

ENTR SEMINAR, 29 JUNE 2022

BEURLING GENERALIZED PRIMES

Frederik Broucke — fabrouck.broucke@ugent.be

INTRODUCTION

Let $\pi(x) = \#\{p \le x, p \text{ prime}\}.$

Theorem (de la Vallée Poussin, Hadamard, 1896)

The prime number theorem (PNT): $\pi(x) \sim x/\log x$.

INTRODUCTION

Let $\pi(x) = \#\{p \le x, p \text{ prime}\}.$

Theorem (de la Vallée Poussin, Hadamard, 1896)

The prime number theorem (PNT): $\pi(x) \sim x/\log x$.

Beurling's question: minimum requirements for proving the PNT? Abstract setting: generalized primes and integers.

INTRODUCTION

Let $\pi(x) = \#\{p \le x, p \text{ prime}\}.$

Theorem (de la Vallée Poussin, Hadamard, 1896)

The prime number theorem (PNT): $\pi(x) \sim x/\log x$.

Beurling's question: minimum requirements for proving the PNT? Abstract setting: generalized primes and integers.

$$\begin{split} \mathcal{P} &= (p_j)_{j \geq 1}, & 1 < p_1 \leq p_2 \leq ... \;, & p_j \to \infty; \\ \mathcal{N} &= (n_k)_{k \geq 0}, & 1 = n_0 < n_1 \leq n_2 \leq ... \;, & n_k = p_1^{\nu_1} \cdots p_j^{\nu_j}. \end{split}$$

Introduction

Let $\pi(x) = \#\{p \le x, p \text{ prime}\}.$

Theorem (de la Vallée Poussin, Hadamard, 1896)

The prime number theorem (PNT): $\pi(x) \sim x/\log x$.

Beurling's question: minimum requirements for proving the PNT? Abstract setting: generalized primes and integers.

$$\begin{split} \mathcal{P} &= (p_j)_{j \geq 1}, & 1 < p_1 \leq p_2 \leq ... \;, & p_j \to \infty; \\ \mathcal{N} &= (n_k)_{k \geq 0}, & 1 = n_0 < n_1 \leq n_2 \leq ... \;, & n_k = p_1^{\nu_1} \cdots p_j^{\nu_j}. \end{split}$$

Counting functions:

$$\pi_{\mathcal{P}}(x) = \#\{p_i \le x\}, \quad N_{\mathcal{P}}(x) = \#\{n_k \le x\}.$$

EXAMPLES

 $lackbox{}(\mathcal{P},\mathcal{N})=(\mathbb{P},\mathbb{N}_{>0}),$ the classical primes and integers.

$$\pi_{\mathbb{P}}(x) = \pi(x), \quad N_{\mathbb{P}}(x) = \lfloor x \rfloor.$$

EXAMPLES

 $lackbox{}(\mathcal{P},\mathcal{N})=(\mathbb{P},\mathbb{N}_{>0}),$ the classical primes and integers.

$$\pi_{\mathbb{P}}(x) = \pi(x), \quad N_{\mathbb{P}}(x) = \lfloor x \rfloor.$$

$$\mathcal{P} = (2.5, 3, 5, 7, ...), \quad \mathcal{N} = (1, 2.5, 3, 5, 6.25, 7, 7.5, ...).$$

$$\pi_{\mathcal{P}}(x) = \pi(x) \text{ for } x \geq 2.5, \quad \pi_{\mathcal{P}}(x) = 0 \text{ for } x < 2.5,$$

$$N_{\mathcal{P}}(x) = \sum_{j \geq 0} \left(\left\lfloor x(2/5)^j \right\rfloor - \left\lfloor (x/2)(2/5)^j \right\rfloor \right) = \frac{5}{6}x + O(\log x).$$

EXAMPLES

• $(\mathcal{P}, \mathcal{N}) = (\mathbb{P}, \mathbb{N}_{>0})$, the classical primes and integers.

