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Preface

Among the two “breeds” of mathematicians, theory builders and prob-

lem solvers, I consider myself firmly belonging to the latter. This thesis

is therefore a collection of problems which I (together with my coau-

thors) have solved during my Ph.D. The topics covered are quite diverse,

ranging from analytic number theory to Tauberian theory and PDE. A

common theme in the treatment of these topics is the use of asymptotic

methods, whence the title of this thesis.

The chapters of this thesis, with the exception of Chapter 1 and

Chapter 3, are based on the published articles or preprints [20, 21, 22,

23, 24, 25, 26, 27] by myself and my coauthors G. Debruyne, Lj. Opar-

nica, and J. Vindas. The first part is about problems in the theory of

Beurling generalized prime numbers. The remaining chapters are less

thematically related and are collected in Part II.

In Chapter 1, I present some preliminaries on Beurling generalized

primes, needed in Part I, and on asymptotic methods, used throughout

the whole thesis. Although only explicitly used in Chapter 6, I decided to

devote a section to the Estrada–Kanwal moment asymptotic expansion.

Learning about this technique by the book of Estrada and Kanwal was

my first encounter with asymptotic methods, in the beginning of my

Ph.D. It seemed only fitting to include it here. Next is some background

on the saddle point method. This is my favorite method in asymptotic

analysis, and it has proved to be a very useful tool on many occasions.

Chapter 2 is the first chapter on Beurling generalized primes. It

introduces a new discretization procedure, a method for finding a Beurl-

ing prime system which is in some sense close to a given distribution

ix



x Preface

function F . This method will be applied in later chapters.

The next three chapters, Chapters 3–5, focus on Malliavin’s prob-

lems. These fascinating problems are about the Prime Number Theorem

and density estimates for the integers with “Malliavin-type” remainders:

remainders of the form O
(
x exp(−c logα x)

)
with c > 0 and α ∈ (0, 1].

After setting the stage and discussing the previously known results in

Chapter 3, Chapter 4 provides a proof of Theorem 3.1.5 about the ex-

istence of Beurling number systems with extreme oscillations in their

integers. Together with a theorem of Diamond, this completely solves

Malliavin’s second problem. Theorem 3.1.5 is my favorite achievement

in this thesis, not only because of the result itself (which I find beauti-

ful), but also because of how it came to be. This result is the product of

clever ideas, a technical tour de force (if I say so myself), and exciting

collaboration. All three ingredients were essential.

In the last chapter of the first part I present a proof of Theorem 3.1.6.

It can be seen as the counterpart of Theorem 3.1.5 in Malliavin’s first

problem, and shows the existence of Beurling number systems whose

primes exhibit certain extremal oscillations. My hope is that it may

serve as an inspiration to anyone who wants to tackle the seemingly

very difficult direct part of Malliavin’s first problem.

The second part of the thesis starts with Chapter 6, which consists of

an analysis of the Fourier–Laplace transforms of some oscillatory func-

tions. This chapter is a nice illustration of several asymptotic methods

“at work”. Working on this project was very instructive early in my

Ph.D. for honing my skills in asymptotic analysis.

The next chapter is on the absence of remainders in the Wiener–

Ikehara and Ingham–Karamata Tauberian theorems. Although this was

known before by means of an abstract functional-theoretical argument,

I hope that the reader may find added value in the elegance of the

explicitly constructed counterexamples.

Chapter 8 is about Riemann’s “other” function, which he would

have proposed as a continuous but non-differentiable function. It is

intended as a self-contained and accessible path to the known regularity

properties of this function: the asymptotic behavior near rationals and



Preface xi

the evaluation of the pointwise Hölder exponent at every point. As such,

it contains no new results, but provides new and transparent proofs.

I end my thesis with a chapter on a certain differential equation,

called the fractional Zener wave equation. To me this chapter signifies

the great value of sharing ideas. By entering the project on this equa-

tion, I have learned a lot about the interesting mathematics of partial

differential equations. (Prior, I knew next to nothing about the subject.

Admittedly, my current knowledge is still very limited, but I at least

have a better idea of what I don’t know.) Furthermore, it turned out

(to my delight) that I could apply my skills in asymptotic analysis also

in this new context. This project made me realize that one should not be

afraid to step outside one’s mathematical comfort zone and share ideas

with people from other fields. At worst you learn something new; at

best you learn something new and you initiate a cross-pollination which

leads to new advances in both your own and your collaborators’ fields.

To you, the reader, who picks up this thesis, whether to quickly

browse through or to read the proofs line by line, I hope you might

learn something new. I wish you a happy reading.

Frederik Broucke March 2022
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List of symbols

We list here some often-used notations.

Symbol Description

N The set of natural numbers including zero.

Z The set of integers.

Q The set of rational numbers.

R The set of real numbers.

C The set of complex numbers.

⌊x⌋ The floor function of x; the unique integer such

that ⌊x⌋ ≤ x < ⌊x⌋+ 1.

⌈x⌉ The ceiling function of x; the unique integer such

that ⌈x⌉ − 1 < x ≤ ⌈x⌉.
Li(x) The logarithmic integral, which in this work is de-

fined as

Li(x) =

∫ x

1

1− u−1

log u
du.

log2 x The iterated logarithm: log2 x = log log x.

logk x The k-fold iterated logarithm

logk x = log . . . log︸ ︷︷ ︸
k times

x.

(P,N ) A Beurling generalized number system.

πP or π The prime-counting function of a generalized num-

ber system.

xiii



xiv List of symbols

Symbol Description

ΠP or Π Riemann’s prime-counting function of a general-

ized number system.

NP or N The integer-counting function of a generalized

number system.

f(x) = O(g(x))
∣∣f(x)∣∣ ≤ Cg(x) for some absolute constant C.

f(x) = o(g(x)) lim f(x)/g(x) = 0.

f(x) = Ω(g(x)) The negation of f(x) = o(g(x)).

f(x) ≪ g(x) f(x) = O(g(x)).

f(x) ≫ g(x) g(x) = O(f(x)), g non-negative.

f(x) ∼ g(x) lim f(x)/g(x) = 1.

f(x) ≍ g(x) f(x) ≪ g(x) and f(x) ≫ g(x).

Concerning the asymptotic notations: the range in which the in-

equalities or limits hold is usually clear from the context; if needed it

will be specified, e.g.

f(x) = o(g(x)), as x→ 0

means that

lim
x→0

f(x)

g(x)
= 0.

If we want to emphasize that the implicit constant in the notation is not

absolute, but depends on some additional parameter, we will notate this

via a subscript, e.g.

f(x) ≪k g(x).

For asymptotic expansions, we use the following notation. Suppose (gn)n

is a sequence of functions with gn+1(x) = o(gn(x)) for every n. The

notation

f(x) ∼
∞∑
n=0

gn(x)

means that, for every N ∈ N,

f(x) =
N∑

n=0

gn(x) +ON

(
gN+1(x)

)
.



Chapter 1

Preliminaries

1.1 Beurling generalized primes

The concept of Beurling generalized primes and integers was introduced

by A. Beurling in his seminal 1937 paper [15], in order to investigate the

minimal properties needed to prove the Prime Number Theorem (PNT).

It is an abstraction of the multiplicative structure of the integers, but

“forgets” any other properties, such as the additive structure.

A system of Beurling generalized primes [15, 46] P is a non-de-

creasing sequence of real numbers p1 ≤ p2 ≤ . . . with the requirements

that p1 > 1 and that pk → ∞. The corresponding system of Beurl-

ing generalized integers N is the multiplicative semigroup generated by

1 and P, meaning that each generalized integer n has a factorization

n = pν11 · · · pνjj for some j ≥ 1 and νk ∈ N, 1 ≤ k ≤ j. One orders the

generalized integers in a non-decreasing fashion to obtain a sequence

1 = n0 < n1 ≤ n2 ≤ . . . . Here, a generalized integer occurs as many

times as there are representations of it as a product of generalized primes.

For example, if p1 = 2, p2 = 4, p3 > 4, then the sequence of generalized

integers starts as (1, 2, 4 = p21, 4 = p2, . . . ).

Let us give some examples.

• The classical primes and integers (sometimes also called the ra-

tional primes and integers). We have P = P = (2, 3, 5, 7, . . . ),

N = N>0 = (1, 2, 3, 4, . . . ).

1



2 Chapter 1. Preliminaries

• Suppose we replace the classical prime 3 by the number 2, so that

2 occurs twice as a generalized prime. One gets

P = (2, 2, 5, 7, . . . ), N = (1, 2, 2, 4, 4, 4, 5, 7, 8, 8, 8, 8, 10, 10, . . . ).

(1.1.1)

• Let P consist of 2, all primes congruent to 1 mod 4, and the squares

of all primes congruent to 3 mod 4: P = (2, 5, 9, 13, 17, . . . ). The

sequence of integers is N = (1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, . . . )

and consists of precisely those integers which can be written as

the sum of two squares.

• Let K be an algebraic number field, that is a finite field extension

of Q. Let OK be the ring of integers1 of K. This ring is not

necessarily a unique factorization domain, but unique factorization

does hold on the level of ideals: every ideal I ⊴ OK has a unique

decomposition as a product of prime ideals: I = P ν1
1 · · ·P νj

j . The

set of ideals is equipped with a norm function |·|, mapping each

ideal I to the size of the quotient ring OK/I. It is well known

that this is always a finite number, and that for any x ≥ 1, there

are only a finite number of ideals with norm below x. The norm

function is also multiplicative: |I1I2| = |I1| ·|I2|. Let

P = (|P | : P ⊴ OK , P prime ideal), N = (|I| : I ⊴ OK).

Then (P,N ) is a system of Beurling primes and integers.

For example, if K = Q[i], then OK = Z[i], the ring of Gaussian

integers. This is a principal ideal domain, and the prime ideals

are of the form (2), (p) with p a rational prime congruent to 3

mod 4, and (a± bi) where a and b are positive integers such that

a2 + b2 is a rational prime congruent to 1 mod 4. The norm of

the ideal (a+ bi) is a2 + b2. We get P = (2, 5, 5, 9, 13, 13, . . . ) and

N = (1, 2, 4, 5, 5, 8, 9, 10, 10, . . . ).

In some contexts (such as algebraic number fields), it is more natural

to consider generalized primes and integers as abstract objects equipped

1See e.g. [74] for an introduction to algebraic number theory.



1.1. Beurling generalized primes 3

with a multiplicative norm function; the numerical sequences P, N then

being the images of the abstract objects under this norm function2.

This viewpoint is taken in the book [69] by Knopfmacher; the abstract

notion is called arithmetic semigroups. In this work, we will not take

this viewpoint, but we will identify generalized primes and integers with

their numerical value, with the convention that two integers with the

same numerical value are “distinct”, if they correspond to two different

prime decompositions. Both viewpoints are of course equivalent.

Let (P,N ) be a system of generalized numbers. We define the fol-

lowing functions, counting the primes and integers below x:

πP(x) =
∑
pk≤x

1, NP(x) =
∑
nk≤x

1.

For the rational primes, πP(x) is the classical prime-counting function,

and NP(x) = ⌊x⌋. In the second example (1.1.1) mentioned above, one

may easily verify that

πP(x) =


0 if 1 ≤ x < 2,

2 if 2 ≤ x < 5,

πP(x) if x ≥ 5;

NP(x) =
∑
j≥0

⌊
x

2j

⌋
−
⌊
x

2j3

⌋
=

4x

3
+O(log x). (1.1.2)

We will omit the subscript P from the notation when there is no risk of

confusion.

One of the main goals of the theory is to investigate the relationship

between π and N . Often one will look for conditions which imply that

π(x) is close to x/ log x or the logarithmic integral Li(x), or that N(x) is

close to ρx for some positive ρ (as apparent from e.g. (1.1.2), it may be

too restrictive to only compare with the single function x). For example,

Beurling [15] proved the following abstract Prime Number Theorem:

Theorem 1.1.1. Let (P,N ) be a system of generalized numbers with

counting functions π and N . Suppose that for some ρ > 0 and γ > 3/2,

N(x) = ρx+O

(
x

logγ x

)
.

2Conversely, every system (P,N ) arises in this way.



4 Chapter 1. Preliminaries

Then the PNT holds, i.e. π(x) ∼ x/ log x.

As in classical number theory, it is often more convenient to work

with weighted prime-counting functions. One defines the Riemann and

Chebyshev prime-counting functions as

ΠP(x) =
∑
pνk≤x

1

ν
=
∑
ν≥1

πP(x
1/ν)

ν
,

ψP(x) =

∫ x

1
log udΠP(u) =

∑
nk≤x

ΛP(nk),

respectively, and where ΛP is the generalized von Mangoldt function:

ΛP(nk) =

log pl if nk = pνl for some ν ≥ 1,

0 otherwise.

Many other classical arithmetic functions can also be generalized. For

example, the generalized Möbius function µP is defined as

µP(nk) =

(−1)j if nk is the product of j distinct primes,

0 otherwise.

To be clear, in the example (1.1.1) we have with a slight abuse of no-

tation µ(n3) = µ(p21) = 0 = µ(n5) = µ(p22), µ(n4) = µ(p1p2) = 1, while

n3, n4, n5 all have the common numerical value 4. The summatory func-

tion of the Möbius function is commonly denoted by MP :

MP(x) =
∑
nk≤x

µP(nk).

Of great importance for the theory is the Beurling zeta function

associated to a generalized prime system, denoted by ζP or simply ζ. It

is defined as

ζ(s) =

∫ ∞

1−
x−s dN(x) =

∞∑
k=0

1

nsk
,

for every complex number s = σ + it for which the series converges. In

this work, we will always assume that the series converges for σ > 1,
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which is equivalent to N(x) ≪ x1+ε for every ε > 0. The factoriza-

tion property of Beurling integers into primes is expressed via the Euler

product:

ζ(s) =
∞∑
k=0

1

nsk
=

∞∏
k=1

1

1− p−s
k

= exp

(∫ ∞

1
x−s dΠ(x)

)
, σ > 1, (1.1.3)

where the last identity follows from the fact that − log(1 − p−s
k ) =∑

ν≥1 p
−νs
k /ν. We also have the identities∫ ∞

1
x−s dΠ(x) = log ζ(s),

∫ ∞

1
x−s dψ(x) = −ζ

′(s)

ζ(s)
,∫ ∞

1−
x−s dM(x) =

1

ζ(s)
.

(1.1.4)

Because of (1.1.3), one might consider the Riemann prime-counting func-

tion Π to be somewhat more fundamental than the ordinary prime-

counting function π. We have

π(x) ≤ Π(x) ≤ π(x) +

⌊
log x

log p1

⌋
π(x1/2),

so by the previously mentioned assumption Π(x) = π(x)+O(x1/2+ε) for

every ε > 0. In case of a Chebyshev-type estimate π(x) ≪ x/ log x, we

have Π(x) = π(x) +O(x1/2/ log x).

Finally we introduce a more general notion of Beurling generalized

number systems, which will be very useful in this work. A general-

ized number system in the extended sense [15, 46] is a pair of right-

continuous, non-decreasing, unbounded functions (Π, N) supported on

[1,∞), with Π(1) = 0, N(1) = 1, and linked via the relation∫ ∞

1−
x−s dN(x) = exp

(∫ ∞

1
x−s dΠ(x)

)
.

If we define the logarithmic integral Li as

Li(x) =

∫ x

1

1− u−1

log u
du,

then the pair (Π(x), N(x)) with Π(x) = Li(x), N(x) = x for x ≥ 1 and 0

for x < 1 is a generalized number system in the extended sense. Indeed,∫ ∞

1
x−s 1− x−1

log x
dx = log

s

s− 1
,

∫ ∞

1−
x−s dN(x) = 1 +

1

s− 1
=

s

s− 1
.



6 Chapter 1. Preliminaries

From now on, we will always mean a system in this extended sense

with the phrase “generalized number system”. Systems arising from a

sequence (pk)k like before, will be referred to as discrete. Via Möbius

inversion it is possible to associate a function π to a number system for

which Π(x) =
∑

ν≥1 π(x
1/ν)/ν, namely

π(x) =
∑
ν≥1

µ(ν)

ν
Π(x1/ν),

µ here being the classical Möbius function. However, in general π will

not be non-decreasing3.

Given two functions F,G supported on [1,∞) which are locally of

bounded variation, one defines [43], [46, Chapters 2–3] the following mul-

tiplicative convolution product for their associated Lebesgue–Stieltjes

measures:

dF ∗ dG = dH, with H(x) =

∫∫
1≤uv≤x

dF (u) dG(v).

This convolution behaves nicely with respect to Mellin–Stieltjes trans-

forms:∫ ∞

1−
x−s(dF ∗ dG)(x) =

(∫ ∞

1−
x−s dF (x)

)
·
(∫ ∞

1−
x−s dG(x)

)
,

for s ∈ C for which the Mellin–Stieltjes transform of dF converges and

that of dG converges absolutely (or vice versa). The unit for convolution

is δ1, the Dirac measure concentrated at 1. If f and g are classical

arithmetic functions, and h is their Dirichlet convolution product, then(∑
n≥1

f(n)δn

)
∗
(∑

n≥1

g(n)δn

)
=
∑
n≥1

h(n)δn,

where δx denotes the Dirac measure concentrated at x. Given a measure

dF , its exponential with respect to multiplicative convolution is defined

via the power series of exp:

exp∗(dF ) =

∞∑
n=0

dF ∗n

n!
,

3Some authors require that π is non-decreasing in their definition of generalized

number system, and refer to systems where this is not necessarily the case as “outer

systems”.
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where dF ∗n denotes the n-th convolution power of dF . For the counting

functions associated to a system of generalized numbers, we have the

following identities, of which (1.1.4) are the Mellin–Stieltjes transform

analogue:

dN = exp∗(dΠ), log x dN(x) = (dN ∗ dψ)(x), dN ∗ dM = δ1.

In fact, for non-discrete systems the last convolution identity is used

as the definition of M . Chebyshev’s function is defined via dψ(x) =

log x dΠ(x) in the general case.

For a complete introduction to the theory of Beurling generalized

numbers, we refer to the monograph [46] of Diamond and Zhang.

1.2 Basic asymptotic methods

Here we collect some important techniques for estimating integrals de-

pending on a parameter:

F (λ) =

∫ b

a
f(x, λ) dx.

The goal is to determine the asymptotic behavior of F as λ→ ∞. Often

we will work in a distributional framework, so let us first provide the

basic definitions and notations.

1.2.1 Distributions and the Fourier transform

For an open set Ω ⊆ Rn, we denote by E(Ω) the space of smooth (i.e.

infinitely differentiable) functions on Ω. The subspace of those smooth

functions having compact support contained in Ω is denoted by D(Ω).

If Ω = Rn, we denote by S(Rn) the Schwartz space of rapidly decay-

ing smooth functions. It consists of those smooth functions φ whose

derivatives decay faster than the inverse of any polynomial:

φ ∈ S(Rn) ⇐⇒ ∀α ∈ Nn, ∀N ∈ N : sup
x∈Rn

∣∣∂αφ(x)∣∣ (1 +|x|2)N <∞.

Here we introduced the multi-index notation: if α = (α1, . . . , αn), then

∂αφ = ∂α1
x1

· · · ∂αn
xn
φ. The length of the multi-index will be denoted by

|α| = α1 + · · ·+ αn, and its factorial α! is defined as α! = α1! · · ·αn!.
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The spaces D,S, E have natural topologies for which they become

locally convex Hausdorff topological vector spaces. Elements of these

spaces are referred to as test functions. Their topological duals are de-

noted by D′,S ′, E ′, and are called the space of distributions, the space

of tempered distributions, and the space of compactly supported distri-

butions, respectively. Given a distribution f and a test function φ, the

evaluation of f at φ will be denoted by ⟨f, φ⟩, or ⟨f(x), φ(x)⟩, x being a

dummy variable. A locally integrable function f can be identified with

a distribution via integration: ⟨f(x), φ(x)⟩ =
∫
Ω f(x)φ(x) dx. Back-

ground material on the theory of distributions can be found in many

standard works, e.g. [50, 60, 92, 96].

Given an L1(R)-function f , we define its Fourier transform as

f̂(ξ) = F{f ; ξ} =

∫ ∞

−∞
f(x)e−ixξ dx.

Restricted to Schwartz functions, the Fourier transform defines a topo-

logical isomorphism F : S ∼→ S. Via duality, one extends the domain of

F to the space of tempered distributions: ⟨f̂ , φ⟩ := ⟨f, φ̂⟩, for f ∈ S ′,

φ ∈ S. If f ∈ S ′[0,∞), i.e. a tempered distribution supported on [0,∞),

its Laplace transform is defined as

f̃(s) = L{f ; s} = ⟨f(x), e−sx⟩.

It defines a holomorphic function in the half-plane Re s > 0.

1.2.2 The moment asymptotic expansion

The Estrada–Kanwal moment asymptotic expansion [48], [49, Chap-

ter 3] is a technique for obtaining asymptotics of integrals of the form∫∞
0 f(λx)φ(x) dx for λ → ∞. The great value of the moment asymp-

totic expansion lies in its generality: the distributional framework allows

for a wide range of applicability. See e.g. Chapter 6 for an illustration.

Suppose for the moment that f and φ are smooth functions and that
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f has compact support. A change of variables and Taylor’s theorem give∫ ∞

0
f(λx)φ(x) dx

=
1

λ

∫ ∞

0
f(y)

{
φ(0) +

φ′(0)y

λ
+ · · ·+ φ(n)(0)yn

n!λn
+O

(
yn+1

λn+1

)}
dy

=
φ(0)µ0
λ

+
φ′(0)µ1
λ2

+ · · ·+ φ(n)(0)µn
n!λn+1

+O

(
1

λn+2

)
,

for any n ∈ N. The numbers µn are called the moments of f :

µn =

∫ ∞

0
f(x)xn dx.

This idea can be generalized in two ways. First, one may consider

functions φ which have a general expansion at the origin of the form

φ(x) ∼
∞∑
n=0

cnx
αn , as x→ 0+, (1.2.1)

where (αn)n≥0 is a sequence of complex numbers for which (Reαn)n is

increasing to ∞. This notation means that for every N ∈ N,

φ(x) =
N∑

n=0

cnx
αn +ON

(
xReαN+1

)
, as x→ 0+.

Second, one may consider more general objects than smooth com-

pactly supported functions f . Let A be a test function space of smooth

functions where dilation acts continuously and consider the correspond-

ing distribution space A′ (its topological dual). Given f ∈ A′ and φ ∈ A,

it makes sense to ask whether one has a moment asymptotic expansion

for ⟨f(λx), φ(x)⟩, as λ → ∞. For example, the moment asymptotic ex-

pansion holds in the space of compactly supported distributions: f ∈ E ′

and φ ∈ E . We give two other spaces of distributions for which this

holds. First we fix a sequence (αn)n≥0 with (Reαn)n increasing to ∞.

• The test function space P{xαn} of functions φ ∈ C∞(0,∞) having

asymptotic expansion (1.2.1) and for which

∀k ∈ N,∀c > 0: φ(k)(x) = Ok,c(e
cx), as x→ ∞.
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This space becomes a Fréchet space via the ensuing family of norms

∥φ∥n := sup
0<x≤1

∣∣∣φ(x)−∑n
j=0 cjx

αj

∣∣∣∣∣xαn+1
∣∣ + sup

x>1
j≤n

∣∣φ(j)(x)e−
x
n

∣∣ ,
for n = 0, 1, 2, . . . .

• The test function space K{xαn} of functions φ ∈ C∞(0,∞) having

asymptotic expansions (1.2.1) and for which

∃ q ∈ Z, ∀k ∈ N : φ(k)(x) = Ok(x
q−k), as t→ ∞.

It is topologized as the inductive limit of the spaces Kq{xαn} as

q → ∞, where Kq{xαn} is the Fréchet space of functions φ which

satisfy the above conditions for this fixed q, equipped with the

family of norms

∥ψ∥n,q := sup
0<x≤1

∣∣∣φ(x)−∑n
j=0 cjx

αj

∣∣∣∣∣xαn+1
∣∣ + sup

x>1
j≤n

∣∣φ(j)(x)xj−q
∣∣ ,

for n = 0, 1, 2, . . . .

The generalized moment asymptotic expansion holds in the duals of

these spaces (see [49, Sections 2.9, 2.10, 3.4, 3.7]). We thus have

⟨f(λx), φ(x)⟩ ∼
∞∑
n=0

cnµαn

λ1+αn
, as λ→ ∞, (1.2.2)

if φ ∈ P{xαn}, f ∈ P ′{xαn} or φ ∈ K{xαn}, f ∈ K′{xαn}, respectively.
Here, the µαn are the generalized moments of f : µαn = ⟨f(x), xαn⟩. The
space P ′, which is called the space of distributions of exponential decay ,

is the natural setting for rapidly decaying kernels, e.g. for f(x) = e−x,

x ≥ 0. The space K′ is a good setting for oscillatory kernels, e.g. f(x) =

eix. Its elements are said to be distributionally small at infinity .

1.2.3 The saddle point method

The saddle point method or method of steepest descent is a technique

for estimating contour integrals. Given functions f and g, analytic in
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some region Ω ⊆ C, the aim is to estimate∫
Γ
g(z)eλf(z) dz, as λ→ ∞.

Here, Γ is some contour in the region Ω, of which we denote the endpoints

by a and b.

In order for the saddle point method to be applicable, one needs to

have that Re f(z) ≥ max{Re f(a),Re f(b)} for some z on Γ. The idea

is to shift the contour of integration, while fixing the endpoints, to a

new contour Γ̃ which minimizes maxz∈Γ̃Re f(z). Such a contour can be

found by computing the saddle points of f . A saddle point z0 ∈ Ω is

simply a point for which f ′(z0) = 0. Near a saddle point, the graph of

Re f looks like a saddle surface. The aim is to find a saddle point z0

and a new contour through z0 such that Re f reaches its maximum at

z0 —whether this is possible depends of course on the specific situation.

It may also happen that multiple saddle points need to be crossed on

the way from a to b.

After finding a suitable saddle point z0 and contour Γ̃, the next step

is to deform the contour in a neighborhood of z0 to the so-called path of

steepest descent. This is a contour through the saddle point z0 which,

when starting at z0, displays the biggest decrease in Re f(s) among all

possible paths. Metaphorically speaking, the path of steepest descent

is the “mountain pass” which connects the two “valleys” on both sides

of the saddle point in the most economical way. Starting in one of

the “valleys”, the tangent vector along this path is at first a positive

multiple of ∇Re f(s), as Re f(s) increases to a maximum at the saddle

point. After passing the saddle point, the tangent vector along this

path is a positive multiple of −∇Re f(s), as Re f(s) decreases. Using

the Cauchy–Riemann equations, one sees that Im f(s) is constant along

this path.

It is worth mentioning that there is another path through the saddle

point on which Im f(s) is constant, namely the path of steepest ascent

(which displays the opposite behavior of the descent path). Further-

more, if z0 is a zero of order n of f ′, then there are n paths of steepest

descent and n paths of steepest ascent through z0.
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Upon finding the steepest descent path, we may write the integral

as ∫ b

a
g(z)eλf(z) dz =

∫
Γ1∪Γ2∪Γ3

g(z)eλf(z) dz,

where Γ2 is the steepest path through z0 with endpoints c and d say,

and Γ1 and Γ3 are contours connecting a to c, and d to b, respectively,

such that M := maxz∈Γ1∪Γ3 Re f(z) < Re f(z0). We get∫ b

a
g(z)eλf(z) dz = ef(z0)λ

∫
Γ2

g(z)eλ(f(z)−f(z0)) dz+O
(
eMλ

)
, as λ→ ∞.

The final step is to estimate the integral over the steepest path Γ2.

If z0 is a simple saddle point (meaning that z0 is a simple zero of f ′),

the result is∫
Γ
g(z)eλf(z) dz ∼

√
2π

−λf ′′(z0)
g(z0)e

f(z0)λ, as λ→ ∞. (1.2.3)

The branch of the square root is determined by the orientation of the

steepest path. We have
√
1/(−f ′′(z0)) = eiθ

√
1/
∣∣f ′′(z0)∣∣, where θ is the

argument of the tangent vector along the steepest path at the saddle

point z0.

Intuitively, (1.2.3) follows from the Taylor approximation f(z) −
f(z0) ≈ f ′′(z0)

2 (z − z0)
2. Formally, one performs in a sufficiently small

neighborhood the substitution u =
√
f(z0)− f(z) (note that f(z0) −

f(z) is real and non-negative along the steepest path), transforming the

integral to a kind of Gaussian integral, which can be estimated via the

moment asymptotic expansion. Actually, a complete asymptotic series

(see e.g. [49, Eq. (3.172), p. 137]) may be obtained in this way:∫
Γ
g(z)eλf(z) dz ∼ ef(z0)λ

∞∑
n=0

cn

λ1/2+n
,

where cn are constants depending on the derivatives of f and g at z0.

It is also possible to apply the saddle point method in the absence

of a parameter λ. One then hopes to achieve an approximation∫
Γ
g(z)ef(z) dz ≈

√
2π

−f ′′(z0)
g(z0)e

f(z0).
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This often requires a detailed technical analysis of the involved functions.

Both versions of the saddle point method will be often used in this

thesis. We refer to [29, Chapters 5 and 6] for a classical account of

the saddle point method, and to [49, Section 3.6] for a distributional

approach to this technique.



