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Prime number theorem (PNT):

π(x) :=
∑
p≤x

1 ∼ x

log x
;

PNT with de la Vallée Poussin remainder:

π(x) = Li(x) + O
(
x exp(−c

√
log x)

)
;

PNT equivalence:

π(x) ∼ Li(x) ⇐⇒ M(x) :=
∑
n≤x

µ(x) = o(x).

Question: What is needed to prove these theorems?
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BEURLING GENERALIZED PRIMES
Introduced by A. Beurling in 1937;

P = {pj}, 1 < p1 ≤ p2 ≤ ... , pj →∞;

N = {pν1
1 · · · p

νJ
J |νj ≥ 0}.

We can define their counting functions (including multiplicities)

π(x) :=
∑
pj≤x

1, N(x) :=
∑
nk≤x

1,

Π(x) :=
∑
pνj ≤x

1

ν
=
∞∑
ν=1

1

ν
π(x1/ν).

Example: odd numbers P = {3, 5, 7, 11, ... },N = {1, 3, 5, ... },

πodd(x) = πcl(x)− 1, Nodd(x) =
x

2
+ O(1).
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ABSTRACT PNT’S

Beurling, 1937:

∃ρ > 0, γ > 3/2 : N(x) = ρx + O

(
x

logγ x

)
=⇒ π(x) ∼ Li(x).

Landau, 1903:

∃ρ > 0, θ < 1 : N(x) = ρx + O(xθ)

=⇒ π(x) = Li(x) + O
(
x exp(−c

√
log x)

)
.

Diamond, Montgomery, Vorhauer, 2006: Landau’s result is optimal.
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THE REVERSE DIRECTION

Theorem (Hilberdink, Lapidus, 2006)

If for some θ < 1, π(x) = Li(x) + O(xθ), then

∃ρ > 0 : N(x) = ρx + O
(
x exp(−c

√
log x log log x)

)
.

Theorem (B., Debruyne, Vindas, 2020)

There exist Beurling primes such that π(x) = Li(x) + O(
√

x), yet for
any c > 2

√
2,

N(x) = ρx + Ω±
(
x exp(−c

√
log x log log x)

)
.
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MELLIN TRANSFORMS
For a set of Beurling primes P , one defines its zeta-function

ζP(s) =

∫ ∞
1−

x−s dN(x) =
∑

nk∈N

1

ns
k

.

Mellin-transform of Π:

log ζP(s) =

∫ ∞
1−

x−s dΠ(x) =
∑
pj∈P

∞∑
ν=1

1

νpνs
j

.

Indeed:

ζP(s) =
∏

pj∈P

1

1− p−s
j

= exp

(∑
pj∈P
− log(1− p−s

j )

)
= exp(log ζP(s)).

(In fact, one might define exp∗ such that dN = exp∗(dΠ).)
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CONTINUOUS PRIME SYSTEMS

Extend the notion of Beurling generalized prime systems to include
continuous systems:
Pair (Π, N) of right-continuous, non-decreasing functions with Π(1) = 0,
N(1) = 1 and satisfying∫ ∞

1−
x−s dN(x) = exp

(∫ ∞
1−

x−s dΠ(x)

)
,

or equivalently,
dN = exp∗(dΠ).
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PROOF OF H & L

Suppose Π(x) = Li(x) + R(x), with R(x) = O(xθ). Then

log ζ(s) = log

(
s

s − 1

)
+

∫ ∞
1−

x−s dR(x)

By integrating by parts, one sees that log ζ(s)− log(s/(s − 1)) has analytic
continuation to Re s > θ.

Classical arguments yield the convexity bound

log ζ(s) = O

(
|t|

1−σ
1−θ − 1

(1− σ) log |t|

)
, s = σ + it .
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PROOF OF H & L PART 2

By Perron inversion:

N∗(x) :=
1

2
(N(x+) + N(x−))

= lim
T→∞

1

2πi

∫ κ+iT

κ−iT
xsζ(s)

ds

s
, for κ > 1.

Move the contour to the right: optimal contour

σ(t) = 1− (1− θ)
log log t

log t
.

The pole at s = 1 gives the main term ρx , the remaining integral can be
shown to be O

(
x exp(−c

√
log x log log x)

)
.
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SHOWING OPTIMALITY: THE EXAMPLE

We require a zeta function with extreme growth: log ζ needs to attain the
convexity bound. Our example is Inspired by a construction of H. Bohr.
Set

R(x) =

{
sin(τ log x) for τ 1+δ < x ≤ τν ;

0 else.

This has Mellin transform

1

2

(
τ 1−(1+δ)s − τ 1−νs

)( 1

s − iτ
+

1

s + iτ

)
.

Let τk →∞ rapidly, and set

Π(x) = Li(x) +
∑

k

Rk (x).
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TECHNICAL CHALLENGES

How to show that ∫
xs exp(log ζ(s))

ds

s

is large?
ζ peaks around s = 1 + iτk . Define xk via

log τk =
1√
2

√
log xk log log xk .

To extract a contribution of the integral, we used the saddle point method.

f (s) = s log xk +
1

2

τ
1−(1+δ)s
k

s − iτk

has saddle points near s = 1 + iτk .
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DISCRETIZATION

We have found a continuous example. How to find a discrete example?
Probabilistic discretization procedure due to Diamond, Montgomery, and
Vorhauer, and refined by Zhang:

let vj be a slowly increasing sequence. Include vj as a prime with
probability

∫ vj+1

vj
dΠ(v).

Show that the events

E(y , t) =

{∑
pk≤y

p−it
k −

∫ y

1
v−it dΠ(v) is large

}

have small probability.
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GENERALIZATION

The theorem of Hilberdink and Lapidus can be generalized to

Theorem (Diamond, 1970)

Suppose for some α ∈ (0, 1), c > 0

Π(x) = Li(x) + O
(
x exp(−c(log x)α)

)
.

Then for some ρ > 0 and c′ > 0,

N(x) = ρx + O
(
x exp(−c′(log x log log x)

α
α+1 )

)
.

Similar ideas might be used to show optimality of this theorem, including

optimality of the constant c′ = (c(α + 1))
1

α+1 (work in progress).
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Thank you for your attention!
Questions?
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