$$\pi_{\mathbb{P}}(x) = \pi(x), \quad N_{\mathbb{P}}(x) = \lfloor x \rfloor.$$

 ${f P}=(2.5,3,5,7,...), \quad {\cal N}=(1,2.5,3,5,6.25,7,7.5,...).$

$$\pi_{\mathcal{P}}(x) = \pi(x) \text{ for } x \ge 2.5, \quad \pi_{\mathcal{P}}(x) = 0 \text{ for } x < 2.5,$$

$$N_{\mathcal{P}}(x) = \sum_{i \ge 1} \left(\left\lfloor x(2/5)^{j} \right\rfloor - \left\lfloor (x/2)(2/5)^{j} \right\rfloor \right) = \frac{5}{6}x + O(\log x).$$

ullet \mathcal{O}_K the ring of integers of a number field K.

$$\mathcal{P} = (|P|, P \unlhd \mathcal{O}_K, P ext{ prime ideal}),$$
 $\mathcal{N} = (|I|, I \unlhd \mathcal{O}_K, I ext{ integral ideal}).$
 $\pi_{\mathcal{O}_K}(x) \sim rac{x}{\log x}, \quad N_{\mathcal{O}_K}(x) =
ho_K x + O(x^{1-rac{2}{d+1}}).$

BEURLING'S PNT

Theorem (Beurling, 1937)

Let $(\mathcal{P}, \mathcal{N})$ be a g-number system. If $N(x) = \rho x + O(x/\log^{\gamma} x)$ for some $\rho > 0$ and $\gamma > 3/2$, then

$$\pi(x) \sim \frac{x}{\log x}$$
.

BEURLING'S PNT

Theorem (Beurling, 1937)

Let $(\mathcal{P}, \mathcal{N})$ be a g-number system. If $N(x) = \rho x + O(x/\log^{\gamma} x)$ for some $\rho > 0$ and $\gamma > 3/2$, then

$$\pi(x) \sim \frac{x}{\log x}$$
.

Critical exponent $\gamma = 3/2$ is sharp: $\exists (\mathcal{P}, \mathcal{N})$:

$$N(x) = \rho x + O\left(\frac{x}{\log^{3/2} x}\right), \quad \pi(x) \nsim \frac{x}{\log x}.$$

THE BEURLING ZETA FUNCTION

Define

$$\zeta_{\mathcal{P}}(s) = \sum_{k=0}^{\infty} rac{1}{n_k^s}, \quad s \in \mathbb{C} ext{ with } \operatorname{\mathsf{Re}} s > 1.$$

THE BEURLING ZETA FUNCTION

Define

$$\zeta_{\mathcal{P}}(s) = \sum_{k=0}^{\infty} \frac{1}{n_k^s}, \quad s \in \mathbb{C} \text{ with } \operatorname{Re} s > 1.$$

We have

$$\zeta_{\mathcal{P}}(s) = \prod_{j=1}^{\infty} \left(1 + \frac{1}{p_j^s} + \frac{1}{p_j^{2s}} + \dots \right) \\
= \prod_{j=1}^{\infty} \left(1 - \frac{1}{p_j^s} \right)^{-1} = \exp \sum_{j=1}^{\infty} \left\{ -\log \left(1 - \frac{1}{p_j^s} \right) \right\} \\
= \exp \sum_{k=0}^{\infty} \frac{a_{n_k}}{n_k^s},$$

with $a_{n_k}=1/\nu$ if $n_k=p_i^{\nu}$, $a_{n_k}=0$ otherwise.