14 Chapter 1. Preliminaries



Part I

Beurling generalized prime

number theory

15





Chapter 2

A new random

approximation procedure

2.1 Introduction

When constructing examples of discrete generalized number systems, it

is often easier to first construct a system in the extended1 sense (Πc, Nc)

with the desired properties, and to then “discretize” this system, rather

than to come up with a discrete system right away. A straightforward

method due to Diamond [44] is to set pj = Π−1
c (j), the minimum of

those numbers x satisfying Πc(x) = j. This guarantees that π(x) =

Πc(x) + O(1). For the corresponding zeta function ζ, this only yields

decent control up to the line σ = 1. In some cases, this is sufficient

to prove the desired properties of N , but in others, better control in a

larger half-plane is required.

In general, it seems a difficult problem to explicitly construct se-

quences (pj)j≥1 with π(x) ∼ x/ log x and for which ζ has meromorphic

continuation to some half-plane σ > α, α < 1, and satisfies good bounds

there. However, using probabilistic methods, one is able to prove that

there exist such sequences without explicitly describing them. Such a

probabilistic “discretization procedure” was first developed by Diamond,

Montgomery, and Vorhauer in their seminal paper [45]. It is a corner-

1For such “template” systems, we will often use the subscript c, because they will

be (absolutely) continuous most of the time.

17
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stone of their arguments for proving the optimality of Landau’s abstract

Prime Number Theorem2 [73]. Refinements of this method were ob-

tained by Zhang in [98] (cf. [46]). Their discrete random approximation

result, from now on referred to as the DMVZ-method, may be summa-

rized as follows.

Theorem 2.1.1 (Diamond, Montgomery, Vorhauer [45], Zhang [98]).

Let f be a non-negative L1
loc-function supported on [1,∞) satisfying

f(u) ≪ 1

log u
and

∫ ∞

1
f(u) du = ∞. (2.1.1)

Then there exists an unbounded sequence of real numbers 1 < p1 < p2 <

· · · < pj < . . . such that for any real t and any x ≥ 1

∣∣∣∣∑
pj≤x

p−it
j −

∫ x

1
u−itf(u) du

∣∣∣∣≪ √
x+

√
x log(|t|+ 1)

log(x+ 1)
. (2.1.2)

The sequence arising from the DMVZ-method might be regarded as

a discrete Beurling prime system P approximating a continuous one,

(Πc, Nc), where dΠc(x) = dF (x) = f(x) dx. The function f can then

be interpreted as a template “prime (power) density function” whose

continuous distribution function F (x) =
∫ x
1 f(u) du is unbounded and

satisfies the Chebyshev upper bound ≪ x/ log x. Setting t = 0 in (2.1.2)

yields πP(x) = F (x)+O(
√
x), which in combination with the Chebyshev

bound also implies ΠP(x) = F (x) + O(
√
x). The importance of the

bound (2.1.2) for all t ∈ R lies in the fact that it is often strong enough

for transferring many properties from ζc(s) = exp
(∫∞

1 x−s dF (x)
)
into

desired analytic properties of the Beurling zeta function ζP associated

to P.

Here we will establish a direct improvement to the DMVZ-method

by obtaining a significantly stronger bound for the difference πP − F

than the O(
√
x)-bound delivered by Theorem 2.1.1. We will show that

it is possible to select the sequence P in such way that the much better

bound πP(x) − F (x) ≪ 1 holds, as stated in the ensuing theorem, the

main result of this chapter. In addition, our discretization procedure

2See Theorem 3.1.1 below.
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can be applied to approximate measures dF that are not necessarily

absolutely continuous with respect to the Lebesgue measure.

In order to fully exploit the better bound on πP − F when approx-

imating a Beurling system (Πc, Nc) in the extended sense, one can ap-

ply our theorem with F (x) = πc(x), where πc is such that Πc(x) =∑
ν≥1 πc(x

1/ν)/ν. (However, this requires proving that the function

πc(x) is non-decreasing, which does not hold in general.)

Theorem 2.1.2. Let F be a non-decreasing right-continuous function

tending to ∞, with F (1) = 0 and satisfying the Chebyshev upper bound

F (x) ≪ x/ log x. Then there exists a sequence of generalized primes

P = (pj)j≥1 such that
∣∣πP(x)− F (x)

∣∣ ≤ 2 and such that for any real t

and any x ≥ 1∣∣∣∣∑
pj≤x

p−it
j −

∫ x

1
u−it dF (u)

∣∣∣∣≪ √
x+

√
x log(|t|+ 1)

log(x+ 1)
. (2.1.3)

If in addition F is continuous, the sequence P can be chosen to be

(strictly) increasing and such that
∣∣πP(x)− F (x)

∣∣ ≤ 1.

The proof of Theorem 2.1.2 will be given in Section 2.2. The essen-

tial difference between the DMVZ probabilistic scheme and our proof is

that we make a completely different choice of how the generalized prime

random variables are distributed in order to generate the discrete ran-

dom approximations, allowing for a more accurate control on the size of

the difference πP(x)− F (x).

The rest of the chapter is devoted to illustrating the usefulness of

Theorem 2.1.2 through two applications. In these applications, the

stronger bound πP(x)−F (x) ≪ 1 instead of πP(x)−F (x) ≪
√
x plays a

crucial role. Further applications will also be given in the next chapters.

First we address a question posed by M. Balazard (we consider a

strengthened version of [81, Open Problem 24]):

Question 2.1.3. Does there exist a Dirichlet series
∑∞

n=1 ann
−s which

has exactly one zero in its half-plane of convergence?

This question is motivated by the fact that if the Riemann hypothesis
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is true, the Dirichlet series

∞∑
n=1

µ(n)

ns
=

1

ζ(s)
, (2.1.4)

where µ is the (classical) Möbius function, provides an example of such

a Dirichlet series. It would have a unique zero, namely at s = 1, in its

half-plane of convergence Re s > 1/2. The idea is of course to find an

unconditional example. We are not able to answer Question 2.1.3 here

for Dirichlet series as in its statement, but, armed with Theorem 2.1.2,

we will prove that Balazard’s question can be affirmatively answered for

general Dirichlet series.

Proposition 2.1.4. There are an unbounded sequence 1 = n0 < n1 ≤
n2 ≤ · · · ≤ nk ≤ . . . and a general Dirichlet series of the form

D(s) =
∞∑
k=0

ak
nsk
, with ak ∈ {−1, 0, 1},

such that D(s) has abscissa of convergence σc = 1/2 and has a unique

zero on {s : Re s > 1/2}, which is located at s = 1.

Our example of a general Dirichlet series satisfying the requirements

of Proposition 2.1.4 arises from a Beurling prime system that we shall

construct in Section 2.3. This example is actually the Beurling analogue

of the Dirichlet series (2.1.4). It turns out that the same constructed

generalized primes yield a second application, as this generalized number

system also provides a positive answer to a recent open problem raised

by Neamah and Hilberdink (cf. [84, Section 4. Open Problem (1)]) on

the existence of well-behaved Beurling number systems of a certain best

possible type; see Section 2.3 for details. This chapter is based of the

preprint [26] by J. Vindas and the author.

2.2 The main result

This section is devoted to a proof of Theorem 2.1.2. The starting point

is a probabilistic inequality for bounding sums of random variables. In

the DMVZ-method, a type of inequality due to Kolmogorov (see e.g. [75,



2.2. The main result 21

Chapter V]) is used, which bounds the probability that such a sum is far

away from its expected value in terms of the variances of the summands.

This kind of inequality can also be used for our purposes. However, it

was pointed out to me by S. Révész that, since we bound the variances

of the involved random variables trivially in terms of their range (which

seems like the best we can do), it is simpler to apply an inequality of

Hoeffding.

Lemma 2.2.1 (Hoeffding [58]). For 1 ≤ j ≤ J , let Xj be independent

random variables such that aj ≤ Xj ≤ bj. Let S =
∑J

j=1Xj. Then for

all v > 0:

P
(
S − E(S) ≥ v

)
≤ exp

(
− 2v2∑J

j=1(bj − aj)2

)
.

Proof of Theorem 2.1.2. Write dF = dFc + dFd, where dFc is a contin-

uous measure, and dFd is purely discrete:

dFd =

∞∑
n=1

αnδyn , yn > 1, αn > 0,

where δy denotes the Dirac measure concentrated at y and the sequence

(yn)n≥1 consists of distinct points. We will discretize both measures

separately3. Let us start with the continuous part.

Set q0 = 1, qj = min{x : Fc(x) = j}, for j < jmax, where jmax = ∞
if Fc(∞) = ∞, and jmax = ⌈Fc(∞)⌉ if Fc(∞) < ∞. Let (Pj)1≤j<jmax

be a sequence of independent random variables, where Pj is distributed

on (qj−1, qj ] according to the probability measure dFc|(qj−1,qj ]. Fix a

number t ∈ R and set Xj,t = cos(t logPj). For such a fixed t, the Xj,t

are independent random variables with expectation

E(Xj,t) =

∫ qj

qj−1

cos(t log u) dFc(u)

and range contained in [−1, 1]. Let C be a constant such that

Fc(x) ≤ C
x

log(x+ 1)
, x ≥ 1.

3dFd is already a purely discrete measure, but does not necessarily arise as the

prime-counting measure of a discrete Beurling prime system, since (yn)n≥1 may have

accumulation points, and since, even if this sequence happens to be discrete, we do

not assume that the αn are integers.
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Let J < jmax and set x = qJ . Applying Lemma 2.2.1 with

v = 2
√
C

(
√
x+

√
x log(|t|+ 1)

log(x+ 1)

)
,

we get

P

(
J∑

j=1

Xj,t −
∫ x

1
cos(t log u) dFc(u) ≥ v

)

≤ exp

{
−8C

4J

(
x+

x log(|t|+ 1)

log(x+ 1)

)}
.

Here

J = Fc(qJ) = Fc(x) ≤ C
x

log(x+ 1)
,

hence the above probability is bounded by (x+1)−2(|t|+1)−2. Applying

the same argument to the random variables−Xj,t, ±Yj,t = ± sin(t logPj),

we get the same bounds for the corresponding probabilities. Let

S(x, t) =
∑
Pj≤x

P−it
j , Sc(x, t) =

∫ x

1
u−it dFc(u).

Then for x = qJ ,

P

(∣∣S(x, t)− Sc(x, t)
∣∣ ≥ 2

√
2C

(√
x+

√
x log(|t|+ 1)

log(x+ 1)

))
≤ 4

(x+ 1)2(|t|+ 1)2
.

Let Ak,j denote the event

∣∣S(qj , k)− Sc(qj , k)
∣∣ ≥ 2

√
2C

(
√
qj +

√
qj log(k + 1)

log(qj + 1)

)
.

Since

∞∑
k=1

∑
1≤j<jmax

P (Akj) ≤
∞∑
k=1

∑
1≤j<jmax

4

(qj + 1)2(k + 1)2

≪
∞∑
k=1

∞∑
j=1

1

j2k2
<∞,
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the Borel–Cantelli lemma implies that the probability that infinitely

many of the events Ak,j , k ≥ 1, 1 ≤ j < jmax, occur, is zero. Fix now a

point ω of the probability space which is only contained in finitely many

Ak,j with k ≥ 1 and 1 ≤ j < jmax and set pj = Pj(ω). Then there exists

a k0 ≥ 1 such that for every k ≥ k0 and any j with 1 ≤ j < jmax (with

now S(x, k) = S(x, k)(ω))

S(qj , k)− Sc(qj , k) ≪
√
qj +

√
qj log(k + 1)

log(qj + 1)
. (2.2.1)

Also by construction of the random variables Pj , we have∣∣πP(x)− Fc(x)
∣∣ ≤ 1, where πP(x) =

∑
pj≤x

1.

Let now 1 ≤ k < k0 and j < jmax arbitrary. Integrating by parts,

∣∣S(qj , k)− Sc(qj , k)
∣∣ = ∣∣∣∣∣

∫ q+j

1
u−ik d(πP(u)− Fc(u))

∣∣∣∣∣
≪ 1 + k0

∫ qj

1

du

u
≪ log qj .

We conclude that the bound (2.2.1) holds for any k ≥ 0 and 1 ≤ j <

jmax.

Suppose now that k ≥ 1 and that for some 1 ≤ j < jmax, x ∈
(qj−1, qj ]. Then

S(x, k) = S(qj−1, k) +O(1)

= Sc(qj−1, k) +O

(
√
qj−1 +

√
qj−1 log(k + 1)

log(qj−1 + 1)

)

= Sc(x, k) +O

(√
x+

√
x log(k + 1)

log(x+ 1)

)
.

If jmax <∞ and x > qjmax , then

S(x, k) = S(qjmax , k) = Sc(qjmax , k) +O

(
√
qjmax +

√
qjmax log(k + 1)

log(qjmax + 1)

)

= Sc(x, k) +O

(√
x+

√
x log(k + 1)

log(x+ 1)

)
.
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If t ∈ [k, k + 1] for some k ≥ 0, then by integration by parts,

S(x, t) =

∫ x+

1
u−i(t−k) dS(u, k)

= S(x, k)x−i(t−k) + i(t− k)

∫ x

1
S(u, k)u−i(t−k)−1 du

= Sc(x, k)x
−i(t−k) + i(t− k)

∫ x

1
Sc(u, k)u

−i(t−k)−1 du

+O

(√
x+

√
x log(t+ 1)

log(x+ 1)

)

= Sc(x, t) +O

(√
x+

√
x log(t+ 1)

log(x+ 1)

)
.

Finally for negative t we obtain the same bounds by taking the complex

conjugate.

In order to discretize dFd, we can apply the same idea, but with

a slight modification, since it may not be possible to partition [1,∞)

into disjoint intervals each having total mass 1. We proceed as follows.

Set q0 = 1, qj = min{x : Fd(x) ≥ j}, for 1 ≤ j < jmax, where again

jmax = ∞ if Fd(∞) = ∞ and jmax = ⌈Fd(∞)⌉ if Fd(∞) < ∞. Note

that it may occur that qj = qj+1 = . . . = qj+k for some k ≥ 1; we

have qj < qj+1 ⇐⇒ ⌊Fd(qj)⌋ = j. We will distribute the masses

αn over the intervals [qj−1, qj ], 0 ≤ j < jmax in such a way that each

interval [qj−1, qj ] has mass 1. At points qj , where Fd “spills over” the

next integer (or next k + 1 integers), we divide the mass α of the point

qj as α = β + k + γ, where β is “given” to the interval [qj−1, qj ], and γ

is “given” to [qj+k, qj+k+1]. Making this precise, set γ0 = 0 and if γj−1

is defined with j < jmax, define numbers βj , γj+k ∈ [0, 1] as

βj = 1− γj−1 −
∑

qj−1<yn<qj

αn,

γj+k = Fd(qj+k)− ⌊Fd(qj+k)⌋ = Fd(qj+k)− (j + k),

where k is the largest number (possibly zero) such that qj = qj+1 =

. . . = qj+k. Note that the sum over αn can be empty (hence zero), but

may also consist of infinitely many terms.
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Let (Pj)1≤j<jmax be a sequence of independent discrete random vari-

ables, where Pj is distributed according to the probability law

P (Pj = yn) =


γj−1 if yn = qj−1,

αn if qj−1 < yn < qj ,

βj if yn = qj ;

in the case that qj−1 < qj , and Pj is distributed according to the trivial

law P (Pj = qj) = 1 in the case that qj−1 = qj . Note that when qj−1 < qj

it can happen that qj−1 or qj do not occur in the sequence (yn)n≥1;

however in these cases one sees that γj−1 = 0 and βj = 0 respectively.

Again we consider for fixed t the independent random variables Xj,t =

cos(t logPj). Let J < jmax be such that qJ < qJ+1 or J = jmax − 1, and

set x = qJ . We again apply Lemma 2.2.1 to the random variables Xj,t;

however, in this case

J∑
j=1

E(Xj,t) =
∑
yn≤x

αn cos(t log yn)− γJ cos(t log qJ).

Nevertheless, we can absorb the last term in the error term by multiply-

ing it by 2:

P

(
J∑

j=1

Xj,t −
∑
yn≤x

αn cos(t log yn) ≥ 2v

)
≤ P

(
J∑

j=1

Xj,t − E(Xj,t) ≥ v

)

for v ≥ 1. Applying Lemma 2.2.1 with

v = 2
√
C ′

(
√
x+

√
x log(|t|+ 1)

log(x+ 1)

)
,

with C ′ a constant such that Fd(x) ≤ C ′x/ log(x+ 1), we obtain

P

(
J∑

j=1

Xj,t −
∑
yn≤x

αn cos(t log yn) ≥ 4
√
C ′
(√

x+

√
x log(|t|+ 1)

log(x+ 1)

))

≤ 1

(x+ 1)2(|t|+ 1)2
.

The proof can now be completed, mutatis mutandis, as in the continuous

case.
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We now show that under the assumption that F is absolutely con-

tinuous on any finite interval, we can ensure that the approximating dis-

crete primes are supported on strictly increasing sequences which tend

to ∞ sufficiently slowly, while still having the bound πP(x)− F (x) ≪ 1

instead of the weaker πP(x) − F (x) ≪
√
x delivered by the DMVZ-

method. The following corollary is a direct improvement to [98, Lemma

4].

Corollary 2.2.2. Suppose f is a non-negative L1
loc-function supported

on [1,∞) and satisfying the conditions (2.1.1). Let

1 < v1 < . . . < vk < vk+1 < . . . , vk → ∞,

be a sequence such that vk+1 − vk ≪ log vk and such that for any t ≥ 0∑
vk≥h(t)

(vk − vk−1)
2

vk log vk
≪ log(t+ 1)

t
, where h(t) = log(t+1) log log(t+e).

Then there exists a generalized prime system P = (pj)j≥1 supported4 on

the sequence (vk)k≥1 such that for any x ≥ 1 and any t∣∣∣∣πP(x)− ∫ x

1
f(u) du

∣∣∣∣≪ 1 (2.2.2)

and ∣∣∣∣∑
pj≤x

p−it
j −

∫ x

1
u−itf(u) du

∣∣∣∣≪ √
x+

√
x log(|t|+ 1)

log(x+ 1)
. (2.2.3)

Some examples of admissible sequences are

vk = (log(k + k0))
a(log log(k + k0))

b with 0 < a < 1 and b ∈ R, and

vk = log(k + k0)(log log(k + k0))
b with b ≤ 1.

Proof. Write dF (u) = f(u) du. The idea of the proof is to construct an

“intermediate” measure dG which is close to dF and supported on the

sequence (vk)k≥1. The primes pj will then be obtained discretizing dG

by using Theorem 2.1.2.

4Strictly speaking, (pj)j≥1 need not be a subsequence of (vk)k≥1, since some primes

pj may be repeated.
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We set v0 = 1 and define the measure dG as

dG =
∞∑
k=1

αkδvk , where αk =

∫ vk

vk−1

dF.

By the first requirement on the sequence (vk)k≥1 and the bound

dF (u) ≪ du/ log u, we have G(x) − F (x) ≪ 1. Let now t be arbitrary,

and let x be such that x/ log(x+ 1) < log(|t|+ 1). Then trivially∣∣∣∣∑
vk≤x

αkv
−it
k −

∫ x

1
u−it dF (u)

∣∣∣∣ ≤ 2F (x) ≪ x

log(x+ 1)
<

√
x log(|t|+ 1)

log(x+ 1)
.

If on the other hand x/ log(x+ 1) ≥ log(|t|+ 1), we proceed as follows:∣∣∣∣∑
vk≤x

αkv
−it
k −

∫ x

1
u−it dF (u)

∣∣∣∣
≪ 1 +

∫ vL

1
dF (u) +

K∑
k=L+1

∫ vk

vk−1

∣∣∣v−it
k − u−it

∣∣∣ dF (u).
Here K is such that vK ≤ x < vK+1, and L is the largest integer

≤ K such that vL < h(|t|) = log(|t| + 1) log log(|t| + e). Bounding∣∣v−it
k − u−it

∣∣ by |t| (vk − vk−1)/vk (note that vk/vk−1 ≪ 1) and using the

bound dF (u) ≪ du/ log u, we get∣∣∣∣∑
vk≤x

αkv
−it
k −

∫ x

1
u−it dF (u)

∣∣∣∣≪ vL
log(vL + 1)

+|t|
∑

vk≥h(|t|)

(vk − vk−1)
2

vk log vk

≪ log(|t|+ 1) ≤

√
x log(|t|+ 1)

log(x+ 1)
,

where we used the second property of the sequence (vk)k≥1 and log(|t|+
1) ≤ x/ log(x + 1). Applying Theorem 2.1.2 to G yields a sequence

(pj)j≥1 of primes satisfying (2.2.2) and (2.2.3) (by comparing with dG

via the triangle inequality). By construction of the discrete random

variables in the proof of Theorem 2.1.2, the primes pj are contained in

the support of dG, that is, the sequence (vk)k≥1.

Remark 2.2.3. It is possible to generalize Theorem 2.1.2 to functions

F with different growth. Indeed, suppose that F (x) ≪ A(x), where A



28 Chapter 2. A new random approximation procedure

is non-decreasing, has tempered growth, namely, A(x) ≪ xn for some n,

and satisfies ∫ x

1

√
A(u)

u
du≪

√
A(x) (2.2.4)

(which implies xδ ≪ A(x) for some δ > 0 depending on the implicit

constant in (2.2.4)). Then the conclusion of the theorem holds if we

replace the bound (2.1.3) by∣∣∣∣∑
pj≤x

p−it
j −

∫ x

1
u−it dF (u)

∣∣∣∣≪√
A(x)

(√
log(x+ 1) +

√
log(|t|+ 1)

)
.

We remark that (2.2.4) is satisfied whenever A is of positive increase

(see [16, Theorem 2.6.1(b) and Definition of PI on p. 71]).

2.3 Balazard’s question and well-behaved sys-

tems of type [0, 1/2, 1/2]

In this section we simultaneously give a proof of Proposition 2.1.4 and

address an open question from [84]. Let P = (pj)j≥1 be a (discrete)

Beurling generalized prime system. Let us assume that ζP has abscissa

of convergence 1. Following5 Hilberdink and Neamah (cf. [84]), we define

the three numbers α, β, γ as the unique exponents (necessarily elements

of [0, 1]) for which the relations

Π(x) = Li(x) +O(xα+ε),

N(x) = ρx+O(xβ+ε)

M(x) = O(xγ+ε),

hold for some ρ > 0 and for any ε > 0, but no ε < 0. We then call such

a Beurling generalized number system an [α, β, γ]-system. The main

result6 of [84] (see also [56]) tells us that Θ = max{α, β, γ} is at least 1/2

5We count the primes using Riemann’s counting function Π instead of Chebyshev’s

ψ. An error term for Π can be transported to one for ψ at just the cost of an additional

log-factor.
6For this result it is imperative to consider discrete number systems, since it is

obviously false for systems in the extended sense: consider for example Π0(x) = Li(x),

for which N0(x) = x and M0(x) = 1− log x, for an easy counterexample.



2.3. Balazard’s question and well-behaved systems 29

and that at least two of these numbers must be equal to Θ. Hilberdink

and Lapidus [57] call a Beurling number system well-behaved7 if Θ < 1.

The best possible types of well-behaved generalized numbers are then

of type [0, 1/2, 1/2], [1/2, 0, 1/2], and [1/2, 1/2, 0]. If the RH holds, then

the rational integers are a [1/2, 0, 1/2]-system, so that we have a candi-

date example of this instance. It is conjectured in [84] that there are no

[1/2, 1/2, 0]-systems. The following open question is also posed in [84,

Section 4]: Does there exist a [0, β, β] system with β < 1? The follow-

ing theorem answers this question positively; we actually establish the

existence of [0, 1/2, 1/2]-systems.

Theorem 2.3.1. There is a discrete Beurling generalized prime system

P such that

ΠP(x) = Li(x) +O(log log x), (2.3.2)

NP(x) = x+O
(
x1/2 exp(c(log x)2/3)

)
, (2.3.3)

MP(x) = O
(
x1/2 exp(c(log x)2/3)

)
, (2.3.4)

for some c > 0, and

NP(x) = x+Ωε

(
x1/2−ε

)
, MP(x) = Ωε

(
x1/2−ε

)
, (2.3.5)

for any ε > 0.

It follows at once that the Dirichlet series of the Möbius fuction,

∞∑
k=0

µ(nk)

nsk
=

1

ζP(s)
,

with P a system as in Theorem 2.3.1 furnishes an example of a general

Dirichlet series having abscissa of convergence σc = 1/2 and with a

unique zero in its half-plane of convergence, namely, at s = 1, which

proves Proposition 2.1.4.

Proof. We apply Theorem 2.1.2 to F (x) = li(x), where li is such that

Li(x) =
∑

ν≥1 li(x
1/ν)/ν. A small computation shows that

li(x) =
∞∑
ν=1

µ(ν)

ν
Li(x1/ν) =

∞∑
n=1

(log x)n

n!nζ(n+ 1)
.

7To ensure this it suffices to know that just two of the numbers are < 1, as we can

deduce from [57, Theorem 2.3] and (the proof of) [84, Theorem 2.1].
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Here ζ and µ(ν) are the classical Riemann zeta and Möbius functions,

respectively. The Chebyshev bound holds since

li(x) ≤
∞∑
n=1

(log x)n

n!n
= Li(x) ≤ 2

x

log x
, if x≫ 1.

We thus find generalized primes P : 1 < p1 < p2 < . . . with πP(x) =∑
pj≤x 1 = li(x) + O(1) and satisfying (2.1.3). To ease the notation,

we drop the subscript P from all counting functions associated to this

generalized prime system, but we make an exception with ζP(s) for which

the subscript is kept in order to distinguish it from the Riemann zeta

function ζ(s). The Riemann prime-counting function Π of P satisfies

Π(x) =

⌊
log x
log p1

⌋∑
ν=1

1

ν
π(x1/ν) =

⌊
log x
log p1

⌋∑
ν=1

1

ν

(
li(x1/ν) +O(1)

)
=

∞∑
ν=1

∞∑
n=1

(log x)n

n!nζ(n+ 1)

1

νn+1

−
∑

ν>
⌊

log x
log p1

⌋
∞∑
n=1

(log x)n

n!nζ(n+ 1)

1

νn+1
+O(log log x)

= Li(x) +O(log log x).

Also

Li(x) = li(x) +O

( √
x

log x

)
, so Π(x) = π(x) +O

( √
x

log x

)
.

The bound Π(x) − Li(x) ≪ log log x implies that Z(s) := log ζP(s) −
log(s/(s − 1)) has analytic continuation to the half-plane σ > 0. By

changing a finite number of primes, we may assume that Z(1) = 0, so

that the corresponding integers have density 1. Using the bound (2.1.3)

we can deduce good bounds for Z in the half-plane σ > 1/2, which

allows one to deduce the asymptotic relations (2.3.3) and (2.3.4) via

Perron inversion. The proof is essentially the same as that of Zhang’s

theorem [98, Theorem 1], but we will repeat it for convenience of the

reader.
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We have that

Z(s) =

∫ ∞

1
x−s d(π(x)− li(x))

+

∫ ∞

1
x−s d(Π(x)− π(x))−

∫ ∞

1
x−s d(Li(x)− li(x)).

The last two integrals have analytic continuation to σ > 1/2 and are

O((σ− 1/2)−1) for σ > 1/2. The first integral has analytic continuation

to σ > 1/2 as well, and using (2.1.3) it can be bounded by∫ ∞

1
x−σ d(S(x, t)− Sc(x, t)) = σ

∫ ∞

1
x−σ−1(S(x, t)− Sc(x, t)) dx

≪
∫ ∞

1
x−σ−1/2

(
1 +

√
log(|t|+ 1)

log x

)
dx≪ 1

σ − 1/2
+

√
log(|t|+ 1)

σ − 1/2
,

where we have used the same notation as in the proof of Theorem 2.1.2

for the exponential sums and integrals. Hence for σ > 1/2 and some

constant C > 0

∣∣Z(s)∣∣ ≤ C

(
1

σ − 1/2
+

√
log(|t|+ 1)

σ − 1/2

)
. (2.3.6)

Let now x be large but fixed. We want to derive an estimate for N(x) by

Perron inversion. Actually we will apply the Perron formula to N1(x) :=∫ x
1 N(u) du, because then the Perron integral is absolutely convergent.

Indeed, we have for any κ > 1 that

N1(x) =
1

2πi

∫ κ+i∞

κ−i∞

xs+1ζP(s)

s(s+ 1)
ds =

1

2πi

∫ κ+i∞

κ−i∞

xs+1eZ(s)

(s− 1)(s+ 1)
ds.

One then uses the fact that N is non-decreasing, so that

N1(x)−N1(x− 1) ≤ N(x) ≤ N1(x+ 1)−N1(x).

Set σx = 1/2 + (log x)−1/3. Then uniformly for σ ≥ σx,∣∣Z(s)∣∣ ≤ C
(
(log x)1/3 + (log x)1/6

√
log(|t|+ 1)

)
.

We shift the contour to the line σ = σx. By the residue theorem (recall

that Z(1) = 0):
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N(x) ≤ (x+ 1)2

2
− x2

2
+

1

2πi

∫ σx+i∞

σx−i∞

((x+ 1)s+1 − xs+1)eZ(s)

(s− 1)(s+ 1)
ds

= x+
1

2
+

1

2πi

∫ σx+i∞

σx−i∞

((x+ 1)s+1 − xs+1)eZ(s)

(s− 1)(s+ 1)
ds.

We split the range of integration into two pieces: |t| ≤ x and |t| > x. In

the first piece we bound (x+ 1)s+1 − xs+1 by |s+ 1|xσx , whereas in the

second one by xσx+1. This gives

N(x) ≤ x+
1

2
+O

{
x1/2 exp

(
(log x)2/3

) ∫ x

0

exp
(
2C(log x)2/3

)
t+ 1

dt

+ x3/2 exp
(
(log x)2/3

) ∫ ∞

x
exp
(
2C(log x)1/6

√
log(t+ 1)

)dt
t2

}
The first integral is bounded by exp

(
2C(log x)2/3

)
log x and the second

one by the term x−1 exp
(
2C(log x)2/3

)
. A similar reasoning applies for

a lower bound for N , and one sees that the asymptotic relation (2.3.3)

holds with any c > 2C + 1.

