

GF2020, SEPTEMBER 1, 2020, GHENT, BELGIUM

BEURLING INTEGERS WITH RH AND LARGE OSCILLATION

Frederik Broucke — fabrouck.broucke@ugent.be based on joint work with G. Debruyne and J. Vindas

Prime number theorem (PNT):

$$\pi(x) := \sum_{p < x} 1 \sim \frac{x}{\log x};$$

PNT with de la Vallée Poussin remainder:

$$\pi(x) = \operatorname{Li}(x) + O(x \exp(-c\sqrt{\log x}));$$

PNT equivalence:

$$\pi(x) \sim \operatorname{Li}(x) \iff M(x) := \sum_{n \leq x} \mu(x) = o(x).$$

Prime number theorem (PNT):

$$\pi(x) := \sum_{p < x} 1 \sim \frac{x}{\log x};$$

PNT with de la Vallée Poussin remainder:

$$\pi(x) = \operatorname{Li}(x) + O(x \exp(-c\sqrt{\log x}));$$

PNT equivalence:

$$\pi(x) \sim \operatorname{Li}(x) \iff M(x) := \sum_{n \leq x} \mu(x) = o(x).$$

Question: What is needed to prove these theorems?

BEURLING GENERALIZED PRIMES

Introduced by A. Beurling in 1937;

$$\mathcal{P} = \{p_j\}, \quad 1 < p_1 \le p_2 \le ..., \quad p_j \to \infty;$$

 $\mathcal{N} = \{p_1^{\nu_1} \cdots p_J^{\nu_J} | \nu_j \ge 0\}.$

BEURLING GENERALIZED PRIMES

Introduced by A. Beurling in 1937;

$$\mathcal{P}=\{p_j\}, \quad 1< p_1\leq p_2\leq ... \;, \quad p_j o\infty; \ \mathcal{N}=\{p_1^{
u_1}\cdots p_J^{
u_J}|
u_j\geq 0\}.$$

We can define their counting functions (including multiplicities)

$$\pi(x) := \sum_{p_j \leq x} 1, \quad N(x) := \sum_{n_k \leq x} 1,$$

$$\Pi(x) := \sum_{p_i^{\nu} \leq x} \frac{1}{\nu} = \sum_{\nu=1}^{\infty} \frac{1}{\nu} \pi(x^{1/\nu}).$$

BEURLING GENERALIZED PRIMES

Introduced by A. Beurling in 1937;

$$\mathcal{P} = \{p_j\}, \quad 1 < p_1 \le p_2 \le ... , \quad p_j \to \infty; \\ \mathcal{N} = \{p_1^{\nu_1} \cdots p_J^{\nu_J} | \nu_j \ge 0\}.$$

We can define their counting functions (including multiplicities)

$$\pi(x) := \sum_{p_j \leq x} 1, \quad N(x) := \sum_{n_k \leq x} 1,$$

$$\Pi(x) := \sum_{p_j^{\nu} \leq x} \frac{1}{\nu} = \sum_{\nu=1}^{\infty} \frac{1}{\nu} \pi(x^{1/\nu}).$$

Example: odd numbers $\mathcal{P} = \{3, 5, 7, 11, \dots\}, \mathcal{N} = \{1, 3, 5, \dots\},$

$$\pi_{\text{odd}}(x) = \pi_{\text{cl}}(x) - 1, \quad N_{\text{odd}}(x) = \frac{x}{2} + O(1).$$

ABSTRACT PNT'S

■ Beurling, 1937:

$$\exists
ho > 0, \gamma > 3/2 : N(x) =
ho x + O\left(rac{x}{\log^{\gamma} x}
ight) \implies \pi(x) \sim \operatorname{Li}(x).$$

ABSTRACT PNT'S

Beurling, 1937:

$$\exists \rho > 0, \gamma > 3/2 : N(x) = \rho x + O\left(\frac{x}{\log^{\gamma} x}\right) \implies \pi(x) \sim \operatorname{Li}(x).$$

Landau, 1903:

$$\exists \rho > 0, \theta < 1 : N(x) = \rho x + O(x^{\theta})$$

$$\implies \pi(x) = \text{Li}(x) + O(x \exp(-c\sqrt{\log x})).$$

ABSTRACT PNT'S

Beurling, 1937:

$$\exists \rho > 0, \gamma > 3/2 : N(x) = \rho x + O\left(\frac{x}{\log^{\gamma} x}\right) \implies \pi(x) \sim \operatorname{Li}(x).$$

Landau, 1903:

$$\exists \rho > 0, \theta < 1 : N(x) = \rho x + O(x^{\theta})$$

$$\implies \pi(x) = \text{Li}(x) + O(x \exp(-c\sqrt{\log x})).$$

Diamond, Montgomery, Vorhauer, 2006: Landau's result is optimal.