PRIME COUNTING FUNCTIONS

Denote

$$\Pi_{\mathcal{P}}(x) = \sum_{p_i^{\nu} \leq x} \frac{1}{\nu}.$$

Then

$$\zeta_{\mathcal{P}}(s) = \int_{1^{-}}^{\infty} x^{-s} dN(x) = \exp \int_{1}^{\infty} x^{-s} d\Pi(x).$$

PRIME COUNTING FUNCTIONS

Denote

$$\Pi_{\mathcal{P}}(x) = \sum_{p_i^{\nu} \leq x} \frac{1}{\nu}.$$

Then

$$\zeta_{\mathcal{P}}(s) = \int_{1^{-}}^{\infty} x^{-s} dN(x) = \exp \int_{1}^{\infty} x^{-s} d\Pi(x).$$

We may also define

$$\Lambda(n_k) = egin{cases} \log p_j & ext{if } n_k = p_j^{
u}, \\ 0 & ext{otherwise,} \end{cases}$$

with counting function $\psi_{\mathcal{P}}(x)$. Then

$$\int_1^\infty x^{-s} \, \mathrm{d} \psi(x) = -\frac{\zeta_{\mathcal{P}}'(s)}{\zeta_{\mathcal{P}}(s)}.$$

ZEROS OF $\zeta_{\mathcal{P}}$

The error term in PNT is closely related to zeros of $\zeta_{\mathcal{P}}(s)$. By absolutely converging Euler product, $\zeta_{\mathcal{P}}(s) \neq 0$ for Re s > 1.

ZEROS OF $\zeta_{\mathcal{P}}$

The error term in PNT is closely related to zeros of $\zeta_{\mathcal{P}}(s)$. By absolutely converging Euler product, $\zeta_{\mathcal{P}}(s) \neq 0$ for Re s>1. Beurling's PNT:

$$\pi(x) \sim \frac{x}{\log x}$$
 " \iff " $\zeta_{\mathcal{P}}(s) \neq 0$ for $\operatorname{Re} s \geq 1$.

ZEROS OF $\zeta_{\mathcal{P}}$

The error term in PNT is closely related to zeros of $\zeta_{\mathcal{P}}(s)$. By absolutely converging Euler product, $\zeta_{\mathcal{P}}(s) \neq 0$ for Re s>1. Beurling's PNT:

$$\pi(x) \sim rac{x}{\log x}$$
 " \iff " $\zeta_{\mathcal{P}}(s)
eq 0$ for $\operatorname{Re} s \geq 1$.

Larger zero-free regions:

Theorem (Landau, 1903, "avant la lettre")

Suppose that
$$N(x) = \rho x + O(x^{\theta})$$
 for some $\rho > 0$ and $\theta < 1$. Then
$$\pi(x) = \text{Li}(x) + O\big(x \exp(-c\sqrt{\log x})\big).$$

Comes from zero-free region

$$\zeta_{\mathcal{P}}(\sigma + \mathrm{i} t) \neq 0 \text{ for } \sigma \geq 1 - \frac{c^2}{\log(2 + |t|)}.$$

OPTIMALITY

Remarkably, this is optimal:

Theorem (Diamond, Montgomery, Vorhauer, 2006)

For every
$$\theta > 1/2$$
 there exists a system $(\mathcal{P}, \mathcal{N})$ with

$$N(x) = \rho x + O(x^{\theta})$$
 for some $\rho > 0$,

$$\pi(x) = \operatorname{Li}(x) + \Omega_{\pm}(x \exp(-c\sqrt{\log x})).$$

OPTIMALITY

Remarkably, this is optimal:

Theorem (Diamond, Montgomery, Vorhauer, 2006)

For every $\theta > 1/2$ there exists a system $(\mathcal{P}, \mathcal{N})$ with

$$N(x) =
ho x + O(x^{ heta}) \quad ext{for some }
ho > 0, \ \pi(x) = ext{Li}(x) + \Omega_{\pm} ig(x \exp(-c\sqrt{\log x}) ig).$$

To prove the Riemann Hypothesis, more than merely multiplicative structure and $N(x) = \rho x + O(x^{1/2})$ is needed.

FROM π TO N

For the other direction, we have e.g. these two theorems.

Theorem (Diamond, 1977)

Suppose that
$$\pi(x) = \operatorname{Li}(x) + O(x/\log^{\gamma} x)$$
, for some $\gamma > 1$. Then $N(x) \sim \rho x$, for some $\rho > 0$.

FROM π TO N

For the other direction, we have e.g. these two theorems.

