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Definitions

Consider any point set U ⊆ AG(n,q).

Call π∞ the hyperplane at infinity of AG(n,q).

A point p ∈ π is called a direction determind by U iff at
least one affine line on p contains at least two points of U.

Denote by UD the set of directions determined by U

If |U| > qn−1, then all points of π∞ are determined.
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affine plane

Theorem (Szőnyi)

Let U ⊆ AG(2,q) be a set of affine points of size
q − ε > q −√

q/2, which does not determine a set N of more
than (q + 1)/2 directions. Then U can be extended to a set of
size q, not determining the set N of directions.

proof is based on:

bounds on the number of points of an algebraic curve
defined over Fq.

use of the Rédei-polynomial associated to the point set U.
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the Rédei-polynomial

U = {(s1, s2)}, UD ⊆ {(1,−x)|x ∈ GF(q)} ∪ {(0,1)},

(1,−x) ∈ UD means xs1 + s2 = xt1 + t2
R(X1,X2) :=

∏
(X1 + s1X2 + s2)

Recall that |U| ≤ q

(1,−x) 6∈ UD means xs1 + s2 6= xt1 + t2, hence,
R(X1, x) | X q

1 − X1
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affine 3-space

Theorem (DB and Gács)

Let q = ph, p an odd prime, and let U ⊆ AG(3,q), be a set of
affine points of size q2 − 2, which does not determine a set N of
at least p + 2 directions. Then U can be extended to a set of
size q, not determining the set N of directions.

proof is based on:

use of the Rédei-polynomial

arguments on coefficients of this polynomial
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the Rédei-polynomial

R(X ,Y ,Z ,W ) :=
∏
(X + aiY + biZ + ciW ) =

X |U| +

|U|∑

i=1

σi(Y ,Z ,W )

σi(Y ,Z ,W ): i th elementary symmetric polynomial of the
set {aiY + biZ + ciW )}.

σi(Y ,Z ,W ) defines algebraic curve in PG(2,q).

properties can be derived by
R(X , y , z,w) | X q − X if (y , z,w) is a line containing a non
determined direction
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general dimension

Theorem (Ball)

Let q = ph, p an odd prime, and let U ⊆ AG(n,q), be a set of
affine points of size qn−1 − 2, which does not determine a set D
of at least p + 2 directions. Then U can be extended to a set of
size q, not determining the set D of directions.

proof is based on:

representing AG(n,q) = Fq × Fqn−1

use of the Rédei-polynomial

arguments on coefficients of this polynomial
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problem

Stability for point sets of size qn−1 − ǫ?

standard representation: Rédei polynomial in n (or n + 1)
variables, its coefficients define algebraic surfaces in
AG(n − 1,q) (or PG(n − 1,q)).

AG(n,q) = Fq × Fqn−1: Rédei polynomial in 2 variables,
situation comparable to theorem of Szőnyi, but polynomial
is defined over larger field!
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Some lemma’s

Suppose U ⊆ AG(n,q) is a point set of size qn−1 − ǫ.

Lemma

Let 0 ≤ r ≤ n − 2. Let α = (0, α1, α2, α3, ..., αn) ∈ N be a
non-determined direction. Then each of the affine subspaces of
dimension r + 1 through α contain at most qr points of U.

Corollary

Let T ⊆ H∞ be a subspace of dimension r ≤ n − 2 containing
α ∈ N. Then there are precisely ε deficient subspaces of
dimension r + 1 (counted possibly with multiplicity) through T (a
subspace with deficiency t is counted with multiplicity t).
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Some lemma’s

Corollary

There are precisely ε affine lines through α not containing any
point of U (and qn−1 − ε lines with 1 point of U each).
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the Rédei polynomial

U = {(1,ai
1,a

i
2,a

i
3, . . . ,a

i
n) : i = 1, ...,qn−1 − ε}.

R(X0,X1,X2, ...,Xn) =
∏qn−1−ε

i=1 (X0+ai
1X1+ai

2X2+...+ai
nXn)

S(X1,X2, ...,Xn) = {ai
1X1 + ai

2X2 + ...+ ai
nXn : i =

1, ...,qn−1 − ε}
R(X0,X1,X2, ...,Xn) =

∑qn−1−ε

j=0 σqn−1−ε−j(X1,X2, ...,Xn)X
j
0
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Using the Rédei polynomial

R(X0,X1,X2, ...,Xn)f (X0,X1, . . . ,Xn) = (X q
0 − X0)

qn−2

f (X0,X1, . . . ,Xn) = X ε

0 +

ε∑

k=1

fk (σ1, . . . , σk )X
ε−k
0

π∞ : X0 = 0

any hyperplane: s0X0 + s1X1 + . . . + snXn = 0

πn−2: (n − 2)-dimensional subspace in π∞ : [s1, . . . , sn].

If πn−2 contains (α) = (0, α1, . . . , αn) ∈ N, then
f (X0, s1, . . . , sn) is a fully reducible polynomial of degree ǫ.
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More lemma’s

f (X0, . . . ,XN) = 0: algebraic surface in the dual space PG(n,q).

Lemma

Let T 6= H∞ be a deficient hyperplane through
α = (α0, α1, . . . , αn) ∈ N (so T contains less than qn−2 points of
U). Then in the dual space PG(n,q), T corresponds to an
intersection point t of f and the hyperplane [α0, α1, . . . , αn].

Lemma

Let (α) ∈ N be a non-determined direction. Then in the dual
space PG(n,q) the intersection of the hyperplane [α] and f is
precisely the union of ε different subspaces of dimension n − 2.
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More lemma’s

Lemma

Let f (X0, ...,Xn) be a homogeneous polynomial of degree
d < q. Suppose that there are n − 1 independent concurrent
lines ℓ1, ..., ℓn−1 through the point P in PG(n,q) totally contained
in the hypersurface f = 0. Then the hyperplane spanned by
ℓ1, ..., ℓn−1 is a tangent hyperplane of f .

Corollary

Let f (X0, ...,Xn) be a homogeneous polynomial of degree
d < q. Suppose that in PG(n,q) the intersection of a
hyperplane H and the hypersurface f = 0 contains two
complete subspaces of dimension n − 2. Then H is a tangent
hyperplane of f .
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Results

Theorem

Let n ≥ 3. Let U ⊂ AG(n,q) ⊂ PG(n,q), |U| = qn−1 − 2. Let
D ⊆ H∞ be the set of directions determined by U and put
N = H∞ \ D the set of non-determined directions. Then U can
be extended to a set Ū ⊇ U, |Ū| = qn−1 determining the same
directions only, or the points of N are collinear and |N| ≤ ⌊q+3

2 ⌋,
or the points of N are on a conic.

Theorem

Let U ⊂ AG(3,q) ⊂ PG(2,q), |U| = q2 − ε, where ε < p. Let
D ⊆ H∞ be the set of directions determined by U and put
N = H∞ \ D the set of non-determined directions. Then N is
contained in a plane curve of degree ε4 − 2ε3 + ε or U can be
extended to a set Ū ⊇ U, |Ū| = q2.
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