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THE EQUATION (FZWE)
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withd<a<1,0<7<1.
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THE EQUATION (FZWE)

02 _
ﬁ U(X, t) = £3_1>t (1—|—7’SO‘ Xt ﬁ U(X, t), X € R, t>0,

1+sa> 02

withd<a<1,0<7<1.

Rewritten using Mittag-Leffler function

02 1 02 1—7 0?
ﬁ U(X, t) = ; - U(X, t) — Tea’a(t, 1/T) Xt ﬁ U(X, t)
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EXISTENCE AND UNIQUENESS OF SOLUTIONS

Setting P = 92 — L~ (111:;) *; 02, consider Cauchy problem

Pu(x,t) = f(x,t) x€R, t>0
ou

u(x,0) = up(x), PN (x,0) = w(x),

fe S/(R X R+), Ug, Vo € S,(R)
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EXISTENCE AND UNIQUENESS OF SOLUTIONS

Setting P = 92 — L~ (ﬂj::a) *; 02, consider Cauchy problem

Pu(x,t) = f(x,t) x€R, t>0
ou

u(x,0) = up(x), PN (x,0) = w(x),

fe S/(R X R+), Ug, Vo € S,(R)
Solution u expressed via convolution with fundamental solution S (Konjik,
Oparnica, Zorica 2010):

u(x, t) = S(x, t) * (f(x, t) + uo(x)d'(t) + vo(x)d(t)).
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THE FUNDAMENTAL SOLUTION

Evaluate S via its Laplace transform S:

1 atico
S(x, t) = — S(x,s)e®ds, a>o.
211 J,

—ico

. I(s) _
S(x,s) = 2(sS)e Msla(s)  x € R, Res>0;

1+ 78
1452’

lo(s) = arg s € [—m, 7).

6/21



THE FUNDAMENTAL SOLUTION

Evaluate S via its Laplace transform S:

1 atioco .
S(x 1) = / B(x,s)eds, a> 0.
a

2m1 —ico

. I(s) _
S(x,s) = 2(38)e Msla(s)  x € R, Res>0;

1+ 78
1+ s

la(s) = , args e [—m, 7).

Asymptotics I :

() = VT(1+cs7®+ O(|s| %)), |s| = cc.

Setting s = a + iy, for large y we have

Re(—|x| sla(s)) < —|x|c/y'™®
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MICRO-LOCAL ANALYSIS OF S

1 3o (s)
S(x, t) = i) 2 exp(—|x| sla(s) + ts) ds

Properties
m Sis supported in the forward cone |x| < t/4/T.
m Sis L] .-function, continuous on R? \ {(0,0)}.
m Sis smooth off the half line x = 0, t > 0.
Micro-local analysis was initiated by Hérmann, Oparnica, Zorica.
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MICRO-LOCAL ANALYSIS OF S

1 a0 (s
S(x, t) = Py /aioo az(s) exp(—|x| sla(s) + ts) ds

Theorem (B., Oparnica, 2021)

OnR? \ ({0} X [0, OO)) S belongs to the Gevrey class Gi.

Furthermore, at points (x, t) with|x| # t//T and x # 0 it s real
analytic. The wave front set with respect to G° equals
o> 1<o<
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PSEUDO-MONOCHROMATIC WAVES

Consider the case of a forced oscillation at the origin: we set forw > 0

f(x,t) = §(x)H(t) cos(wt), up(x) = w(x) = 0.
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PSEUDO-MONOCHROMATIC WAVES

Consider the case of a forced oscillation at the origin: we set forw > 0
f(x, t) = 0(x)H(t) cos(wt), up(x) = wo(x) = 0.
For the classical wave operator with wave speed 1/+/7,
2 1P
o 1T Ox%’
the solution is

Ua(x, t) = H(t/\f—|x|)\2€ sin(wt — /Tw|x|).

Simple dispersion relation k(w) = /7w, phase speed V(w) = 1/4/T.
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PSEUDO-MONOCHROMATIC WAVES

Consider the case of a forced oscillation at the origin: we set forw > 0
f(x,t) = §(x)H(t) cos(wt), up(x) = w(x) = 0.
For the FZWE:
u(x, t) = H(t/v/7 —|x]) (uss(x, 1) + ugs(x, 1)).

ugs(x, t) — 0, while
Uss(x, t) = ,oéw) —b(w)wlxl sin(wt — a(w)w|x| — P(w)).
w
Here
l(iw) = p(w)e ) = a(w) — ib(w).
Complex dispersion relation k(w) = wl, (iw), phase speed

V(w) = 1/a(w), attenuation coefficient d(w) = b(w)w.
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EVOLUTION OF DELTA IMPULSE
Consider the solution K(x, t) = 0;S(x, t) to the FZWE with Cauchy data

f(x,t) =0, w(x)=49d(x), w(x)=0.

K(z,t)
25}

0.5+

1 2 3 4

Figure: The wave packet K(x, t), x € [0,4.5], t € {1,2,3},a =7 =1/2.
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WAVE PACKET SPEED

The solution is even: K(x, t) = K (x,t) + Ki(—x, t).

K Looks like forward traveling wave packet, which dissipates and spreads
out in space.

The speed of the wave front is 1/4/7, but one can argue that the wave
packet moves at the slower speed 1:

14/21



WAVE PACKET SPEED

The solution is even: K(x, t) = Ky (x, t) + Ki(—x, 1).
K Looks like forward traveling wave packet, which dissipates and spreads

out in space.
The speed of the wave front is 1/4/7, but one can argue that the wave
packet moves at the slower speed 1:

Proposition (B., Oparnica, 2021)

Consider the rescaled wave packet IC;(\) = tKy (At t). Forallt > 0,
K: is supported in [0,1/+/T] and has integral 1/2. We have

,
Ki(N\) — 55()\ —1), stronglyinS" ast — oc.
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WAVE PACKET SHAPE

Previous proposition indicates that K. is concentrated around x = t.
Quantify this “concentration”?
It turns out that K. can be described as a wave packet with speed 1, height

1 1
~ t i+a and width ~ t1+o,
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WAVE PACKET SHAPE

Previous proposition indicates that K. is concentrated around x = t.
Quantify this “concentration”?
It turns out that K. can be described as a wave packet with speed 1, height

1 1
~ t i+a and width ~ t1+o,

Theorem (B., Oparnica, 2021)

Set k(v) = tﬁK+(t+ vtira, t). Then

ki(v) = koo(v), locally uniformly as t — oo, where

koo (V) = 41_7r/ exp(1 ;T(iw)H'o‘ - ivw) dw.

—00
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THE FUNCTION K

ko (V)

0.5

Figure: The function k., for v € [-3,8], a =7 =1/2.
18/21



COMPARISON

100 K (x, 100) ke (v)
A f
s 08
06 os
04 04
) /
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Figure: Comparison between 1007= K(x, 100) and ke (1), @ = 7 = 1/2.

1007 = 100%/3 ~ 21.54.
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