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INTRODUCTION
Let π(x) = #{p ≤ x , p prime}.

Theorem (de la Vallée Poussin, Hadamard, 1896)

The prime number theorem (PNT): π(x) ∼ x/ log x.

Beurling’s question: minimum requirements for proving the PNT?
Abstract setting: generalized primes and integers.

P = (pj)j≥1, 1 < p1 ≤ p2 ≤ ... , pj → ∞;

N = (nk)k≥0, 1 = n0 < n1 ≤ n2 ≤ ... , nk = pν1
1 · · · p

νj
j .

Counting functions:

πP(x) = #{pj ≤ x}, NP(x) = #{nk ≤ x}.
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EXAMPLES
(P ,N ) = (P,N>0), the classical primes and integers.

πP(x) = π(x), NP(x) = ⌊x⌋.

P = (2.5, 3, 5, 7, ... ), N = (1, 2.5, 3, 5, 6.25, 7, 7.5, ... ).

πP(x) = π(x) for x ≥ 2.5, πP(x) = 0 for x < 2.5,

NP(x) =
∑
j≥0

(⌊
x(2/5)j

⌋
−

⌊
(x/2)(2/5)j

⌋)
=

5

6
x + O(log x).

OK the ring of integers of a number field K .

P = (|P| , P ⊴ OK , P prime ideal),

N = (|I| , I ⊴ OK , I integral ideal).

πOK (x) ∼
x

log x
, NOK (x) = ρK x + O

(
x1− 2

d+1
)
.

3 / 13



EXAMPLES
(P ,N ) = (P,N>0), the classical primes and integers.

πP(x) = π(x), NP(x) = ⌊x⌋.

P = (2.5, 3, 5, 7, ... ), N = (1, 2.5, 3, 5, 6.25, 7, 7.5, ... ).

πP(x) = π(x) for x ≥ 2.5, πP(x) = 0 for x < 2.5,

NP(x) =
∑
j≥0

(⌊
x(2/5)j

⌋
−
⌊
(x/2)(2/5)j

⌋)
=

5

6
x + O(log x).

OK the ring of integers of a number field K .

P = (|P| , P ⊴ OK , P prime ideal),

N = (|I| , I ⊴ OK , I integral ideal).

πOK (x) ∼
x

log x
, NOK (x) = ρK x + O

(
x1− 2

d+1
)
.

3 / 13



EXAMPLES
(P ,N ) = (P,N>0), the classical primes and integers.

πP(x) = π(x), NP(x) = ⌊x⌋.

P = (2.5, 3, 5, 7, ... ), N = (1, 2.5, 3, 5, 6.25, 7, 7.5, ... ).

πP(x) = π(x) for x ≥ 2.5, πP(x) = 0 for x < 2.5,

NP(x) =
∑
j≥0

(⌊
x(2/5)j

⌋
−
⌊
(x/2)(2/5)j

⌋)
=

5

6
x + O(log x).

OK the ring of integers of a number field K .

P = (|P| , P ⊴ OK , P prime ideal),

N = (|I| , I ⊴ OK , I integral ideal).

πOK (x) ∼
x

log x
, NOK (x) = ρK x + O

(
x1− 2

d+1
)
.

3 / 13



BEURLING’S PNT

Theorem (Beurling, 1937)

Let (P ,N ) be a g-number system. If N(x) = ρx + O(x/ logγ x) for
some ρ > 0 and γ > 3/2, then

π(x) ∼ x

log x
.

Critical exponent γ = 3/2 is sharp: ∃ (P ,N ):

N(x) = ρx + O

(
x

log3/2 x

)
, π(x) ̸∼ x

log x
.
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THE BEURLING ZETA FUNCTION

Define

ζP(s) =
∞∑

k=0

1

ns
k

, s ∈ C with Re s > 1.

We have

ζP(s) =
∞∏

j=1

(
1 +

1

ps
j
+

1

p2s
j

+ ...

)

=
∞∏

j=1

(
1 − 1

ps
j

)−1

= exp
∞∑

j=1

{
− log

(
1 − 1

ps
j

)}

= exp
∞∑

k=0

ank

ns
k

,

with ank = 1/ν if nk = pνj , ank = 0 otherwise.

5 / 13



THE BEURLING ZETA FUNCTION

Define

ζP(s) =
∞∑

k=0

1

ns
k

, s ∈ C with Re s > 1.

We have

ζP(s) =
∞∏

j=1

(
1 +

1

ps
j
+

1

p2s
j

+ ...

