OMEGA-RESULTS FOR BEURLING GENERALIZED INTEGERS

FREDERIK BROUCKE AND TITUS HILBERDINK

ABSTRACT. In this paper we consider Beurling number systems with very well-behaved primes, in the sense that $\psi(x) = x + O(x^{\alpha})$ for some $\alpha < 1/2$. We investigate how small the error term in the asymptotic formula for the integer-counting function N(x) can be for such systems. In particular we show that

$$N(x) - \rho x = \Omega\left(\sqrt{x} e^{-(\log x)^{\beta}}\right)$$

for any $\beta > \frac{2}{3}$.

1. INTRODUCTION

A Beurling or g-prime system $(\mathcal{P}, \mathcal{N})$ consists of a non-decreasing sequence $\mathcal{P} = (p_k)_{k\geq 1}$ of real numbers satisfying $p_1 > 1$ and $p_k \to \infty$ as $k \to \infty$ (called Beurling primes) and all the finite products formed from these (called Beurling integers) which we denote by $\mathcal{N} = (n_k)_{k\geq 1}$ (these include possible repetitions). They generalize the usual primes and integers and were introduced by Beurling [1] to investigate what conditions are necessary for a Prime Number Theorem to hold. Let

$$\pi(x) = \sum_{p_k \le x} 1 \quad \text{and} \quad N(x) = \sum_{n_k \le x} 1,$$

denote the counting functions of the Beurling primes and integers respectively. Beurling [1] showed that $\pi(x) \sim \frac{x}{\log x}$ under the assumption that $N(x) - \rho x = O(x(\log x)^{-\gamma})$ for some $\rho > 0$ and $\gamma > \frac{3}{2}$, but may fail if $\gamma \leq \frac{3}{2}$. Since then there has been much research regarding these systems, concentrating mainly on (i) obtaining weaker (or even optimal) conditions for a PNT to hold, (ii) the effects of stronger error terms, and (iii) obtaining results in the converse direction; i.e. assumptions on $\pi(x)$ leading to asymptotic behaviour of N(x). For a survey of such results, see [5].

We shall also need the generalized von Mangoldt and Chebyshev functions: $\Lambda(p_k^r) = \log p_k$ if $r \ge 1$ and zero otherwise¹, while $\psi(x) = \sum_{n_k \le x} \Lambda(n_k)$. The Beurling zeta function is defined as

$$\zeta(s) = \sum_{k=1}^{\infty} \frac{1}{n_k^s}$$

for complex s whenever this series converges. The Dirichlet series associated to Λ is minus the logarithmic derivative of ζ :

$$\phi(s) \coloneqq \sum_{k=1}^{\infty} \frac{\Lambda(n_k)}{n_k^s} = -\frac{\zeta'(s)}{\zeta(s)}.$$

²⁰²⁰ Mathematics Subject Classification. 11N80, 11M41.

Key words and phrases. Beurling generalized prime number systems, well-behaved number systems, omega-results for generalized integers.

F. Broucke was supported by the postdoctoral fellowship (grant number 12ZZH23N) of the Research Foundation – Flanders.

¹Strictly speaking $\Lambda(n)$ is not a function in case the Beurling integers are not all distinct, but this is no problem as sums $\sum_{n_k \in A} \Lambda(n_k)$ are well-defined.

Let \mathcal{P} be a g-prime system for which

(1.1)
$$\psi(x) = x + O(x^{\alpha})$$
 for some $\alpha < \frac{1}{2}$

We note that in the first place, (1.1) (just with $\alpha < 1$) implies that

$$N(x) = \rho x + O(x e^{-c\sqrt{\log x \log \log x}}), \text{ for some } \rho > 0 \text{ and any } c < \sqrt{2(1-\alpha)}.$$

Further, this is optimal, as was recently shown in [2].

Here we are interested in how small $N(x) - \rho x$ can be on the assumption that (1.1) holds with $\alpha < \frac{1}{2}$. In [6] it was shown that under this condition, $N(x) - \rho x = \Omega_{\varepsilon}(x^{1/2-\varepsilon})$ for any $\varepsilon > 0$. Here we improve this result. We note that the condition $\alpha < \frac{1}{2}$ is crucial. For larger α , $N(x) - \rho x$ can (presumably) be much smaller. For example, on the Riemann Hypothesis the g-prime system ($\mathbb{P}, \mathbb{N}_{>0}$) consisting of the rational primes and integers satisfies (1.1) for every $\alpha > \frac{1}{2}$ while N(x) - x = O(1).

Our main result is:

Theorem 1.1. Let \mathcal{P} be a g-prime system for which (1.1) holds. Then

$$N(x) - \rho x = \Omega\left(\sqrt{x} \mathrm{e}^{-(\log x)^{\beta}}\right)$$

for every $\beta > \frac{2}{3}$.

