

Minimal blocking sets of size $q^2 + 2$ of Q(4, q), q an odd prime, do not exist

Jan De Beule

joint work with: Klaus Metsch

Ghent University

Dept. Pure Mathematics and Computeralgebra

Definitions

A finite generalized quadrangle (GQ) of order (s,t) is a point-line incidence geometry satisfying the following axioms.

- 6 Each point is incident with 1 + t lines ($t \ge 1$) and two different points determine at most one line.
- Each line is incident with 1 + s lines ($s \ge 1$) and two different lines determine at most one points.
- If x is a point and L is a lines not incident with x, then there is a unique pair $(y,M)\in\mathcal{P}\times\mathcal{B}$ for which x I M I y I L.

Two classical GQs of order q

- We consider the non-singular parabolic quadric in PG(4,q), denoted with Q(4,q); it contains points and lines constituting a GQ of order q
- We consider the points of PG(3,q) together with the totally isotropic lines of PG(3,q) with respect to a fixed symplectic polarity of PG(3,q); these sets of points and lines contsitute a GQ of order q.
- If S is a GQ, then S^D is the dual of S, i.e. the GQ obtained by interchanging the role of the points and lines of S. It is known that $Q(4,q) \cong W(3,q)^D$.

Definitions again

Consider a GQ S = (P, B, I).

- An *ovoid* is a set \mathcal{O} of points of \mathcal{S} such that every line of \mathcal{S} meets the set \mathcal{O} in exactly one point
- 6 A blocking set is a set \mathcal{B} of points of \mathcal{S} such that every line of \mathcal{S} meets the set \mathcal{B} in at least one point.
- 6 A blocking set \mathcal{B} is called *minimal* if $\mathcal{B} \setminus \{p\}$ is not a blocking set for any point $p \in \mathcal{B}$.

a non-singular elliptic quadric $Q^-(3,q)$, contained in Q(4,q), constitutes always an ovoid of Q(4,q). When q is an odd prime, elliptic quadrics are the only examples. (Ball et al.)

The problem

Suppose that \mathcal{B} is a minimal blocking set of Q(4,q) different from an ovoid.

- 6 When q is even, then $|\mathcal{B}| > q^2 + 1 + \sqrt{q}$ (Eisfeld et al.)
- 6 Can we find a lower bound when q is odd?
- $|\mathcal{B}| = q^2 + 2$ is impossible when q = 3, 5, 7
- 6 Is it possible that $|\mathcal{B}| = q^2 + 2$ when q is odd?

Dualising Q(4,q)

Consider again any GQ S = (P, B, I).

- 6 A *spread* is a set \mathcal{R} of lines of \mathcal{R} such that every point of \mathcal{S} lies on exactly one line of \mathcal{R} .
- 6 A cover is a set \mathcal{C} of lines of \mathcal{S} such that every point of \mathcal{S} lies on at least one line of \mathcal{C} . A cover is *minimal* if $\mathcal{C} \setminus \{L\}$ is not a cover for any line $L \in \mathcal{C}$.

An ovoid of Q(4, q) becomes a *spread* of W(3, q).

A (minimal) blocking set of Q(4,q) becomes a (minimal) cover of W(3,q).

Known results I

Consider a cover C of W(3,q). A *multiple point* is a point of W(3,q) covered by at least two lines of C.

- 6 The multiple points form a sum of lines of PG(3, q).
- If C is a minimal cover of W(3,q) of size $q^2 + 2$, the multiple points lie on a line of $W(3,q) \setminus C$.
- Dually: if \mathcal{B} is a minimal blocking set of Q(4,q) of size q^2+2 , there are q+1 two secants sharing a common point $m \in Q(4,q) \setminus \mathcal{B}$.

Known results II

- 6 An ovoid \mathcal{O} of Q(4,q), $q=p^h$, p prime, intersects any $Q^-(3,q)$ in $1 \bmod p$ points
- This is proved using an algebraic description of W(3,q) in the field $GF(q^4)$.

Using the structure of the multiple lines and the algebraic description, can we find intersection numbers with elliptic quadrics for a blocking set of size $q^2 + 2$?

Analyzing the $1 \mod p$ proof

- There are $q^3 + q^2 + q + 1$ lines of PG(3,q) which are also lines of W(3,q). We destinguish two types of lines of W(3,q), depending on the algebraic description. There are exactly $q^2 + 1$ lines of type 1, which constitute a regular spread of W(3,q), Call this set of lines \mathcal{R} . There are $q^3 + q$ lines of type 2.
- 6 Consider an arbitrary spread S of W(3,q), it can contain lines of both types.
- 6 Compute $|\mathcal{R} \cap \mathcal{S}| \mod p$

Analyzing the $1 \mod p$ proof II

- Lines of type 1 are represented by elements $e \in \mathrm{GF}(q^4)$, for which $e^{q^2+1}=1$.
- Lines of type 2 are represented by elements $d \in \mathrm{GF}(q^4)$, for which $\gamma d^{q^3+q} \gamma^{-1} d^{q^2+1} + 1 = 0$, $\gamma = \Gamma^{1-q}$, $\Gamma^{q^2-1} = -1$.