THE REVERSE DIRECTION

Theorem (Hilberdink, Lapidus, 2006)

If for some
$$\theta < 1$$
, $\pi(x) = \text{Li}(x) + O(x^{\theta})$, then

$$\exists \rho > 0 : N(x) = \rho x + O(x \exp(-c\sqrt{\log x \log\log x})).$$

THE REVERSE DIRECTION

Theorem (Hilberdink, Lapidus, 2006)

If for some
$$\theta < 1$$
, $\pi(x) = \text{Li}(x) + O(x^{\theta})$, then

$$\exists \rho > 0 : N(x) = \rho x + O(x \exp(-c\sqrt{\log x \log\log x})).$$

Theorem (B., Debruyne, Vindas, 2020)

There exist Beurling primes such that $\pi(x) = \text{Li}(x) + O(\sqrt{x})$, yet for any $c > 2\sqrt{2}$,

$$N(x) = \rho x + \Omega_{\pm} (x \exp(-c\sqrt{\log x \log \log x})).$$

MELLIN TRANSFORMS

For a set of Beurling primes \mathcal{P} , one defines its zeta-function

$$\zeta_{\mathcal{P}}(s) = \int_{1^{-}}^{\infty} x^{-s} dN(x) = \sum_{n_k \in \mathcal{N}} \frac{1}{n_k^s}.$$

Mellin-transform of Π :

$$\log \zeta_{\mathcal{P}}(s) = \int_{1^{-}}^{\infty} x^{-s} \, \mathrm{d}\Pi(x) = \sum_{p_i \in \mathcal{P}} \sum_{\nu=1}^{\infty} \frac{1}{\nu p_j^{\nu s}}.$$

MELLIN TRANSFORMS

For a set of Beurling primes \mathcal{P} , one defines its zeta-function

$$\zeta_{\mathcal{P}}(s) = \int_{1^{-}}^{\infty} x^{-s} dN(x) = \sum_{n_k \in \mathcal{N}} \frac{1}{n_k^s}.$$

Mellin-transform of Π :

$$\log \zeta_{\mathcal{P}}(s) = \int_{1^-}^{\infty} x^{-s} \, \mathrm{d}\Pi(x) = \sum_{p_j \in \mathcal{P}} \sum_{\nu=1}^{\infty} \frac{1}{\nu p_j^{\nu s}}.$$

Indeed:

$$\zeta_{\mathcal{P}}(s) = \prod_{p_i \in \mathcal{P}} \frac{1}{1 - p_j^{-s}} = \exp\left(\sum_{p_i \in \mathcal{P}} -\log(1 - p_j^{-s})\right) = \exp(\log \zeta_{\mathcal{P}}(s)).$$

(In fact, one might define \exp^* such that $dN = \exp^*(d\Pi)$.)

CONTINUOUS PRIME SYSTEMS

Extend the notion of Beurling generalized prime systems to include *continuous* systems:

Pair (Π, N) of right-continuous, non-decreasing functions with $\Pi(1) = 0$, N(1) = 1 and satisfying

$$\int_{1^{-}}^{\infty} x^{-s} dN(x) = \exp\left(\int_{1^{-}}^{\infty} x^{-s} d\Pi(x)\right),$$

or equivalently,

$$dN = \exp^*(d\Pi).$$

Proof of H & L

Suppose
$$\Pi(x) = \text{Li}(x) + R(x)$$
, with $R(x) = O(x^{\theta})$. Then
$$\log \zeta(s) = \log \left(\frac{s}{s-1}\right) + \int_{1-s}^{\infty} x^{-s} \, dR(x)$$

By integrating by parts, one sees that $\log \zeta(s) - \log(s/(s-1))$ has analytic continuation to Re $s > \theta$.

Proof of H & L

Suppose $\Pi(x) = \text{Li}(x) + R(x)$, with $R(x) = O(x^{\theta})$. Then

$$\log \zeta(s) = \log \left(\frac{s}{s-1}\right) + \int_{1^{-}}^{\infty} x^{-s} dR(x)$$

By integrating by parts, one sees that $\log \zeta(s) - \log(s/(s-1))$ has analytic continuation to Re $s > \theta$.