To obtain the asymptotic behavior of M , we apply the same reason-

ing to N(x)+M(x), which is also non-decreasing, and which has Mellin

transform

ζP(s) +
1

ζP(s)
=

s

s− 1
eZ(s) +

s− 1

s
e−Z(s),

to show that N(x) +M(x) = x + O
(
x1/2 exp(c(log x)2/3

)
. The bound

for M (2.3.4) then follows by combining this asymptotic estimate with

that we have already obtained for N .

Finally, the oscillation estimates (2.3.5) follow at once from (2.3.3),

(2.3.4), and the result of Hilberdink and Neamah from [84] quoted above.

We close this chapter with some remarks.

Remark 2.3.2. We stress that the strong bound ΠP(x) − Li(x) ≪
log log x is crucial in the above arguments to generate the oscillation es-

timates (2.3.5). In particular, if only the weaker bound ΠP(x)−Li(x) ≪
√
x had been known (like in Zhang’s generalized number system from

[98, Theorem 1], whose construction is based upon application of the
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DMVZ-method), the Hilberdink and Neamah theorem could not have

been used to exclude the possibility that the abscissa of convergence σc

of
∑∞

k=1 µ(nk)n
−s
k satisfies σc < 1/2 and that 1/ζP(s) has additional

zeros s = σ + it with σc < σ ≤ 1/2.

Remark 2.3.3. Let P be a generalized prime number system like in

Theorem 2.3.1. Another example of a general Dirichlet series with

abscissa of convergence 1/2 and with a unique zero in the half-plane

σ > 1/2 is that of the Liouville function associated with the general-

ized number system. Its Liouville function, with sum function LP(x) =∑
nk≤x λ(nk), can be defined via the identity

∞∑
k=0

λ(nk)

nsk
=
ζP(2s)

ζP(s)
,

so that its Dirichlet series has a zero at s = 1. Clearly, we have

LP(x) =
∑
n2
k≤x

MP(x/n
2
k)

≪ x1/2 exp(c(log x)2/3)
∑

nk≤
√
x

1

nk
≪ x1/2 exp(c(log x)2/3) log x.

Furthermore, the estimate (2.3.2) and (the proof of) [83, Proposition 19]

imply

LP(x) = Ω(
√
x),

which completes the proof of our claim.

Remark 2.3.4. The bound ΠP(x) − Li(x) ≪ log log x implies that ζP

has meromorphic continuation to σ > 0, and that it has one simple pole

at s = 1 and no other zeros there. The equality β = γ = 1/2 implies

that both ζP and 1/ζP must have infinite order in the strip 0 < σ < 1/2.

(However, using convexity arguments one might show that ζP and 1/ζP

are of polynomial growth in the region σ > 1/2− 1/ log(|t|+ 2).)
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Chapter 3

Malliavin’s problems:

introductory remarks

3.1 Introduction

In Beurling number theory, a lot of effort has been devoted to investi-

gating the relationship between the counting functions π and N . The

primordial example of this is Beurling’s PNT [15], Theorem 1.1.1. An

enticing question is what conditions are needed to guarantee stronger

forms of the PNT. An instance of such a result actually predates Beurl-

ing’s work. Indeed, in proving the prime ideal theorem, Landau [73] de-

veloped a general analytic method for estimating zeta functions, based

on the Borel–Carathéodory lemma and Jensen’s formula. Applying his

general method in the context of Beurling prime numbers yields the fol-

lowing form of the PNT with error term, which we refer to as Landau’s

PNT.

Theorem 3.1.1. Suppose that N(x) = ρx+O(xθ) for some ρ > 0 and

θ ∈ [0, 1). Then

π(x) = Li(x) +O
(
x exp(−c

√
log x)

)
(3.1.1)

for some positive constant c.

In the reverse direction, one may investigate conditions on π which

guarantee a density estimate for N . For example, a result of Diamond

35
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[43] says that the PNT with error term of the form π(x) = Li(x) +

O(x log−a x), where a > 3, implies that N(x) = ρx + O(x log3−a x),

for some positive constant ρ. The counterpart to Landau’s PNT is the

following result by Hilberdink and Lapidus [57]. It is remarkable that

one gets a similar error term in this reverse direction, stronger only by

a factor
√

log2 x in the exponential1.

Theorem 3.1.2. Suppose that π(x) = Li(x)+O(xθ) for some θ ∈ [0, 1).

Then

N(x) = ρx+O
(
x exp(−c′

√
log x log2 x)

)
for some positive constants ρ and c′.

In this and the next two chapters, we will consider remainders of

the form x exp(−c logα x), where α ∈ (0, 1] and c > 0. Note that xθ

corresponds to the special case α = 1, c = 1−θ. We call them remainders

of Malliavin-type, in honor of P. Malliavin, who first studied such general

remainders in the context of Beurling numbers in [77]. Given numbers

α, β ∈ (0, 1], consider the asymptotic relations

π(x) = Li(x) +O(x exp(−c logα x)), for some c > 0 (Pα)

and

N(x) = ρx+O(x exp(−c′ logβ x)), for some ρ > 0 and c′ > 0. (Nβ)

The question posed by Malliavin is what error term in the PNT would

follow from (Nβ) and what error term in the density estimate for N

would follow from (Pα). In [77], he obtained that (Nβ) implies (Pα)

with α = β/10, and that (Pα) implies (Nβ) with β = α/(α + 2). Note

that Landau’s PNT yields (N1) =⇒ (P1/2), and that the theorem

of Hilberdink and Lapidus furnishes (P1) =⇒ (N1/2). Malliavin’s

first result was later improved by Hall [53], who showed that the value

α = β/7.91 is admissible. (A slight refinement of his argument actually

yields α = β/(β + 6.91), see e.g. [46, Section 16.4].) In the reverse

direction, Diamond showed that (Pα) with α ∈ (0, 1) implies (Nβ) with

1We use the notation logk x to denote the k-fold iterated logarithm.
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β = α/(α+ 1), and furthermore with log x log2 x instead of log x in the

exponential (see also Theorem 3.1.4 below).

Let us introduce the following notation for the best possible expo-

nents:

α∗(β) = sup{α : (Nβ) =⇒ (Pα)}, β∗(α) = sup{β : (Pα) =⇒ (Nβ)}.

Malliavin’s first and second problem refer to determining the values of

α∗ and β∗, respectively. The previously mentioned results can be sum-

marized as α∗(β) ≥ β/(β + 6.91), α∗(1) ≥ 1/2, and β∗(α) ≥ α/(α+ 1).

Regarding upper bounds, it was shown by Balanzario [10] that β∗(1/2) ≤
1/2, which was later generalized by Al-Maamori [8] to β∗(α) ≤ α for

0 < α < 1. Only one case of Malliavin’s problems was solved, namely

α∗(1) = 1/2, which follows from Landau’s PNT and the following beau-

tiful result of Diamond, Montgomery, and Vorhauer [45]:

Theorem 3.1.3. Let θ ∈ (1/2, 1). Then there exist constants ρ > 0 and

c > 0 and a discrete Beurling prime system for which

N(x) = ρx+O(xθ) and π(x) = Li(x) + Ω±
(
x exp(−c

√
log x)

)
.

This theorem states that Landau’s PNT is sharp, at least when θ >

1/2. In the context of the quest for the Riemann Hypothesis, the above

result implies that more properties of the rational integers than merely

their multiplicative structure and the fact that ⌊x⌋ − x ≪ xθ, θ > 1/2,

will be needed in a potential proof. Although this theorem does not

exclude the possibility that a density estimate with θ ≤ 1/2 does imply

the Riemann Hypothesis, the general consensus seems to be that the

equal spacing property of the integers is much more relevant. In fact, the

improvement of the classical PNT with de la Vallée Poussin-error term

(3.1.1) by Vinogradov and Korobov heavily depends on this property via

the estimation of exponential sums
∑

n n
−it via Vinogradov’s method

(see e.g. [65, Section 8.5]).

In this thesis we present several advances in the context of Malliavin’s

problems. Our first major result is the optimality of Diamond’s theorem

(Pα) =⇒ (Nα/(α+1)). Before stating this result, let us first provide an
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explicit form of this theorem. Given the slightly more fundamental role

of Riemann’s prime-counting function Π, we state it in terms of Π instead

of π (the difference is only relevant however when α = 1 and c > 1/2).

Theorem 3.1.4. Suppose there exist constants α ∈ (0, 1] and c > 0,

with the additional requirement c ≤ 1 when α = 1, such that

Π(x) = Li(x) +O(x exp(−c logα x)). (3.1.2)

Then, there is a constant ρ > 0 such that

N(x)− ρx≪

x exp

{
−(c(α+ 1))

1
α+1 (log x log2 x)

α
α+1

(
1 +O

(
log3 x

log2 x

))}
. (3.1.3)

In addition to showing the optimality of the exponent β = α/(α+1),

we also obtain the additional log2 x-factor and establish the sharpness

of the value of the constant c′ = (c(α+ 1))
1

α+1 in terms of α and c:

Theorem 3.1.5. Let α and c be constants such that α ∈ (0, 1] and

c > 0, where we additionally require c ≤ 1 if α = 1. Then there exists a

discrete Beurling generalized number system such that

Π(x)− Li(x) ≪

x exp(−c(log x)
α) if α < 1 or α = 1 and c < 1,

log2 x if α = c = 1,

(3.1.4)

and

N(x)− ρx =

Ω±

{
x exp

(
−(c(α+ 1))

1
α+1 (log x log2 x)

α
α+1

(
1 + b

log3 x

log2 x

))}
, (3.1.5)

where ρ > 0 is the asymptotic density of N and b is some positive con-

stant2.

The next result generalizes Theorem 3.1.3 of Diamond, Montgomery,

and Vorhauer, and can be viewed as the counterpart of Theorem 3.1.5

for the reverse direction N → P.

2In fact we will show that one may select any b > α/(α+ 1).
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Theorem 3.1.6. Let β ∈ (0, 1]. Then there exist positive numbers ρ, c, c′

and a discrete Beurling system for which

N(x) = ρx+O
(
x exp(−c′ logβ x)

)
and

π(x) = Li(x) +O
(
x exp(−c(log x)

β
β+1 )

)
,

but for which also

π(x) = Li(x) + Ω±
(
x exp(−c′′(log x)

β
β+1 )

)
,

for some c′′ > c.

Corollary 3.1.7. For the best exponent in Malliavin’s second problem

we have β∗(α) = α/(α+ 1), while the best exponent in the first problem

satisfies α∗(β) ≤ β/(β + 1).

In Section 3.2, we give a proof of Theorem 3.1.4. The proofs of The-

orems 3.1.5 and 3.1.6 will be presented in Chapters 4 and 5, respectively.

Chapter 4 is based on the articles [21, 24] by G. Debruyne, J. Vindas,

and the author, while Chapter 5 is based on the article [20].

3.2 Diamond’s theorem

The original formulation of Diamond’s theorem states that, if (Pα) holds

for some α ∈ (0, 1) and with c = 1, then (Nβ) holds with β = α/(α+ 1)

and c′ = 1. His proof consists of writing dN = exp∗(dΠ) as a power se-

ries, and estimating the convolution powers inductively with the Dirich-

let hyperbola method (see also [11] for other applications of this tech-

nique). It is fairly straightforward to adapt the proof in order to incor-

porate the constant c. For convenience of the reader, we present such a

proof here.

Proof of Theorem 3.1.4. Write Π(x) = Li(x) + E(x). By hypothesis,

E(x) ≪ x exp(−c logα x). Using basic properties of the convolution of

measures (see [46, Chapters 2–3]), we get

N(x) =

∫ x

1−
exp∗(dΠ) =

∫ x

1−
exp∗(dLi) ∗ exp∗(dE) =

∫ x

1−

x

u
exp∗(dE(u))

= x

∫ x

1−
exp∗

(
dE(u)

u

)
= x

∞∑
n=0

1

n!

∫ x

1−

(
dE(u)

u

)∗n
.



40 Chapter 3. Malliavin’s problems: introductory remarks

We set

In =

∫ x

1−

(
dE(u)

u

)∗n
,

and we will show by induction that

In = rn + ϑn,x
An(log2 x)

n−1 log x

exp
(
c( 1n log x)α

) , x ≥ ee, (3.2.1)

for some ϑn,x with
∣∣ϑn,x∣∣ ≤ 1. Here A is a certain fixed positive constant,

and r =
∫∞
1 u−2E(u) du (the integral is convergent in view of the bound

on E). The first two cases are easy: trivially I0 = 1, and integrating by

parts and using the bound on E yields

I1 = r +O

(∫ ∞

log x
e−cuα

du

)
= r +O

{
(log x)1−α exp

(
−c logα x

)}
, x ≥ e.

In order to estimate In for general n, we employ the Dirichlet hyperbola

method and induction. Suppose that the estimate (3.2.1) is proved for

some index n. We write

In+1 =

∫∫
uv≤x

dE(u)

u

(
dE(v)

v

)∗n
=

∫ y

1

dE(u)

u

∫ x
u

1

(
dE(v)

v

)∗n

+

∫ x
y

1

(
dE(v)

v

)∗n ∫ x
v

1

dE(u)

u
−
∫ y

1

dE(u)

u

∫ x
y

1

(
dE(v)

v

)∗n

=: S1 + S2 − S3,

where y ∈ (1, x) is a parameter to be optimized later. By the induction

hypothesis, the first term is

S1 =

∫ y

1

{
rn +O

(
An(log2

x
u)

n−1 log x
u

exp
(
c( 1n log x

u)
α
) )}dE(u)

u

= rn+1 +O

(
rn log y

exp(c logα y)
+
An(log2 x)

n−1 log x

exp
(
c( 1n log x

y )
α
) ∫ y

1

∣∣dE(u)
∣∣

u

)
,

provided that y ≥ e and x/y ≥ ee. For the total variation measure |dE|
we have |dE| ≤ dΠ + dLi = 2dLi+dE, so that for sufficiently large x∫ y

1

∣∣dE(u)
∣∣

u
≤ 3 log2 x.
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The second term is

S2 =

∫ x
y

1

{
r +O

(
log x

v

exp
(
c(log x

v )
α
))}(dE(v)

v

)∗n

= rn+1 +O

{
An(log2 x)

n−1 log x

exp
(
c( 1n log x

y )
α
) +

log x

exp
(
c logα y

) ∫ x
y

1

(∣∣dE(v)
∣∣

v

)∗n}
,

provided that y ≥ e and x/y ≥ ee. The integral of the last convolution

power is bounded via:∫ x
y

1

(∣∣dE(v)
∣∣

v

)∗n
≤
(∫ x

y

1

∣∣dE(v)
∣∣

v

)n

≤ (3 log2 x)
n.

The last term in the expression for In+1 is, again assuming y ≥ e and

x/y ≥ ee,

S3 =

{
r +O

(
log y

exp
(
c logα y

))}{rn +O

(
An(log2 x)

n−1 log x

exp
(
c( 1n log x

y )
α
) )}

= rn+1 +O

(
rn log x

exp
(
c logα y)

+
An(log2 x)

n−1 log x

exp
(
c( 1n log x

y )
α
) ).

We now set y = x
1

n+1 and let A ≥ max{3, r}. We get

In+1 = S1 + S2 − S3 = rn+1 +O

(
An(log2 x)

n log x

exp
(
c( 1

n+1 log x)
α
)),

where the implicit O-constant is independent from n. Letting A be at

least as large as this implicit constant, we obtain (3.2.1) with index n+1,

provided that x ≥ max{e2e, en+1}, so that y ≥ e and x/y ≥ ee. However,

(3.2.1) is trivial for ee ≤ x ≤ max{e2e, en+1}. Indeed, the left hand side

is a number bounded by (3 log2 x)
n+1 ≤ 3n+1(log2 x)

n log x, which in

that range is indeed of the form

rn+1 + ϑn,x
An+1(log2 x)

n log x

exp
(
c( 1n log x)α

) ,

with
∣∣ϑn,x∣∣ ≤ 1 and A sufficiently large.

The conclusion is that, with ρ = er,

N(x) = ρx+ ϑ′x

∞∑
n=0

An(log2 x)
n−1 log x

n! exp
(
c( 1n log x)α

) ,
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for some ϑ′x with
∣∣ϑ′x∣∣ ≤ 1. The series is bounded by the maximum with

respect to n of 2nAn(log2 x)
n−1 log x

n! exp(c( 1
n
log x)α)

. In view of the inequality n! ≥ (n/e)n

it suffices to maximize the function

(log 2A+ log3 x+ 1)u− c(logα x)u−α − u log u+ log2 x− log3 x

with respect to u. After some calculations, we get

umax = (c(α+ 1))
1

α+1 (log x)
α

α+1 (log2 x)
− 1

α+1

{
1 +O

(
log3 x

log2 x

)}
,

log umax =
α

α+ 1
log2 x

{
1 +O

(
log3 x

log2 x

)}
,

so that the sought-after maximum equals

−(c(α+ 1))
1

α+1 (log x log2 x)
α

α+1

{
1 +O

(
log3 x

log2 x

)}
.

This completes the proof.

We note that Theorem 3.1.4 contains Theorem 3.1.2 as a special case,

corresponding to α = 1, c = 1− θ. The proof of Hilberdink and Lapidus

is different in nature and is based on analytic methods. It is instructive

to take a closer look at this analytic proof: although Diamond’s proof is

more direct, the proof of Hilberdink and Lapidus provides information on

the zeta function of the system which will be the basis of the construction

of the extremal example in the next chapter. We provide here a sketch

of this proof and refer to [57] for the details.

Suppose that (Π, N) is a generalized number system with Π(x) =

Li(x) + E(x), where E(x) ≪ xθ for some θ ∈ [0, 1). We have for σ > 1,

log ζ(s)− log
s

s− 1
=

∫ ∞

1

dΠ(u)

us
−
∫ ∞

1

dLi(u)

us
=

∫ ∞

1

dE(u)

us
du.

By the bound on E, log ζ(s) − log s
s−1 has analytic continuation to the

half-plane Re s = σ > θ. Integrating by parts, we have that for arbitrary

x > 1 and σ > θ

log ζ(s)− log
s

s− 1
=

∫ x

1

dΠ(u)

us
−
∫ x

1

1− u−1

us log u
du− E(x)

xs
+s

∫ ∞

x

E(u)

us+1
.

We now let s = σ+ it with θ+ δ ≤ σ < 1 for some δ > 0, and |t| ≥ e.

We estimate each term of the right hand side. The last two terms are
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bounded by O(|t|xθ−σ). Integrating by parts, we see that the second

term is bounded by O
(
x1−σ/(|t| log x)

)
. Since dΠ is a positive measure,

the first term can be bounded as follows:∣∣∣∣∫ x

1

dΠ(u)

us

∣∣∣∣ ≤ ∫ x

1

dΠ(u)

uσ
=

∫ x

1

1− u−1

uσ log u
du+O(1)

=
x1−σ

(1− σ) log x

{
1 +O

(
1

log x

)}
.

We get∣∣∣∣log ζ(s)− log
s

s− 1

∣∣∣∣ ≤
x1−σ

(1− σ) log x

{
1 +O

(
1

log x

)}
+O

(
x1−σ

|t| log x
+|t|xθ−σ

)
.

We next set x = (|t| log|t|)
1

1−θ and obtain that∣∣∣∣log ζ(s)− log
s

s− 1

∣∣∣∣ ≤
|t|

1−σ
1−θ (log|t|)−

σ−θ
1−θ

{
1− θ

1− σ
+O

(
log2|t|

(1− σ) log|t|
+ 1

)}
. (3.2.2)

We use this bound to obtain an asymptotic formula for N via Perron

inversion. It is easier to work with the Perron inversion formula for∫ x
1 N(u) du, since then we get an absolutely convergent integral. Let

x > 1 and κ > 1, then (see e.g. [95, Theorem II.2.5])∫ x

1
N(u) du =

1

2πi

∫ κ+i∞

κ−i∞

xs+1

s(s+ 1)

s

s− 1
exp
(
log ζ(s)− log

s

s− 1

)
ds.

We shift the contour of integration to the one given by

σ(t) = 1− (1− θ)
log2|t|
log|t|

, |t| ≥ ee, (3.2.3)

and σ = 1− (1− θ)/e for |t| ≤ ee. On this contour, we have∣∣∣∣log ζ(σ(t) + it)− log
σ(t) + it

σ(t)− 1 + it

∣∣∣∣ ≤ log|t|
log2|t|

+O(log2|t|).

Denoting the residue of ζ at s = 1 by ρ, we get∫ x

1
N(u) du = x2

{ρ
2
+O

(
x−

1−θ
e + I

)}
,
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where

I =

∫ ∞

ee
exp
(
−(1− θ)

log2 t log x

log t
+

log t

log2 t
− 2 log t+O(log2 t)

)
dt

=

∫ ∞

e
exp

(
−(1− θ)

log u log x

u
− u
(
1− 1

log u

)
+O(log u)

)
du.

Estimating this integral leads to the bound

I ≪ exp
(
−c1

√
(1− θ) log x log2 x

)
, for some c1 > 0.

Finally one can use a simple Tauberian argument and that N is non-

decreasing to obtain an asymptotic formula with similar error term for

N , from the one for
∫ x
1 N(u) du. The result is that for some c2 > 0,

N(x) = ρx+O
(
x exp(−c2

√
(1− θ) log x log2 x)

)
.



Chapter 4

Malliavin’s second problem

In this chapter, we prove Theorem 3.1.5 and hence solve Malliavin’s

second problem. The proof consists of two main steps. First we shall

construct an explicit example of a continuous number system fulfilling

all requirements from the theorem, and then we will discretize it by

means of the probabilistic procedure 2.1.2.

The construction and analysis of the continuous example is quite in-

volved, and will be carried out in Sections 4.1–4.4. The estimate (3.1.4)

will automatically be satisfied by construction; the challenging part is

to match it with the oscillation estimate (3.1.5). We shall deduce this

oscillation estimate from a certain extremal behavior of the associated

zeta function. As a matter of fact, most of the work in the subsequent

sections is a detailed saddle point analysis of this zeta function. Af-

ter establishing that the continuous example satisfies al requirements of

Theorem 3.1.5, we proceed with the discretization procedure in Section

4.5. Theorem 2.1.2 will provide sufficiently strong bounds for the modu-

lus of the relevant zeta functions. However, for our application, we also

need to keep good control on the argument of the randomly found zeta

function, for which the bound (2.1.3) appears to be insufficient. We will

resolve this issue with a new idea of adding finitely many well-chosen

primes to the number system.

45
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4.1 Construction of the continuous example

We explain here the setup for the construction of our continuous exam-

ple, whose analysis shall be the subject of Sections 4.2–4.4. Let us first

provide some motivation for it, restricting ourselves at the moment to

the case α = 1. The proof of Hilberdink and Lapidus, sketched at the

end of Section 3.2, suggests that one has to look for a generalized number

system for which the zeta function has extremal growth along the con-

tour (3.2.3). The bound (3.2.2) we had obtained for log ζ is reminiscent

of the classical convexity bound for Dirichlet series (see e.g. [95, Section

II.1.6]). If F (s) =
∑

n≥1 ann
−s is a Dirichlet series with abscissa of ab-

solute convergence σa = 1 and abscissa of convergence σc = θ ∈ [0, 1),

the convexity bound is the statement that for any σ1 > θ and ε > 0, we

have uniformly for σ1 ≤ σ ≤ 1, |t| ≥ 1,∣∣F (s)∣∣≪σ1,ε |t|
1−σ
1−θ

+ε .

In his thesis [18], H. Bohr provided a construction of a Dirichlet series

which demonstrates that the above bound is essentially optimal (see

also the notes of [95, Chapter II.1]). For Bohr’s example, one considers

a fast-growing sequence (τk)k and a sequence (δk)k with δk → 0 but

still τ δkk → ∞. One then defines the coefficients of the Dirichlet series

recursively via the equality

∑
m≤n

am =


0 if τ

1/2
k < n ≤ τ1+δk

k ,

niτk if τ1+δk
k < n ≤ τ2k ,

1 if τ2k < n ≤ τ
1/2
k+1.

(4.1.1)

One can check that the associated Dirichlet series F has abscissa of

convergence σc = 0 and satisfies the asymptotic relation F (σ + iτk) ∼
(i/σ)τ

1−σ(1+δk)
k . In [21], the author together with Debruyne and Vindas

used a modification of Bohr’s example to show the optimality of Dia-

mond’s theorem in the case α = 1. In a subsequent paper [24], a more

elaborate construction (though still in the same spirit) is provided which

allows one to treat all α ∈ (0, 1], and which also yields sharpness of the

constant c′ = (c(α + 1))
1

α+1 in Theorem 3.1.4. In this chapter we will

give this more elaborate construction.
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We define our continuous Beurling system via its Chebyshev func-

tion ψC . This uniquely defines ΠC and NC by means of the relations

dΠC(u) = (1/ log u) dψC(u) and dNC = exp∗(dΠC). For x ≥ 1, set

ψC(x) = x− 1− log x+

∞∑
k=0

(Rk(x) + Sk(x)). (4.1.2)

Here x− 1− log x =
∫ x
1 log udLi(u) is the main term, the terms Rk are

the deviations which will create a large oscillation in the integers, while

the Sk are introduced to mitigate the jump discontinuity of Rk and make

ψC absolutely continuous. The effect of the terms Sk on the asymptotics

of NC will be harmless. Concretely, we consider fast growing sequences

(Ak)k, (Bk)k, (Ck)k, and (τk)k with Ak < Bk < Ck < Ak+1, and define1

Rk(x) =


1

2

∫ x

Ak

(1− u−1) cos(τk log u) du for Ak ≤ x ≤ Bk,

0 otherwise;

Sk(x) =


Rk(Bk) +

1
2(Bk − 1− logBk)

− 1
2(x− 1− log x)

for Bk < x < Ck,

0 otherwise.

The definition of Rk is reminiscent of the niτk in Bohr’s example (4.1.1).

We require that τk logAk, τk logBk ∈ 2πZ and define Ck as the unique

solution of Rk(Bk) + (1/2)
(
Bk − 1 − logBk − (Ck − 1 − logCk)

)
= 0.

Notice that for Ak ≤ x ≤ Bk,

Rk(x) =
τ2k

2(τ2k + 1)

(
x

τk
sin(τk log x) +

x

τ2k
cos(τk log x)−

Ak

τ2k

)
− sin(τk log x)

2τk
,

Rk(Bk) =
Bk −Ak

2(τ2k + 1)
> 0,

so the definition of Ck makes sense (i.e. Ck > Bk). We will also set

Ak =
√
Bk and

τk = exp
(
c(logBk)

α
)
, (4.1.3)

1The factor 1/2 in the definitions of the functions Rk and Sk shall be needed to

carry out the discretization procedure in the case α = 1 and c > 1/2, cf. Lemma

4.5.1.
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then

Ck = Bk

(
1 +O(exp(−2c(logBk)

α))
)
. (4.1.4)

With these definitions in place, we have that ψC is absolutely continuous,

non-decreasing, and satisfies ψC(x) = x + O
(
x exp(−c(log x)α)

)
, which

implies that2 (3.1.4) holds for ΠC(x) =
∫ x
1 (1/ log u) dψC(u). Finally we

define a sequence (xk)k via the relation

logBk = (c(α+ 1))
−1
α+1 (log xk log2 xk)

1
α+1 + εk. (4.1.5)

Here (εk)k is a bounded sequence which is introduced to control the

value of τk log xk mod 2π (this will be needed later on). It is on the

sequence (xk)k that we will show the oscillation estimate (3.1.5).

We collect all technical requirements of the considered sequences in

the following lemma. The rapid growth of the sequence (Bk)k will be

formulated as a general inequality Bk+1 > max{F (Bk), G(k)}, for some

functions F and G. We will not specify here what F and G we require.

At each point later on where the rapid growth is used, it will be clear

what kind of growth (and which F , G) is needed.

Lemma 4.1.1. Let F , G be increasing functions. There exist sequences

(Bk)k and (εk)k such that, with the definitions of (Ak)k, (Ck)k, (τk)k,

and (xk)k as above, the following properties hold:

(a) Bk+1 > max{F (Bk), G(k)};

(b) τk logAk ∈ 2πZ and τk logBk ∈ 2πZ;

(c) τk log xk ∈ π/2 + 2πZ when k is even, and τk log xk ∈ 3π/2 + 2πZ
when k is odd;

(d) (εk)k is a bounded sequence.

Proof. We define the sequences inductively. Consider the function

f(u) = uecu
α
. Let B0 be some (large) number with f(logB0) ∈ 4πZ, so

that (b) is satisfied with k = 0. Define y0 via

logB0 = (c(α+ 1))
−1
α+1 (log y0 log2 y0)

1
α+1 .

2When α = c = 1, the stronger asymptotic estimate ΠC(x) = Li(x) +O(1) holds.
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We have that τ0 log x0 − τ0 log y0 ≍ −ε0τ0(logB0)
α/ log2B0, if ε0 is

bounded, say, so we may pick an ε0 satisfying even

0 ≤ ε0 ≪ τ−1
0 (logB0)

−α log2B0,

so that τ0 log x0 ∈ π/2 + 2πZ.
Now suppose that Bk and εk, 0 ≤ k ≤ K are defined. Choose a

number BK+1 > max{4(CK)2, F (BK), G(k)} with f(logBK+1) ∈ 4πZ,
taking care of (a) and (b). As before, one might choose εK+1, 0 ≤
εK+1 ≪ τ−1

K+1(logBK+1)
−α log2BK+1 such that (c) holds. Property (d)

is obvious.

