Minimal blocking sets of size $q^{2}+2$ of $\mathrm{Q}(4, q)$, q an odd prime, do not exist

Jan De Beule
joint work with: Klaus Metsch

Ghent University
Dept. Pure Mathematics and Computeralgebra

Definitions

A finite generalized quadrangle (GQ) of order (s, t) is a point-line incidence geometry satisfying the following axioms.
6 Each point is incident with $1+t$ lines $(t \geqslant 1)$ and two different points determine at most one line.

- Each line is incident with $1+s$ lines $(s \geqslant 1)$ and two different lines determine at most one points.
- If x is a point and L is a lines not incident with x, then there is a unique pair $(y, M) \in \mathcal{P} \times \mathcal{B}$ for which x I M I y I L.

Two classical GQs of order q

We consider the non-singular parabolic quadric in $\mathrm{PG}(4, q)$, denoted with $\mathrm{Q}(4, q)$; it contains points and lines constituting a GQ of order q

We consider the points of $\operatorname{PG}(3, q)$ together with the totally isotropic lines of $\mathrm{PG}(3, q)$ with respect to a fixed symplectic polarity of $\mathrm{PG}(3, q)$; these sets of points and lines contsitute a GQ of order q.

6 If \mathcal{S} is a GQ , then \mathcal{S}^{D} is the dual of \mathcal{S}, i.e. the GQ obtained by interchanging the role of the points and lines of \mathcal{S}. It is known that $\mathrm{Q}(4, q) \cong \mathrm{W}(3, q)^{D}$.

Definitions again

Consider a $\mathrm{GQ} \mathcal{S}=(\mathcal{P}, \mathcal{B}, \mathrm{I})$.
An ovoid is a set \mathcal{O} of points of \mathcal{S} such that every line of \mathcal{S} meets the set \mathcal{O} in exactly one point

A blocking set is a set \mathcal{B} of points of \mathcal{S} such that every line of \mathcal{S} meets the set \mathcal{B} in at least one point.

A blocking set \mathcal{B} is called minimal if $\mathcal{B} \backslash\{p\}$ is not a blocking set for any point $p \in \mathcal{B}$.
a non-singular elliptic quadric $\mathrm{Q}^{-}(3, q)$, contained in $\mathrm{Q}(4, q)$, constitutes always an ovoid of $\mathrm{Q}(4, q)$. When q is an odd prime, elliptic quadrics are the only examples. (Ball et al.)

The problem

Suppose that \mathcal{B} is a minimal blocking set of $\mathrm{Q}(4, q)$ different from an ovoid.

When q is even, then $|\mathcal{B}|>q^{2}+1+\sqrt{q}$ (Eisfeld et al.)

- Can we find a lower bound when q is odd?

6 $|\mathcal{B}|=q^{2}+2$ is impossible when $q=3,5,7$
6 Is it possible that $|\mathcal{B}|=q^{2}+2$ when q is odd?

Dualising $\mathrm{Q}(4, q)$

Consider again any $\mathrm{GQ} \mathcal{S}=(\mathcal{P}, \mathcal{B}, \mathrm{I})$.
A spread is a set \mathcal{R} of lines of \mathcal{R} such that every point of \mathcal{S} lies on exactly one line of \mathcal{R}.

A cover is a set \mathcal{C} of lines of \mathcal{S} such that every point of \mathcal{S} lies on at least one line of \mathcal{C}. A cover is minimal if $\mathcal{C} \backslash\{L\}$ is not a cover for any line $L \in \mathcal{C}$.
An ovoid of $\mathrm{Q}(4, q)$ becomes a spread of $\mathrm{W}(3, q)$.
A (minimal) blocking set of $\mathrm{Q}(4, q)$ becomes a (minimal)
cover of $\mathrm{W}(3, q)$.

Known results I

Consider a cover \mathcal{C} of $\mathrm{W}(3, q)$. A multiple point is a point of $\mathrm{W}(3, q)$ covered by at least two lines of \mathcal{C}.

The multiple points form a sum of lines of $\mathrm{PG}(3, q)$.
6 If \mathcal{C} is a minimal cover of $\mathrm{W}(3, q)$ of size $q^{2}+2$, the multiple points lie on a line of $\mathrm{W}(3, q) \backslash \mathcal{C}$.

- Dually: if \mathcal{B} is a minimal blocking set of $\mathrm{Q}(4, q)$ of size $q^{2}+2$, there are $q+1$ two secants sharing a common point $m \in \mathrm{Q}(4, q) \backslash \mathcal{B}$.

Known results II

6 An ovoid \mathcal{O} of $\mathrm{Q}(4, q), q=p^{h}, p$ prime, intersects any $\mathrm{Q}^{-}(3, q)$ in $1 \bmod p$ points

This is proved using an algebraic description of $\mathrm{W}(3, q)$ in the field $\mathrm{GF}\left(q^{4}\right)$.

Using the structure of the multiple lines and the algebraic description, can we find intersection numbers with elliptic quadrics for a blocking set of size $q^{2}+2$?

Analyzing the $1 \bmod p$ proof

There are $q^{3}+q^{2}+q+1$ lines of $\operatorname{PG}(3, q)$ which are also lines of $\mathrm{W}(3, q)$. We destinguish two types of lines of $\mathrm{W}(3, q)$, depending on the algebraic description. There are exactly $q^{2}+1$ lines of type 1 , which constitute a regular spread of $\mathrm{W}(3, q)$, Call this set of lines \mathcal{R}. There are $q^{3}+q$ lines of type 2 .