This can be compared to [3, Theorem 3.1], giving the existence of a Beurling prime system satisfying

$$\psi(x) = x + O(\log x \log \log x)$$
 and $N(x) = x + O(\sqrt{x}e^{c(\log x)^{2/3}})$

for some c > 0. Note that the exponent in the error term of N is positive here. Combining Theorem 1.1 with this result gives substantial progress to answering the question of how small $N(x) - \rho x$ can be under the assumption (1.1), although there is not yet a definitive answer. One might for example conjecture there are Beurling systems satisfying (1.1) and with $N(x) - \rho x \ll \sqrt{x}$, and that this is best possible.

There is a closely related problem concerning a system with very well behaved integers, namely when $N(x) = \rho x + O(x^{\alpha})$ with $\alpha < \frac{1}{2}$. Under this assumption, it was shown in [6] that $\psi(x) - x = \Omega(x^{1/2-\varepsilon})$ for all $\varepsilon > 0$. A natural question is to ask how small $\psi(x) - x$ can be. This was recently considered in [7], where this was improved to

$$\psi(x) - x = \Omega(\sqrt{x} e^{-c\sqrt{\log x \log \log x}})$$

for some c > 0. Although there is some overlap in ideas with the present paper, the actual details of the proof are quite different.

Notation The symbols $\sim, \approx, \prec, \ll$, and $\Omega(\cdot)$ have their usual meaning: namely $f(x) \sim g(x)$ as $x \to \infty$ means $f(x)/g(x) \to 1$ as $x \to \infty$, $f(x) \approx g(x)$ means there exist a, b > 0 such that a < f(x)/g(x) < b for all x sufficiently large, while $f(x) \prec g(x)$ means f = o(g) or $f(x)/g(x) \to 0$; $f \ll g$ has the same meaning as f = O(g); i.e. $|f(x)| \leq Cg(x)$ for some constant C and all x in the range; $f = \Omega(g)$ means $f \neq o(g)$; in other words, there exist a > 0 and $x_n \to \infty$ such that $|f(x_n)| > ag(x_n)$.

Finally, for sums over Beurling integers, we typically omit the index k and write e.g. $\sum_{n \in \mathcal{N}} f(n)$ to denote $\sum_{k>1} f(n_k)$, where it is understood any multiplicities are included.

2. Preliminary bounds

We begin with a simple lemma providing bounds on the Mellin–Stieltjes transform of certain functions A(x).

Lemma 2.1. Let A(x) be a non-decreasing function, supported on $[1,\infty)$, and which satisfies

$$A(x) = ax + O(x^{\theta}), \quad for \ some \ a > 0 \ and \ \theta < 1.$$

Then its Mellin–Stieltjes transform $F(s) = \int_{1-}^{\infty} x^{-s} dA(x)$ has analytic continuation, apart for a simple pole at s = 1, to $\sigma > \theta$. For $|t| \ge 2$ we have the bounds

$$F(s) \ll \left(\frac{|t|}{\sigma - \theta}\right)^{\frac{1 - \sigma}{1 - \theta}}, \qquad \qquad for \ \theta < \sigma < \frac{\theta + 1}{2};$$

$$F(s) \ll |t|^{\frac{1 - \sigma}{1 - \theta}} \log |t| + 1, \qquad \qquad for \ \sigma \ge \frac{\theta + 1}{2}.$$

Proof. We write $s = \sigma + it$ and A(x) = ax + R(x). Let X > 1 be a parameter to be determined later. Then integration by parts yields, for $\sigma > 1$,

$$\begin{split} F(s) &- \frac{a}{s-1} \\ &= \int_{1^{-}}^{\infty} x^{-s} \, \mathrm{d}A(x) - a \int_{1}^{\infty} x^{-s} \, \mathrm{d}x = \int_{1^{-}}^{X} x^{-s} \, \mathrm{d}A(x) - a \int_{1}^{X} x^{-s} \, \mathrm{d}x + \int_{X}^{\infty} x^{-s} \, \mathrm{d}R(x) \\ &= \int_{1^{-}}^{X} x^{-s} \, \mathrm{d}A(x) - a \frac{X^{1-s} - 1}{1-s} - \frac{R(X)}{X^s} + s \int_{X}^{\infty} x^{-s-1} R(x) \, \mathrm{d}x. \end{split}$$

The right hand side yields the analytic continuation to $\sigma > \theta$. Since A is non-decreasing and $R(x) \ll x^{\theta}$, we can bound the left hand side as

$$F(s) - \frac{a}{s-1} \ll \int_{1^{-}}^{X} x^{-\sigma} \, \mathrm{d}A(x) + \left| \frac{X^{1-s} - 1}{1-s} \right| + |s| \frac{X^{\theta-\sigma}}{\sigma-\theta}.$$