In order to deduce the asymptotics of NC , we shall analyze its zeta

function ζC and use an effective Perron formula:

NC(x) =
1

2πi

∫ κ+iT

κ−iT
xsζC(s)

ds

s
+ error term. (4.1.6)

Here κ > 1, the parameter T > 0 is some large number, and the error

term depends on these numbers. As usual the strategy is to push the

contour of integration to the left of σ = Re s = 1; the pole of ζC at

s = 1 will give the main term, while lower order terms will arise from

the integral over the new contour (whose shape will be dictated by the

growth of ζC). In its current form, this approach is not suited for our

problem, since, in general, our zeta function appears to have no mero-

morphic continuation to the left of σ = 1. However, we can remedy this

with the following truncation idea.

Consider x ≥ 1 and let K be such that x < AK+1. We denote by

ψC,K the Chebyshev function defined by (4.1.2), but where the summa-

tion range in the series is altered to the restricted range 0 ≤ k ≤ K.

For x < AK+1 we have ψC,K(x) = ψC(x), and, setting dΠC,K(u) =

(1/ log u) dψC,K(u) and dNC,K(u) = exp∗(dΠC,K(u)), we also have that

NC,K(x) = NC(x) holds in this range. Hence for these x, the above

Perron formula (4.1.6) remains valid if we replace ζC by ζC,K , the zeta

function of NC,K , which does admit meromorphic continuation beyond

σ = 1.

In the following two sections, we will study the Perron integral in

(4.1.6) for x = xK and with ζC replaced by ζC,K . Note that by (a), we
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may assume that xK < AK+1. To asymptotically evaluate this integral,

we will use the saddle point method.

In Section 4.2 we will estimate the contribution from the integral

over the steepest paths through the saddle points. This contribution

will match the oscillation term in (3.1.5). In Section 4.3, we will connect

these steepest paths to each other and to the vertical line [κ− iT, κ+iT ]

and determine that the contribution of these connecting pieces to (4.1.6)

is of lower order than the contribution from the saddle points. We also

estimate the error term in the effective Perron formula in Section 4.4,

and conclude the analysis of the continuous example.

4.2 Analysis of the saddle points

First we compute the zeta function ζC,K . Computing the Mellin trans-

form of ψC,K gives that

−
ζ ′C,K

ζC,K
(s) =

1

s− 1
− 1

s
+

K∑
k=0

(
ηk(s) + η̃k(s) + ξk(s)

)
−

K∑
k=0

(
ηk(s+ 1) + η̃k(s+ 1) + ξk(s+ 1)

)
,

where

ηk(s) =
B1−s

k −A1−s
k

4(1 + iτk − s)
, η̃k(s) =

B1−s
k −A1−s

k

4(1− iτk − s)
,

ξk(s) =
B1−s

k − C1−s
k

2(1− s)
,

(4.2.1)

and where we used property (b) of the sequences (Ak)k, (Bk)k. Inte-

grating gives

log ζC,K(s) = log
s

s− 1
+

K∑
k=0

∫ s+1

s

(
ηk(z) + η̃k(z) + ξk(z)

)
dz,

the integration constant being 0 because log ζC,K(σ) → 0 as σ → ∞.

The main term of the Perron integral formula for NC,K(xK) becomes

1

2πi

∫ κ+iT

κ−iT

xsK
s− 1

exp

( K∑
k=0

∫ s+1

s

(
ηk(z) + η̃k(z) + ξk(z)

)
dz

)
ds.
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Let us recall that the idea of the saddle point method is to estimate an

integral of the form
∫
Γ e

f(s)g(s) ds, with f and g analytic, by shifting

the contour Γ to a contour which passes through the saddle points of

f via the paths of steepest descent. Since the main contribution in the

Perron integral will come from xsK exp(
∫∞
s ηK(z) dz), we will apply the

method with

f(s) = fK(s) = s log xK +

∫ ∞

s
ηK(z) dz, (4.2.2)

g(s) = gK(s) =
1

s− 1
exp

( K∑
k=0

∫ s+1

s

(
ηk(z) + η̃k(z) + ξk(z)

)
dz

−
∫ ∞

s
ηK(z) dz

)
.

(4.2.3)

Note also that by writing
∫∞
s ηK(z) dz as a Mellin transform, we obtain

the alternative representation

∫ ∞

s
ηK(z) dz =

1

4

∫ BK

AK

x−seiτ log x 1

log x
dx =

1

4

∫ 1

1/2

B
(1+iτK−s)u
K

u
du,

(4.2.4)

as we have set AK =
√
BK . In the rest of this section, we will mostly

work with fK , and we will drop the subscripts K where there is no risk

of confusion.

4.2.1 The saddle points

We will now compute the saddle points of f , which are solutions of the

equation

f ′(s) = log x− 1

4
B1−s 1−B(s−1)/2

1 + iτ − s
= 0. (4.2.5)

For integers m, set numbers t±m as t±m = τ +(2πm±π/2)/ logB, and let

Vm be the rectangle with vertices

1−
α
2 log2B

logB
+ it±m,

1

2
+ it±m.

Lemma 4.2.1. Suppose that |m| < log2B. Then f ′ has a unique simple

zero sm in the interior of Vm.
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Proof. We apply the argument principle. Note that from (4.1.5) it fol-

lows that

f ′
(
1

2
+ it−m

)
= − i

2
B1/2

(
1 + o(1)

)
,

f ′
(
1−

α
2 log2B

logB
+ it−m

)
= log x

(
1 + o(1)

)
,

f ′
(
1−

α
2 log2B

logB
+ it+m

)
= log x

(
1 + o(1)

)
,

f ′
(
1

2
+ it+m

)
=

i

2
B1/2

(
1 + o(1)

)
.

On the lower horizontal side of Vm, we have

Im f ′(σ + it−m) =

− B1−σ/4

(1− σ)2 + (τ − t−m)2

{(
1−

√
2

2
B

σ−1
2

)
(1− σ) +

√
2

2
B

σ−1
2 (τ − t−m)

}
< 0,

as the factor in the curly brackets is positive in the considered ranges for

σ and m. Similarly we have Im f ′(σ + it+m) > 0 on the upper horizontal

edge of Vm. On the right vertical edge,

Re f ′
(
1−

α
2 log2B

logB
+ it

)
> 0,

and on the left vertical edge,

f ′
(
1

2
+ it

)
=
B1/2

2
eiπ−i(t−τ) logB

(
1 + o(1)

)
.

Starting from the lower left vertex of Vm and moving in the coun-

terclockwise direction, we see that the argument of f ′ starts off close to

−π/2, increases to about 0 on the lower horizontal edge, remains close

to 0 on the right vertical edge, increases to about π/2 on the upper

horizontal edge, and finally increases to approximately 3π/2 on the left

vertical edge. This proves the lemma.

From now on, we assume that |m| < ε log2B for some small ε > 0.

(In fact, later on we will further reduce the range to |m| ≤ (log2B)3/4.)
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We denote the unique saddle point in the rectangle Vm by sm = σm+itm.

The saddle point equation (4.2.5) implies that

σm = 1− 1

logB

(
log2 x+ log 4− log

∣∣1−B
sm−1

2

∣∣− log

∣∣∣∣ 1

1 + iτ − sm

∣∣∣∣ ),
tm = τ +

1

logB

(
2πm+ arg

(
1−B

sm−1
2
)
− arg

(
1 + iτ − sm

))
,

with the understanding that the difference of the arguments in the for-

mula for tm lies in [−π/2, π/2]. We set

Em = log

∣∣∣∣ 1

1 + iτ − sm

∣∣∣∣ .
Since sm ∈ Vm, we have 0 ≤ Em ≤ log2B. Also log

∣∣1−B(sm−1)/2
∣∣ =

O(1). This implies that

σm = 1− 1

logB

(
log2 x− Em +O(1)

)
,

so that Em = log2B − log3 x+O(1). Here we have also used that

τ − tm ≪ log2B

logB
, and log2B ∼ 1

α+ 1
log2 x,

the last formula following from (4.1.5). This in turn implies that

σm = 1− α log2B +O(1)

logB
, (4.2.6)

where we again used (4.1.5). Combining this with (4.2.5) we get in

particular that

log x =
B1−sm

4(1 + iτ − sm)

(
1 +O

(
(logB)−α/2

))
. (4.2.7)

For tm, we have that

arg(1−B(sm−1)/2) ≪ (logB)−α/2,

arg(1 + iτ − sm) = − 2πm

α log2B
+O

(
1

log2B
+

|m|
(log2B)2

+
|m|3

(log2B)3

)
.

We get that

tm = τ +
1

logB

{
2πm

(
1 +

1

α log2B

)
+O

(
1

log2B
+

|m|
(log2B)2

+
|m|3

(log2B)3

)}
.

(4.2.8)
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Also, it is important to notice that t0 = τ . We remark as well that σ0

and t0 are related via the formula

σ0 = 1− c1/α
log2 t0 +O(1)

(log t0)1/α
,

which can be compared with the contour (3.2.3) in the Hilberdink–

Lapidus proof in the case α = 1, c = 1− θ.

The main contribution to the Perron integral (4.1.6) will come from

the saddle point s0. We will show that the contribution from the other

saddle points sm, m ̸= 0, is of lower order. This will require a finer

estimate for σm, which is the subject of the following lemma.

Lemma 4.2.2. There exists a fixed constant d > 0, independent of K

and m, such that for |m| ≤ (log2B)3/4, m ̸= 0,

σm ≤ σ0 −
d

logB(log2B)2
.

Proof. We use (4.2.6) and (4.2.8) to get a better estimate for Em, which

will in turn yields a better estimate for σm. We iterate this procedure

three times.

The first iteration yields

σm = 1− 1

logB

{
log2 x− log2B+log3B+log 4+ logα+O

(
1 +|m|
log2B

)}
.

Write Y = log2 x− log2B + log3B and note that Y ≍ log2B. Iterating

a second time, we get

σm = 1− 1

logB

{
log2 x− log2B + log Y + log 4

+
log 4 + logα

Y
+O

(
1 +m2

(log2B)2

)}
.

We now set Y ′ = log2 x−log2B+log Y , and note again that Y ′ ≍ log2B.

A final iteration gives

σm = 1− 1

logB

{
log2 x− log2B+ log Y ′+ log 4+

log 4

Y ′ +
log 4 + logα

Y Y ′

− (log 4)2

2Y ′2 +
2π2m2

Y ′2 − 4π4m4

Y ′4 +O

(
1 +m2

(log2B)3

)}
The lemma now follows from comparing the above formula in the case

m = 0 with the case m ̸= 0.
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Near the saddle points we will approximate f and f ′ by their Taylor

polynomials.

Lemma 4.2.3. There are holomorphic functions λm and λ̃m such that

f(s) = f(sm) +
f ′′(sm)

2
(s− sm)2(1 + λm(s)),

f ′(s) = f ′′(sm)(s− sm)(1 + λ̃m(s)),

and with the property that for each ε > 0 there exists a δ > 0, indepen-

dent of K and m, such that

|s− sm| < δ

logB
=⇒

∣∣λm(s)
∣∣+∣∣λ̃m(s)

∣∣ < ε.

Proof. We have

f ′′(s) = (logB)
B1−s − 1

2B
(1−s)/2

4(1 + iτ − s)
− B1−s −B(1−s)/2

4(1 + iτ − s)2
,

∣∣f ′′(sm)
∣∣ ≍ (logB)α(logB)2

log2B
,

where we have used (4.2.6), and

f ′′′(s) = −(logB)2
B1−s − 1

4B
(1−s)/2

4(1 + iτ − s)

+ (logB)
B1−s − 1

2B
(1−s)/2

2(1 + iτ − s)2
− B1−s −B(1−s)/2

2(1 + iτ − s)3
.

If |s− sm| ≪ 1/ logB, then

∣∣f ′′′(s)∣∣≪ (logB)α(logB)3

log2B
.

It follows that ∣∣∣∣ f ′′′(s)f ′′(sm)
(s− sm)

∣∣∣∣ < ε,

if |s− sm| < δ/ logB, for sufficiently small δ. The lemma now follows

from Taylor’s formula.
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4.2.2 The steepest path through s0

The equation for the path of steepest descent through s0 is

Im f(s) = Im f(s0) under the constraint Re f(s) ≤ Re f(s0).

Using the formula (4.2.4) for
∫∞
s η(z) dz, we get the equation

t log x− 1

4

∫ 1

1/2
B(1−σ)u sin

(
(t− τ)(logB)u

)du
u

= τ log x.

Setting θ = (t− τ) logB, this is equivalent to

θ
log x

logB
=

1

4

∫ 1

1/2
B(1−σ)u sin(θu)

du

u
. (4.2.9)

Note that, as t varies between t−0 and t+0 , θ varies between −π/2 and

π/2. This equation has every point of the line θ = 0 as a solution.

However, one readily sees that the line θ = 0 is the path of steepest

ascent, since Re f(s) ≥ Re f(s0) there. We now show the existence of a

different curve through s0 of which each point is a solution of (4.2.9).

This is then necessarily the path of steepest descent. For each fixed

θ ∈ [−π/2, π/2] \ {0}, equation (4.2.9) has a unique solution σ = σθ,

since the right hand side is a continuous and monotone function of σ,

with range R≷0, if θ ≷ 0. This shows the existence of the path of

steepest descent Γ0 through s0. This path connects the lines θ = −π/2
and θ = π/2.

One can easily see that

σθ = σ0 −
aθ

logB
, where |aθ| ≪ 1.

Integrating by parts, we see that

1

4

∫ 1

1/2
B(1−σθ)u sin(θu)

du

u

=
1

4
sin θ

B1−σθ

(1− σθ) logB

(
1 +O

(
(logB)−α/2

)
+O

(
(log2B)−1

))
=

sin θ

4 logB

B1−σ0

1− σ0
eaθ
(
1 +O

(
(log2B)−1

))
= sin θ

log x

logB
eaθ
(
1 +O

(
(log2B)−1

))
,
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where we used (4.2.7) in the last line. Equation (4.2.9) then implies that

eaθ =
θ

sin θ
+O

(
(log2B)−1

)
. (4.2.10)

Let γ now be a unit speed parametrization of this path of steepest

descent:

γ : [y−, y+] → Γ0, Im γ(y−) = τ − π/2

logB
,

γ(0) = s0, Im γ(y+) = τ +
π/2

logB
,
∣∣γ′(y)∣∣ = 1.

The fact that Γ0 is the path of steepest descent implies that for y < 0,

γ′(y) is a positive multiple of f ′(γ(y)), while for y > 0, γ′(y) is a negative

multiple of f ′(γ(y)). We now show that the argument of the tangent

vector γ′(y) is sufficiently close to π/2.

Lemma 4.2.4. For y ∈ [y−, y+],
∣∣arg(γ′(y)e−iπ/2

)∣∣ < π/5.

Proof. We consider two cases: the case where s is sufficiently close to

s0 so that we can apply Lemma 4.2.3 to estimate the argument of f ′,

and the remaining case, where we will estimate this argument via the

definition of f .

We apply Lemma 4.2.3 with ε = 1/5 to find a δ > 0 such that for

|s− s0| < δ/ logB,

h(s) := f(s)− f(s0) =
f ′′(s0)

2
(s− s0)

2(1 + λ0(s)),
∣∣λ0(s)∣∣ < 1

5
.

Set s− s0 = reiϕ with r < δ/ logB and −π < ϕ ≤ π. Using that f ′′(s0)

is real and positive, we have

Reh(s) =
f ′′(s0)

2
r2
(
(1 + Reλ0(s)) cos 2ϕ− (Imλ0(s)) sin 2ϕ

)
Imh(s) =

f ′′(s0)

2
r2
(
(1 + Reλ0(s)) sin 2ϕ+ (Imλ0(s)) cos 2ϕ

)
.

Suppose s ∈ Γ0 \ {s0} with |s− s0| < δ/ logB. Then Reh(s) < 0 and

Imh(s) = 0. The condition Reh(s) < 0 implies that ϕ ∈ (−4π/5,−π/5)∪
(π/5, 4π/5) say, as

∣∣λ0(s)∣∣ < 1/5. In combination with Imh(s) = 0 this

implies that ϕ ∈ (−3π/5,−2π/5)∪ (2π/5, 3π/5) whenever s ∈ Γ0 \ {s0},
|s− s0| < δ/ logB. Again by Lemma 4.2.3,

f ′(s) = f ′′(s0)re
iϕ(1 + λ̃0(s)),

∣∣λ̃0(s)∣∣ < 1

5
.
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It follows that
∣∣arg(γ′(y)e−iπ/2

)∣∣ < π/5 when
∣∣γ(y)− s0

∣∣ < δ/ logB.

It remains to treat the case
∣∣γ(y)− s0

∣∣ ≥ δ/ logB. For these points,

we have that δ/2 ≤|θ| ≤ π/2, where we used the notation θ = (Im γ(y)−
τ) logB as before. Set γ(y) = s = σ + it with σ = σ0 − aθ/ logB.

Recalling that τ logB ∈ 4πZ, we obtain the following explicit expression

for f ′:

f ′(s) = log x− 1/4

(1− σ)2 + (t− τ)2
{
B1−σX −B(1−σ)/2Y

}
,

with

X = (1− σ) cos θ +
θ sin θ

logB
+ i

(
(1− σ) sin θ − θ cos θ

logB

)
,

Y = (1− σ) cos(θ/2) +
θ sin(θ/2)

logB
+ i

(
(1− σ) sin(θ/2)− θ cos(θ/2)

logB

)
.

Using (4.2.7) and (4.2.10), we see that

Im f ′(s) = − log x
(
θ +O

(
(log2B)−1

))
,

Re f ′(s) = log x
(
1− θ cot θ +O

(
(log2B)−1

))
.

This implies∣∣arg(γ′(y)e−iπ/2
)∣∣ = ∣∣arctan(1/θ − cot θ +Oδ

(
(log2B)−1

))∣∣ < π

5
.

The last inequality follows from the fact that
∣∣1/θ − cot θ

∣∣ < 2/π for

θ ∈ [−π/2, π/2], and that arctan(2/π) ≈ 0.18π < π/5.

4.2.3 The contribution from s0

We will now estimate the contribution from s0, by which we mean

1

π
Im

∫
Γ0

ef(s)g(s) ds,

and where f and g are given by (4.2.2) and (4.2.3) respectively. We

have combined the two pieces in the upper and lower half-plane
∫
Γ0

and

−
∫
Γ0

into one integral using ζC(s) = ζC(s). To estimate this integral,

we will use the following simple lemma.
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Lemma 4.2.5. Let a < b and suppose that F : [a, b] → C is integrable.

If there exist θ0 and ω with 0 ≤ ω < π/2 such that
∣∣∣arg(F e−iθ0)

∣∣∣ ≤ ω,

then ∫ b

a
F (u) du = ρei(θ0+φ)

for some real numbers ρ and φ satisfying

ρ ≥ (cosω)

∫ b

a

∣∣F (u)∣∣ du and |φ| ≤ ω.

Proof. Assume that F is not identically zero (that case is trivial) and

write F (u) = R(u)eiθ(u) with
∣∣θ(u)− θ0

∣∣ ≤ ω. Then,∫ b

a
F (u) du = eiθ0

(∫ b

a
R(u) cos

(
θ(u)− θ0

)
du

+ i

∫ b

a
R(u) sin

(
θ(u)− θ0

)
du

)
.

The modulus of this expression is at least∫ b

a
R(u) cosω du,

while

|φ| = arctan

∣∣∣∣∣∣
∫ b
a R(u) sin

(
θ(u)− θ0

)
du∫ b

a R(u) cos
(
θ(u)− θ0

)
du

∣∣∣∣∣∣ ≤ arctan
sinω

cosω
= ω.

We will estimate g with the following lemma.

Lemma 4.2.6. Suppose s = σ + it satisfies

σ ≥ 1−O

(
log2BK

logBK

)
, t≫ τK ,

and let ε > 0. If K is sufficiently large, K > K(ε), then∣∣∣∣∣∣
K−1∑
k=0

∫ s+1

s

(
ηk(z) + η̃k(z) + ξk(z)

)
dz

∣∣∣∣∣∣
+

∣∣∣∣∣
∫ s+1

s

(
η̃K(z) + ξK(z)

)
dz

∣∣∣∣∣+
∣∣∣∣∣
∫ ∞

s+1
ηK(z) dz

∣∣∣∣∣ < ε.
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Proof. By the definition (4.2.1) of the functions ηk, η̃k, and ξk, we have

K∑
k=0

∫ s+1

s
ξk(z) dz ≪

K∑
k=0

C1−σ
k

|s| logCk
≪ K

(logBK)O(1)

τK
,

where in the last step we used that CK ≍ BK by (4.1.4). This quantity

is bounded by exp
(
logK−c(logBK)α+O(log2BK)

)
, which can be made

arbitrarily small by taking K sufficiently large, due to the rapid growth

of (Bk)k (property (a)). The condition t ≫ τK together with the rapid

growth of (τk)k implies that |1± iτk − s| ≫ τK , for 0 ≤ k ≤ K − 1 (at

least when K is sufficiently large). Hence,

K−1∑
k=0

∫ s+1

s
(ηk(z) + η̃k(z)) dz ≪

K−1∑
k=0

B1−σ
k

τK logBk

≪ exp
(
logK − c(logBK)α +O(log2BK)

)
.

Finally we have∫ s+1

s
η̃K(z) dz ≪

B1−σ
K

τK logBK
= exp

(
−c(logBK)α +O(log2BK)

)
,∫ ∞

s+1
ηK(z) dz ≪

B−σ
K

logBK
.

In particular we may assume that on the contour Γ0, these terms are

in absolute value smaller than π/40, say. Also, 1/|s− 1| ∼ 1/τK and∣∣arg(eiπ/2/(s− 1)
)∣∣ < π/40 on Γ0. We have∫

Γ0

ef(s)g(s) ds = ef(s0)
∫
Γ0

ef(s)−f(s0)g(s) ds.

We now apply Lemma 4.2.5 to estimate the size and argument of this

integral. By Property (c) and Lemma 4.2.4 we get that∫
Γ0

ef(s)g(s) ds = (−1)KRei(π/2+φ),

R≫ eRe f(s0)

τK

∫ y+

y−
exp
(
f(γ(y))− f(s0)

)
dy, |φ| < π

5
+

π

40
+

π

40
=
π

4
.

Note that f(γ(y)) − f(s0) is real. In order to bound the remaining

integral from below, we restrict the range of integration to the points
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s = γ(y) in the disk B(s0, δ/ logB), so that we may approximate f by

means of Lemma 4.2.3. We have

f(γ(y))− f(s0) =
f ′′(s0)

2
(γ(y)− s0)

2(1 + λ0(γ(y))).

Now f ′′(s0) is real, f
′′(s0) = logB log x

(
1 +O((log2B)−1)

)
, and

(γ(y)− s0)
2(1 + λ0(γ(y))) = −

∣∣γ(y)− s0
∣∣2∣∣1 + λ0(γ(y))

∣∣ ≥ −2y2,

if we take a value for δ provided by Lemma 4.2.3 corresponding to the

choice ε = 1 say. Hence the integral
∫ y+

y− exp
(
f(γ(y)) − f(s0)

)
dy is

bounded from below by

∫ δ/ logB

−δ/ logB
exp
(
−2(logB log x)y2

)
dy ≫δ min

(
1

logB
,

1√
logB log x

)
=

1√
logB log x

.

We conclude that the contribution from s0 has sign (−1)K and has

absolute value bounded from below by

x

τ
exp

(
−(1− σ0) log x+

∫ ∞

s0

η(z) dz +O(log2 x)

)
. (4.2.11)

Let us now estimate
∫∞
s η(z) dz. We use the representation (4.2.4)

and integrate by parts three times,

∫ ∞

s
η(z) dz =

B1+iτ−s − 2B(1+iτ−s)/2

4(1 + iτ − s) logB
+
B1+iτ−s − 4B(1+iτ−s)/2

4((1 + iτ − s) logB)2

+
B1+iτ−s − 8B(1+iτ−s)/2

2((1 + iτ − s) logB)3

+
3

2((1 + iτ − s) logB)3

∫ 1

1/2

B(1+iτ−s)u

u4
du. (4.2.12)

Although we did not have to perform partial integration to obtain the

contribution (4.2.14) from s0 below, we shall require these finer estimates
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for
∫∞
s η(z) dz later on. For s = s0 we get∫ ∞

s0

η(z) dz =
B1−σ0

4(1− σ0) logB
+

B1−σ0

4(1− σ0)2(logB)2

+
B1−σ0

2(1− σ0)3(logB)3
+O

(
B1−σ0

(1− σ0)4(logB)4

)
=

log x

logB

{
1 +

1

(1− σ0) logB
+

2

((1− σ0) logB)2

+O

(
1

((1− σ0) logB)3

)}
, (4.2.13)

where we have used (4.2.7). Combining the above with the estimate

(4.2.6) for σ0 and the relations (4.1.3) and (4.1.5) between τ and B, and

x and B respectively, we get that the contribution from s0 has absolute

value which is bounded from below by

x exp

{
−(c(α+1))

1
α+1 (log x log2 x)

α
α+1

(
1+

α

α+ 1

log3 x

log2 x
+O

(
1

log2 x

))}
.

(4.2.14)

4.2.4 The steepest paths through sm, m ̸= 0.

We now consider the contributions from the other saddle points. In this

case by such contributions we mean

1

π
Im

∫
Γm

ef(s)g(s) ds,

where Γm is some contour which connects the two horizontal lines t = t−m
and t = t+m. This contribution will be of lower order than that of s0.

We shall again use the method of steepest descent; just taking some

simple choice for Γm (e.g. a vertical line segment) and estimating the

integral via the triangle inequality appears to be insufficient for small m.

We consider |m| ≤ M := ⌊(log2B)3/4⌋. The part of the Perron integral

where t < t−−M or t > t+M can be estimated without appealing to the

saddle point method, and this will be done in the next section.

We want to show that we can connect the two lines t = t−m and

t = t+m with the path of steepest decent through sm. We first consider

the steepest path in a small neighborhood of sm. By applying Lemma
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4.2.3 with ε = 1/5, we find some δ′ > 0 (independent of K and m) such

that

f(s)− f(sm) =
f ′′(sm)

2
(s− sm)2(1 + λm(s)) =: (ψm(s))2,

where
∣∣λm(s)

∣∣ < 1/5 for s ∈ B(sm, δ
′/ logB), and where ψm is a holo-

morphic bijection of B(sm, δ
′/ logB) onto some neighborhood U of 0.

The path of steepest descent Γm in B(sm, δ
′/ logB) is the inverse im-

age under ψm of the curve {z ∈ U : Re z = 0}. Since f ′′(sm) =

logB log x
(
1+O((log2B)−1)

)
(which follows from (4.2.7)), we have that

Re
(
f(s)− f(sm)

)
=

∣∣f ′′(sm)
∣∣

2
r2
{
(1 + Reλm(s)) cos 2ϕ

− (Imλm(s)) sin 2ϕ+O((log2B)−1)
}
,

where we have set s−sm = reiϕ. Points s ∈ Γm \{sm} satisfy Re
(
f(s)−

f(sm)
)
< 0, and since

∣∣λm(s)
∣∣ < 1/5, it follows from the above equa-

tion that such points lie in the union of the sectors ϕ ∈ (π/5, 4π/5) ∪
(−π/5,−4π/5), say. We have that Γm \ {sm} is the union of two curves

Γ+
m and Γ−

m where Γ+
m lies in the sector ϕ ∈ (π/5, 4π/5), and Γ−

m lies in

the sector ϕ ∈ (−π/5,−4π/5). (It is impossible that both pieces lie in the

same sector, since the angle between Γ+
m and Γ−

m at sm equals π, as ψ−1
m

is conformal.) Both Γ+
m and Γ−

m intersect the circle ∂B(sm, δ
′/(2 logB)),

which can be seen from the fact that ψm(Γ+
m) and ψm(Γ−

m) both intersect

the closed curve ψm(∂B(sm, δ
′/(2 logB))). From this it follows that the

path of steepest descent Γm connects the lines t = tm − δ/ logB and

t = tm + δ/ logB, where δ = (δ′/2) sin(π/5). Since f ′(s) = f ′′(sm)(s −
sm)(1 + λ̃m(s)), with also

∣∣λ̃m(s)
∣∣ < 1/5, it follows that arg f ′(s) ∈

(π/10, 9π/10) if ϕ ∈ (π/5, 4π/5), and arg f ′(s) ∈ (−9π/10,−π/10) if

ϕ ∈ (−4π/5,−π/5). This implies that the tangent vector of Γm has

argument contained in (π/10, 9π/10) (when Γm is parametrized in such

a way that we move in the upward direction). From this it follows that

the length of Γm in the neighborhood B(sm, δ
′/(2 logB)) is bounded by

O(δ/ logB).

For the continuation of Γm outside this neighborhood of sm, we argue

as follows. We again set θ = (t− τ) logB, and we consider the range

θ ∈ [2πm− π/2, 2πm+ π/2] \ [2πm− δ/2, 2πm+ δ/2]. (4.2.15)
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The equation for the steepest paths through sm, Im f(s) = Im f(sm),

gives

tm log x− 1

4

∫ 1

1/2
B(1−σm)u sin

(
(tm − τ)(logB)u

)du
u

= t log x− 1

4

∫ 1

1/2
B(1−σ)u sin(θu)

du

u
,

which is equivalent to

(t− tm) log x+
1

4

∫ 1

1/2
B(1−σm)u sin

(
(tm − τ)(logB)u

)du
u

=
1

4

∫ 1

1/2
B(1−σ)u sin(θu)

du

u
. (4.2.16)

Also the points on the path of steepest ascent satisfy this equation, but

we will show that for fixed θ in the range (4.2.15), the above equation has

a unique solution for σ (in a sufficiently large range for σ that contains

σm). These solutions necessarily form the continuation of the path of

steepest descent in the neighborhood B(sm, δ
′/(2 logB)).

