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INTRODUCTION
Let 7(x) = #{p < x, p prime}.

Theorem (de la Vallée Poussin, Hadamard, 1896)

The prime number theorem (PNT): 7(x) ~ x/ log x.
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INTRODUCTION
Let 7(x) = #{p < x, p prime}.

Theorem (de la Vallée Poussin, Hadamard, 1896)
The prime number theorem (PNT): 7(x) ~ x/ log x.

Beurling’s question: minimum requirements for proving the PNT?
Abstract setting: generalized primes and integers.

P = (p)j>1 1T<pr<p2=<.., pj — 0;

Vj

N = (n)k>o, 1=n<nm<mkp<.., nk:PT"'Pj-

Counting functions:

mp(x) = #{p < x}, Np(x) = #{nc < x}.
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EXAMPLES
m (P,N) = (P,Nsy), the classical primes and integers.

mp(x) = m(x),  Ne(x) = [x].
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EXAMPLES
m (P,N) = (P,Nsy), the classical primes and integers.

mp(x) = m(x), Ne(x) = [x].
m P=(253,57..), N=(1,25,356.257,75,..).

mp(x) = w(x) forx > 2.5, mwp(x) = 0forx < 2.5,

Np(x) = S2([(2/5)] — [(x/2)(2/5) |) = 2x + Oflog x).

j=0
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EXAMPLES
m (P,N) = (P,Nsy), the classical primes and integers.
mp(x) = m(x), Np(x) = [x].
m P=(253,57..), N=(1,25,356.257,75,..).

mp(x) = m(x) forx > 2.5, 7wp(x) =0forx < 2.5,
. , 5
Np(x) = (|x(2/5)] = [(x/2)(2/5)]) = X+ Ollog ).
j>0
m Ok the ring of integers of a number field K.
P = (|P|,P < Ok, P prime ideal),
N = (|l],1 Q Ok, I integral ideal).

X

__2
T, (x) No. (x) = prx + O(x1 @ ).

~ E}
log x
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BEURLING’S PNT

Theorem (Beurling, 1937)

Let (P, N) be a g-number system. If N(x) = px + O(x/ log” x) for
some p > 0 and~y > 3/2, then

7(x) ~ —

log x~
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BEURLING’S PNT

Theorem (Beurling, 1937)

Let (P, N) be a g-number system. If N(x) = px + O(x/ log” x) for
some p > 0 and~y > 3/2, then

7(x) ~ —

log x~

Critical exponent v = 3/2 is sharp: 3 (P, N):

X

N(x) = px + o(@), 7(x) #

log x~
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THE BEURLING ZETA FUNCTION

Define

[e.e]
1
Cp(s):ZF, s € Cwith Res > 1.
k=0 "'k
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THE BEURLING ZETA FUNCTION

Define
1
s) = —, s & Cwith Res > 1.
¢p(s) kZ:o”z

We have

with a,, = 1/vif nk = p, a, = 0 otherwise.
5/183



PRIME COUNTING FUNCTIONS

Denote ]
I = —.
SUEDIF

Py <x
Then

p(s) = /100 xS dN(x) :exp/100 xS d(x).
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PRIME COUNTING FUNCTIONS

Denote ]
I = —.
HOEDY ”

Py <x
Then

r(s) = /100 x5 dN(x) = exp /100 x5 dM(x).

We may also define

A(ne) logp; if nk = p},
n =
g 0 otherwise,

with counting function ¥ (x). Then

[ o=
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ZEROS OF (p

The error term in PNT is closely related to zeros of (p(s).
By absolutely converging Euler product, (p(s) # 0 for Res > 1.
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ZEROS OF (p

The error term in PNT is closely related to zeros of (p(s).
By absolutely converging Euler product, (p(s) # 0 for Res > 1.
Beurling’s PNT:

7(x) ~ Io;x “ <= " (p(s)#0for Res > 1.

Larger zero-free regions:

Theorem (Landau, 1903, “avant la lettre”)

Suppose that N(x) = px + O(x?) for some p > 0 and § < 1. Then
7(x) = Li(x) + O(x exp(—c+/log x)).

Comes from zero-free region
2
o+ it Oforc >1— ————.
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OPTIMALITY

Remarkably, this is optimal:

Theorem (Diamond, Montgomery, Vorhauer, 2006)

For every 0 > 1/2 there exists a system (P, N') with

N(x) = px + O(x?) for some p > 0,

m(x) = Li(x) + Q4 (xexp(—cy/log x)).
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OPTIMALITY

Remarkably, this is optimal:

Theorem (Diamond, Montgomery, Vorhauer, 2006)

For every 0 > 1/2 there exists a system (P, N') with

N(x) = px + O(x?) for some p > 0,

m(x) = Li(x) + Q4 (xexp(—cy/log x)).

To prove the Riemann Hypothesis, more than merely multiplicative structure
and N(x) = px + O(x'/?) is needed.
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FROM 7T TO N

For the other direction, we have e.g. these two theorems.

Theorem (Diamond, 1977)
Suppose that (x) = Li(x) + O(x/ log” x), for some v > 1. Then

N(x) ~ px, for some p > 0.
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FROM 7T TO N

For the other direction, we have e.g. these two theorems.

Theorem (Diamond, 1977)
Suppose that (x) = Li(x) + O(x/ log” x), for some v > 1. Then

N(x) ~ px, for some p > 0.

Theorem (Hilberdink, Lapidus, 2006)
Suppose that (x) = Li(x) + O(x?) for some § < 1. Then

N(x) = px + O(x exp(—c’+/log x log log x)),

for some p > 0 and ¢’ > 0.
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OPTIMALITY

The theorem of Hilberdink and Lapidus is also optimal:

Theorem (B., Debruyne,Vindas, 2020)
For every 0 > 0 there exists a system (P, N') with
M(x) = Li(x) + o(x*),
N(x) = px + Q4 (xexp(—c'y/log x log log x))  for some p > 0.
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OPTIMALITY

The theorem of Hilberdink and Lapidus is also optimal:

Theorem (B., Debruyne,Vindas, 2020)
For every 0 > 0 there exists a system (P, N') with

M(x) = Li(x) + o(x*),
N(x) = px + Q4 (xexp(—c'y/log x log log x))  for some p > 0.

We also determine the optimal constant ¢’ = /2(1 — 0).
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WELL-BEHAVED SYSTEMS

We say the primes are a-well-behaved if
M(x) = Li(x) + O(x*"¢),

for every € > 0, butno e < 0.
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WELL-BEHAVED SYSTEMS

We say the primes are a-well-behaved if
M(x) = Li(x) + O(x*"¢),
for every € > 0, but no € < 0. Similarly, the integers are 3-well-behaved if
N(x) = px + O(x"T%),

for every € > 0, butno e < 0.
Under RH, (P, N<,) is a [1/2, 0]-system.
Under generalizations of RH: many more examples of [1/2, §]-systems.
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UNCONDITIONAL EXAMPLES

Theorem (Zhang, 2007)

There exists an [, 3] system for some o and 3 with max{c, f} < 1/2.

Theorem (B., Vindas, 2021)

There exists a [0, 1/2]-system.
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UNCONDITIONAL EXAMPLES

Theorem (Zhang, 2007)

There exists an [, 3] system for some o and 3 with max{c, f} < 1/2.

Theorem (B., Vindas, 2021)

There exists a [0, 1/2]-system.

Theorem (Hilberdink, 2005)

For an [« (]-system one has max{a, 5} > 1/2.

Conjecture

Leta, B € [0,1) with max{c, B} > 1/2. Then there exists an
[, B]-system.
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