Visualizing the proof

Visualizing the proof

Visualizing the proof

The computation

Let S be the spread of W(3,q), and let E be the set of elements of $GF(q^4)$ representing lines of type 1 of S and D the set of elements of $GF(q^4)$ representing lines of type 2 of S.

$$0 = \sum_{v \in u^{\perp} \setminus L_u} v = \sum_{v \in u^{\perp} \setminus L_u} v^q$$
$$= \sum_{e \in \mathcal{E}} \gamma^{-1} u e (u^{q+1} + e)^{q-1} - \sum_{d \in \mathcal{D}} u (du^{q+1} + u - \gamma d^q)^{q-1}$$

The computation II

The polynomial

$$f(U) = \sum_{e \in \mathcal{E}} \gamma^{-1} U e(U^{q+1} + e)^{q-1} - \sum_{d \in \mathcal{D}} U (dU^{q+1} + U - \gamma d^q)^{q-1}$$

has q^3+q^2+q+1 roots (all points u) and has degree only q^2 . Hence, $|\mathcal{D}|=0 \mod p$ and $|\mathcal{E}|=1 \mod p$, since $|\mathcal{D}|+|\mathcal{E}|=q^2+1$.

Repeating for the new situation?

Consider a cover of W(3,q) of size $q^2 + 2$.

Repeating for the new situation?

Consider a cover of W(3,q) of size $q^2 + 2$.

Adding negative lines

- 6 The multiple line is a line of W(3,q), give it weigth -1.
- We consider the polynomial

$$f(U) = \sum_{e \in \mathcal{E}} \mathbf{w_e} \gamma^{-1} U e(U^{q+1} + e)^{q-1} - \sum_{d \in \mathcal{D}} \mathbf{w_d} U (dU^{q+1} + U - \gamma d^q)^{q-1}$$

This polynomial has q^3+q^2 roots (non-multiple points u), hence, $\sum_{d\in\mathcal{D}} w_d = 0 \mod p$ and $\sum_{e\in\mathcal{E}} w_e = 1 \mod p$, since $\sum_{d\in\mathcal{D}} w_d + \sum_{e\in\mathcal{E}} w_e = q^2 + 1$.

The intersection numbers

Consider a (minimal) blocking set \mathcal{B} of Q(4,q), $q=p^h$, p odd prime, m is the common point of the 2-secants, α is a hyperplane of PG(4,q).

- $|\alpha \cap \mathcal{B}| = 1 \mod p \text{ if } m \notin \alpha$
- $|\alpha \cap \mathcal{B}| = 2 \mod p \text{ if } m \in \alpha$

More geometry

We suppose that \mathcal{B} is a minimal blocking set of Q(4,q) of size $q^2 + 2$ satisfying the following intersection numbers. The point m is the common point of all two secants to \mathcal{B} .

- $|\alpha \cap \mathcal{B}| = 1 \mod q \text{ if } m \notin \alpha$
- $|\alpha \cap \mathcal{B}| = 2 \mod q \text{ if } m \in \alpha$

Aim: to prove that \mathcal{B} contains an elliptic quadric.

A calculation

Suppose that α is a 3-space of PG(4,q). Define $i_{\alpha} := |\alpha \cap \mathcal{B}|$, define t_i as the number of 3-spaces meeting \mathcal{B} in i points. Put $c := \frac{1}{2}(q^2 + 1)$. Then

$$t_{q+2}(q+1)(c-q-2) \geqslant t_2(q-1)(c-2)$$

$$\sum_{\alpha \in PG(4,q)} (i_{\alpha} - 1)(i_{\alpha} - q - 1)(i_{\alpha} - c) > 0$$

Another calculation

These two equations imply

$$\sum_{\alpha \in PG(4,q)} (i_{\alpha} - 1)(i_{\alpha} - q - 1)(i_{\alpha} - c) > 0$$

where the sum now runs over all 3-spaces α for which $i_{\alpha} \geqslant q+2$, hence, there is a 3-space containing at least $c=\frac{1}{2}(q^2+1)$ points of \mathcal{B} .

The end

A last geometrical lemma implies that \mathcal{B} contains an elliptic quadric. This implies that \mathcal{B} cannot be minimal.

