Algebraic techniques in finite geometry: a case study

J. De Beule A. Gács

Department of Pure Mathematics and Computer Algebra Ghent University

January 29, 2007 / University College Dublin

$$
\left(q^{2}-1\right)-\operatorname{arcs} \text { of } \mathrm{Q}(4, q)
$$

Directions of a pointset in $\operatorname{AG}(2, q)$ and blocking sets of $\operatorname{PG}(2, q)$

Definition

Suppose that X is a set of points in $\operatorname{AG}(2, q)$. An element $m \in \operatorname{GF}(q)$ is called a direction determined by X if it is the slope of a line meeting X in at least two points.

Finite Generalized Quadrangles

A finite generalized quadrangle (GQ) is a point-line geometry
$\mathcal{S}=\mathcal{S}=(\mathcal{P}, \mathcal{B}, \mathrm{I})$ such that
(i) Each point is incident with $1+t$ lines $(t \geqslant 1)$ and two distinct points are incident with at most one line.
(ii) Each line is incident with $1+s$ points ($s \geqslant 1$) and two distinct lines are incident with at most one point.
(iii) If x is a point and L is a line not incident with x, then there is a unique pair $(y, M) \in \mathcal{P} \times \mathcal{B}$ for which $x \mathrm{I} M$ I $y \mathrm{I} L$.
The parabolic quadric $\mathrm{Q}(4, q)$: a finite classical generalized
quadrangle of order q.

Finite Generalized Quadrangles

A finite generalized quadrangle (GQ) is a point-line geometry
$\mathcal{S}=\mathcal{S}=(\mathcal{P}, \mathcal{B}, \mathrm{I})$ such that
(i) Each point is incident with $1+t$ lines $(t \geqslant 1)$ and two distinct points are incident with at most one line.
(ii) Each line is incident with $1+s$ points ($s \geqslant 1$) and two distinct lines are incident with at most one point.
(iii) If x is a point and L is a line not incident with x, then there is a unique pair $(y, M) \in \mathcal{P} \times \mathcal{B}$ for which $x \mathrm{I} M$ I $y \mathrm{I} L$.
The parabolic quadric $\mathrm{Q}(4, q)$: a finite classical generalized quadrangle of order q.

Ovoids and partial ovoids

Definition

An ovoid of a GQ \mathcal{S} is a set \mathcal{O} of points of \mathcal{S} such that every line of \mathcal{S} contains exactly one point of \mathcal{O}.

Definition

A nartial nvoid of a GQ S is a set O of points of S such that every line of \mathcal{S} contains at most one point of \mathcal{S}. A partial ovoid is maximal if it cannot be extended to a larger partial ovoid.

We call "partial ovoids" also "arcs".

Ovoids and partial ovoids

Definition

An ovoid of a GQ \mathcal{S} is a set \mathcal{O} of points of \mathcal{S} such that every line of \mathcal{S} contains exactly one point of \mathcal{O}.

Definition

A partial ovoid of a GQ \mathcal{S} is a set \mathcal{O} of points of \mathcal{S} such that every line of \mathcal{S} contains at most one point of \mathcal{S}. A partial ovoid is maximal if it cannot be extended to a larger partial ovoid.

We call "partial ovoids" also "arcs".

Existence

- $\mathrm{Q}(4, q)$ has always ovoids.
- partial ovoids of size q^{2} can always be extended to an ovoid
- We are interested in partial ovoids of size $q^{2}-1$
- ... which exist for $q=3,5,7,11$ and which do not exist for $q=9$.
- When q is even, maximal partial ovoids of size $q^{2}-1$ do not exist.

Theorem

Let $\mathcal{S}=(\mathcal{P}, B, I)$ be a $G Q$ of order (s, t). Any $(s t-p)-\operatorname{arc}$ of S with $0 \leq \rho<\frac{t}{s}$ is contained in an uniquely defined ovoid of \mathcal{S}.