Integration by parts gives

$$\int_{1^{-}}^{X} x^{-\sigma} \, \mathrm{d}A(x) = a \frac{X^{1-\sigma} - 1}{1-\sigma} + O\left(\frac{\sigma}{\sigma-\theta}\right),$$

where the first term is set to be $a \log X$ if $\sigma = 1$. Substituting this in the above yields, for $|t| \ge 2$,

$$F(s) \ll X^{1-\sigma} + |t| \frac{X^{\theta-\sigma}}{\sigma-\theta}, \qquad \text{for } \theta < \sigma < \frac{\theta+1}{2},$$
$$F(s) \ll X^{1-\sigma} \log X + |t| X^{\theta-\sigma} + 1, \qquad \text{for } \sigma \ge \frac{\theta+1}{2}.$$

Selecting

$$X = \left(\frac{|t|}{\sigma - \theta}\right)^{\frac{1}{1-\theta}}$$
 and $X = |t|^{\frac{1}{1-\theta}}$

respectively, yields the desired result.

Suppose now that $N(x) = \rho x + O(\sqrt{x})$ for some $\rho > 0$ and $\psi(x) = x + O(x^{\alpha})$ for some $\alpha \in (0, 1/2)$. Then $\zeta(s)$ has analytic continuation to $\sigma > \alpha$ except for a simple pole at s = 1 with residue ρ , and has no zeroes there. The lemma provides bounds on $\zeta(s)$ for $\sigma > 1/2$ and bounds on $\phi(s) = -\zeta'(s)/\zeta(s)$ for $\sigma > \alpha$. From these bounds we can derive bounds on $\log \zeta(s)$, which has analytic continuation to $\{s : \sigma > \alpha\} \setminus (-\infty, 1]$.

Let $s = \sigma + it$ where $\sigma \in (1/2, 1)$ and $|t| \ge 2$. The bounds on $\zeta(s)$ provided by the lemma give upper bounds on $\log |\zeta(s)| = \operatorname{Re} \log \zeta(s)$. Applying the Borel–Carathéodory lemma with circles with centre 2 + it and radii $2 - \sigma$ and $2 - \frac{\sigma + 1/2}{2}$, we see that

(2.1)
$$\log \zeta(s) \ll \frac{1}{\sigma - 1/2} \Big(\log|t| + \log \frac{1}{\sigma - 1/2} \Big), \text{ for } 1/2 < \sigma < 1.$$

On the other hand, by integrating the bounds for $\phi(s)$, we get

(2.2)
$$\log \zeta(s) \ll \left(\frac{|t|}{\sigma - \alpha}\right)^{\frac{1 - \sigma}{1 - \alpha}}, \text{ for } \alpha < \sigma < 1/2.$$

We obtain bounds in the region $\sigma \ge 1/2 - a \frac{\log \log |t|}{\log |t|}$, a > 0, by interpolating these two bounds.

1 1/1

Lemma 2.2. There exists a constant c such that, for any a > 0, we have the bounds

$$\log \zeta(s) \ll (\log|t|)^{2+ac}$$
, for $|t| \ge t_0 = t_0(a)$ and $\sigma \ge 1/2 - a \frac{\log \log|t|}{\log|t|}$.

Furthermore, if there exists some $a_0 > 0$ and some b > 0 such that $\log \zeta(s) \ll (\log|t|)^b$ holds for $\sigma \ge 1/2 - a_0 \frac{\log \log|t|}{\log|t|}$, then we have for any $a \ge a_0$

$$\log \zeta(s) \ll (\log|t|)^{b+(a-a_0)c}, \text{ for } |t| \ge t_0 \text{ and } \sigma \ge 1/2 - a \frac{\log \log|t|}{\log|t|}.$$

From the proof it will follow that we can take any $c > 2/(1-2\alpha)$.

Proof. Let t > 0 be sufficiently large and set $\sigma = 1/2 - a \frac{\log \log t}{\log t} > \alpha$. We set $\sigma' = 1/2 + 1/\log t$ and $\tilde{\sigma} = \alpha + \delta$ for some small $\delta > 0$. We apply Hadamard's three circles theorem to the circles C_i , i = 1, 2, 3 with centre $\log t + it$ and passing through $\sigma' + it$, $\sigma + it$, and $\tilde{\sigma} + it$ when i = 1, 2, and 3, respectively. Denoting by $M_i = \sup_{z \in C_i} |\log \zeta(z)|$, we have

$$M_2 \le M_1^{1-\kappa} M_3^{\kappa}$$
, with $\kappa = \frac{\log \frac{\log t - \sigma}{\log t - \sigma'}}{\log \frac{\log t - \tilde{\sigma}}{\log t - \sigma'}}$.