Classical arguments yield the convexity bound

$$\log \zeta(s) = O\left(\frac{|t|^{\frac{1-\theta}{1-\theta}} - 1}{(1-\sigma)\log|t|}\right), \quad s = \sigma + \mathrm{i}t.$$

Proof of H & L Part 2

By Perron inversion:

$$N^*(x) := rac{1}{2}(N(x^+) + N(x^-))$$

$$= \lim_{T o \infty} rac{1}{2\pi \mathrm{i}} \int_{\kappa - \mathrm{i}T}^{\kappa + \mathrm{i}T} x^s \zeta(s) rac{\mathrm{d}s}{s}, \quad \text{for } \kappa > 1.$$

Move the contour to the right: optimal contour

$$\sigma(t) = 1 - (1 - \theta) \frac{\log \log t}{\log t}.$$

The pole at s=1 gives the main term ρx , the remaining integral can be shown to be $O(x \exp(-c\sqrt{\log x \log \log x}))$.

SHOWING OPTIMALITY: THE EXAMPLE

We require a zeta function with extreme growth: $\log \zeta$ needs to attain the convexity bound. Our example is Inspired by a construction of H. Bohr. Set

$$R(x) = \begin{cases} \sin(\tau \log x) & \text{for } \tau^{1+\delta} < x \le \tau^{\nu}; \\ 0 & \text{else.} \end{cases}$$

This has Mellin transform

$$\frac{1}{2}\left(\tau^{1-(1+\delta)s}-\tau^{1-\nu s}\right)\left(\frac{1}{s-\mathrm{i}\tau}+\frac{1}{s+\mathrm{i}\tau}\right).$$

SHOWING OPTIMALITY: THE EXAMPLE

We require a zeta function with extreme growth: $\log \zeta$ needs to attain the convexity bound. Our example is Inspired by a construction of H. Bohr. Set

$$R(x) = egin{cases} \sin(au \log x) & \text{for } au^{1+\delta} < x \leq au^{
u}; \\ 0 & \text{else.} \end{cases}$$

This has Mellin transform

$$\frac{1}{2} \left(\tau^{1-(1+\delta)s} - \tau^{1-\nu s} \right) \left(\frac{1}{s-i\tau} + \frac{1}{s+i\tau} \right).$$

Let $\tau_k \to \infty$ rapidly, and set

$$\Pi(x) = \operatorname{Li}(x) + \sum_{k} R_{k}(x).$$

TECHNICAL CHALLENGES

How to show that

$$\int x^s \exp(\log \zeta(s)) \frac{\mathrm{d}s}{s}$$

is large?

 ζ peaks around $s=1+\mathrm{i} au_k$. Define x_k via

$$\log \tau_k = \frac{1}{\sqrt{2}} \sqrt{\log x_k \log \log x_k}.$$

To extract a contribution of the integral, we used the saddle point method.

$$f(s) = s \log x_k + \frac{1}{2} \frac{\tau_k^{1-(1+\delta)s}}{s - i\tau_k}$$

has saddle points near $s = 1 + i\tau_k$.

DISCRETIZATION

We have found a *continuous* example. How to find a *discrete* example? Probabilistic discretization procedure due to Diamond, Montgomery, and Vorhauer, and refined by Zhang:

- let v_j be a slowly increasing sequence. Include v_j as a prime with probability $\int_{v_i}^{v_{j+1}} d\Pi(v)$.
- Show that the events

$$E(y,t) = \left\{ \sum_{p_k \le y} p_k^{-\mathrm{i}t} - \int_1^y v^{-\mathrm{i}t} \, \mathrm{d}\Pi(v) \text{ is large} \right\}$$

have small probability.

GENERALIZATION

The theorem of Hilberdink and Lapidus can be generalized to

Theorem (Diamond, 1970)

Suppose for some $\alpha \in (0,1)$, c > 0

$$\Pi(x) = \operatorname{Li}(x) + O(x \exp(-c(\log x)^{\alpha})).$$

Then for some $\rho > 0$ and c' > 0,

$$N(x) = \rho x + O(x \exp(-c'(\log x \log \log x)^{\frac{\alpha}{\alpha+1}})).$$

Similar ideas might be used to show optimality of this theorem, including optimality of the constant $c'=(c(\alpha+1))^{\frac{1}{\alpha+1}}$ (work in progress).

REFERENCES

- H. G. Diamond, H. L. Montgomery, U. M. U. Vorhauer, Beurling primes with large oscillation, Math. Ann. 334 (2006), 1–36.
- T. W. Hilberdink, M. L. Lapidus, *Beurling zeta functions, generalised primes, and fractal membranes*, Acta Appl. Math **94** (2006), 21–48.
- F. Broucke, G. Debruyne, J. Vindas, *Beurling integers with RH and large oscillation*, Adv. Math. **370** (2020), 107240.

Thank you for your attention! Questions?