Existence

- $\mathrm{Q}(4, q)$ has always ovoids.
- partial ovoids of size q^{2} can always be extended to an ovoid
- We are interested in partial ovoids of size $q^{2}-1$
- ... which exist for $q=3,5,7,11$ and which do not exist for
- When q is even, maximal partial ovoids of size $q^{2}-1$ do not exist.

Theorem

Let $\mathcal{S}=(\mathcal{P}, \mathcal{B}, \mathrm{I})$ be a $G Q$ of order (s, t). Any $(s t-\rho)-\operatorname{arc}$ of \mathcal{S} with $0 \leq \rho<\frac{t}{s}$ is contained in an uniquely defined ovoid of \mathcal{S}.

Existence

- $\mathrm{Q}(4, q)$ has always ovoids.
- partial ovoids of size q^{2} can always be extended to an ovoid
- We are interested in partial ovoids of size $q^{2}-1 \ldots$
- ... which exist for $q=3,5,7,11$ and which do not exist for
- When q is even, maximal partial ovoids of size $q^{2}-1$ do not exist.

Theorem

Let $\mathcal{S}=(\mathcal{P}, \mathcal{B}, \mathrm{I})$ be a $G Q$ of order (s, t). Any $(s t-p)-\operatorname{arc}$ of \mathcal{S} with $0 \leq \rho<\frac{t}{s}$ is contained in an uniquely defined ovoid of \mathcal{S}.

Existence

- $\mathrm{Q}(4, q)$ has always ovoids.
- partial ovoids of size q^{2} can always be extended to an ovoid
- We are interested in partial ovoids of size $q^{2}-1 \ldots$
- ... which exist for $q=3,5,7,11$ and which do not exist for $q=9$.

- When q is even, maximal partial ovoids of size $q^{2}-1$ do not exist.

Existence

- $\mathrm{Q}(4, q)$ has always ovoids.
- partial ovoids of size q^{2} can always be extended to an ovoid
- We are interested in partial ovoids of size $q^{2}-1 \ldots$
- ... which exist for $q=3,5,7,11$ and which do not exist for $q=9$.
- When q is even, maximal partial ovoids of size $q^{2}-1$ do not exist.

Existence

- $\mathrm{Q}(4, q)$ has always ovoids.
- partial ovoids of size q^{2} can always be extended to an ovoid
- We are interested in partial ovoids of size $q^{2}-1 \ldots$
- ... which exist for $q=3,5,7,11$ and which do not exist for $q=9$.
- When q is even, maximal partial ovoids of size $q^{2}-1$ do not exist.

Theorem

Let $\mathcal{S}=(\mathcal{P}, \mathcal{B}, \mathrm{I})$ be a $G Q$ of $\operatorname{order}(s, t)$. Any $(s t-\rho)$-arc of \mathcal{S} with $0 \leq \rho<\frac{t}{s}$ is contained in an uniquely defined ovoid of \mathcal{S}.

Property of ($q^{2}-1$)-arcs

> Theorem
> Let $\mathcal{S}=(\mathcal{P}, \mathcal{B}, \mathrm{I})$ be a $G Q$ of order (s, t). Let \mathcal{K} be a maximal partial ovoid of size st $-\frac{t}{s}$ of \mathcal{S}. Let \mathcal{B}^{\prime} be the set of lines incident with no point of \mathcal{K}, and let \mathcal{P}^{\prime} be the set of points on at least one line of \mathcal{B}^{\prime} and let I^{\prime} be the restriction of I to points of \mathcal{P}^{\prime} and lines of \mathcal{B}^{\prime}. Then $\mathcal{S}^{\prime}=\left(\mathcal{P}^{\prime}, \mathcal{B}^{\prime}, \mathrm{I}^{\prime}\right)$ is a subquadrangle of $\operatorname{order}\left(s, \rho=\frac{t}{s}\right)$.