A small calculation gives

$$\kappa = \frac{a}{1/2 - \alpha - \delta} \frac{\log \log t}{\log t} \bigg\{ 1 + O\bigg(\frac{1}{\log \log t}\bigg) \bigg\}.$$

By (2.1), we have $M_1 \ll (\log t)^2$, while (2.2) gives $M_3 \ll t/\delta$. Hence we get

$$M_2 \ll_{\delta} (\log t)^{2+ac}$$
, with $c = \frac{1}{1/2 - \alpha - \delta}$

The proof of the second part of the lemma is analogous: we now select $\sigma' = 1/2 - a_0 \frac{\log \log t}{\log t}$, so that

$$\kappa = \frac{a - a_0}{1/2 - \alpha - \delta} \frac{\log \log t}{\log t} \bigg\{ 1 + O\bigg(\frac{1}{\log \log t}\bigg) \bigg\}.$$

3. Improving the bounds

We now assume that

 $N(x) = \rho x + O\left(x^{1/2} \exp\left(-k(x)\right)\right)$

for some function k(x) which is non-decreasing, tending to ∞ , and for which k'(x)x is decreasing to zero; the typical example we have in mind is $k(x) = \log^{\beta} x$ for some $\beta \in (0, 1)$. In this section, we show how to exploit the better error term in the asymptotic relation for N(x) to improve the bounds given by Lemma 2.2.

We assume again that t is sufficiently large, and we let $s = \sigma + it$ with $\sigma = 1/2 - a \frac{\log \log t}{\log t}$. For any $\delta \in (0, 1)$ and $\kappa > 1 - \sigma$ we have

$$\sum_{n \in \mathcal{N}} n^{-s} e^{-\delta n} = \frac{1}{2\pi i} \int_{\kappa - i\infty}^{\kappa + i\infty} \zeta(s + w) \Gamma(w) \delta^{-w} \, \mathrm{d}w$$

By the exponential decay of the Gamma-function, we may shift the contour of integration to the left. Let γ denote the contour consisting of the oriented lines L_i , $i = 1, \ldots, 5$, defined respectively as $(-i\infty, -2it]$, $[-2it, -1/\log t - 2it]$, $[-1/\log t - 2it, -1/\log t + 2it]$, $[-1/\log t + 2it, 2it]$, and $[2it, i\infty)$. Moving the contour to γ , we cross two poles: one at w = 1 - s with residu $\rho\Gamma(1-s)\delta^{s-1}$, and one at w = 0 with residu $\zeta(s)$. We get

(3.1)
$$\zeta(s) = \sum_{n} n^{-s} e^{-\delta n} - \rho \Gamma(1-s) \delta^{s-1} - \frac{1}{2\pi i} \int_{\gamma} \zeta(s+w) \Gamma(w) \delta^{-w} dw$$
$$= \int_{1^{-}}^{\infty} x^{-s} e^{-\delta x} dR(x) - \frac{1}{2\pi i} \int_{\gamma} \zeta(s+w) \Gamma(w) \delta^{-w} dw + O(1),$$

where we have written $R(x) = N(x) - \rho x$. Integrating by parts, the first integral can be written as

$$I \coloneqq \int_{1}^{\infty} R(x) x^{-s} e^{-\delta x} \left(\frac{s}{x} + \delta\right) dx.$$

To estimate this integral, we split it into two parts I_1 and I_2 , with domain of integration $[1, 1/\delta]$ and $[1/\delta, \infty)$ respectively. For I_1 , we perform a dyadic splitting to get

$$I_{1} \ll t \int_{1}^{1/\delta} x^{-1/2-\sigma} e^{-k(x)} dx \ll t \sum_{j=0}^{\lfloor \log(1/\delta)/\log 2 \rfloor} \int_{2^{j}}^{2^{j+1}} x^{-1/2-\sigma} e^{-k(x)} dx$$
$$\ll t \sum_{j} \exp(-k(2^{j})) \frac{(2^{j+1})^{1/2-\sigma} - (2^{j})^{1/2-\sigma}}{1/2-\sigma}$$
$$\ll t \sum_{j} \exp(-k(2^{j}) + (1/2-\sigma)\log 2^{j}).$$

Now

$$\left(-k(x) + (1/2 - \sigma)\log x\right)' = \frac{1}{x}\left(-xk'(x) + (1/2 - \sigma)\right),$$

so that by the assumptions on k

$$\max_{x \in [1,X]} \left(-k(x) + (1/2 - \sigma) \log x \right) \le \max\{-k(1); (1/2 - \sigma) \log X - k(X)\}.$$

Hence the first part is bounded as

$$I_1 \ll t \left(1 + \delta^{\sigma - 1/2} \mathrm{e}^{-k(1/\delta)} \right) \log \frac{1}{\delta}.$$

For I_2 we get

$$I_{2} \ll \int_{1/\delta}^{\infty} e^{-k(x)} x^{1/2-\sigma} e^{-\delta x} \left(\frac{t}{x} + \delta\right) dx$$
$$\ll e^{-k(1/\delta)} \int_{1}^{\infty} e^{-u} \left(t u^{-1/2-\sigma} + u^{1/2-\sigma}\right) \delta^{\sigma-1/2} du \ll t \delta^{\sigma-1/2} e^{-k(1/\delta)}$$

Collecting both estimates yields

$$I \ll t \left(1 + \delta^{\sigma - 1/2} \mathrm{e}^{-k(1/\delta)} \right) \log \frac{1}{\delta}.$$