We consider θ in the range (4.2.15) fixed (so also t is fixed). We have

sin θ ≫δ 1. The right hand side of (4.2.16) is a monotone function of σ

for σ in the range σ = 1− α
(
log2B +O(1)

)
/ logB:

∂RHS

∂σ
= −1

4

∫ 1

1/2
B(1−σ)u logB sin(θu) du

= −
1
4B

1−σ

(1− σ)2 + (θ/ logB)2

(
(1− σ) sin θ − θ cos θ

logB

)(
1 +Oδ(B

(σ−1)/2)
)
.

Since|θ| ≪ (log2B)3/4, this indeed has a fixed sign in the aforementioned

range. By setting σ = σm−a/ logB for some large positive and negative

values of a, one can conclude that (4.2.16) has a unique solution. Indeed,

integrating by parts gives

LHS = (t− tm) log x+O

(
log x

logB

|m|
log2B

)
,

RHS = ea
log x

logB
sin θ

(
1 +Oδ

(
|m|

log2B

))
.



4.2. Analysis of the saddle points 65

Here we used that

sin((tm − τ) logB) ≪ |m|
log2B

,
B1−σ

4(1− σ)
= ea log x

(
1 +O

(
|m|

log2B

))
,

by (4.2.8) and (4.2.7), (4.2.6), (4.2.8) respectively. Since t − tm = (θ −
2πm)/ logB + O(|m| /(logB log2B)) by (4.2.8), it follows that LHS ≶

RHS if a is sufficiently large or small, respectively. This shows that we

can connect the lines t = t−m and t = t+m with the path of steepest descent

Γm.

Denoting the solutions of (4.2.16) for σ at θ = 2πm ± π/2 by σ±m,

and setting σ±m = σm− a±m/ logB, the above calculations also show that

a±m = log
π

2
+O

(
|m|

log2B

)
,

so

σ±m = σm − log(π/2)

logB
+O

(
(logB)−1(log2B)−1/4

)
. (4.2.17)

Finally we need that the length of Γm is not too large. For the part

inside the neighborhood B(sm, δ
′/(2 logB)), this was already remarked

at the beginning of this subsection. Outside this neighborhood, we use

that ∂
∂σRHS ≫δ log x,

∂
∂θRHS ≪ log x/ logB and ∂

∂θLHS = log x/ logB,

so that d
dθ σ(θ) ≪δ 1/ logB. This implies that length(Γm) ≪ 1/ logB.

4.2.5 The contributions from sm, m ̸= 0

On the path of steepest descent Γm, Re f reaches its maximum at sm.

This together with Lemma 4.2.6 implies the following bound for the

contribution of sm, m ̸= 0:

Im
1

π

∫
Γm

ef(s)g(s) ds

≪ x

τ
exp

(
−(1− σm) log x+Re

∫ ∞

sm

η(z) dz

)
length(Γm).



66 Chapter 4. Malliavin’s second problem

Using (4.2.12), (4.2.7), the inequality|1 + iτ − sm| > 1−σ0, and (4.2.13),

we get

Re

∫ ∞

sm

η(z) dz

≤ log x

logB

{
1 +

1

|1 + iτ − sm| logB
+

2

(|1 + iτ − sm| logB)2

+O

(
1

(|1 + iτ − sm| logB)3

)}
≤
∫ ∞

s0

η(z) dz +O

(
log x

(logB)(log2B)3

)
.

Combining this with Lemma 4.2.2, we see that the contribution of sm is

bounded by

x

τ
exp

{
−(1− σ0) log x+

∫ ∞

s0

η(z) dz

− d
log x

logB(log2B)2
+O

(
log x

logB(log2B)3

)}
.

Since
log x

logB(log2B)2
≍ (log x)

α
α+1

(log2 x)
2α+3
α+1

tends to infinity, this is of strictly lower order than the contribution

of s0, (4.2.11). The same holds for
∑

0<|m|≤M

∫
Γm

ef(z)g(z) dz, since

summing all these contributions enlarges the bound only by a factor

M = exp(O(log3 x)).

4.3 The remainder in the contour integral

Let us recall that the main goal is to estimate the Perron integral

1

2πi

∫
ζC,K(s)

xsK
s

ds =
1

2πi

∫
ef(s)g(s) ds,

where the integral is along some suitable contour connecting the points

κ±iT for some κ > 1, T > 0, which will be specified later. We refer again

to the definitions of f and g: (4.2.2) and (4.2.3). In the previous section,

we have used the fact that ζC,K is very large near the saddle point s0

to show that the integral along a small contour Γ0 passing through s0
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is also very large. This should be considered the “main term” in our

estimate for the Perron integral. The zeta function is also large around

the other saddle points sm, m ̸= 0, but since these are slightly to the left

of s0, x
s is smaller there. This turned out to be enough to show that the

integrals along similar contours Γm through sm, m ̸= 0 combined are of

lower order than the main term.

In this section, we estimate “the remainder”, which consists of three

parts. First we have to connect the steepest paths Γm to each other.

This forms one contour near the saddle points, which we have to connect

to the “standard” Perron contour [κ− iT, κ+ iT ]. Finally, we also have

to estimate the remainder in the effective Perron formula (4.1.6).

4.3.1 Connecting the steepest paths

Let Υm be the line segment connecting σ+m−1 + it+m−1 to σ−m + it−m if

m > 0, and connecting σ+m + it+m to σ−m+1 + it−m+1 if m < 0. By previous

calculations ((4.2.10) and (4.2.17)), we know that the real part on these

lines is bounded by σ0 − log(π/2)
2 logB , say. Furthermore, Re

∫∞
s η(z) dz is

significantly smaller on these lines than at the saddle points. Indeed,

using (4.2.12) and the fact that

Re
B1+iτ−s

1 + iτ − s
=

B1−σ

(1− σ)2 + (t− τ)2
×(

cos
(
(t− τ) logB

)
(1− σ) + (t− τ) sin

(
(t− τ) logB

))
,

we have

Re

∫ ∞

s
η(z) dz = Re

B1+iτ−s − 2B(1+iτ−s)/2

4(1 + iτ − s) logB
+O

(
B1−σ

(log2B)2

)
≤ (t− τ)B1−σ

4(1− σ)2 logB
+O

(
B1−σ

(log2B)2

)
≪ log x

(logB)(log2B)1/4
, (4.3.1)

for s ∈ Υm. In the first inequality we used that cos
(
(t − τ) logB

)
≤ 0,

and for the second estimate we employed (4.2.7) and that σ − σ0 ≪
1/ logB (which follows from (4.2.17) and (4.2.6)), together with the
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bound (t− τ)/(1− σ) ≪ (log2B)−1/4. Using Lemma 4.2.6 to bound g,

we see that

∑
0<|m|≤M

∫
Υm

ef(s)g(s) ds

≪ x

τ
exp

(
−(1−σ0) log x−

log(π/2)

2

log x

logB
+O

(
log x

(logB)(log2B)1/4

))
,

which is negligible with respect to the contribution from s0, in view of

(4.2.11) and (4.2.13).

4.3.2 Returning to the line [κ− iT, κ+ iT ]

We will now connect the contour near the saddle points to the line

[κ− iT, κ+ iT ]. First we need another lemma to bound g.

Lemma 4.3.1. Suppose s = σ + it satisfies

σ ≥ 1−O

(
log2BK

logBK

)
, t ≥ 0.

Then,

K−1∑
k=0

∫ s+1

s

(
ηk(z) + η̃k(z) + ξk(z)

)
dz

+

∫ s+1

s

(
η̃K(z) + ξK(z)

)
dz −

∫ ∞

s+1
ηK(z) dz ≪ 1.

Proof. The sum of the integrals
∫∞
s+1 is trivially bounded. Recall that

∫ ∞

s
ηk(z) dz =

1

4

∫ ∞

s

B1−z
k −B

(1−z)/2
k

1 + iτk − z
dz =

1

4

∫ 1

1/2

B
(1+iτk−s)u
k

u
du.

Let k < K.

Case 1: t ≤ τk/2 or t ≥ 2τk. Then the above integral is bounded by

B1−σ
k

τk logBk
≤ 1

τk
exp

{
O

(
log2BK

logBK
logBk

)}
≪ 1

τk
,

where the fast growth of (Bk)k was used (property (a)).
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Case 2: τk/2 < t < 2τk. Then we use the second integral representation

for
∫∞
s ηk(z) dz and get the bound B1−σ

k ≪ 1. This case occurs at most

once.

Since
∑

k(1/τk) converges, this deals with the terms involving ηk;

bounding the terms with η̃k, k < K is completely analogous, except

that in this case we can always use the bound from Case 1 since

|1− iτk − s| ≫ τk (since t ≥ 0). Also∫ ∞

s
η̃K(z) dz ≪ 1

τK
exp(O(log2BK))

= exp
(
O(log2BK)− c(logBK)α

)
≪ 1.

Finally for k ≤ K,∫ ∞

s
ξk(z) dz = −1

2

∫ logCk/ logBk

1

B
(1−s)u
k

u
du≪

(
logCk

logBk
− 1

)
C1−σ
k

≪ exp

{
−2c(logBk)

α +O

(
log2BK

logBK
logCk

)}
≪ exp

(
−c(logBk)

α
)
=

1

τk
,

where we used (4.1.4).

Recall that we have set M = ⌊(log2B)3/4⌋. Set T±
1 = t±±M . We

now connect the point σ−−M + iT−
1 to some point on the real axis3, and

σ+M + iT+
1 to the point κ + iT by a number of line segments (κ and T

will be specified later). In what follows, we will use expressions in the

style “The segment ∆ contributes ≪ F , which is negligible”, by which

we mean that
∫
∆ ef(s)g(s) ds≪ F and that F is of lower order than the

contribution of s0 (4.2.11). We will also apply Lemma 4.3.1 repeatedly,

without referring to it each time.

First we connect σ+M + iT+
1 to σ0 + iT+

1 , and similarly σ−−M + iT−
1 to

σ0 + iT−
1 . By (4.3.1), this contributes

≪ xσ0

τ
exp

(
O

(
log x

(logB)(log2B)1/4

))
,

3The “complete” contour will consist of the contour described in this section in

the upper half-plane, together with its reflection across the real axis in the lower

half-plane. As mentioned before, it suffices to only consider the part in the upper

half-plane, since ζC,K(s) = ζC,K(s).
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which is negligible. Next, set T±
2 = τ ± exp

(
(logB)α/2

)
, ∆+

1 = [σ0 +

iT+
1 , σ0 + iT+

2 ], ∆−
1 = [σ0 + iT−

2 , σ0 + iT−
1 ]. We require a better bound

for
∫∞
s η(z) dz on these lines. Integrating by parts, one sees that∫ ∞

s
η(z) dz =

1

4

∫ ∞

s

B1−z −B(1−z)/2

1 + iτ − z
dz

=
B1−s − 2B(1−s)/2

4(1 + iτ − s)(logB)
+O

(
(logB)α

(log2B)2

)
,

if Re s = σ0. If |t− τK | ≥ (log2B)3/4/(2 logB) say, then for some r > 0,

1

|1 + iτ − s|
≤ 1

1− σ0

(
1− r

(
t− τ

1− σ0

)2)
≤ 1

1− σ0

(
1− r/4

(log2B)1/2

)
.

Hence,

Re

∫ ∞

s
η(z) dz ≤ log x

logB

(
1− r/4

(log2B)1/2

)
+O

(
log x

(logB)(log2B)

)
.

If furthermore |t− τ | ≥ 1, then

Re

∫ ∞

s
η(z) dz ≪ B1−σ0

logB
≍ (logB)α−1 ≪ 1.

These bounds imply that the contribution from ∆±
1 is

≪ xσ0

τ

{
exp

(
log x

logB

(
1− r/4

(log2B)1/2

)
+O

(
log x

(logB)(log2B)

))
+ exp

(
(logB)α/2

)}
,

which is admissible. Next, we set

σ′ = σ0 − 2
c(logB)α

log x
= σ0 −O

(
log2B

logB

)
,

so that xσ
′
= xσ0/τ2. Set ∆±

2 = [σ′ + iT±
2 , σ0 + iT±

2 ]. For σ ≥ 1 −
O
(
log2B/ logB

)
and |t− τ | ≥ exp

(
(logB)α/2

)
,

Re

∫ ∞

s
η(z) dz ≪ exp

(
−(logB)α/2 +O(log2B)

)
≪ 1,

so the contribution from ∆±
2 is ≪ xσ0/τ , which is negligible. Let now

T+
3 = x2, ∆+

3 = [σ′ + iT+
2 , σ

′ + iT+
3 ], and ∆−

3 = [σ′, σ′ + iT−
2 ]. We have
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that ∫
∆+

3

≪ xσ
′
∫ T+

3

T+
2

dt

t
≪ xσ0

τ2
log x,

∫
∆−

3

≪ xσ
′
(∫ T−

2

1

dt

t
+

1

|σ′ − 1|

)
≪ xσ0

τ2

(
(logB)α +

logB

log2B

)
.

Both of these are admissible. Finally we set ∆+
4 = [σ′ + iT+

3 , 3/2 +

iT+
3 ]. This segment only contributes ≪ x3/2/T+

3 = 1/
√
x. We have now

connected our contour to the line [κ − iT, κ + iT ], with κ = 3/2 and

T = T+
3 = x2.

4.4 Conclusion of the analysis of the continuous

example

By an effective Perron formula, e.g. [95, Theorem II.2.3], we have that4

NC,K(x) =
1

2

(
NC,K(x+) +NC,K(x−)

)
=

1

2πi

∫ κ+iT

κ−iT
ζC,K(s)

xs

s
ds

+O

(
xκ
∫ ∞

1−

1

uκ
(
1 + T

∣∣log(x/u)∣∣) dNC,K(u)

)
.

We apply it with x = xK , κ = 3/2, and T = (xK)2. Let us first deal

with the error term in the effective Perron formula. We have for every

K:

dNC,K(u) = exp∗(dΠC,K(u)) ≤ exp∗(2 dLi(u))

= (δ1(u) + du) ∗ (δ1(u) + du) = δ1(u) + 2 du+ log udu.

Hence this error term is bounded by

x3/2

T log x
+ x3/2

∫ ∞

1

2 + log u

u3/2
(
1 + T

∣∣log(x/u)∣∣) du
≪ 1√

x log x
+ x3/2

(
1

x2
+

log x

x3/2

)
≪ log x.

4The theorem in [95] is only formulated in terms of discrete measures dA =∑
n anδn. One can easily verify that the result holds for general measures of locally

bounded variation dA, upon replacing
∑

n . . .|an| by
∫∞
1− . . .|dA|.
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We shift the contour in the integral to the contour described in the

previous sections. We showed that the integral along the shifted contour

has sign (−1)K , and has absolute value bounded from below by

xK exp

{
−(c(α+ 1))

1
α+1 (log xK log2 xK)

α
α+1×(

1 +
α

α+ 1

log3 xK
log2 xK

+O

(
1

log2 xK

))}
,

see (4.2.14). Shifting the contour also gives a contribution from the pole

at s = 1, which is ρC,KxK , where

ρC,K = Res
s=1

ζC,K(s) = exp

( K∑
k=0

∫ 2

1

(
ηk(z) + η̃k(z) + ξk(z)

)
dz

)
.

To conclude the analysis of the continuous example (ΠC , NC), we need

to show that the oscillation result holds for NC , i.e. that NC(x) − ρCx

displays the desired oscillation. The density ρC of NC equals the right

hand residue of ζC at s = 1, that is lims→1+(s − 1)ζC(s) (see e.g. [46,

Theorem 7.3]):

ρC = exp

( ∞∑
k=0

∫ 2

1

(
ηk(z) + η̃k(z) + ξk(z)

)
dz

)
.

Now ∫ 2

1

(
ηk(s) + η̃k(z)

)
dz ≪

∫ 2

1

B1−z
k −B

(1−z)/2
k

1± iτk − z
dz ≪ 1

τk logBk
,∫ 2

1
ξk(z) dz =

1

2

∫ logCk

logBk

e−u − 1

u
du≪ logCk − logBk

logBk
≪ 1

τ2k
,

where we used (4.1.4) in the last step. By property (a), we may assume

that
∞∑

k=K+1

1

τk logBk
≤ 2

τK+1 logBK+1
≤ 1

xK
.

Hence

NC(xK)− ρCxK = NC,K(xK)− ρC,KxK + (ρC,K − ρC)xK

= Ω±

(
xK exp

(
−(c(α+ 1))

1
α+1 (log xK log2 xK)

α
α+1 (1 + . . . )

))
+O(1).

This concludes the proof of the existence of a continuous Beurling prime

system satisfying (3.1.4) and (3.1.5).
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4.5 The discrete example

We will now show the existence of a discrete Beurling prime system

(Π, N) arising from a sequence of Beurling primes 1 < p1 ≤ p2 ≤ . . .

and satisfying (3.1.4) and (3.1.5). This will be done by approximating

the continuous system (ΠC , NC) with a discrete one via Theorem 2.1.2.

We also use a trick introduced by the authors in [21, Section 6] in order

to control the argument of the zeta function at some specific points; this

is done by adding a well-chosen prime finitely many times to the system.

We will apply Theorem 2.1.2 with5 the template distribution function

F = πC , where πC is defined as

πC(x) =

∞∑
ν=1

µ(ν)

ν
ΠC(x

1/ν), so that ΠC(x) =
∞∑
ν=1

πC(x
1/ν)

ν
.

Here, µ stands for the classical Möbius function.

Lemma 4.5.1. The function πC is non-decreasing, right-continuous,

tends to ∞, and satisfies πC(1) = 0 and πC(x) ≪ x/ log x.

Proof. We only need to show that πC is non-decreasing, the other asser-

tions are obvious. Using the series expansion Li(x) =
∑∞

n=1
(log x)n

n!n , we

have

πC(x) = li(x) +

∞∑
k=0

∞∑
ν=1

(
rk,ν(x) + sk,ν(x)

)
,

where

li(x) =
∞∑
ν=1

µ(ν)

ν
Li(x1/ν) =

∞∑
n=1

(log x)n

n!nζ(n+ 1)
,

5If α < 1 or α = 1 and c ≤ 1/2, we can apply the method with F = ΠC , since

ΠD(x) − πD(x) ≪
√
x ≪ x exp

(
−c(log x)α

)
, so that Lemma 4.5.1 is not needed. In

this case the DMVZ-method (Theorem 2.1.1) also suffices.
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ζ being the ordinary Riemann zeta function; and

rk,ν(x) =


µ(ν)

2ν

∫ x1/ν

Ak

1− u−1

log u
cos(τk log u) du for Aν

k ≤ x < Bν
k ,

0 otherwise;

sk,ν(x) =



µ(ν)

2ν

(∫ Bk

Ak

1− u−1

log u
cos(τk log u) du

+
(
Li(Bk)− Li(x1/ν)

)) for Bν
k ≤ x < Cν

k ,

0 otherwise.

We have supp(rk,ν + sk,ν) = [Aν
k, C

ν
k ] =: Ik,ν . The function πC is abso-

lutely continuous, so it will follow that it is non-decreasing if we show

that π′C is non-negative. If x is contained in no Ik,ν , then π′C(x) =

li′(x) > 0. Suppose now the contrary, and let m be the largest integer

such that x ∈ Ik,m for some k ≥ 0. Note that m ≤ log x/ logA0. Since

for each ν ≤ m, there is at most one value of k for which x ∈ Ik,ν , we

have ∣∣∣∣∣
( ∞∑

k=0

∞∑
ν=1

(
rk,ν(x) + sk,ν(x)

))′
∣∣∣∣∣ ≤ 1

2

∑
k,ν

x∈Ik,ν

1− x−1/ν

ν log x
x1/ν−1

≤ 1

2 log x

m∑
ν=1

x1/ν−1

ν
≤ 1

2 log x

(
1 +

log2 x√
x

)
.

On the other hand,

li′(x) ≥ 1

ζ(2)

1− x−1

log x
≥ 0.6

1− x−1

log x
,

and together with x ≥ A0, this implies that π′C(x) > 0 (we may assume

that A0 is sufficiently large).

Applying Theorem 2.1.2 to F = πC shows the existence of a sequence

of Beurling primes PD = (pj)j with counting function πD satisfying∣∣πD(x)− πC(x)
∣∣≪ 1, (4.5.1)

∀y ≥ 1,∀t ≥ 0 :

∣∣∣∣∣∑
pj≤y

p−it
j −

∫ y

1
u−it dπC(u)

∣∣∣∣∣≪ √
y +

√
y log(|t|+ 1)

log(y + 1)
.

(4.5.2)
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Denote the Riemann prime-counting function of PD by ΠD, and set

dΠD,K(u) =
∑

pνj<AK+1

1

ν
δpνj (u) + χ[AK+1,∞)(u) dLi(u),

where χE denotes the characteristic function of the set E. Let

log ζD,K(s) be the Mellin-Stieltjes transform of dΠD,K . Set

Sl =

[
l
π

80
− π

160
, l
π

80
+

π

160

)
+ 2πZ for l = 0, 1, . . . , 159.

Then for some l (resp. r), we have that for infinitely many even (resp.

odd) values of K

Im
(
log ζD,K(1 + iτK)− log ζC,K(1 + iτK)

)
∈ Sl (resp. Sr).

Assume without loss of generality that l ≥ r. We will add l times the

prime q to PD, where q is a well chosen number around 80/π. This

changes the log-zeta function by −l log(1 − q−s). For s = 1 + iτk, we

have

Im
(
−l log(1− q−1−iτk)

)
= −l arg(1− q−1−iτk)

= −l arctan
(

q−1 sin(τk log q)

1− q−1 cos(τk log q)

)
.

Let α be a solution of

sinα

1− π
80 cosα

=
r

l
, 0 ≤ α ≤ π/2.

We set

q :=
80

π
eδ, where δ =

∞∑
k=0

δk, δk ≪ 1

τk
.

We define the numbers δk inductively: suppose δ0, δ1, . . . , δk−1 are de-

fined. Set δk := λk/τk, with λk ∈ [0, 2π) the unique number such that

τk

(
log

80

π
+ δ0 + δ1 + · · ·+ δk

)
∈ π

2
+ 2πZ ( resp. ∈ α+ 2πZ),

for k even (resp. odd).
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Suppose now that k is even (the reasoning for odd k is completely

analogous). Since we may assume rapid growth of the sequence τk (see

property (a)), we get

τk log q = τk

(
log

80

π
+ δ0 + δ1 + · · ·+ δk

)
+O

( ∞∑
n=1

τk
τk+n

)
=
π

2
+ 2πMk +O(τ−1

k ),

for some integer Mk. Then,

sin(τk log q) = 1+O(τ−2
k ), cos(τk log q) = O(τ−1

k ), q =
80

π
+O(τ−1

0 ),

so that
q−1 sin(τk log q)

1− q−1 cos(τk log q)
=

π

80
+O(τ−1

0 ).

Similarly for odd k, we have

q−1 sin(τk log q)

1− q−1 cos(τk log q)
=

π

80
· sinα

1− π
80 cosα

+O(τ−1
0 ) =

r

l
· π
80

+O(τ−1
0 ).

Since |arctanu− u| < 3|u|3 for |u| < 1, we can conclude that (for τ0

sufficiently large)∣∣∣∣Im(−l log(1− q−1−iτk)
)
+ l

π

80

∣∣∣∣ < π

40
if k is even, (4.5.3)∣∣∣∣Im(−l log(1− q−1−iτk)

)
+ r

π

80

∣∣∣∣ < π

40
if k is odd. (4.5.4)

We define our final prime system P as the prime system obtained

by adding the prime q with multiplicity l to the system PD. Denote its

Riemann prime-counting function by Π, and its integer counting function

by N . We have

Π(x) = ΠD(x) +O(log2 x) = ΠC(x) +O(log2 x),

where in the last step we used (4.5.1). Since ΠC satisfies (3.1.4), it is

clear that Π also satisfies6 (3.1.4).

6Recall that in the case α = c = 1, we have altered the error term in the PNT

(3.1.4) to O(log2 x).
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Set7

dΠK(u) = dΠD,K(u) + l
∑

qν<AK+1

1

ν
δqν (u);

dπK(u) =
∑

pj<AK+1

δpj (u) + lδq(u).

If x < AK+1, N(x) = NK(x), and applying the effective Perron formula

gives that for κ > 1 and T ≥ 0

1

2
(N(x+) +N(x−))

=
1

2πi

∫ κ+iT

κ−iT
ζC,K(s)

xs

s
exp
(
log ζK(s)− log ζC,K(s)

)
ds

+O

(
xκ
∫ ∞

1−

1

uκ
(
1 + T

∣∣log(x/u)∣∣) dNK(u)

)
. (4.5.5)

We will shift the contour of the first integral to one which is (up to

some of the line segments ∆+
i ) identical to the contour considered in

the analysis of the continuous example ΠC . One can then repeat the

whole analysis in Sections 4.2 and 4.3 to estimate this integral, provided

that we have a good bound on
∣∣exp(log ζK(s)− log ζC,K(s))

∣∣, and that

arg
(
exp(log ζK(s)−log ζC,K(s))

)
is sufficiently small for s on the steepest

path Γ0. We now show that this is the case.

Integrating by parts and using that dΠK = dΠC,K on [AK+1,∞)

and dΠC,K = dΠC on [1, AK+1], we see that for σ > 1/2,

log ζK(s)− log ζC,K(s) =

∫ AK+1

1
y−s d

(
ΠK(y)−ΠC,K(y)

)
=

∫ AK+1

1
y−s d

(
ΠK(y)− πK(y)

)
−
∫ AK+1

1
y−s d

(
ΠC(y)− πC(y)

)
+

∫ AK+1

1
y−σ d

(∑
pj≤y

p−it
j −

∫ y

1
u−it dπC(u)

)
+O(1).

The bound (4.5.2) and the fact that d(ΠK−πK), d
(
ΠC−πC

)
are positive

measures now imply that uniformly for σ ≥ 3/4, say,∣∣log ζK(s)− log ζC,K(s)
∣∣ ≤ D

√
log(|t|+ 2), (4.5.6)

7This is a slight abuse of notation, since the equality ΠK(u) =
∑

ν πK(u1/ν)/ν

only holds for u < AK+1.
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where D > 0 is a constant which depends on the implicit constant in

(4.5.2), but which is independent of K. Similarly,

(log ζK(s))′ − (log ζC,K(s))′ ≪
√

log(|t|+ 2).

Also, for infinitely many even and odd K,

Im
(
log ζK(1 + iτK)− log ζC,K(1 + iτK)

)
= Im

{
log ζD,K(1 + iτK)− log ζC,K(1 + iτK)− l log(1− q−(1+iτK))

+ l

(
log(1− q−(1+iτK)) +

∑
qν<AK+1

q−ν(1+iτK)

ν

)}
∈
[
− 6π

160
,
6π

160

]
+ 2πZ,

by (4.5.3) and (4.5.4) and since

l

∣∣∣∣∣log(1− q−(1+iτK)) +
∑

qν<AK+1

q−ν(1+iτK)

ν

∣∣∣∣∣≪ (1/q)
logAK+1

log q <
π

160
,

say. Let now s ∈ Γ0, the steepest path through s0. Then∣∣s− (1 + iτK)
∣∣≪ log2BK/ logBK , and

logζK(s)− log ζC,K(s)

= log ζK(1 + iτk)− log ζC,K(1 + iτK)

+

∫ s

1+iτK

(
log ζK(z)− log ζC,K(z)

)′
dz

= log ζK(1 + iτk)− log ζC,K(1 + iτK) +O

(√
log τK

log2BK

logBK

)
,

so for such s,

Im
(
log ζK(s)− log ζC,K(s)

)
∈
[
− 7π

160
,
7π

160

]
+ 2πZ.

Since N(x) ≪ x (which follows for instance from Theorem 3.1.4),

there exists some x̃K ∈ (xK − 1, xK) such that(
x̃K − 1

x̃2K
, x̃K +

1

x̃2K

)
∩N = ∅,

where N is the set of integers generated by P. We will apply the ef-

fective Perron formula (4.5.5) with x = x̃K instead of xK , in order to
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avoid a technical difficulty in bounding the error term in this formula.

Changing xK to x̃K is not problematic, since σ log(xK/x̃K) ≪ 1, and on

the steepest path Γ0, Im(s log(xK/x̃K)) ≪ τK/xK < π/160 say. This

implies that on the steepest path Γ0 through s0 the argument of the in-

tegrand in (4.5.5) when x = x̃K belongs to π/2+ [−3π/10, 3π/10]+2πZ
(resp. ∈ 3π/2 + [−3π/10, 3π/10] + 2πZ) for infinitely many even (resp.

odd) K. Together with the bound (4.5.6) this yields that for infinitely

many even and odd K the contribution from s0 is the same as in (4.2.14)

(but possibly with a different value for the implicit constant). One might

check that the bound (4.5.6) is also sufficient to treat all the other pieces

of the contour, except for the line segment ∆+
3 . We will replace this seg-

ment together with ∆+
4 by a different contour, a little more to the left,

so that xs can counter the additional factor exp(D
√
log t). We will also

need a larger value of T to bound the error term in the effective Perron

formula, so we now take T = (xK)4 instead of T = (xK)2.

