rédei polynomial

$$R(X_0, X_1, X_2, ..., X_n)f(X_0, X_1, ..., X_n) = (X_0^q - X_0)^{q^{n-2}}$$

$$f(X_0, X_1, \ldots, X_n) = X_0^{\varepsilon} + \sum_{k=1}^{\varepsilon} f_k(\sigma_1, \ldots, \sigma_k) X_0^{\varepsilon - k}$$

- $\pi_{\infty}: X_0 = 0$
- any hyperplane: $s_0X_0 + s_1X_1 + \ldots + s_nX_n = 0$
- π_{n-2} : (n-2)-dimensional subspace in π_{∞} : $[s_1, \ldots, s_n]$.
- If π_{n-2} contains $(\alpha) = (0, \alpha_1, \dots, \alpha_n) \in N$, then $f(X_0, s_1, \dots, s_n)$ is a fully reducible polynomial of degree ϵ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

More lemma's

 $f(X_0, \ldots, X_N) = 0$: algebraic surface in the dual space PG(n, q).

Lemma

Let $T \neq H_{\infty}$ be a deficient hyperplane through $\alpha = (\alpha_0, \alpha_1, \dots, \alpha_n) \in N$ (so *T* contains less than q^{n-2} points of *U*). Then in the dual space PG(*n*, *q*), *T* corresponds to an intersection point *t* of *f* and the hyperplane $[\alpha_0, \alpha_1, \dots, \alpha_n]$.

Lemma

Let $(\alpha) \in N$ be a non-determined direction. Then in the dual space PG(n, q) the intersection of the hyperplane $[\alpha]$ and f is precisely the union of ε different subspaces of dimension n - 2.

ヘロト 人間 ト イヨト イヨト

More lemma's

Lemma

Let $f(X_0, ..., X_n)$ be a homogeneous polynomial of degree d < q. Suppose that there are n - 1 independent concurrent lines $\ell_1, ..., \ell_{n-1}$ through the point P in PG(n, q) totally contained in the hypersurface f = 0. Then the hyperplane spanned by $\ell_1, ..., \ell_{n-1}$ is a tangent hyperplane of f.

Corollary

Let $f(X_0, ..., X_n)$ be a homogeneous polynomial of degree d < q. Suppose that in PG(n, q) the intersection of a hyperplane H and the hypersurface f = 0 contains two complete subspaces of dimension n - 2. Then H is a tangent hyperplane of f.

Results

Theorem

Let $n \ge 3$. Let $U \subset AG(n, q) \subset PG(n, q)$, $|U| = q^{n-1} - 2$. Let $D \subseteq H_{\infty}$ be the set of directions determined by U and put $N = H_{\infty} \setminus D$ the set of non-determined directions. Then U can be extended to a set $\overline{U} \supseteq U$, $|\overline{U}| = q^{n-1}$ determining the same directions only, or the points of N are collinear and $|N| \le \lfloor \frac{q+3}{2} \rfloor$, or the points of N are on a conic.

Theorem

Let $U \subset AG(3, q) \subset PG(2, q)$, $|U| = q^2 - \varepsilon$, where $\varepsilon < p$. Let $D \subseteq H_{\infty}$ be the set of directions determined by U and put $N = H_{\infty} \setminus D$ the set of non-determined directions. Then N is contained in a plane curve of degree $\varepsilon^4 - 2\varepsilon^3 + \varepsilon$ or U can be extended to a set $\overline{U} \supseteq U$, $|\overline{U}| = q^2$.

Results

Theorem

Let $n \ge 3$. Let $U \subset AG(n, q) \subset PG(n, q)$, $|U| = q^{n-1} - 2$. Let $D \subseteq H_{\infty}$ be the set of directions determined by U and put $N = H_{\infty} \setminus D$ the set of non-determined directions. Then U can be extended to a set $\overline{U} \supseteq U$, $|\overline{U}| = q^{n-1}$ determining the same directions only, or the points of N are collinear and $|N| \le \lfloor \frac{q+3}{2} \rfloor$, or the points of N are on a conic.

Theorem

Let $U \subset AG(3, q) \subset PG(2, q)$, $|U| = q^2 - \varepsilon$, where $\varepsilon < p$. Let $D \subseteq H_{\infty}$ be the set of directions determined by U and put $N = H_{\infty} \setminus D$ the set of non-determined directions. Then N is contained in a plane curve of degree $\varepsilon^4 - 2\varepsilon^3 + \varepsilon$ or U can be extended to a set $\overline{U} \supseteq U$, $|\overline{U}| = q^2$.