)

=
∞∏

j=1

(
1 − 1

ps
j

)−1

= exp
∞∑

j=1

{
− log

(
1 − 1

ps
j

)}

= exp
∞∑

k=0

ank

ns
k

,

with ank = 1/ν if nk = pνj , ank = 0 otherwise.

5 / 13



PRIME COUNTING FUNCTIONS
Denote

ΠP(x) =
∑
pνj ≤x

1

ν
.

Then

ζP(s) =

∫ ∞

1−
x−s dN(x) = exp

∫ ∞

1
x−s dΠ(x).

We may also define

Λ(nk) =

{
log pj if nk = pνj ,

0 otherwise,

with counting function ψP(x). Then∫ ∞

1
x−s dψ(x) = −

ζ ′P(s)

ζP(s)
.
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ZEROS OF ζP
The error term in PNT is closely related to zeros of ζP(s).
By absolutely converging Euler product, ζP(s) ̸= 0 for Re s > 1.

Beurling’s PNT:

π(x) ∼ x

log x
“ ⇐⇒ ′′ ζP(s) ̸= 0 for Re s ≥ 1.

Larger zero-free regions:

Theorem (Landau, 1903, “avant la lettre”)

Suppose that N(x) = ρx + O(xθ) for some ρ > 0 and θ < 1. Then

π(x) = Li(x) + O
(
x exp(−c

√
log x)

)
.

Comes from zero-free region

ζP(σ + it) ̸= 0 for σ ≥ 1 − c2

log(2 +|t|)
.
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OPTIMALITY

Remarkably, this is optimal:

Theorem (Diamond, Montgomery, Vorhauer, 2006)

For every θ > 1/2 there exists a system (P ,N ) with

N(x) = ρx + O(xθ) for some ρ > 0,

π(x) = Li(x) + Ω±
(
x exp(−c

√
log x)

)
.

To prove the Riemann Hypothesis, more than merely multiplicative structure
and N(x) = ρx + O(x1/2) is needed.

8 / 13



OPTIMALITY

Remarkably, this is optimal:

Theorem (Diamond, Montgomery, Vorhauer, 2006)

For every θ > 1/2 there exists a system (P ,N ) with

N(x) = ρx + O(xθ) for some ρ > 0,

π(x) = Li(x) + Ω±
(
x exp(−c

√
log x)

)
.

To prove the Riemann Hypothesis, more than merely multiplicative structure
and N(x) = ρx + O(x1/2) is needed.

8 / 13



FROM π TO N
For the other direction, we have e.g. these two theorems.

Theorem (Diamond, 1977)

Suppose that π(x) = Li(x) + O(x/ logγ x), for some γ > 1. Then

N(x) ∼ ρx , for some ρ > 0.

Theorem (Hilberdink, Lapidus, 2006)

Suppose that π(x) = Li(x) + O(xθ) for some θ < 1. Then

N(x) = ρx + O
(
x exp(−c′

√
log x log log x)

)
,

for some ρ > 0 and c′ > 0.
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OPTIMALITY

The theorem of Hilberdink and Lapidus is also optimal:

Theorem (B., Debruyne,Vindas, 2020)

For every θ > 0 there exists a system (P ,N ) with

Π(x) = Li(x) + O(xθ),

N(x) = ρx +Ω±
(
x exp(−c′

√
log x log log x)

)
for some ρ > 0.

We also determine the optimal constant c′ =
√

2(1 − θ).
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WELL-BEHAVED SYSTEMS

We say the primes are α-well-behaved if

Π(x) = Li(x) + O(xα+ε),

for every ε > 0, but no ε < 0.

Similarly, the integers are β-well-behaved if

N(x) = ρx + O(xβ+ε),

for every ε > 0, but no ε < 0.
Under RH, (P,N>0) is a [1/2, 0]-system.
Under generalizations of RH: many more examples of [1/2,β]-systems.
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UNCONDITIONAL EXAMPLES

Theorem (Zhang, 2007)

There exists an [α,β] system for some α and β with max{α,β} ≤ 1/2.

Theorem (B., Vindas, 2021)

There exists a [0, 1/2]-system.

Theorem (Hilberdink, 2005)

For an [α,β]-system one has max{α,β} ≥ 1/2.

Conjecture

Let α,β ∈ [0, 1) with max{α,β} ≥ 1/2. Then there exists an
[α,β]-system.
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QUESTIONS?
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