Recall that ∆+
2 brought us to the point σ′ + iT+

2 . First, set ∆̃+
3 =

[σ′ + iT+
2 , σ

′ + 2iτ ]. This segment contributes ≪ xσ
′
exp(D

√
log(2τ)),

which is admissible. Next we want to move to the left in such a way that∫∞
s ηK remains under control. Set σ(t) = 1− log t/ logBK . If σ ≥ σ(t)

and t ≥ 2τK , then

K∑
k=0

∫ s+1

s

(
ηk(z) + η̃k(z) + ξk(z)

)
dz ≪

K∑
k=0

B
1−σ(t)
k

t logBk
≪

K∑
k=0

1

logBk
≪ 1,

by the rapid growth of (Bk)k (see (a)). Set ∆̃+
4 = [σ(2τ) + 2iτ, σ′ +

2iτ ] (note that σ(2τ) < σ′). The contribution of ∆̃+
4 is bounded by

(xσ
′
/τ) exp(D

√
log(2τ)), which is negligible. Now set

σ′′ = σ′ − 2D/
√
log x. We consider two cases.

Case 1: σ(2τ) ≤ σ′′, that is, α > 1/3. Then we set ∆̃+
5 = [σ(2τ) +

2iτ, σ(2τ) + ix4], its contribution is

≪ xσ
′′
(log x) exp

(
D
√

log x4
)
= xσ

′
log x,

which is admissible.

Case 2: σ(2τ) > σ′′, that is, α ≤ 1/3. Let T+
3 be the solution of

σ(T+
3 ) = σ′′, and set ∆̃+

5 = {σ(t)+it : 2τ ≤ t ≤ T+
3 }∪[σ′′+iT+

3 , σ
′′+ix4].
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This contributes

≪ x

∫ T+
3

2τ
exp

(
− log x

logB
log t+D

√
log t

)
dt

t
+xσ

′′
(log x) exp

(
D
√

log x4
)
.

The first integral is bounded by

x

∫ T+
3

2τ
exp

(
− log x

2 logB
log t

)
dt

t
≪ x exp

(
− log x

2 logB
log(2τ)

)
≪ x exp

(
− c log x

2(logB)1−α

)
,

which is again admissible.

Finally, we set ∆̃+
6 = [σ(2τ)+ ix4, 3/2+ ix4] or [σ′′+ ix4, 3/2+ ix4], this

contributes x3/2−4 exp
(
D
√
log x4

)
, which is negligible.

Next, we need to estimate the error term in the effective Perron

formula

x3/2
∫ ∞

1−

1

u3/2
(
1 + x4

∣∣log(x/u)∣∣) dNK(u), x = x̃K . (4.5.7)

We have that

dNK = exp∗(dΠK) = exp∗
( ∑

pνj<AK+1

1

ν
δpνj + l

∑
qν<AK+1

1

ν
δqν

)

+ exp∗
( ∑

pνj<AK+1

1

ν
δpνj + l

∑
qν<AK+1

1

ν
δqν

)
∗

(
χ[AK+1,∞) dLi+

1

2

(
χ[AK+1,∞) dLi

)∗2
+ . . .

)
=: dm1 + dm2.

Since dm1 ≤ dN , the contribution of dm1 to (4.5.7) is bounded by

x3/2
∑
n∈N

1

n3/2
(
1 + x4

∣∣log(x/n)∣∣) ≪ x3/2−4 +
∑
n∈N

x/2≤n≤2x

x

x4|n− x|
,

where we used
∣∣log(x/n)∣∣≫|n− x| /x when x/2 ≤ n ≤ 2x. By the choice

of x = x̃K , |n− x| ≥ 1/x2, so the last sum is bounded by (1/x)NK(2x),

which is bounded. The second measure dm2 has support in [AK+1,∞).

Since we may assume that AK+1 > 2xK by (a) and since dm2 ≤ dNK ,

the contribution of dm2 to (4.5.7) is bounded by

1

x4

∫ ∞

AK+1

dNK(u)

u3/2
≪ 1

x4
.
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(The integral is bounded by ζK(3/2), which is bounded independent of

K.)

To complete the proof, it remains to bound ρ− ρK , where ρ and ρK

are the asymptotic densities of N and NK , respectively. We have

log ρ− log ρK

=

∫ ∞

1−

1

u

( ∑
pνj≥AK+1

1

ν
δpνj (u) + l

∑
qν≥AK+1

1

ν
δqν (u)− χ[AK+1,∞) dLi(u)

)

≪
∫ ∞

AK+1

1

u2

∣∣∣Π(u)−Π(A−
K+1)− Li(u) + Li(AK+1)

∣∣∣ du
≪
∫ ∞

AK+1

exp
(
−c(log u)α

)
u

du≪ exp
(
−(c/2)(logAK+1)

α
)
≤ 1

xK
,

where we may assume the last bound in view of (a). In conclusion, we

have that (on some subsequence containing infinitely many even and

odd K):

N(x̃K)− ρx̃K = NK(x̃K)− ρK x̃K + (ρ− ρK)x̃K

= Ω±

(
x̃K exp

(
−(c(α+ 1))

1
α+1 (log x̃K log2 x̃K)

α
α+1 (1 + . . . )

))
+O(1).

This finishes the proof of Theorem 3.1.5.
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Chapter 5

Malliavin’s first problem

In this chapter, we will give a proof of Theorem 3.1.6. The example is

found by generalizing the construction by Diamond, Montgomery, and

Vorhauer in their proof of Theorem 3.1.3. Since their example yields the

optimal exponent α∗(1) = 1/2 in the case β = 1, it is not unreasonable to

imagine that the exponent β/(β+1) occurring in a natural generalization

of their example would also be optimal, i.e. that (Nβ) implies (Pα) with

α = β/(β+1). This was in fact conjectured1 by Bateman and Diamond

[12]. As mentioned in Chapter 3, the currently best known value for

the exponent is α = β/(β + 6.91), essentially due to Hall [53]. Hall’s

proof consists of a Tauberian argument combined with bounds on the

zeta function which are obtained via a generalization of the familiar “3-

4-1-inequality”. The value 6.91 arises from a specific choice of a positive

trigonometric polynomial2. The result from this chapter narrows down

the range for α∗ to

β

β + 6.91
≤ α∗(β) ≤ β

β + 1
.

1They expressed this with the careful wording: “There is quite likely room for

improvement here [from α = β/7.91], possibly to the value α = β/(β + 1)”.
2The corresponding optimization problem for positive trigonometric polynomials

dates back to Landau and is well-studied, see e.g. [87]. In particular it is known that

the smallest value which can be obtained via this method is strictly above 6.87.

83
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5.1 Preliminaries

The example will again be constructed in two steps. First we provide

a continuous generalized number system by specifying its zeta function.

This continuous system will satisfy the desired asymptotic relations. We

then discretize this system using Theorem 2.1.2 or the DMVZ-method

2.1.1.

As said before, our construction is a natural generalization of the

construction in [45]. The results in [45] were later sharpened by Zhang in

[98], and are also provided in the monograph [46] of Diamond and Zhang.

In this chapter we shall roughly follow the structure of [46, Sections 17.4-

17.9]. All necessary definitions and lemmas will be given; however if the

proof of a statement is identical or very similar to a proof in [46], we

will omit it and refer to [46] instead. In fact, most of the arguments

employed there can be carried over to the case 0 < β < 1. However,

a new difficulty arises as the considered zeta function does not seem to

have meromorphic continuation beyond Re s = 1. We overcome this

difficulty by considering natural approximations of it by more regular

zeta functions, similar to what was done in Chapter 4.

The main idea in [45] is to construct a zeta function which has in-

finitely many zeros on the curve σ = 1− 1/ log|t|, and none to the right

of it, and which is of not too large growth. The zeros are “responsible”

for the de la Vallée Poussin remainder in the PNT, while the moderate

growth of the zeta function allows one to deduce the desired asymptotics

of N via Perron inversion. We will modify the construction so that the

zeros will lie on the curve3 σ = 1− 1/(log|t|)1/β. The zeros are obtained
by taking products of rescaled and translated versions of the function G

defined as

G(z) := 1− e−z − e−2z

z
, G(0) := 0.

The function G has zeros z0 = 0 and z±n = xn ± iyn, n ∈ N>0, with

−b log nπ
2

≤ xn < −1

2
log

nπ

2
, and nπ < yn < (n+ 1)π

3This curve is suggested by a result of Ingham, which shows what error term in

the classical PNT would follow from a general zero-free region σ > 1 − η(t) for the

Riemann zeta function, see [62, pages 60–65].
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for some constant b > 1/2. It has no other zeros. For z ̸= 0 we have the

simple approximation

G(x+ iy) = 1 + θ
e−x + e−2x

|x+ iy|
, |θ| ≤ 1; (5.1.1)

while for x ≥ −1, ∣∣G(x+ iy)
∣∣ ≤ 1 + e2 − e, (5.1.2)

which follows from the identity G(z) = 1 −
∫ 2
1 e−zu du. The logarithm

of G can also be expressed as a Mellin transform:

Lemma 5.1.1. The function logG(z) is well-defined for x = Re z > 0

and has the representation

logG(z) = −
∫ ∞

1
g(u)u−z−1 du,

where

g(u) :=
∞∑
n=1

1

n
χ∗n(u).

Here, χ is the indicator function of [e, e2] and ∗ denotes the multi-

plicative convolution of functions supported on [1,∞): (f ∗ h)(x) :=∫ x
1 f(x/u)h(u) du/u. The function g is non-negative, supported on

[e,∞), and on intervals (em, em+1) it equals a polynomial in log u of

degree at most m− 1.

The function g(u) gets close to 1/ log u for large u. We have the

following estimates.

Lemma 5.1.2. For u > e2,

g(u) log u = 1 +O
(
u−(1/2) log(π/2)

)
,

and for u ≥ e5, g is differentiable and satisfies

(g(u) log u)′ = O
(
u−1−(1/2) log(π/2)

)
.

For proofs of the above statements and lemmas, we refer to [46, Sections

17.5, 17.6].
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5.2 The example

We will now define the continuous example by specifying its zeta func-

tion. Let β ∈ (0, 1) and set

lk = 4k, γk = exp
(
(lk)

β
)
= e4

βk
, ρk = 1− 1

lk
+ iγk.

These are the same parameters as in [46, Section 17.7], except for γk,

which we have set to be exp
(
(lk)

β
)
instead of exp(lk). The points ρk

now lie on the curve σ = 1−1/(log t)1/β instead of σ = 1−1/ log t. Next

we set

ζC(s) :=
s

s− 1

∞∏
k=1

G(lk(s− ρk))G(lk(s− ρk)).

Using (5.1.1), we see that the product converges uniformly in the half-

plane σ ≥ 1, so this zeta function is holomorphic in the open half-plane

σ > 1. For β < 1, this zeta function does not seem to have analytic

continuation to a larger half-plane, unlike the case β = 1. The factor

s/(s − 1) corresponds to the main term Li(x) in the PNT, while the

factors of the infinite product will produce the desired oscillation. That

ζC is indeed the zeta function of a Beurling system is a consequence of

the following lemma.

Lemma 5.2.1. For σ > 1,

ζC(s) = exp

(∫ ∞

1
v−sfC(v) dv

)
,

with

fC(v) :=
1− v−1

log v
− 2

∑
k≥1

g(v1/lk)

lk
v−1/lk cos(γk log v), v ≥ 1. (5.2.1)

We have fC(v) > 0 for v > 1, fC(v) = (1 − v−1)/ log v for 1 ≤ v < e4,

and fC satisfies the Chebyshev estimates for some δ ∈ (0, 1)

(1− δ)
1− v−1

log v
≤ fC(v) ≤ (1 + δ)

1− v−1

log v
, v ≥ e4.

The proof is identical to the one in [46], since in that proof, the cosine

is bounded trivially by 1, and this is the only place where the altered

parameter γk occurs.
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The lemma implies that ζC is the zeta function of the Beurling

number system with Riemann prime-counting function ΠC given by

ΠC(x) =
∫ x
1 fC(v) dv. The “integer counting function” NC is uniquely

determined by ΠC , dNC = exp∗(dΠC).

Next, we use Theorem 2.1.1 (or Theorem 2.1.2) with f = fC (or

F (x) =
∫ x
1 fC) to obtain a sequence P = (pj)j≥1 of Beurling primes

which satisfies∣∣∣∣∑
pj≤x

p−it
j −

∫ x

1
u−itfC(u) du

∣∣∣∣≪ √
x+

√
x log(|t|+ 1)

log(x+ 1)
, (5.2.2)

for x ≥ 1 and real t. Denote the prime and integer-counting function of

P by π and N respectively, and its Chebyshev prime-counting function

by ψ. In the next two sections, we will show the following relations:

N(x) = ax+O
(
x exp(−c logβ x)

)
, for some a > 0 and c > 0; (5.2.3)

and

lim sup
x→∞

ψ(x)− x

x exp
(
−β−

β
β+1 (β + 1)(log x)

β
β+1
) = 2,

lim inf
x→∞

ψ(x)− x

x exp
(
−β−

β
β+1 (β + 1)(log x)

β
β+1
) = −2.

(5.2.4)

From these two relations it then follows that α∗(β) ≤ β/(β + 1), since

π(x) =
∫ x
1 (1/ log u) dψ(u) +O(

√
x).

5.3 Asymptotics of N

In order to deduce asymptotic information of N , we will use a Perron

inversion formula. We will bypass the problem of the apparent absence

of analytic continuation of ζC beyond σ = 1 by considering for K ≥ 1

ζC,K(s) :=
s

s− 1

K∏
k=1

G(lk(s− ρk))G(lk(s− ρk))

= exp

(∫ ∞

1
v−sfC,K(v) dv

)
,
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where fC,K is defined as in (5.2.1), but with the summation ranging only

up to K. Then ζC,K has analytic continuation to the whole complex

plane, with the exception of a simple pole at s = 1. Note that also

fC,K > 0, since by the non-negativity of g,

∣∣∣∣∣2
K∑
k=1

g(v1/lk)

lk
v−1/lk cos(γk log v)

∣∣∣∣∣ ≤ 2
∑
k≥1

g(v1/lk)

lk
v−1/lk

≤


0 if v < e4;

δ
1− v−1

log v
if v ≥ e4.

(The last inequality is proved in [46, Lemma 17.20] and is also used in

the proof of Lemma 5.2.1). We furthermore have that fC(v) = fC,K(v)

whenever v < e4
K+1

, since supp g(v1/lk) ⊆ [elk ,∞). Next we set

dΠK(v) = χ
[1,e4K+1 )

(v) dΠ(v) + χ
[e4K+1 ,∞)

(v)fC,K(v) dv. (5.3.1)

Here, Π is the Riemann prime-counting function of the discrete system

P, and χI denotes the indicator function of a set I. With ΠK we asso-

ciate the “integer counting function” NK (i.e. dNK = exp∗(dΠK)) and

the zeta function ζK . One might view the Beurling system (ΠK , NK) as

an intermediate system between the discrete system P and the contin-

uous one given by fC,K . Since ΠK = Π on [1, e4
K+1

), also NK = N on

[1, e4
K+1

).

We will apply the following Perron formula for
∫
NK (to guarantee

absolute convergence):

∫ x

1
NK(u) du =

1

2πi

∫ κ+i∞

κ−i∞
ζK(s)xs+1 ds

s(s+ 1)
. (5.3.2)

Here κ is a number larger than 1. We will shift the contour to a contour

to the left of σ = 1, picking up a residue at s = 1 which will provide

the main term in (5.2.3). The integral over the shifted contour will be

estimated by comparing ζK with ζC,K , and by applying some bounds



5.3. Asymptotics of N 89

for ζC,K which we will derive shortly. We have

log ζK(s)− log ζC,K(s) =

∫ e4
K+1

1
u−s(dΠK(u)− fC,K(u) du)

=

∫ e4
K+1

1
u−s(dΠ(u)− dπ(u)) +

∫ e4
K+1

1
u−σu−it(dπ(u)− fC(u) du).

Here we used that fC,K = fC on [1, e4
K+1

). Note that both of these

integrals are entire functions of s. From this it follows that also ζK has

meromorphic continuation to C, with a sole simple pole at s = 1. Since

dΠ − dπ is a positive measure, and since Π(x) − π(x) = O(
√
x), the

first integral is uniformly bounded (independent of K) in the half-plane

σ ≥ 3/4 say. For the second integral, we integrate by parts and use the

bound (5.2.2) to see that it is uniformly bounded by a constant times√
log(2 +|t|) in the half-plane σ ≥ 3/4. For the remainder of this section

we fix positive constants A and B, independent of K, so that

∣∣log ζK(s)− log ζC,K(s)
∣∣ ≤

A if σ ≥ 3/4, |t| ≤ 2

A+B
√
log|t| if σ ≥ 3/4, |t| ≥ 2.

(5.3.3)

Let now x ≥ e4 be fixed, and let K be such that e4
K ≤ x <

e4
K+1

. Then N(x) = NK(x). Set σ1 = 1 − (1/2)(log x)β−1, σ(t) =

1− (1/4) log|t| / log x, and let k(β) be such that (3/2)γk < (1/2)γk+1 for

k ≥ k(β).

Lemma 5.3.1. The following bounds hold uniformly (with implicit con-

stants independent of K):

for σ1 ≤ σ ≤ 2:

1. if 0 ≤ t ≤ 2, then ζK(σ + it) ≪ 1/|σ − 1|;

2. if t ≥ 2 and |t− γk| ≥ γk
2 , for every k ∈ {k(β), k(β) + 1, . . . ,K},

then

ζK(σ + it) ≪ exp
(
B
√
log|t|

)
;

3. if t ≥ 2 and
∣∣t− γk0

∣∣ < γk0
2 for some k0 ∈ {k(β), k(β) + 1, . . . ,K},

then

ζK(σ + it) ≪ exp
(
B
√

log|t|
)(

1 +
|t|

4k0
∣∣σ + it− ρk0

∣∣
)
,
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with the second term in the parentheses (. . . ) only present if

4k0
∣∣σ + it− ρk0

∣∣ ≥ 1;

for |t| ≥ 2γK and max{σ(t), 3/4} ≤ σ ≤ 2:

ζK(σ + it) ≪ exp
(
B
√
log|t|

)
.

The proof is essentially the same as that of [46, Lemma 17.22]. First

we use (5.3.3) to compare with ζC,K . Then we use (5.1.1) to approximate

the factors in the product. The main point is that exp(2lk(1− σ)) ≤ γk

for k ≤ K and for σ ≥ σ1, while for σ ≥ σ(t), we have exp(2lk(1 −
σ)) ≤

√
|t|. By definition of k(β), for each fixed t there is at most one

k0 ∈ {k(β), . . . ,K} with
∣∣t− γk0

∣∣ < γk0/2. For the terms with k < k(β),

we just employ some uniform bound in the half-plane σ ≥ 3/4 say. We

omit the details.

Let us now focus our attention on the Perron integral. Since NK is

non-decreasing,
∫ x
x−1NK(u) du ≤ NK(x) ≤

∫ x+1
x NK(u) du. Combining

this with the Perron formula (5.3.2), we have

NK(x) ≤ 1

2πi

∫ κ+i∞

κ−i∞
ζK(s)

(x+ 1)s+1 − xs+1

s(s+ 1)
ds.

We shift the contour to a contour Γ to the left of σ = 1. Set J =

⌊(log x)min(3β/2,1)⌋ and

Γ1 := [σ1, σ1 + i2J ];

Γ2 := [σ1 + i2J , σ(2J) + i2J ] ∪ {σ(t) + it : 2J ≤ t ≤ x};

Γ3 := [3/4 + ix, 3/4 + i∞).

Note that σ1 > σ(2J). We let Γ be the union of the Γi and their complex

conjugates. Moving from σ = κ to Γ is allowed, since the contribution

of the connecting piece [3/4 + iT, κ + iT ] tends to 0 as T → ∞, by the

last bound of Lemma 5.3.1. By the residue theorem we have

NK(x) ≤ aK(x+ 1/2) +O(I1 + I2 + I3),
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where aK = Ress=1 ζK(s) and Ii the integral over Γi. For I1 we perform

a dyadic splitting, and write

I1 = I1,0 +
J−1∑
j=1

I1,j ,

where I1,0 is the part of the integral where 0 ≤ t ≤ 2, and I1,j the part

of the integral where 2j ≤ t ≤ 2j+1. By bounding (x+ 1)s+1 − xs+1 by

|s+ 1|xσ, and using the bounds from Lemma 5.3.1, we see that

I1,0 ≪ x exp
(
−(1/2) logβ x

)
(log x)1−β,

I1,j ≪ x exp
(
−(1/2) logβ x

)
exp
(
B
√

log 2j+1
)
.

Indeed, if some t satisfies
∣∣t− γk0

∣∣ < γk0/2 for some k0 ≥ k(β), we use

the third bound of Lemma 5.3.1 and the estimate∫
|t−γk0 |<γk0/2,

|σ1+it−ρk0 |≥4−k0

dt

4k0
∣∣σ1 + it− ρk0

∣∣ ≪ 1

4k0

(
log γk0 + log 4k0

)
≪ 1.

Also, by definition of k(β), there are at most two values of k ≥ k(β)

such that |t− γk| < γk/2 for some t in a dyadic interval [2j , 2j+1]. Using

the estimate
∑

j≤J e
D
√
j ≪

√
JeD

√
J we get

I1 ≪ x exp
(
−(1/2) logβ x

)
(log x) exp

(
O
(
(log x)3β/4

))
≪ x exp

(
−c logβ x

)
,

for any c < 1/2.

For I2, we again bound (x + 1)s+1 − xs+1 by |s+ 1|xσ and use the

last bound of Lemma 5.3.1 (note that 2J ≥ 2γK). We get

I2 ≪ x exp
(
−(1/2) logβ x

)
+ x

∫ x

2J
exp
(
B
√

log t− (5/4) log t
)
dt

≪ x exp
(
−(1/2) logβ x

)
+ x exp

(
−((log 2)/8)(log x)min(3β/2,1)

)
≪ x exp

(
−(1/2) logβ x

)
.

Lastly, we bound (x+1)s+1−xs+1 by xσ+1 and use the last bound from

Lemma 5.3.1 to get

I3 ≪ x7/4
∫ ∞

x
exp
(
B
√

log t− 2 log t
)
dt≪ x7/8.
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Concluding the above calculations, whenK is such that e4
K ≤ x < e4

K+1

we have for any c < 1/2

NK(x) ≤ aKx+O
(
x exp(−c logβ x)

)
.

The inequality ≥ can be shown in a completely analogous way. It is

important to note that the implicit big-O constant is independent of K.

It remains to see that aK is close to a, the density of N . We have

that

aK = exp

(∫ ∞

1

1

u

(
dΠK(u)− dLi(u)

))
,

a = exp

(∫ ∞

1

1

u

(
dΠ(u)− dLi(u)

))
,

where we used that exp
∫∞
1 u−s dLi(u) = s/(s − 1) to compute the

residues. Indeed, if Beurling generalized integers have a density, it

is equal to the right hand residue of its zeta function, limσ→1+(σ −
1)ζ(σ), see e.g. [46, Proposition 5.1]. We then write (σ − 1)ζK(σ) =

σ exp
∫∞
1 u−σ

(
dΠK(u) − dLi(u)

)
, and taking the limit σ → 1+ yields

aK . Similarly for a. The fact that both integrals converge follows from

the estimates ΠK(x)−Li(x), Π(x)−Li(x) ≪ x exp
(
−c′ logα x

)
for some

α > 0 and c′ > 0, see Section 5.4. By (5.3.1),

aK = a exp

(∫ ∞

e4K+1

1

u

(
fC,K(u) du− dΠ(u)

))
= a exp

(∫ ∞

e4K+1

(
fC,K(u)− fC(u)

)du
u

+

∫ ∞

e4K+1

1

u

(
fC(u) du− dΠ(u)

))
.

The first integral equals

−
∞∑

k=K+1

log
(
G(lk(1− ρk))G(lk(1− ρk))

)
≪

∞∑
k=K+1

1

lkγk
≪ e−4β(K+1) ≪ exp

(
− logβ x

)
,

where we used (5.1.1) and x < e4
K+1

. The second integral above is

bounded by 1/
√
e4K+1 ≪ 1/

√
x by (5.2.2). This gives that
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aK = a
{
1 + O

(
exp(− logβ x)

)}
. We conclude that for any x ≥ e4 and

any c < 1/2, upon selecting K such that e4
K ≤ x < e4

K+1
,

N(x) = NK(x) = aKx+O
(
x exp(−c logβ x)

)
= ax+O

(
x exp(−c logβ x)

)
,

which shows (5.2.3).

5.4 Asymptotics of ψ

The analysis of the prime-counting function of the Diamond–Montgomery–

Vorhauer example (corresponding to β = 1) can be readily adapted to

the case of general β; no new technical difficulties arise. We give a

summary of the analysis, but refer to [46, Section 17.9] for the details.

Given a fixed x, let K again be such that e4
K ≤ x < e4

K+1
. We shall

analyze the Chebyshev prime-counting function ψ(x) =
∫ x
1 log udΠ(u).

First note that ψ(x) = ψC(x) +O(
√
x log x), which follows from (5.2.2)

with t = 0. Here ψC(x) =
∫ x
1 log udΠC(u) =

∫ x
1 (log u)fC(u) du. It

suffices to analyze ψC . Using the same notations as in [46], we have

ψC(x) = x− 1− log x− 2F (x),

with

F (x) =

K∑
k=1

∫ x

e4k
(log v)4−kg(v4

−k
)v−4−k

cos(γk log v) dv =:
K∑
k=1

Ik(x).

Transforming the integrals with the substitution u = v4
−k
, splitting the

integration range in [e, e5] and [e5, x4
−k
], integrating by parts, and using

the bounds from Lemma 5.1.2, one shows that

Ik(x) =
x1−4−k

γk
sin(γk log x)

+O

{
x5/16 +

1

γk

(
x1−4−k(1+ 1

2
log(π/2)) +

x1−4−k

γk

)}
, k ≤ K − 2.

To estimate the integrals IK−1, IK , we transform again to the variable

u = v4
−k

and split the integration range in intervals [em, em+1), m < 16.
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On [em, em+1), we write g(u) as a polynomial in log u of degree at most

m− 1, and integrate by parts. This yields

IK−1(x) ≪ x exp(−4−2β logβ x), IK(x) ≪ x exp(−4−β logβ x),

which is OK, since β > β/(β + 1). One then proceeds by showing that

F (x) is dominated by at most two terms Ik0(x) and Ik0+1(x), with k0

close to 1
β+1(K + log(1/β)). Consider

x1−4−k

γk
= x exp

(
−4−k log x− 4βk

)
= x exp

(
− log x

λ
− λβ

)
,

where we have written λ = 4k. The function −λ−1 log x− λβ reaches it

maximum at λmax,

λmax =

(
log x

β

) 1
β+1

, and

− log x

λmax
− (λmax)

β = −β−
β

β+1 (β + 1)(log x)
β

β+1 .

Note that λmax < 4K−2 for x sufficiently large. Now set µ = log λmax

log 4 ,

k0 = ⌊µ⌋, and write

E(x) = x exp
(
−β−

β
β+1 (β + 1)(log x)

β
β+1
)
.

We have∣∣Ik0(x)∣∣ ≤ E(x){1 + o(1)}, Ik0+1(x) = o(E(x));

Ik0(x) = o(E(x)), Ik0+1(x) = o(E(x));

Ik0(x) = o(E(x)),
∣∣Ik0+1(x)

∣∣ ≤ E(x){1 + o(1)};

if µ−k0 ∈ [0, 1/3], ∈ (1/3, 2/3), or ∈ [2/3, 1), respectively. Also in every

case, the terms Ik(x), k ̸= k0, k0 + 1 are O
(
x exp

(
−d(log x)

β
β+1
))

for

some d > β
− β

β+1 (β + 1), and there are K − 2 = O(log log x) such terms.

Combining all these estimates shows that

lim sup
x→∞

ψ(x)− x

E(x)
≤ 2, lim inf

x→∞

ψ(x)− x

E(x)
≥ −2.

In order to show equality and hence prove (5.2.4), one considers an

increasing sequence of values for x, so that (log x/β)
1

β+1 gets arbitrarily

close to perfect fourth powers 4k0 , for some k0 ≤ K − 2 (k0 and K of

course depending on x), and where also sin(γk0 log x) gets arbitrarily

close to −1 (for the lim sup) or 1 (for the lim inf).
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Asymptotic methods in

analysis

95





Chapter 6

An asymptotic analysis of

the Fourier–Laplace

transforms of certain

oscillatory functions

6.1 Introduction

In this chapter we study the Fourier–Laplace transforms of the family

of oscillatory functions

fα,β(t) := tβ exp(itα), t > 0, (6.1.1)

where α > 1 and β ∈ C. When Reβ > −1, these functions are locally

integrable and their Fourier–Laplace transforms are given by

Fα,β(z) :=

∫ ∞

0
tβ exp(itα − izt) dt for Im z < 0. (6.1.2)

One can extend the definition of Fα,β to include any value β ∈ C if

one considers the Hadamard finite part of the integrals in (6.1.2) (cf.

Section 6.2). Note that some instances of the parameters α and β lead

to well-studied classical functions, such as the Gaussian and the Airy

function essentially corresponding to β = 0 and α = 2 or 3, respectively.
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We shall show here that the Fourier–Laplace transforms Fα,β admit

analytic continuation as entire functions and our main aim is to deter-

mine their asymptotics throughout the complex plane. Although the

study of these questions is of significant intrinsic interest, let us point

out that they naturally arise in several applications.