Let us now estimate the contour integral in (3.1). For the lines L_i , $i \neq 3$, we use the bound (2.2) and the exponential decay of the Gamma-function to see that

$$\begin{split} \int_{L_1 \cup L_5} \zeta(s+w) \Gamma(w) \delta^{-w} \, \mathrm{d}w \ll \int_{2t}^\infty \exp\Big\{ O\Big(v^{\frac{1}{2-2\alpha}} (\log v)^{\frac{a}{1-\alpha}} \Big) - \frac{\pi}{2} v \Big\} \, \mathrm{d}v \ll 1, \\ \int_{L_2 \cup L_4} \zeta(s+w) \Gamma(w) \delta^{-w} \, \mathrm{d}w \ll 1. \end{split}$$

Hence we get

(3.2)
$$\int_{\gamma} \zeta(s+w) \Gamma(w) \delta^{-w} \, \mathrm{d}w \ll \delta^{\frac{1}{\log t}} \int_{-2t}^{2t} \left| \zeta \left(s - \frac{1}{\log t} + \mathrm{i}v \right) \right| \left| \Gamma \left(-\frac{1}{\log t} + \mathrm{i}v \right) \right| \, \mathrm{d}v + 1.$$

For $w \in L_3$, we have that

$$\operatorname{Re}(s+w) \ge \frac{1}{2} - a' \frac{\log \log \left| \operatorname{Im}(s+w) \right|}{\log \left| \operatorname{Im}(s+w) \right|}, \quad a' = a + O\left(\frac{1}{\log \log t}\right),$$

so that by Lemma 2.2

$$\begin{split} \int_{\gamma} \zeta(s+w) \Gamma(w) \delta^{-w} \, \mathrm{d}w &\ll \delta^{\frac{1}{\log t}} \exp\left(A(\log t)^{2+ac}\right) \int_{-2t}^{2t} \left| \Gamma\left(-\frac{1}{\log t} + \mathrm{i}v\right) \right| \, \mathrm{d}v + 1 \\ &\ll \exp\left(-\frac{1}{\log t} \log \frac{1}{\delta} + A(\log t)^{2+ac}\right) (\log t) + 1, \end{split}$$

for some constant A > 0. We now take $\log \frac{1}{\delta} = A(\log t)^{3+ac}$, then the above is $\ll \log t$. With this choice of δ we get

$$\zeta(s) \ll |I| + \log t \ll t(\log t)^{O(1)} \Big(1 + \exp\{aA(\log t)^{2+ac}\log\log t - k\big(\exp(A(\log t)^{3+ac})\big)\} \Big).$$

Suppose now that $k(x) \ge (\log x)^{\beta}$ for some $\beta > 2/3$. Then we get

$$\zeta(s) \ll t(\log t)^{O(1)}$$

provided that $\beta(3 + ac) > 2 + ac$, or equivalently

$$a < \frac{3\beta-2}{c(1-\beta)}$$

By an application of Borel–Carathéodory we see that

$$\log \zeta(s) \ll \frac{(\log|t|)^2}{\log \log|t|},$$

provided that

$$\sigma \geq \frac{1}{2} - a_0 \frac{\log \log |t|}{\log |t|}, \quad a_0 \coloneqq \frac{3\beta - 2}{2c(1 - \beta)}.$$

We now use the second part of Lemma 2.2 to improve the exponent 2 + ac to $2 + (a - a_0)c$ for $a \ge a_0$:

$$\log \zeta(s) \ll (\log|t|)^{2 + \max\{(a-a_0)c, 0\}}$$
 for $\sigma \ge \frac{1}{2} - a \frac{\log \log|t|}{\log|t|}$

This improved bound can be fed into the above argument. In order to bound the integral (3.2), we can now take a slightly larger choice for δ , which improves the range where we have polynomial bounds on $\zeta(s)$. Indeed, one verifies that we can now get

$$\log \zeta(s) \ll \frac{(\log|t|)^2}{\log \log|t|}, \quad \text{ for } \sigma \ge \frac{1}{2} - 2a_0 \frac{\log \log|t|}{\log|t|}$$

This process can be iterated: for each positive integer K we get

(3.3)
$$\log \zeta(s) \ll_K \frac{(\log|t|)^2}{\log \log|t|}, \quad \text{for } \sigma \ge \frac{1}{2} - Ka_0 \frac{\log \log|t|}{\log|t|}.$$

Remark 3.1. To bound the integral in the right hand side of (3.2), we used a supremum bound for the zeta-function. One might expect to gain something if one has a good bound for ζ on average. For example, if one can show that

$$\int_{-T}^{T} \left| \zeta \left(\frac{1}{2} - a \frac{\log \log T}{\log T} + \mathrm{i}t \right) \right|^2 \mathrm{d}t \ll \exp\left\{ O\left((\log T)^{1 + (a - a_0)c} \right) \right\}$$

holds with $a_0 = 0$ and with $a \ge a_0$, $a_0 > 0$ provided that

$$\log \zeta(s) \ll (\log |t|)^2 \quad \text{ for } \sigma \geq \frac{1}{2} - a_0 \frac{\log \log |t|}{\log |t|},$$

then the above argument can be applied to all functions k satisfying $k(x) \ge (\log x)^{\beta}$ with $\beta > 1/2$, instead of only $\beta > 2/3$.