Introduction: the direction problem and the work of L. Rédei

The Rédei polynomial

Property of ($q^{2}-1$)-arcs

Theorem

Let $\mathcal{S}=(\mathcal{P}, \mathcal{B}, \mathrm{I})$ be a $G Q$ of order (s, t). Let \mathcal{K} be a maximal partial ovoid of size st $-\frac{t}{s}$ of \mathcal{S}. Let \mathcal{B}^{\prime} be the set of lines incident with no point of \mathcal{K}, and let \mathcal{P}^{\prime} be the set of points on at least one line of \mathcal{B}^{\prime} and let I^{\prime} be the restriction of I to points of \mathcal{P}^{\prime} and lines of \mathcal{B}^{\prime}. Then $\mathcal{S}^{\prime}=\left(\mathcal{P}^{\prime}, \mathcal{B}^{\prime}, \mathrm{I}^{\prime}\right)$ is a subquadrangle of $\operatorname{order}\left(s, \rho=\frac{t}{s}\right)$.

Corollary

Suppose that \mathcal{O} is a maximal $\left(q^{2}-1\right)-\operatorname{arc}$ of $\mathrm{Q}(4, q)$, then the lines of $\mathrm{Q}(4, q)$ not meeting \mathcal{O} are the lines of a hyperbolic quadric $\mathrm{Q}^{+}(3, q) \subset \mathrm{Q}(4, Q)$.

The GQ $T_{2}(\mathcal{C})$

Definition

An oval of $\operatorname{PG}(2, q)$ is a set of $q+1$ points \mathcal{C}, such that no three points of \mathcal{C} are collinear.

Let \mathcal{C} be an oval of $\operatorname{PG}(2, q)$ and embed $P G(2, q)$ as a hyperplane in $\operatorname{PG}(3, q)$. We denote this hyperplane with π_{∞}. Define points as
(i) the points of $\operatorname{PG}(3, q) \backslash \operatorname{PG}(2, q)$,
(ii) the hyperplanes π of $\operatorname{PG}(3, q)$ for which $|\pi \cap \mathcal{C}|=1$, and (iii) one new symbol (∞).

Lines are defined as

(a) the lines of $\operatorname{PG}(3, q)$ which are not contained in $\operatorname{PG}(2, q)$
and meet \mathcal{C} (necessarily in a unique point), and
(b) the points of C.

The GQ $T_{2}(\mathcal{C})$

Definition

An oval of $\operatorname{PG}(2, q)$ is a set of $q+1$ points \mathcal{C}, such that no three points of \mathcal{C} are collinear.

Let \mathcal{C} be an oval of $\operatorname{PG}(2, q)$ and embed $\operatorname{PG}(2, q)$ as a hyperplane in $\operatorname{PG}(3, q)$. We denote this hyperplane with π_{∞}. Define points as
(i) the points of $\operatorname{PG}(3, q) \backslash \operatorname{PG}(2, q)$,
(ii) the hyperplanes π of $\operatorname{PG}(3, q)$ for which $|\pi \cap \mathcal{C}|=1$, and
(iii) one new symbol (∞).

Lines are defined as
(a) the lines of $\operatorname{PG}(3, q)$ which are not contained in $\operatorname{PG}(2, q)$ and meet \mathcal{C} (necessarily in a unique point), and
(b) the points of \mathcal{C}.

$T_{2}(\mathcal{C})$ and $\mathrm{Q}(4, q)$

Theorem

When \mathcal{C} is a conic of $\mathrm{PG}(2, q), T_{2}(\mathcal{C}) \cong \mathrm{Q}(4, q)$.

Theorem

All ovals of $\operatorname{PG}(2, q)$ are conics, when q is odd.

Corollary

When q is odd, $T_{2}(\mathcal{C}) \cong \mathrm{Q}(4, q)$.
Suppose now that q is odd and \mathcal{O} is a partial ovoid of $\mathrm{Q}(4, q) \cong T_{2}(\mathcal{C})$. We may assume that $(\infty) \in \mathcal{O}$.
If \mathcal{O} has size k, then $\mathcal{O}=\{(\infty)\} \cup U$, where U is a set of $k-1$ points of type (i).

Directions

The set \mathcal{O} is a partial ovoid, this implies that the line determined by two points of U cannot contain a point of \mathcal{C}.
So U is a set of points of $\operatorname{AG}(3, q)$ not determining $q+1$ given directions.
If $|U|=q^{2}-2$, we want to show that U can be extended, so that the corresponding partial ovoid is not maximal. Keep in mind that this is not true for certain values of q
Denote by D the set of directions determined by U, denote by O the set of points $\pi_{\infty} \backslash D$.