Theorem (Diamond, 1977)

Suppose that
$$\pi(x)=\operatorname{Li}(x)+O(x/\log^{\gamma}x)$$
, for some $\gamma>1$. Then $N(x)\sim \rho x$, for some $\rho>0$.

Theorem (Hilberdink, Lapidus, 2006)

Suppose that
$$\pi(x) = \text{Li}(x) + O(x^{\theta})$$
 for some $\theta < 1$. Then

$$N(x) = \rho x + O(x \exp(-c'\sqrt{\log x \log \log x})),$$

for some $\rho > 0$ and c' > 0.

OPTIMALITY

The theorem of Hilberdink and Lapidus is also optimal:

Theorem (B., Debruyne, Vindas, 2020)

For every heta > 0 there exists a system $(\mathcal{P}, \mathcal{N})$ with

$$\Pi(x) = \operatorname{Li}(x) + O(x^{\theta}),$$

$$N(x) = \rho x + \Omega_{\pm} \big(x \exp(-c' \sqrt{\log x \log \log x}) \big) \quad \textit{for some } \rho > 0.$$

OPTIMALITY

The theorem of Hilberdink and Lapidus is also optimal:

Theorem (B., Debruyne, Vindas, 2020)

For every heta > 0 there exists a system $(\mathcal{P}, \mathcal{N})$ with

$$\Pi(x) = \operatorname{Li}(x) + O(x^{\theta}),$$

$$N(x) = \rho x + \Omega_{\pm} (x \exp(-c' \sqrt{\log x \log \log x})) \quad \textit{for some } \rho > 0.$$

We also determine the optimal constant $c' = \sqrt{2(1-\theta)}$.

WELL-BEHAVED SYSTEMS

We say the primes are α -well-behaved if

$$\Pi(x) = \operatorname{Li}(x) + O(x^{\alpha + \varepsilon}),$$

for every $\varepsilon >$ 0, but no $\varepsilon <$ 0.

WELL-BEHAVED SYSTEMS

We say the primes are α -well-behaved if

$$\Pi(x) = \operatorname{Li}(x) + O(x^{\alpha + \varepsilon}),$$

for every $\varepsilon>$ 0, but no $\varepsilon<$ 0. Similarly, the integers are β -well-behaved if

$$N(x) = \rho x + O(x^{\beta+\varepsilon}),$$

for every $\varepsilon >$ 0, but no $\varepsilon <$ 0.

WELL-BEHAVED SYSTEMS

We say the primes are α -well-behaved if

$$\Pi(x) = \operatorname{Li}(x) + O(x^{\alpha + \varepsilon}),$$

for every $\varepsilon>$ 0, but no $\varepsilon<$ 0. Similarly, the integers are β -well-behaved if

$$N(x) = \rho x + O(x^{\beta+\varepsilon}),$$

for every $\varepsilon > 0$, but no $\varepsilon < 0$.

Under RH, $(\mathbb{P}, \mathbb{N}_{>0})$ is a [1/2, 0]-system.

Under generalizations of RH: many more examples of $[1/2, \beta]$ -systems.

UNCONDITIONAL EXAMPLES

Theorem (Zhang, 2007)

There exists an $[\alpha, \beta]$ system for some α and β with $\max\{\alpha, \beta\} \le 1/2$.

Theorem (B., Vindas, 2021)

There exists a [0, 1/2]-system.

UNCONDITIONAL EXAMPLES

Theorem (Zhang, 2007)

There exists an $[\alpha, \beta]$ system for some α and β with max $\{\alpha, \beta\} \leq 1/2$.

Theorem (B., Vindas, 2021)

There exists a [0, 1/2]-system.

Theorem (Hilberdink, 2005)

For an $[\alpha, \beta]$ -system one has $\max\{\alpha, \beta\} \ge 1/2$.

Conjecture

Let $\alpha, \beta \in [0, 1)$ with $\max\{\alpha, \beta\} \ge 1/2$. Then there exists an $[\alpha, \beta]$ -system.

QUESTIONS?