The bounds in (3.3) readily give a bound for $\phi(s)$ using

$$\phi(s) = -\frac{1}{2\pi i} \int_{C(s,\varepsilon)} \frac{\log \zeta(z)}{(z-s)^2} \,\mathrm{d}z.$$

where $C(s,\varepsilon)$ is the circular contour with centre s and radius ε . As such, $|\phi(s)| \leq \frac{1}{\varepsilon} \max_{|z-s|=\varepsilon} |\log \zeta(z)|$ and taking $\varepsilon = \frac{\log \log |t|}{\log |t|}$ gives

(3.4)
$$\phi(s) \ll_K \frac{(\log|t|)^3}{(\log\log|t|)^2}, \quad \text{for } \sigma \ge \frac{1}{2} - Ka_0 \frac{\log\log|t|}{\log|t|}$$

4. Lower bounds for the mean square value of $\phi_N(s)$

Let

$$\phi_N(s) = \sum_{n \le N} \frac{\Lambda(n)}{n^s},$$

where the sum is over the generalised integers of a system satisfying (1.1) and $\Lambda(n)$ is the generalised von Mangoldt function. Let $\delta = \delta_N > 0$. Then

(4.1)
$$\int_{0}^{T} \left| \phi_{N} \left(\frac{1}{2} - \delta + \mathrm{i}t \right) \right|^{2} \mathrm{d}t = T \sum_{n \leq N} \left| \frac{\Lambda(n)^{2}}{n^{1-2\delta}} + 2 \sum_{m < n \leq N} \frac{\Lambda(m)\Lambda(n)}{(mn)^{\frac{1}{2} - \delta}} S_{m,n}(T),$$

where $S_{m,n}(T) = \frac{\sin(T \log(n/m))}{\log(n/m)}$, and the * means any multiplicities are to be squared. If $\delta \ll \frac{1}{\log N}$, then $n^{\delta} \approx 1$ for $n \leq N$ and $\sum_{n \leq N} \frac{\Lambda(n)^2}{n^{1-2\delta}} \approx (\log N)^2$, but we require this sum to be larger. So we will take $\delta = \frac{\kappa_N}{\log N}$ with $1 \prec \kappa_N \prec \log N$. As such, we see that on writing $\theta(x) = x + E(x)$,

$$\sum_{n \le N} \frac{\Lambda(n)^2}{n^{1-2\delta}} \ge \sum_{p \le N} \frac{(\log p)^2}{p^{1-2\delta}} = \int_1^N \frac{\log x}{x^{1-2\delta}} \,\mathrm{d}\theta(x)$$
$$= \int_0^{\log N} u \mathrm{e}^{2\delta u} \,\mathrm{d}u + \frac{E(N)\log N}{N^{1-2\delta}} + \int_1^N \frac{E(x)((1-2\delta)\log x - 1)}{x^{2-2\delta}} \,\mathrm{d}x$$
$$= \frac{N^{2\delta}\log N}{2\delta} - \frac{N^{2\delta} - 1}{(2\delta)^2} + O(1) \ge \frac{\mathrm{e}^{2\kappa_N}(\log N)^2}{4\kappa_N},$$

if N is sufficiently large. In the second term in (4.1) the part of the sum where $m \leq \frac{n}{2}$ (for which $|S_{m,n}(T)| \leq \frac{1}{\log 2}$), is

$$\leq \frac{2}{\log 2} \sum_{n \leq N} \frac{\Lambda(n)}{n^{\frac{1}{2} - \delta}} \sum_{m \leq \frac{n}{2}} \frac{\Lambda(m)}{m^{\frac{1}{2} - \delta}} \ll N^{1 + 2\delta} = N \mathrm{e}^{2\kappa_N}.$$

Put T = 2r - 1 and sum over $r = 1, \ldots, R$. Since

$$\sum_{r=1}^{R} \sin((2r-1)x) = \frac{1-\cos(2Rx)}{2\sin x} \ge 0 \quad \text{if } 0 \le x \le \pi,$$

the sum over r of the terms for which $\frac{n}{2} < m < n$ is positive, so

$$\sum_{r=1}^{R} \int_{0}^{2r-1} \left| \phi_N \left(\frac{1}{2} - \delta + \mathrm{i}t \right) \right|^2 \mathrm{d}t \ge \frac{R^2 \mathrm{e}^{2\kappa_N} (\log N)^2}{4\kappa_N} - CRN \mathrm{e}^{2\kappa_N},$$

for some C > 0. Thus, for $R \ge \frac{8CN\kappa_N}{(\log N)^2}$,

$$\sum_{r=1}^{R} \int_{0}^{2r-1} \left| \phi_N \left(\frac{1}{2} - \delta + \mathrm{i}t \right) \right|^2 \mathrm{d}t \ge \frac{R^2 \mathrm{e}^{2\kappa_N} (\log N)^2}{8\kappa_N}.$$