The Rédei polynomial

Choose $\pi_{\infty}: X_{3}=0$. Set
$U=\left\{\left(a_{i}, b_{i}, c_{i}, 1\right): i=1, \ldots, k\right\} \subset \operatorname{AG}(3, q)$, then
$D=\left\{\left(a_{i}-a_{j}, b_{i}-b_{j}, c_{i}-c_{j}, 0\right): i \neq j\right\}$
Define

then

with $\sigma_{i}(X, Y, Z)$ the i-th elementary symmetric polynomial of the set $\left\{a_{i} Y+b_{i} Z+c_{i} W \mid i=1\right.$

$$
\left(q^{2}-1\right)-\operatorname{arcs} \text { of } \mathrm{Q}(4, q)
$$

The Rédei polynomial

Choose $\pi_{\infty}: X_{3}=0$. Set
$U=\left\{\left(a_{i}, b_{i}, c_{i}, 1\right): i=1, \ldots, k\right\} \subset \operatorname{AG}(3, q)$, then
$D=\left\{\left(a_{i}-a_{j}, b_{i}-b_{j}, c_{i}-c_{j}, 0\right): i \neq j\right\}$
Define

$$
R(X, Y, Z, W)=\prod_{i=1}^{k}\left(X+a_{i} Y+b_{i} Z+c_{i} W\right)
$$

then

$$
R(X, Y, Z, W)=X^{k}+\sum_{i=1}^{k} \sigma_{i}(Y, Z, W) X^{k-i}
$$

with $\sigma_{i}(X, Y, Z)$ the i-th elementary symmetric polynomial of the set $\left\{a_{i} Y+b_{i} Z+c_{i} W \mid i=1 \ldots k\right\}$.

The Rédei polynomial

Lemma

For any $x, y, z, w \in G F(q),(y, z, w) \neq(0,0,0)$, the multiplicity of $-x$ in the multi-set $\left\{y a_{i}+z b_{i}+w c_{i}: i=1, \ldots, k\right\}$ is the same as the number of common points of U and the plane $y X_{0}+z X_{1}+w X_{2}+x X_{3}=0$.

The Rédei polynomial

From now on: $|U|=q^{2}-2, q$ odd. We may then assume that $\sum a_{i}=\sum b_{i}=\sum c_{i}=0$, implying $\sigma_{1}(X, Y, Z)=0$.

Suppose that $L \cap O \neq \emptyset$ then
$R(X, y, z, w)\left(X^{2}-\sigma_{2}(y, z, w)\right)=\left(X^{q}-X\right)^{q}$.

The Rédei polynomial

From now on: $|U|=q^{2}-2, q$ odd. We may then assume that $\sum a_{i}=\sum b_{i}=\sum c_{i}=0$, implying $\sigma_{1}(X, Y, Z)=0$.
Consider a line L in π_{∞} :

$$
L: y X_{0}+z X_{1}+w X_{2}=X_{3}=0
$$

Suppose that $L \cap O \neq \emptyset$ then

$$
R(X, y, z, w)\left(X^{2}-\sigma_{2}(y, z, w)\right)=\left(X^{q}-X\right)^{q} .
$$

Relations for σ

Define

$$
S_{k}(Y, Z, W)=\sum_{i}\left(a_{i} Y+b_{i} Z+c_{i} W\right)^{k}
$$

Lemma

If the line with equation $y X_{0}+z X_{1}+w X_{2}=X_{3}=0$ has at least one common point with O, then $S_{k}(y, z, w)=0$ for odd k and $S_{k}(y, z, w)=-2 \sigma_{2}^{k / 2}(y, z, w)$ for even k.

The main theorem

Theorem

If $|U|=q^{2}-2, q=p^{h}$ and $|O| \geq p+2$, then U can be extended by two points to a set of q^{2} points determining the same directions.