When α ≥ 2 is an integer and β < −1, the functions (6.1.1) and their

Fourier transforms, namely, the extensions of (6.1.2) to the real axis,

naturally occur in the study of multifractal properties of various lacunary

Fourier series. Indeed, the first order asymptotics of (6.1.2) on the real

line in combination with the Poisson summation formula play a crucial

role [32] in the determination of the pointwise Hölder exponent at the

rationals of the family of Fourier series Rα,β(x) =
∑∞

n=1 n
β exp(2πinαx),

which are generalizations of Riemann’s classical function [35, Chapter

7]. Riemann’s function will be discussed in great detail in Chapter 8.

The results of the present chapter might certainly be used to further

refine [32, Theorem 2.1] and exhibit full trigonometric chirp expansions

for Rα,β at each rational point. In [36], the asymptotic behavior of Fα,−1

on the real axis has been determined and has shown to be useful in the

construction of concrete instances of Beurling prime number systems for

the comparison of abstract prime number theorems.

As a new application of the functions fα,β, we now explain how they

(and some other close relatives) can be used to establish some optimality

results in Tauberian theory. Quantified Tauberian theorems have many

important applications in several diverse areas of mathematics, rang-

ing from number theory to operator theory. Accordingly, this kind of

theorems has been extensively studied over the past decades. We shall

consider a variant of the following model theorem, which is a quantified

version of the celebrated Ingham–Karamata Tauberian theorem [63, 68]

(cf. [35, Chapter 3] and [72, Chapter III]).

Theorem 6.1.1 ([19, Proposition 3.2]). Let τ ∈ L∞ and κ > 0. Suppose

that the Laplace transform L{τ ; s} =
∫∞
0 τ(t)e−stdt admits an analytic

continuation to

Ω = {s : Re s ≥ −C/(1 +|Im s|)κ},
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where it has at most polynomial growth. Then,∫ x

0
τ(t)dt = L{τ ; 0}+O

((
log x

x

)1/κ)
. (6.1.3)

In fact, motivated by applications in partial differential equations,

the above theorem has recently seen numerous generalizations [13, 14].

The most general one in terms of the region of analytic continuation and

the growth inside such a region is currently given in [94]. A natural ques-

tion is then whether the error term in (6.1.3) is sharp. Concerning this

question of optimality in Theorem 6.1.1, two rather different approaches

are thus far known. The first one appeared in [19] and consisted in

a delicate function-theoretic construction, where exactly the optimality

of Theorem 6.1.1 was proved. The technique was then refined to show

optimality for more general versions of Theorem 6.1.1 in [13] and the

most general optimality results achieved via this technique can be found

in [94]. The second approach only appeared very recently in [37] and

crucially depends on a careful application of the open mapping theorem,

see also [38] for the most general results obtained by this method. The

question then remains whether one can find “simple” functions showing

optimality results. Indeed, the first approach gives a rather non-explicit

complicated function, whereas the second functional analysis approach

does not even construct an example, it merely shows the existence of

one.

We wish to indicate here that one can indeed find such “simple”

functions, in this way effectively providing a new third approach for ad-

dressing optimality questions. Our focus here lies on the simplicity of

the functions and any attempt to generality is beyond the scope of this

chapter. Furthermore, we shall not directly answer the optimality ques-

tion for Theorem 6.1.1, but for a slightly differently formulated version,

although the interested reader may verify via the same techniques de-

veloped in this chapter that the function τ(x) = exp(ix1+1/κ/ log1/κ x)

if x ≥ e, τ(x) = 0 if x < e, satisfies the hypotheses of Theorem 6.1.1 yet∫ x

0
τ(t) dt = L{τ ; 0}+

exp
(
ix(x/ log x)

1
κ

)
i(1 + 1/κ)

(
log x

x

) 1
κ

+O

(
log

1
κ
−1 x

x
1
κ

)
.

We shall show the optimality of Theorem 6.1.1 where the region of
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analytic continuation Ω is altered to

Ω =

{
s : Re s ≥ −C log(|Im s|+ 2)

(1 +|Im s|)κ

}
.

The error term in (6.1.3) then becomes O(x−1/κ). The function τ(x) =

f1+1/κ,0(x) = exp(ix1+1/κ) provides then an extremal example for this

theorem. Indeed, τ is clearly bounded, and the polynomial bounds on

the analytic extension of the Laplace transform in Ω follow from our

results in Section 6.5. However, by integration by parts one can see that

∫ x

0
τ(t) dt = L{τ ; 0}+

exp
(
ix1+1/κ

)
i(1 + 1/κ)x1/κ

+O
(
x−1−2/κ

)
.

Let us now return to the main subject of this chapter, the Fourier–

Laplace transforms Fα,β. In Section 6.3 we show they are entire func-

tions; we will actually provide an explicit formula for their analytic con-

tinuations. We point out that the entire extension of Fα,β for β = −1

was already communicated in [36, Theorem 3.1 (a)], but the proof given

therein was wrong1. Section 6.4 is devoted to an asymptotic analy-

sis of Fα,β. We shall obtain full asymptotic series on any line through

the origin. The asymptotic behavior will display Stokes phenomenon,

having qualitatively different asymptotic behavior on the two sectors

{z : −π − π/α < arg z < 0} and {z : 0 < arg z < π − π/α}; see the

asymptotic formulas (6.4.1) and (6.4.5), respectively. On their bound-

ary rays, the asymptotic behavior will essentially be a mixture of the

previous two cases. When z = x is real and positive for example, we

have the following asymptotic series.

Proposition 6.1.2. There are constants cn,α,β, dn,α,β ∈ C such that,

1The estimates [36, Eq. (3.12) and (3.13)] are unclear for σ > 0. However,

upon replacing entire extension by C∞-extension to Re s ≥ 1 in [36, Theorem 3.1(a)]

the statement and proof become correct. Since the entire extension was not used

elsewhere in that article, the main results of [36] are not compromised.
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as x→ ∞,

Fα,β(x) +
∑

m,n≥0
β+nα+m+1=0

in−mxm

n!m!
(log x+ πi/2) ∼

∞∑
n=0

cn,α,β
xβ+nα+1

+ exp
(
−iα−1/(α−1)(1− 1/α)x

α
α−1
)
x

β+1−α/2
α−1

∞∑
n=0

dn,α,β

xnα/(α−1)
. (6.1.4)

The coefficients cn,α,β and dn,α,β are given by (6.4.8) and (6.4.9), re-

spectively.

It should be noted that the main leading terms of the asymptotic ex-

pansion (6.1.4) of Proposition 6.1.2 were essentially obtained in [32, 36]

in some cases by employing Littlewood–Paley decompositions of the

unity. Our approach in this chapter is based on different technology. We

exploit here the moment asymptotic expansion (see Subsection 1.2.2) in

combination with contour integration to deduce asymptotic series expan-

sions. This technique turns out to provide a unified way to deal with the

distinct cases of asymptotic behavior that we shall encounter in Section

6.4; in addition, it directly yields desired uniformity of the asymptotic

expansions on closed subsectors. Finally, the chapter concludes with

some polynomial bounds in Section 6.5 for Fα,β on hourglass-shaped

neighborhoods of the real line. This chapter is based on the article [22]

by the author together with Debruyne and Vindas.

6.2 Distributional regularization

Let us first clarify our interpretation of fα,β(t) = tβ exp(itα) as Schwartz

distributions. We take them as 0 on (−∞, 0). If Reβ > −1, then

fα,β ∈ L1
loc, and since they are of polynomial growth, they can be viewed

as elements of the space of tempered distributions S ′. When Reβ ≤ −1,

they do not define distributions automatically and we have to consider

regularizations. This can be done in many ways (see e.g. [49, Section

2.4]), but it is desirable that the property tfα,β(t) = fα,β+1(t) remains

true. (Then F ′
α,β = −iFα,β+1.) This is the case when we regularize them
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by taking Hadamard finite part [49, page 67]. Suppose ψ ∈ S. Define

⟨fα,β,ψ⟩ := F.p.

∫ ∞

0
tβeit

α
ψ(t) dt

=

∫ ∞

1
tβeit

α
ψ(t) dt+

∫ 1

0
tβ
(
eit

α
ψ(t)−

∑
m,n

m+nα+Reβ≤−1

inψ(m)(0)

n!m!
tnα+m

)
dt

+
∑′

m,n
m+nα+Reβ≤−1

inψ(m)(0)

n!m!

1

β + nα+m+ 1
.

Here the notation
∑′ means that the possible terms with β+nα+m+1 =

0 are excluded. This choice for the regularizations also has the property

that for fixed α the map β 7→ fα,β is meromorphic; it has poles at

β = −nα−m− 1, n,m ∈ N with residues

∑
m,n

m+nα+β+1=0

in

n!

(−1)mδ(m)

m!
,

where δ(m) denotes the m-th derivative of the Dirac delta distribution.

6.3 The analytic continuation

We now show that the Fourier–Laplace transform of fα,β, given by

Fα,β(z) := ⟨fα,β(t), e−izt⟩ = F. p.

∫ ∞

0
tβ exp (itα − izt) dt

for y = Im z < 0, has holomorphic extension to the whole complex plane.

For it, we shift the contour of integration to the ray arg ζ = π/(2α) where

iζα is real and negative2. By Cauchy’s theorem,

Fα,β(z) = f̂α,β(z) = F. p. lim
ε→0

∫
Γ1,ε∪Γ2,ε

ζβ exp(iζα − izζ) dζ,

where Γ1,ε is the arc of the circle of radius ε and center at the origin

between the points ε and εeiπ/(2α), and Γ2,ε is the half-line {eiπ/(2α)t : t ∈
[ε,∞)}. Indeed, defining ΓR as the circle arc of radius R from eiπ/(2α)R

2We use the principal branch of the logarithm.
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to R, it is easy to see that, for y < 0,
∫
ΓR
ζβ exp(iζα − izζ) dζ → 0 as

R→ ∞. After a small computation, one gets the following expression,

Fα,β(z)

= ei(β+1)π/(2α) F. p.

∫ ∞

0
tβ exp(−tα − ieiπ/(2α)zt) dt+

∑
m,n

m+nα+β+1=0

in(−iz)m

n!m!

π

2α
i

= ei(β+1)π/(2α)

[∫ ∞

1
tβ exp

(
−tα − ieiπ/(2α)zt

)
dt

+

∫ 1

0
tβ
(
exp
(
−tα − ieiπ/(2α)zt

)
−
∑
m,n

m+nα+Reβ≤−1

(−1)n(−iz)meimπ/(2α)

n!m!
tnα+m

)
dt

+
∑′

m,n
m+nα+Reβ≤−1

(−1)n(−iz)meimπ/(2α)

n!m!

1

β + nα+m+ 1

]
+
∑
m,n

m+nα+β+1=0

in(−iz)m

n!m!

π

2α
i.

(6.3.1)

The right hand side however is well defined for any z ∈ C since α > 1,

so this expression yields the desired entire continuation.

6.4 Asymptotic expansion on rays

Write z = Reiθ. We will derive in this section an asymptotic series

expansion for Fα,β(Re
iθ) as R → ∞. We distinguish three cases for the

angle θ: the sector {z : −π − π/α < arg z < 0}, the sector {z : 0 <

arg z < π − π/α}, and their boundaries.

Case 1: −π − π/α < θ < 0.

In this case we have the following expansion for Fα,β(Re
iθ), uniformly

on closed subsectors:

Fα,β(Re
iθ) +

∑
m,n

β+nα+m+1=0

inei(θ−π/2)mRm

n!m!
(logR+

(
θ + π/2

)
i)

∼
∞∑
n=0

exp
(
i(nπ/2− (θ + π/2)(β + nα+ 1))

)
Γ∗(β + nα+ 1)

n!Rβ+nα+1
, (6.4.1)

where Γ∗(z) equals the Euler gamma function Γ(z) when z /∈ −N, and
otherwise Hadamard finite part values are used in the case that z ∈ −N,
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that is,

Γ∗(−k) := F.p.

∫ ∞

0
e−tt−k−1 dt =

(−1)k

k!

(
− γ +

k∑
j=1

1

j

)
.

Here γ is the Euler–Mascheroni constant.

In order to deduce (6.4.1), we consider two overlapping subcases:

the case where −π < θ < 0 (equivalently, y < 0), and the case where

−π − π/α < θ < −π/α.
In the first subcase, we have the following expression for Fα,β (which

is the original form of the Fourier transform, before shifting the contour):

Fα,β(Re
iθ) = F.p.

∫ ∞

0
tβ exp

(
itα +Rei(θ−π/2)t

)
dt. (6.4.2)

The idea is now to relate the above expression to an evaluation

⟨g(Rt), fα,β(t)⟩ for a distribution g which is distributionally small at

infinity, so that g satisfies the moment asymptotic expansion. Making

this precise, we consider the space P{tβ+nα} from Subsection 1.2.2 (with

αn = β + nα). Clearly, we have that fα,β ∈ P{tβ+nα}, with

fα,β(t) ∼
∞∑
n=0

in

n!
tβ+nα, as t→ 0+.

The distribution g = gθ ∈ P ′{tβ+nα} will be defined as a regularization

of the function exp(ei(θ−π/2)t). If −π < θ < 0, then cos(θ − π/2) < 0 so

that exp(ei(θ−π/2)t)ψ(t) is integrable away from the origin for every test

function ψ ∈ P{tβ+nα}; this product might however be non-integrable

near the origin. We choose the regularization corresponding to the ex-

pression (6.4.2). For ψ ∈ P{tβ+nα},

⟨g(t),ψ(t)⟩ := F. p.

∫ ∞

0
exp
(
ei(θ−π/2)t

)
ψ(t) dt

=

∫ ∞

1
exp
(
ei(θ−π/2)t

)
ψ(t) dt

+

∫ 1

0

(
exp
(
ei(θ−π/2)t

)
ψ(t)−

∑
m,n

m+nα+Reβ≤−1

cn
ei(θ−π/2)m

m!
tβ+nα+m

)
dt

+
∑′

m,n
m+nα+Reβ≤−1

cn
ei(θ−π/2)m

m!

1

β + nα+m+ 1
.
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This defines a continuous linear functional on P{tβ+nα}, and one readily

sees that

⟨g(Rt), fα,β(t)⟩ = Fα,β(Re
iθ) +

∑
m,n

m+nα+β+1=0

inei(θ−π/2)mRm

n!m!
logR.

We remark that for fixed α the last sum is non-empty only for countably

many values of β, namely, the poles of the vector-valued meromorphic

function β 7→ fα,β.

One verifies via contour integration that the generalized moments of

g are given by

⟨g(t), tβ+nα⟩ = e−i(θ+π/2)(β+nα+1)Γ∗(β + nα+ 1)

− δm,−nα−β−1
ei(θ−π/2)m

m!
(θ + π/2)i.

Here δm,−nα−β−1 stands for the Kronecker delta, that is, 1 if −nα−β−1

equals the nonnegative integer m, and 0 otherwise. Since g satisfies the

generalized moment asymptotic expansion (1.2.2), we readily obtain the

expansion (6.4.1). Upon inspecting the error terms in such an expan-

sion3, one sees that they are uniform when −π + ε ≤ θ ≤ −ε, with

arbitrary ε > 0.

The second subcase is similar, but we start from a different expres-

sion for Fα,β. In (6.3.1) we rotate the contour of integration once again

over an angle π/(2α), and after some computations one gets the follow-

ing expression for Fα,β,

Fα,β(Re
iθ) = eiπ(β+1)/α F. p.

∫ ∞

0
tβ exp

(
−itα + ei(θ−π/2+π/α)Rt

)
dt

+
∑
m,n

m+nα+β+1=0

inRmei(θ−π/2)m

n!m!

π

α
i.

One can now proceed in the same way as in the discussion of the

first subcase, and one again finds the expansion (6.4.1). So, we have

3See e.g. [49, Eq. (3.41), p. 116] for an explicit expression of the error term, which

carries over to other distribution spaces where the generalized moment asymptotic

expansion holds (cf. [49, Sections 3.4 and 3.7]). The error terms only depend on

a dual seminorm of the gθ and they are uniformly bounded in the ranges under

consideration.
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established that this asymptotic series expansion holds in the range

−π − π/α < θ < 0 with uniformity on closed subsectors.

Case 2: 0 < θ < π − π/α.

In this case we get the asymptotic series (6.4.5) stated below. The

first order approximation is

Fα,β(Re
iθ) ∼

eiη1,θ

√
2π

(α− 1)
α

−1/2−β
α−1 R

β+1−α/2
α−1 exp

(
eiη2,θα−1/(α−1)(1− 1/α)R

α
α−1
)
,

(6.4.3)

where

η1,θ :=
π

4
− α− 2β − 2

2(α− 1)
θ, η2,θ :=

α

α− 1
θ − π

2
.

Notice that cos(η2,θ) > 0 in this case.

We shall use the saddle point method (see Subsection 1.2.3) to study

this case. Starting from expression (6.3.1), we will use the saddle point

method on the integral from 1 to ∞ and this will give the main contribu-

tion; the other two terms are O(eRR|β|) and O(R|β|−1) respectively, and

as we will see they are negligible with respect to the main contribution.

Set κ := 1/(α− 1) , φ := θ−π/2+π/(2α) and perform the substitution

t = Rκs to get∫ ∞

1
tβ exp

(
−tα +Reiφt

)
dt = Rκ(β+1)

∫ ∞

1/Rκ

sβ exp
(
Rκ+1(eiφs− sα)

)
ds.

The function

h(ζ) := eiφζ − ζα (6.4.4)

is holomorphic in C \ (−∞, 0] and has a saddle point at ζ0 = α−κeiκφ.

We shift the contour of integration to Γ =
⋃

j Γj , where

Γ1 := [R−κ, r], some small r > 0;

Γ2 := {reiη : η ranging from 0 to κφ};

Γ3 := [reiκφ, ρeiκφ], some large ρ;

Γ4 := {ρeiη : η ranging from κφ to 0};

Γ5 := [ρ,∞).
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The main contribution will come from the integral over Γ3; for the

other integrals we have:

Rκ(β+1)(

∫
Γ1

+

∫
Γ2

) ≪ eεR
κ+1

;

Rκ(β+1)(

∫
Γ4

+

∫
Γ5

) ≪ e−CRκ+1
.

Here, ε is a number depending on r which can be made arbitrarily small

by choosing r arbitrarily small, and C is a number depending on ρ which

can be made positive by choosing ρ sufficiently large. On Γ3, Reh(ζ)

reaches its maximum at the saddle point; applying [49, Eq. (3.172),

p. 137] gives4

Rκ(β+1)

∫
Γ3

ζβ exp
(
Rκ+1(eiφζ − ζα)

)
dζ

∼ iRκ(β+1) exp
(
α−κ(1− 1/α)eiακφRκ+1

)
×

∞∑
n=0

(−1)nΓ(n+ 1/2)⟨δ(2n)
(√

h(ζ)− h(ζ0)
)
, ζβ⟩

(2n)!R(κ+1)(n+1/2)
.

The branch of
√
h(ζ)− h(ζ0) is chosen here in such a way that

Im
√
h(ζ)− h(ζ0) is increasing in a neighborhood of ζ0 on Γ3.

Since all the other contributions are of lower order than every term

in the above asymptotic series, we have the same asymptotic relation

(up to a multiplicative constant) for Fα,β:

Fα,β(Re
iθ)

∼ ei((β+1)π/(2α)+π/2)R
β+1−α/2

α−1 exp
(
eiη2,θα−1/(α−1)(1− 1/α)R

α
α−1
)
×

∞∑
n=0

(−1)nΓ(n+ 1/2)
〈
δ(2n)

(√
h(ζ)− h(ζ0)

)
, ζβ
〉

(2n)!R
nα
α−1

, (6.4.5)

where h is given by (6.4.4) and ζ0 = α−κeiκφ. The asymptotic expansion

(6.4.5) holds uniformly on closed subsectors.

4By convention, a change of variables in the space of analytic functionals is done

without taking absolute value of the Jacobian, e.g.,

(−1)n⟨δ(n)(ψ(z)), f(z)⟩ = dn

dωn

(
f(ψ−1(ω))

ψ′(ψ−1(ω))

)∣∣∣∣
ω=0

.
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Case 3: θ = 0 or θ = −π − π/α.

When z crosses the rays θ = 0 and θ = −π − π/α, the asymptotic

behavior of Fα,β(z) changes qualitatively from (6.4.1) to (6.4.5). On

these rays, the asymptotic behavior will be a combination of both (6.4.1)

and (6.4.5). To fix ideas, assume θ = 0, z = R. The other case is actually

treated similarly, as we explain below. We start from the following

expression for Fα,β, which can be derived as in Section 6.3, but now

only rotating the contour in the integral from Rκ to ∞ (recall that

κ = 1/(α− 1)). We have

Fα,β(R) = eiπ(β+1)/(2α)

∫ ∞

Rκ

tβ exp
(
−tα − ieiπ/(2α)Rt

)
dt

+ iRκ(β+1)

∫ π
2α

0
eiη(β+1) exp

(
Rκ+1(ieiαη − ieiη)

)
dη

+

∫ Rκ

1
tβ exp

(
itα − iRt

)
dt+

∫ 1

0
(. . .− . . . ) +

∑′
. . .

=: I1 + I2 + I3 + I4 + S. (6.4.6)

We will split the integral I3 into four pieces using partitions of the

unity. The splitting will be done in two steps. In the first step, we split

I3 into two pieces I3,a+I3,e: consider two functions such that ϕa+ϕe = 1

on [1, Rκ] and 0 < ε < 1 with

ϕa ∈ C∞[0,∞), suppϕa ⊆ [0, 1 + ε], ϕa = 1 on [0, 1 + ε
2 ];

ϕe ∈ C∞(−∞, Rκ], suppϕe ⊆ [1 + ε
2 , R

κ], ϕe = 1 on [1 + ε,Rκ].

The sum

I3,a + I4 + S = F.p.

∫ ∞

0
tβ exp(itα)ϕa(t) exp(−iRt) dt

can be treated analogously as in Case 1, with one modification. It is

no longer the case that the distribution gθ = exp(ei(θ−π/2)t) = exp(−it)

belongs to P ′{tβ+nα}. To remedy this, we consider the space K{tβ+nα}
from Subsection 1.2.2 (with αn = β+nα). We have that our test function

tβ exp(itα)ϕa(t) is indeed an element of K{tβ+nα}, as it has compact

support. The function e−it can be regularized to yield an element of

K′{tβ+nα}: the divergence at the origin is resolved in the same way as
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in Case 1, while the divergence of the integral away from the origin is

resolved by formally integrating by parts enough times so that one gets

an absolutely convergent integral. More precisely, given ψ ∈ Kq{tβ+nα}
with ψ(t) ∼ c0t

β + c1t
β+α + · · · , one regularizes the divergent integral∫∞

0 e−itψ(t) dt as

⟨e−it, ψ(t)⟩ =
∫ 1

0

(
e−itψ(t)−

∑
m,n

m+nα+Reβ≤−1

cn
(−i)m

m!
tβ+nα+m

)
dt

+
∑′

m,n
m+nα+Reβ≤−1

cn
(−i)m

m!

1

β + nα+m+ 1

+

q+1∑
j=0

(−1)j+1 e−i

(−i)j+1
ψ(j)(1) + (−1)q+2

∫ ∞

1

e−it

(−i)q+2
ψ(q+2)(t) dt.

Using the moment asymptotic expansion on this regularization will give

that the asymptotics of I3,a + I4 + S are exactly like (6.4.1) in Case 1

with 0 substituted for θ.

Our second step is to deal with the integral I3,e. We first perform

the substitution t = Rκs to get

I3,e = R(β+1)κ

∫ 1

R−κ

sβ exp
(
−iRκ+1h(s)

)
ϕe(R

κs) ds,

where

h(s) := s− sα. (6.4.7)

We will estimate I3,e using the stationary phase principle. The function

h has a unique stationary point s0 = α−κ; h′(s0) = 0. This station-

ary point is contained in [R−κ(1 + ε), 1] provided that R is sufficiently

large, say R > 21/κα. In order to single out the contributions from the

endpoints and the interior stationary point, we further split the integral

I3,e into three pieces using ϕ with ϕb + ϕc + ϕd = 1 on [0, 1] and ε′ with

0 < ε′ < s0/2 with

ϕb ∈ C∞(R), suppϕb ⊆ (−∞, s02 ], ϕb = 1 on [0, s02 − ε′];

ϕc ∈ C∞(R), suppϕc ⊆ [ s02 − ε′, 1− ε′

2 ], ϕc = 1 on [ s02 , 1− ε′];

ϕd ∈ C∞(−∞, 1], suppϕd ⊆ [1− ε′, 1], ϕd = 1 on [1− ε′

2 , 1].
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This yields three integrals I3,e = I3,b+I3,c+I3,d; the stationary point s0 is

contained in the support of ϕc if ε
′ is sufficiently small (say ε′ < (1−s0)).

Furthermore, the function ϕe(R
κs) is 1 on the integration intervals of

I3,c and I3,d if R is sufficiently large (say Rκ ≥ (1 + ε)/(s0/2− ε′)).

For the integral I3,b we have:

I3,b = Rκ

∫ ∞

−∞
(Rκs)β exp

(
iRκ+1(sα − s)

)
ϕe(R

κs)ϕb(s) ds.

We now show that I3,b ≪n R
−n for any n ∈ N. Perform the substitution

u = h(s) and integrate by parts n times to obtain

I3,b =
Rκ

(iRκ+1)n

∫
J
exp(−iRκ+1u)×

dn

dun

(
(h−1(u)Rκ)βϕb(h

−1(u))ϕe(R
κh−1(u))

1

h′(h−1(u))

)
du,

where the integration interval is J = [h(R−κ(1+ε/2)), h(s0/2)]. On this

interval, we have

dj

duj
1

h′(h−1(u))
≪j 1 +R−κ(α−(j+1)) ≪j R

jκ,

so I3,b ≪n R
κ(1+|β|)RnκR−n(κ+1) = Rκ(1+|β|)−n.

The integral I3,c equals

Rκ(β+1)

∫ 1−ε′/2

s0/2−ε′
exp
(
−iRκ+1h(s)

)
sβϕc(s) ds.

The integrand is a smooth function whose support is compact and con-

tains the stationary point s0. An asymptotic formula can thus be ob-

tained via the stationary phase principle. Employing [49, Eq. (3.212),

p. 146] 5 we get

I3,c ∼ Rκ(β+1) exp(−iRκ+1h(s0))

∞∑
n=0

exp(iπ(2n+ 1)/4)Γ(n+ 1/2)

(2n)!R(κ+1)(n+1/2)

×
〈
δ(2n)

(
sgn(s− s0)

√
h(s0)− h(s)

)
, sβ
〉
.

5There are some typos there, one should replace n by 2n in the phase of the

complex exponential and in the factorial, and n+ 1 by n+ 1/2 in the exponent of λ.
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Finally, I3,d will give a contribution from its endpoint 1, but this will

be cancelled by the contribution from the endpoint 0 of I2: I2+ I3,d ≪n

R−n for every n ∈ N. Also I1 ≪n R
−n for every n ∈ N.

Collecting all terms, we get the asymptotic expansion (6.1.4), with

cn,α,β =
1

n!
exp

(
− iπ

2

(
β + 1 + n(α− 1)

))
Γ∗(β + nα+ 1), (6.4.8)

dn,α,β =
1

(2n)!
exp
(
iπ(2n+ 1)/4

)
Γ(n+ 1/2)×〈

δ(2n)
(
sgn(s− s0)

√
h(s0)− h(s)

)
, sβ
〉
. (6.4.9)

where h is given by (6.4.7) and s0 = α−κ. Explicitly, we have the

following expression for d0,α,β:

d0,α,β = eiπ/4
√

2π

α− 1
α

−1/2−β
α−1 .

The case θ = −π−π/α is similar, but starting from equation (6.3.1)

we rotate the contour from 0 to Rκ over an additional angle of π/(2α),

as in the second subcase of Case 1. One gets:

Fα,β(Re
−i(π+π/α))

+
∑
m,n

β+nα+m+1=0

in exp(−im(3π/2 + π/α))

n!m!
Rm(logR− i(π/2 + π/α))

∼
∞∑
n=0

exp
(
i(nπ/2 + (π/2 + π/α)(β + nα+ 1)

)
Γ∗(β + nα+ 1)

n!Rβ+nα+1

+ eiπ(β+1)/α exp
(
iα−1/(α−1)(1− 1/α)R

α
α−1
)
R

β+1−α/2
α−1 ×

∞∑
n=0

exp(−iπ(2n+ 1)/4)Γ(n+ 1/2)

(2n)!R
nα
α−1

×

〈
δ(2n)

(
sgn(s− s0)

√
h(s0)− h(s)

)
, sβ
〉
.

6.5 Bounds in an hourglass-shaped region near

the real line

In this last section we deduce polynomial bounds for Fα,β in an hour-

glass-shaped region near the real axis. Given C > 0, consider the closed
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region

ΩC :=

{
z = x+ iy ∈ C : |y| ≤ C

log(2 +|x|)
(1 +|x|)κ

}
,

where κ = 1/(α− 1).

For x negative and sufficiently large in absolute value, z = x+iy lies

in the sector treated in Case 1, and by the uniformity of the expansions

(6.4.1) there, we have

Fα,β(z) ≪

|x|
−1−Reβ if −1− β /∈ N,

|x|−1−β log|x| if −1− β ∈ N,
when z ∈ ΩC and x ≤ 0.