This holds for a general κ_N , but for our purpose we shall choose $\kappa_N = \mu \log \log N$, for a constant $\mu > 0$. Thus,

(4.2)
$$\sum_{r=1}^{R} \int_{0}^{2r-1} \left| \phi_N \left(\frac{1}{2} - \delta + \mathrm{i}t \right) \right|^2 \mathrm{d}t \ge \frac{R^2 (\log N)^{2+2\mu}}{8\mu \log \log N}, \quad \text{for } R \ge \frac{8C\mu N \log \log N}{(\log N)^2}.$$

Approximating ϕ_N by ϕ

Let c > 0 and $N \notin \mathcal{N}$. Then, for $n \in \mathcal{N}$,

$$\frac{1}{2\pi \mathrm{i}} \int_{c-\mathrm{i}T}^{c+\mathrm{i}T} \left(\frac{N}{n}\right)^w \frac{\mathrm{d}w}{w} = O\left(\frac{(N/n)^c}{T\left|\log N/n\right|}\right) + \begin{cases} 1 & \text{if } n < N, \\ 0 & \text{if } n > N, \end{cases}$$

where the implied constant is independent of n and N. Multiply through by $\Lambda(n)n^{-s} = \Lambda(n)n^{-\sigma-it}$, where |t| < T, and sum over all $n \in \mathcal{N}$. Thus

$$\frac{1}{2\pi \mathrm{i}} \int_{c-\mathrm{i}T}^{c+\mathrm{i}T} \frac{\phi(s+w)N^w}{w} \,\mathrm{d}w = \phi_N(s) + O\bigg(\frac{N^c}{T} \sum_{n \in \mathcal{N}} \frac{\Lambda(n)}{n^{c+\sigma} |\log N/n|}\bigg).$$

For $n \leq \frac{N}{2}$ and $n \geq 2N$, $\left|\log N/n\right| \geq \log 2$, while for $\frac{N}{2} < n < 2N$ we have $\left|\log N/n\right| \approx \frac{|n-N|}{N}$ so with $s = \sigma + it$ such that $c + \sigma > 1$

(4.3)
$$\phi_N(s) = \frac{1}{2\pi i} \int_{c-iT}^{c+iT} \frac{\phi(s+w)N^w}{w} dw + O\left(\frac{N^c}{T} \sum_{n \in \mathcal{N}} \frac{\Lambda(n)}{n^{c+\sigma}}\right) + O\left(\frac{N^{1-\sigma}}{T} \sum_{\frac{N}{2} < n < 2N} \frac{\Lambda(n)}{|n-N|}\right).$$

Now as $N(x) \sim \rho x$, we can take arbitrarily large values of N such that $\operatorname{dist}(N, \mathcal{N}) \geq 1/(2\rho) = d$ say. Then for the sum on the right of (4.3) we have

$$\sum_{\substack{\frac{N}{2} < n < 2N\\ n \in \mathcal{N}}} \frac{\Lambda(n)}{|n-N|} = \left(\int_{(N/2, N-d]} + \int_{[N+d, 2N)}\right) \frac{\mathrm{d}\psi(x)}{|x-N|} \ll \log N + N^{\alpha},$$

using (1.1) and integration by parts. We shall be taking $\sigma = \frac{1}{2} - \delta$, so choosing $c = 1 - \sigma + 1/\log N$ gives

(4.4)
$$\phi_N(s) = \frac{1}{2\pi i} \int_{c-iT}^{c+iT} \frac{\phi(s+w)N^w}{w} \, \mathrm{d}w + O\left(\frac{N^{\frac{1}{2}+\alpha+\delta}}{T}\log N\right)$$

The error is small if we take $T \ge N$. Indeed, we will take $T = N^2$.

5. Proof of Theorem 1.1

For a contradiction, assume that $N(x) - \rho x = O(\sqrt{x}e^{-(\log x)^{\beta}})$ for some $\beta > \frac{2}{3}$. Then the bounds on $\phi(s)$ in (3.4) hold.

We will apply (4.4) with $s = \sigma + it$, where

$$\sigma = \frac{1}{2} - \delta = \frac{1}{2} - \frac{\mu \log \log N}{\log N}, \quad |t| \le T/2 = N^2/2.$$

We will shift the contour of integration to $\operatorname{Re} w = -\eta$. In order to exploit the bound (3.4), we will take η of the same order as δ , say $\eta = \log \log N / \log N$. As such, $N^{\eta} = \log N \approx \log T$.