- Consider an arbitrary spread S of $\mathrm{W}(3, q)$, it can contain lines of both types.
- Compute $|\mathcal{R} \cap \mathcal{S}| \bmod p$

Analyzing the 1 mod p proof II

Lines of type 1 are represented by elements $e \in \operatorname{GF}\left(q^{4}\right)$, for which $e^{q^{2}+1}=1$.

Lines of type 2 are represented by elements $d \in \operatorname{GF}\left(q^{4}\right)$, for which $\gamma d^{q^{3}+q}-\gamma^{-1} d^{q^{2}+1}+1=0$, $\gamma=\Gamma^{1-q}, \Gamma^{q^{2}-1}=-1$.

Visualizing the proof

Visualizing the proof

Visualizing the proof

The computation

Let \mathcal{S} be the spread of $\mathrm{W}(3, q)$, and let \mathcal{E} be the set of elements of $\operatorname{GF}\left(q^{4}\right)$ representing lines of type 1 of \mathcal{S} and \mathcal{D} the set of elements of $\mathrm{GF}\left(q^{4}\right)$ representing lines of type 2 of \mathcal{S}.

$$
\begin{aligned}
0 & =\sum_{v \in u^{\perp} \backslash L_{u}} v=\sum_{v \in u^{\perp} \backslash L_{u}} v^{q} \\
& =\sum_{e \in \mathcal{E}} \gamma^{-1} u e\left(u^{q+1}+e\right)^{q-1}-\sum_{d \in \mathcal{D}} u\left(d u^{q+1}+u-\gamma d^{q}\right)^{q-1}
\end{aligned}
$$

The computation II

The polynomial
$f(U)=\sum_{e \in \mathcal{E}} \gamma^{-1} U e\left(U^{q+1}+e\right)^{q-1}-\sum_{d \in \mathcal{D}} U\left(d U^{q+1}+U-\gamma d^{q}\right)^{q-1}$
has $q^{3}+q^{2}+q+1$ roots (all points u) and has degree only q^{2}. Hence, $|\mathcal{D}|=0 \bmod p$ and $|\mathcal{E}|=1 \bmod p$, since $|\mathcal{D}|+|\mathcal{E}|=$ $q^{2}+1$.

Repeating for the new situation?

Consider a cover of $\mathrm{W}(3, q)$ of size $q^{2}+2$.

Repeating for the new situation?

Consider a cover of $\mathrm{W}(3, q)$ of size $q^{2}+2$.

Adding negative lines

The multiple line is a line of $\mathrm{W}(3, q)$, give it weigth -1 .

- We consider the polynomial
$f(U)=\sum_{e \in \mathcal{E}} w_{e} \gamma^{-1} U e\left(U^{q+1}+e\right)^{q-1}-\sum_{d \in \mathcal{D}} w_{d} U\left(d U^{q+1}+U-\gamma d^{q}\right)^{q-1}$
This polynomial has $q^{3}+q^{2}$ roots (non-multiple points u), hence, $\sum_{d \in \mathcal{D}} w_{d}=0 \bmod p$ and $\sum_{e \in \mathcal{E}} w_{e}=1 \bmod p$, since $\sum_{d \in \mathcal{D}} w_{d}+\sum_{e \in \mathcal{E}} w_{e}=q^{2}+1$.

The intersection numbers

Consider a (minimal) blocking set \mathcal{B} of $\mathrm{Q}(4, q), q=p^{h}, p$ odd prime, m is the common point of the 2-secants, α is a hyperplane of $\mathrm{PG}(4, q)$.

$$
\text { 6 } \begin{aligned}
& |\alpha \cap \mathcal{B}|=1 \bmod p \text { if } m \notin \alpha \\
& \quad|\alpha \cap \mathcal{B}|=2 \bmod p \text { if } m \in \alpha
\end{aligned}
$$

More geometry

We suppose that \mathcal{B} is a minimal blocking set of $\mathrm{Q}(4, q)$ of size $q^{2}+2$ satisfying the following intersectionnumbers. The point m is the common point of all two secants to \mathcal{B}.

$$
\begin{aligned}
& \text { © } \quad|\alpha \cap \mathcal{B}|=1 \bmod q \text { if } m \notin \alpha \\
& \text { © }|\alpha \cap \mathcal{B}|=2 \bmod q \text { if } m \in \alpha
\end{aligned}
$$

Aim: to prove that \mathcal{B} contains an elliptic quadric.

A calculation

Suppose that α is a 3 -space of $\mathrm{PG}(4, q)$. Define $i_{\alpha}:=|\alpha \cap \mathcal{B}|$, define t_{i} as the number of 3 -spaces meeting \mathcal{B} in i points. Put $c:=\frac{1}{2}\left(q^{2}+1\right)$. Then

$$
\begin{aligned}
& t_{q+2}(q+1)(c-q-2) \geqslant t_{2}(q-1)(c-2) \\
& \sum_{\alpha \in \operatorname{PG}(4, q)}\left(i_{\alpha}-1\right)\left(i_{\alpha}-q-1\right)\left(i_{\alpha}-c\right)>0
\end{aligned}
$$

Another calculation

These two equations imply

$$
\sum_{\alpha \in \operatorname{PG}(4, q)}\left(i_{\alpha}-1\right)\left(i_{\alpha}-q-1\right)\left(i_{\alpha}-c\right)>0
$$

where the sum now runs over all 3 -spaces α for which $i_{\alpha} \geqslant$ $q+2$, hence, there is a 3 -space containing at least $c=\frac{1}{2}\left(q^{2}+\right.$

1) points of \mathcal{B}.

The end

A last geometrical lemma implies that \mathcal{B} contains an elliptic quadric. This implies that \mathcal{B} cannot be minimal.