Pushing the contour in (4.4) to $\operatorname{Re} w = -\eta$, we pick up the residues at w = 0 and w = 1 - s (since |t| < T/2). These are $\phi(s)$ and $\frac{N^{1-s}}{1-s}$. Note that

$$\left|\frac{N^{1-s}}{1-s}\right| \ll \frac{N^{1-\sigma}}{|t|+1} \ll \frac{\sqrt{N}(\log N)^{\mu}}{|t|+1}$$

Now

$$\sigma - \eta = \frac{1}{2} - (\mu + 1) \frac{\log \log N}{\log N}, \quad \text{and} \quad \frac{\log \log N}{\log N} \ll \frac{\log \log |t + y|}{\log |t + y|} \quad \text{for } |y| \le T, \quad |t + y| \ge e^e.$$

Hence for fixed μ , we can take $K = K(\mu)$ large enough such that the bound (3.4) is applicable. Then the integral along Re $w = -\eta$ is, in absolute value, bounded by

$$\frac{N^{-\eta}}{2\pi} \int_{-T}^{T} \frac{\left|\phi(\sigma - \eta + \mathbf{i}(t+y))\right|}{\sqrt{\eta^2 + y^2}} \, \mathrm{d}y \ll \frac{(\log T)^3}{N^{\eta} (\log \log T)^2} \int_{0}^{T} \frac{\mathrm{d}y}{\sqrt{\eta^2 + y^2}} \asymp \frac{(\log N)^2 \log(T/\eta)}{(\log \log N)^2}.$$

The contribution along the horizontal line $[-\eta + iT, c + iT]$ is, in modulus, less than

$$\frac{1}{2\pi} \int_{-\eta}^{c} \frac{N^{y} \left| \phi(\sigma + x + \mathbf{i}(t+T)) \right|}{\sqrt{x^{2} + T^{2}}} \, \mathrm{d}x \ll \frac{N^{c} (\log T)^{3}}{T (\log \log T)^{2}} = o(1),$$

as c = 1/2 + o(1). Similarly on $[-\eta - iT, c - iT]$.

Putting these observations together (noting that $\log T/\eta \asymp \log N$) we obtain

$$\phi_N(s) = \phi(s) + O\left(\frac{\sqrt{N}(\log N)^{\mu}}{|t|+1}\right) + o(1) + O\left(\frac{(\log N)^3}{(\log \log N)^2}\right).$$

Squaring and using (3.4) gives

$$\left|\phi_N\left(\frac{1}{2} - \delta + \mathrm{i}t\right)\right|^2 \ll \frac{(\log N)^6}{(\log \log N)^4} + \frac{N(\log N)^{2\mu}}{|t|^2 + 1}, \quad \text{for } |t| \le \frac{N^2}{2}$$

Integrating and summing gives, for $R \leq N^2/4$,

$$\sum_{r=1}^{R} \int_{0}^{2r-1} \left| \phi_N \left(\frac{1}{2} - \delta + \mathrm{i}t \right) \right|^2 \mathrm{d}t \ll R^2 \frac{(\log N)^6}{(\log \log N)^4} + RN(\log N)^{2\mu}$$

Taking $R = N^2/4$, the second term is of smaller order than the first one. As such, this contradicts (4.2) if $\mu \ge 2$.

Declarations of interests. None.

F. BROUCKE AND T. HILBERDINK

References

- A. Beurling, Analyse de la loi asymptotique de la distribution des nombres premiers généralisés, I, Acta Math. 68 (1937), 255-291.
- [2] F. Broucke, G. Debruyne, J. Vindas, Beurling integers with RH and large oscillation, Adv. Math. 370 107240 (2020).
- [3] F. Broucke, J. Vindas, A new generalized prime random approximation procedure and some of its applications, preprint, arXiv: 2102:08478, doi: 10.48550/arXiv.2102.08478.
- [4] H. G. Diamond, H. L. Montgomery, U. M. A. Vorhauer, *Beurling primes with large oscillation*, Math. Ann. 334 (2006) 1–36.
- [5] H. G. Diamond, W.-B. Zhang, *Beurling generalized numbers*, Mathematical Surveys and Monographs series, American Mathematical Society, Providence, RI, 2016.
- [6] T. W. Hilberdink, Well-behaved Beurling primes and integers, J. Number Theory 112 (2005), 332–344.
- [7] T. W. Hilberdink, L. Kaziulytė, Ω -result for the remainder term in Beurling's prime number theorem for wellbehaved integers (to appear in Acta Arithmetica).

DEPARTMENT OF MATHEMATICS: ANALYSIS, LOGIC AND DISCRETE MATHEMATICS, GHENT UNIVERSITY, KRIJGSLAAN 281, 9000 GENT, BELGIUM

 $Email \ address: {\tt fabrouck.broucke@ugent.be}$

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF READING, READING RG6 6AX, UK *Email address*: t.w.hilberdink@reading.ac.uk