When x is positive, we use a similar contour as in Case 3: set

ρ := Axκ for a parameter A (to be determined below) and rotate the

contour in the integral from ρ to ∞. We keep x > 1. For the “rotated”

integral we have

∫ ∞

ρ
tβ exp

(
−tα + e−iπ

2 (1−
1
α)(x+ iy)t

)
dt

≪
∫ ∞

ρ
tβ exp

(
−t(tα−1 − x− |y|)

)
dt≪ e−ρ,

since tα−1 − x − |y| ≥ Aα−1x − x − C(x + 1)−κ log(x + 2) ≥ 2 if A > 1

and x is sufficiently large. For the integral over the circle arc we have

(using the bounds 2η/π ≤ sin η ≤ η for 0 ≤ η ≤ π/2)

ρβ+1

∫ π
2α

0
eiβη exp

(
iραeiαη − i(x+ iy)ρeiη

)
ieiη dη

≪A x
κ(Reβ+1) exp(ρ|y|)

∫ π
2α

0
exp(−2αραη/π + ρxη) dη

≪ xκ(Reβ+1)+AC π

2αρα − πρx

(
1− exp(−ρα + ρxπ/(2α))

)
≪ xAC+κReβ−1,

whenever A > (π/(2α))κ so that −ρα + ρxπ/(2α) < 0.
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The remaining terms in the expression for Fα,β(z) can be written as∫ 1

0
tβ
(
exp(itα − izt)−

∑
m,n

m+nα+Reβ≤−1

in(−iz)m

n!m!
tnα+m

)
dt

+
∑′

m,n
m+nα+Reβ≤−1

in(−iz)m

n!m!

1

β + nα+m+ 1
+

∫ ρ

1
tβ exp

(
i(tα − xt)

)
exp(yt) dt.

(6.5.1)

Suppose first that Reβ ≤ −1. By Taylor’s theorem, the integrand

of the first integral is bounded by ct−1+ε
∣∣(−iz)⌊−1−Reβ⌋+1 exp(−izt0)

∣∣
for some constant c, some positive ε, and some t0 ∈ [0, 1]; hence, after

integrating, this is ≪ x⌊−1−Reβ⌋+1. The sum is ≪ x⌊−1−Reβ⌋. The

last integral is ≪ xAC if Reβ < −1 and ≪ xAC log x if Reβ = −1. If

Reβ > −1 then we have no finite part contributions and we can integrate

from 0 to ρ, yielding the bound ≪A x
AC+κ(Reβ+1).

In conclusion, for z ∈ ΩC , and any fixed constant

A > max(1, (π/(2α))κ), we have

Fα,β(z) ≪


|x|⌊−1−Reβ⌋+1 +|x|AC , if Reβ < −1;

|x|+|x|AC log x, if Reβ = −1;

|x|AC+Re β+1
α−1 , if Reβ > −1.

Remark 6.5.1. We end this section with two remarks.

(i) One can get better bounds on the last integral in (6.5.1) by using

the stationary phase principle, instead of bounding trivially. For

example, when β = 0 one can obtain Fα,0(z) ≪|x|AC+
−α/2+1

α−1 .

(ii) The function τ(x) = exp
(
ix1+1/κ/ log1/κ x

)
considered in the In-

troduction has entire Fourier transform τ̂ , as can be shown in the

same way as in Section 6.3. Similarly, one may deduce polyno-

mial bounds for τ̂ in the region {z : |Im z| ≤ C(1 +|Re z|)−κ}, by
choosing ρ := Axκ log x in the above procedure.
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Chapter 7

Absence of remainders in

the Wiener–Ikehara and

Ingham–Karamata theorem

7.1 Introduction

The Wiener–Ikehara theorem and the Ingham–Karamata theorem are

two cornerstones of complex Tauberian theory. Both results have nu-

merous applications in diverse areas such as number theory, operator

theory, and partial differential equations. We refer to the monographs

[3, 72, 95] for accounts on these theorems and related complex Tauberian

theorems.

The classical Wiener–Ikehara theorem states that if a function S is

non-decreasing on [0,∞) and has convergent Laplace–Stieltjes transform

on the half-plane Re s > 1 such that

L{dS; s} − a

s− 1
=

∫ ∞

0
e−sx dS(x)− a

s− 1
(7.1.1)

admits an analytic extension beyond Re s = 1, then S has asymptotic

behavior

S(x) = aex + o(ex). (7.1.2)

On the other hand, one version of the Ingham–Karamata theorem says

that if a function τ is Lipschitz continuous on [0,∞) and if its Laplace

115
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transform

L{τ ; s} =

∫ ∞

0
τ(x)e−sx dx

has an analytic continuation across the imaginary axis, then

τ(x) = o(1). (7.1.3)

We have stated here the simplest forms of these results, but we point out

that both theorems have been extensively studied over the last century

and have been generalized in a variety of ways. For instance, see [13,

34, 39, 41, 42, 88, 94, 99] for recent contributions.

In a recent article [40] Debruyne and Vindas have proved that, in

general, it is impossible to improve the error terms of the asymptotic

formulas (7.1.2) and (7.1.3) in the Wiener–Ikehara theorem and the

Ingham–Karamata theorem if one just augments the assumptions of

these theorems by asking an additional analytic continuation hypothesis

to a half-plane containing Re s > 1 or Re s > 0, respectively. In the case

of the Wiener–Ikehara theorem, this disproves a conjecture by Müger

[82], who had conjectured that the remainder Oε

{
exp
(
(α+2

3 + ε)x
)}

for

each ε > 0 in (7.1.2) could be obtained if (7.1.1) can be analytically

extended to Re s > α with some 0 < α < 1. It has indeed been shown in

[40] that no stronger remainder than the one in (7.1.2) can be achieved

if this extra assumption is solely made together with the classical hy-

potheses.

Actually, the functions treated in the previous chapter give rise to

explicit counterexamples to Müger’s conjecture. Defining

S(x) =

∫ x

0
(1 + cos(tα))et dt for α > 1,

one readily sees that the Laplace–Stieltjes transform of S equals

L{dS; s} =
1

s− 1
+

1

2

(
Fα,0(i(1− s)) + Fα,0(i(1− s))

)
,

where Fα,β(z) is defined as in (6.1.2). By the results of Chapter 6,

this Laplace–Stieltjes transform admits analytic continuation to C after

subtraction of 1/(s−1) for the pole at 1. On the other hand, integrating

by parts yields

S(x) = ex +
sin(xα)

αxα−1
ex +O

(
ex

x2(α−1)

)
.
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The proofs of the quoted results on the absence of remainders in

the Wiener–Ikehara and Ingham–Karamata theorems given in [40] are

non-constructive as they rely on abstract functional analysis arguments

(the open mapping theorem for Fréchet spaces). In particular, they do

not deliver any concrete counterexample for specific remainders. One

might still wonder how such counterexamples could explicitly be found.

The goal of this chapter is to address the latter constructive problem.

In fact, we shall construct explicit instances of functions that show the

ensuing theorem. Note that Theorem 7.1.1 improves [40, Theorem 3.1

and Theorem 4.2].

Theorem 7.1.1. Let ρ be a positive function tending to 0.

(i) There is a non-decreasing function S on [0,∞) whose Laplace–

Stieltjes transform converges for Re s > 1 and for which

L{dS; s} − 1

s− 1

extends to the whole complex plane C as an entire function, but

which satisfies the oscillation estimate

S(x) = ex +Ω±(ρ(x)e
x).

(ii) There is a smooth function τ on (0,∞) with bounded derivative

whose Laplace transform L{τ ; s} can be analytically continued to

the whole of C, but which satisfies the oscillation estimate

τ(x) = Ω±(ρ(x)).

We end this introduction by mentioning that it is actually possi-

ble to obtain quantified error terms in complex Tauberian theorems for

the Laplace transform, but, as e.g. Theorem 7.1.1 shows, additional as-

sumptions on the Laplace transform besides analytic continuation are

required. Determining such conditions is a central problem in modern

complex Tauberian theory and much progress on this question has been

made in the last decade, see e.g. [13, 19, 34, 37, 89, 94]. Many of such

results are motivated by the theory of operator semigroups and have ap-

plications in partial differential equations and dynamical systems. The

current chapter is based on the article [23] by the author, Debruyne and

Vindas.
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7.2 Main constructions

Our construction relies on three main lemmas, which are presented in

this section. The first result allows one to regularize functions that

increase to infinity slower than
√
x .

Lemma 7.2.1. Let ω be a positive non-decreasing function on (0,∞)

satisfying

lim
x→∞

ω(x) = ∞ and ω(x) ≪
√
x.

Then there exists W ∈ C∞(0,∞) with the following properties:

(a) ω(x) ≪W (x) ≪ ω(x2) as x→ ∞;

(b) W (ax) ≥ aW (x) for every a ≤ 1;

(c) W ′(x) ≥ 0;

(d) for any n ≥ 1 and x > 0,∣∣W (n)(x)
∣∣ ≤ n!

W (x)

xn
.

Proof. Consider the Poisson kernel of the real line,

P (x, y) =
y

y2 + x2
= − Im(z−1), with z = x+ iy.

We set

W (y) =

∫ ∞

0
ω(x)P (x, y) dx =

∫ ∞

0
ω(xy)P (x, 1) dx.

We have

W (y) ≥
∫ ∞

1
ω(xy)P (x, 1) dx≫ ω(y);

and

W (y) =

∫ y

0
ω(xy)P (x, 1) dx+

∫ ∞

y
ω(xy)P (x, 1) dx

≪ ω(y2) +
√
y

∫ ∞

y

√
x

1 + x2
dx≪ ω(y2) + 1.

This proves (a). Property (b) follows immediately from the definition of

W . For (c),
∂P

∂y
(x, y) =

x2 − y2

(x2 + y2)2
,
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so

W ′(y) =

∫ y

0
ω(x)

x2 − y2

(x2 + y2)2
dx+

∫ ∞

y
ω(x)

x2 − y2

(x2 + y2)2
dx

≥ ω(y)

∫ ∞

0

x2 − y2

(x2 + y2)2
dx = 0.

Finally, differentiating the second expression for P with respect to y, we

obtain the bounds∣∣∣∣∂nP∂yn (x, y)

∣∣∣∣ =
∣∣∣∣∣Im ∂n

∂yn

(
1

z

)∣∣∣∣∣ =
∣∣∣∣∣∣Im

(
in
dn

dzn

(
1

z

))∣∣∣∣∣∣
=

∣∣∣∣∣Im
(
(−i)nn!

zn+1

)∣∣∣∣∣ ≤ n!

|z|n+1
;

therefore, ∣∣W (n)(y)
∣∣ ≤ n!

∫ ∞

0

ω(x)

(x2 + y2)(n+1)/2
dx

= n!y−n

∫ ∞

0

ω(xy)

(x2 + 1)(n+1)/2
dx

≤ n!y−nW (y).

It should be noted that property (d) always yields property (b).

The rest of this section is devoted to studying properties of various

functions associated to the oscillatory function cos(xW (x)), where W

satisfies the above properties (c) and (d).

Lemma 7.2.2. LetW be a smooth function tending to ∞ which satisfies

the properties (c) and (d) stated in Lemma 7.2.1. Define

T (x) =

∫ x

0
eu cos

(
uW (u)

)
du (7.2.1)

and

V (x) =W (x) + xW ′(x). (7.2.2)

Then,

T (x) =
ex

V (x)
sin
(
xW (x)

)
+O

(
ex

V (x)2

)
. (7.2.3)
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Proof. Integrating by parts,

T (x) =

∫ x

0

eu

V (u)

(
sin
(
uW (u)

))′
du

=
ex

V (x)
sin
(
xW (x)

)
+O(1)

−
∫ x

1
eu sin

(
uW (u)

)( 1

V (u)
− V ′(u)

V (u)2

)
du.

To estimate the remaining integral, we perform once more integration

by parts and obtain that it equals(
1

V (x)2
− V ′(x)

V (x)3

)
ex cos

(
xW (x)

)
+O(1)

+O

(∫ x

1

∣∣∣∣( eu

V (u)2
− euV ′(u)

V (u)3

)′∣∣∣∣du
)
.

The first term is of the desired order of growth in view of the regularity

assumption (d). The derivative inside the integral equals

eu

(
1

V (u)2
− 3

V ′(u)

V (u)3
− V ′′(u)

V (u)3
+ 3

V ′(u)2

V (u)4

)
=

eu

V (u)2
+O

(
eu

uV (u)2

)
,

again by the regularity assumption (d), and it is thus eventually positive.

Hence the integral is bounded by

O(1) +
ex

V (x)2
− exV ′(x)

V (x)3
.

It remains to observe that property (d) yields W (x) ≪ x, which implies

that the O(1) terms above are in fact O(ex/V (x)2). This concludes the

proof of the lemma.

The last key ingredient in our argument is the analytic continuation

property of the Laplace transform of cos(xW (x)) that is obtained in the

ensuing lemma. Before we state it, let us point out that we use below

the bound W (x) ≪ x.

Lemma 7.2.3. Suppose W is a smooth function tending to ∞ and sat-

isfying (c) and (d) from Lemma 7.2.1. Then, the Laplace transform

L{cos(xW (x)); s} =

∫ ∞

0
cos(xW (x))e−sx dx

admits an analytic continuation to the whole complex plane.
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Proof. We shall prove the continuation of

F (s) :=

∫ ∞

0
eixW (x)e−sx dx,

whence the lemma follows since L{cos(xW (x)); s} =
(
F (s) + F (s)

)
/2.

Using property (d), one sees that the n-th Taylor coefficient of W

at x, cn,x, satisfies |cn,x| ≤ x−nW (x), so that its Taylor series at x has

radius of convergence at least x. This shows that W (z) has analytic

continuation to the half-plane Re z > 0. The idea of the proof is to

shift the integration contour to one where the real part of izW (z) is

sufficiently negative, in order to obtain an integral which is convergent

for any value of s ∈ C.
Consider z = Reiθ with 0 ≤ θ ≤ π/5. First we deduce some bounds

on

Re(izW (z)) = −R
(
sin θReW (z) + cos θ ImW (z)

)
.

Expanding W in its Taylor series around R cos θ, we get

W (Reiθ) =W (R cos θ) +
∞∑
n=1

(−1)nc2n,R cos θ(R sin θ)2n

+ i

∞∑
n=0

(−1)nc2n+1,R cos θ(R sin θ)2n+1.

Employing the bounds on cn,R cos θ and property (c), which implies

c1,R cos θ ≥ 0, we get

ReW (Reiθ) ≥W (R cos θ)−W (R cos θ)(tan θ)2
∞∑
n=0

(tan θ)2n

ImW (Reiθ) ≥ −W (R cos θ)(tan θ)3
∞∑
n=0

(tan θ)2n.

If we choose θ such that (tan θ)2 ≤ 1/W (R), we obtain

Re(izW (z)) ≤ −R
(
(sin θ)W (R cos θ) +O(1)

)
. (7.2.4)

Consider now the contours

ΓR : [R0, R] → C : r 7→ r exp

(
i arctan

1√
W (r)

)
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for some R0 sufficiently large (so that arctan(W (R0)
−1/2) < π/5), and

CR :
[
0, arctan

(
W (R)−1/2

)]
→ C : θ 7→ Reiθ.

Using (7.2.4), one verifies that for Re s ≥ σ0, with sufficiently large σ0,

the integral of the function eizW (z)e−sz over CR tends to 0 as R → ∞.

For the integral over Γ∞, we again employ (7.2.4) and get∣∣∣∣∫
Γ∞

eizW (z)e−sz dz

∣∣∣∣≪ ∫ ∞

R0

exp

(
−r W (r)

2
√
1 +W (r)

+ (C +|s|)r
)
dr,

for some constant C, since sin arctan
(
W (r)−1/2

)
= (1 + W (r))−1/2,

dz = O(1) dr by property (d), and W (r cos θ) ≥ W (r)/2 for θ ≤ π/3

by property (b). Since
√
W (r) → ∞, the integral over Γ∞ converges

absolutely and uniformly for s on any compact subset of C, and hence

represents an entire function. In conclusion, the formula

F (s) =

∫
[0,R0]∪CR0

∪Γ∞

eizW (z)e−sz dz,

valid for s in a certain right half-plane in view of Cauchy’s theorem,

yields the analytic continuation of F (s) to C.

Remark 7.2.4. Let W be an unbounded smooth function satisfying

properties (c) and (d) from Lemma 7.2.1. Similarly as in Lemma 7.2.2,∫ x

0
eσu cos

(
uW (u)

)
du =

eσx

V (x)
sin
(
xW (x)

)
+Oσ

(
eσx

V (x)2

)
is unbounded for each fixed σ > 0. This and Lemma 7.2.3 imply that

the function f(x) = eσ0x cos
(
xW (x)

)
furnishes an example of an ex-

ponentially bounded function with abscissa of convergence σ0 for its

Laplace transform (as an improper integral), but whose Laplace trans-

form has entire extension. Furthermore, one might verify that this entire

extension is unbounded on any half-plane Re s > σ1 with σ1 < σ0. In-

terestingly, Bloch [17] has given an example of a function whose Laplace

transform extends to an entire function that is bounded on every right

half-plane, but has finite abscissa of convergence. In contrast to our

example, these properties imply that Bloch’s function cannot be expo-

nentially bounded, as follows from [3, Theorem 4.4.19, p. 287], but this

can also be readily seen from Bloch’s construction.
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7.3 The examples

We have already done all the necessary work in order to establish The-

orem 7.1.1. We set

ρ̃(x) = sup
y≥x

ρ(y), ω(x) = min
(√
x, 1/ρ̃

(√
x
))
,

and letW then be a function fulfilling the conditions (a)-(d) from Lemma

7.2.1.

Example 7.3.1 (Proof of Theorem 7.1.1(i)). We consider the non-

decreasing function

S(x) =

∫ x

0
eu
(
1 + cos

(
uW (u)

))
du, x ≥ 0.

Since

W (x) ≤ V (x) ≤ 2W (x) ≪ ω(x2) ≤ 1/ρ(x) for x→ ∞,

Lemma 7.2.2 tells us that S(x) = ex +Ω±(e
xρ(x)). On the other hand,

by Lemma 7.2.3, its Laplace–Stieltjes transform L{dS; s} extends to a

meromorphic function on C with a single simple pole with residue 1 at

s = 1.

Example 7.3.2 (Proof of Theorem 7.1.1(ii)). This time we define our

example as

τ(x) =

∫ ∞

x
cos
(
uW (u)

)
du, x ≥ 0.

Then, integrating by parts as in Lemma 7.2.2, using property (d), the

bound V (x) ≍W (x), and the fact that W is non-decreasing,∫ y

x
cos
(
uW (u)

)
du

=
sin(yW (y))

V (y)
− sin(xW (x))

V (x)
+
V ′(x) cos(xW (x))

V (x)3

− V ′(y) cos(yW (y))

V (y)3
+

∫ y

x
cos(uW (u))

(
V ′′(u)

V (u)3
− 3

V ′(u)2

V (u)4

)
du

=
sin(yW (y))

V (y)
− sin(xW (x))

V (x)
+O

(
1

V (x)2

)
+

∫ y

x
O

(
1

u2V (u)2

)
du

=
sin(yW (y))

V (y)
− sin(xW (x))

V (x)
+O

(
1

V (x)2

)
,
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so that the defining improper integral indeed converges and τ(x) =

Ω±(1/V (x)) = Ω±(ρ(x)). That the Laplace transform of τ has entire

extension follows directly from Lemma 7.2.3.



Chapter 8

Riemann’s function

8.1 Introduction

According to an account of Weierstrass, Riemann would have suggested

the function

f(x) =
∞∑
n=1

sin(n2πx)

n2

as an example of a function which is continuous but nowhere differen-

tiable. In 1916, Hardy [54] proved, based on earlier work by him and

Littlewood [55], that Riemann’s function f is not differentiable in a cer-

tain subset of R that contains every irrational point. This seemed to

confirm the nowhere differentiability conjecture, but, on the contrary,

Gerver [51] showed in 1970 that f is actually differentiable at any ra-

tional number of the form (2r + 1)/(2s + 1). His results [51, 52] in

combination with Hardy’s ones imply that Riemann’s function is not

differentiable at any other real number. Gerver’s proofs are elementary,

but difficult and long. Simpler proofs were found later by Smith in 1972

[93] and Itatsu in 1981 [64] (see also [59, 79, 86]). They provided more

precise information about the pointwise behavior of Riemann’s function,

which in particular gives the pointwise Hölder exponent [67] at any ra-

tional point. This left open the determination of the exact pointwise

regularity of Riemann’s function at the irrationals.

Duistermaat [47] used a variant of Itatsu’s approach to exhibit ex-

plicit dependence of the O-constants on the analyzed rational point in

125
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the Smith–Itatsu asymptotic formulas. His error terms were strong

enough to enable him to find a lower bound for the pointwise Hölder

exponent at every irrational point. His lower bound depends on ap-

proximation properties of the irrational number by certain continued

fractions. The problem of finding the pointwise Hölderian regularity of

Riemann’s function at irrational points was finally solved by Jaffard [66]

in 1996, who showed that Duistermaat’s lower bound was sharp, that

is, it is exactly equal to the pointwise Hölder exponent. Jaffard’s proof

is indirect and non-elementary. It is of Tauberian nature and makes use

of wavelet analysis and the theta modular group.

In this chapter we provide a new and self-contained approach for the

determination of the pointwise Hölder exponent of Riemann’s function

at every point. Our arguments are direct and lead to completely elemen-

tary and fairly short proofs that only rely on the following tools: the

evaluation of quadratic Gauss sums, the Poisson summation formula,

and Cauchy’s theorem. This chapter is based on the preprint [27] by the

author and Vindas.

Our method can be sketched as follows. For the sake of convenience,

we work with a rescaled and complex version of Riemann’s function,

namely,

ϕ(z) =
∞∑
n=1

1

2πin2
e(n2z)

where we use the notation e(z) for e2πiz and z = x + iy with y ≥ 0.

The pointwise properties of Riemann’s original function can easily be

deduced from those of ϕ. We are interested in the computation of the

pointwise Hölder exponent

α(x) = sup{α > 0 | ϕ(x+ h) = ϕ(x) +Ox(|h|α)}. (8.1.1)

Restricting the complex variable z to the upper half-plane, one has

ϕ′(z) =
1

2
(θ(z)− 1), (8.1.2)

where θ stands for the Jacobi theta function, namely,

θ(z) =
∑
n∈Z

e(n2z).
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Therefore, for each x ∈ R, we obtain the basic identity

ϕ(x+ h)− ϕ(x) +
1

2
h =

1

2
lim

y→0+

∫ h+iy

iy
θ(x+ z) dz, (8.1.3)

a formula that was already employed by Itatsu for x = 0.

We will exploit the formula (8.1.3) for the analysis of both rational

and irrational numbers x. Itatsu and Duistermaat used (8.1.3) at x = 0

and the transformation properties (under the theta modular group) to

study all rational points. We take a different path, in the spirit of Smith,

and use the Poisson summation formula to study the boundary behavior

of θ(x + z). This directly gives an exact expression for the limit of the

integral in (8.1.3) when x is rational that yields an asymptotic series

and that we shall discuss in Section 8.3. Approximating x by the n-

th convergent rn = pn/qn in its continued fraction expansion when x

is irrational and using our exact formula for θ(rn + z), one generates

sufficiently good bounds for θ(x+ z). The next key step in our method

is to use Cauchy’s theorem to transform (8.1.3) into

ϕ(x+ h)− ϕ(x) +
1

2
h = −1

2

∫
Γ
θ(x+ z) dz, (8.1.4)

where Γ is the part of the counterclockwise oriented boundary of the

rectangle with vertices 0, h, i|h|, and h+i|h| that lies in the (open) upper

half-plane. In Section 8.4 we shall combine (8.1.4) with our bounds for

θ(x + z) to give an upper bound for α(x), and hence to obtain a new

and simpler proof of Jaffard’s theorem.

8.2 Preliminaries: quadratic Gauss sums

The following exponential sums naturally arise in the analysis of ϕ at

rational points.

Definition 8.2.1. Let q, p,m be integers with (p, q) = 1. The quadratic

Gauss sum S(q, p) and the generalized quadratic Gauss sum S(q, p,m)

are defined as

S(q, p) =

q∑
j=1

e

(
pj2

q

)
and S(q, p,m) =

q∑
j=1

e

(
pj2 +mj

q

)
.
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The quadratic Gauss sums were already evaluated by Gauss (see e.g.

[2, Section 9.10] or [80, Section 9.3]):

Theorem 8.2.2. Suppose p and q are positive integers with (p, q) = 1.

For odd n, define

εn =

1 if n ≡ 1 mod 4,

i if n ≡ 3 mod 4.

Then

S(q, p) =



εq

(
p

q

)
√
q if q is odd,

0 if q ≡ 2 mod 4,

(1 + i)εp

(
q

p

)
√
q if q ≡ 0 mod 4.

Here,

(
p

q

)
is the Jacobi symbol (see [2, 80]).

The generalized quadratic Gauss sums S(q, p,m) can be related to

S(q, p) as follows. Let p⋆ be the multiplicative inverse of p mod q.

Suppose first that m ≡ 2m′ mod q for some m′. Then we can complete

the square to get

S(q, p,m) =

q∑
j=1

e

(
p(j + p⋆m′)2

q

)
e

(
−p

⋆m′2

q

)
= e

(
−p

⋆m′2

q

)
S(q, p).

(8.2.1)

If there is no such m′, then q is even and m odd. In this case we have

S(4q, p) =

2q∑
j=1

e

(
p(2j + p⋆m)2

4q

)
+

2q∑
j=1

e

(
p(2j)2

4q

)

= 2e

(
p⋆m2

4q

)
S(q, p,m) + 2S(q, p),

since 2j + p⋆m runs over all odd residues mod 4q when j runs over

{1, . . . , 2q}. Therefore,

S(q, p,m) =


1

2
e

(
−p

⋆m2

4q

)
S(4q, p) if q ≡ 2 mod 4,

0 if q ≡ 0 mod 4.

(8.2.2)
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8.3 Behavior at rational points

In this section we deduce an asymptotic expansion for ϕ at every ratio-

nal number. We first prove a simple but crucial lemma that basically

describes the behavior of θ near rationals. This lemma will be used

again in Section 8.4 to derive bounds for θ near irrational points. For a

complex number z ̸= 0, we define z−1/2 via the principal branch of the

logarithm continuously extended to negative real axis from the upper

half-plane, i.e. arg(z) ∈ (−π, π]. Accordingly, our convention is thus

t1/2 = i|t|1/2 for t < 0, which simplifies the writing of some formulas

below.

Lemma 8.3.1. Suppose 1 ≤ p ≤ q, (p, q) = 1 and y = Im z > 0. Then

θ

(
p

q
+ z

)
=

eπi/4

q
√
2
z−1/2

(
S(q, p) + 2

∞∑
m=1

S(q, p,m) exp

(
− iπm2

2q2z

))
.

Proof. Rearranging terms according to their value mod q, we write

θ

(
p

q
+ z

)
=
∑
n∈Z

e

(
pn2

q

)
e(n2z) =

q∑
j=1

e

(
pj2

q

) ∑
n∈j+qZ

e(n2z).

For fixed z, the function fz : R → C : t 7→ e(zt2) has Fourier transform

f̂z(u) =

∫ ∞

−∞
fz(t)e

−iut dt =
eπi/4√

2
z−1/2 exp

(
− iu2

8πz

)
.

An application of the well-known Poisson summation formula then yields

θ

(
p

q
+ z

)
=

eπi/4

q
√
2
z−1/2

q∑
j=1

e

(
pj2

q

)∑
m∈Z

e

(
mj

q

)
exp

(
− iπm2

2q2z

)

=
eπi/4

q
√
2
z−1/2

∑
m∈Z

S(q, p,m) exp

(
− iπm2

2q2z

)

=
eπi/4

q
√
2
z−1/2

(
S(q, p) + 2

∞∑
m=1

S(q, p,m) exp

(
− iπm2

2q2z

))
.

Define the “twisted” ϕ-function

ϕq,p(z) =

∞∑
m=1

S(q, p,m)

2πim2
e(m2z).
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Lemma 8.3.1 allows us to give a short proof of the following theorem,

essentially due to Smith [93] and Itatsu [64] (cf. [32, 47, 59]).

Theorem 8.3.2. Let p and q be integers, q ≥ 1, (p, q) = 1. Then

ϕ(p/q + h) = ϕ(p/q) + C−
p/q|h|

1/2
− + C+

p/q|h|
1/2
+ − h/2 +Rq,p(h),

where C±
p/q are given by

C−
p/q =

e3πi/4

q
√
2
S(q, p) and C+

p/q =
eπi/4

q
√
2
S(q, p) (8.3.1)

and Rq,p(h) satisfies the estimate Rq,p(h) ≪ q3/2|h|3/2. Furthermore,

C−
p/q = C+

p/q = 0 (and hence ϕ is differentiable at p/q) if and only if

q ≡ 2 mod 4.

Proof. Suppose y > 0. By equation (8.1.3),

ϕ

(
p

q
+ h+ iy

)
= ϕ

(
p

q
+ iy

)
+

1

2

∫ h+iy

iy
θ

(
p

q
+ ζ

)
dζ − 1

2
h.

Using Lemma 8.3.1,∫ h+iy

iy
θ

(
p

q
+ ζ

)
dζ

=
eπi/4

q
√
2

(
S(q, p)

[
2ζ1/2

]h+iy

iy
+ 8q2

∫ h+iy

iy
ζ3/2

(
ϕq,p

(
− 1

4q2ζ

))′
dζ

)

=
2eπi/4

q
√
2

(
S(q, p)

[
ζ1/2

]h+iy

iy
+

[
4q2ζ3/2ϕq,p

(
− 1

4q2ζ

)]h+iy

iy

− 6q2
∫ h+iy

iy
ζ1/2ϕq,p

(
− 1

4q2ζ

)
dζ

)
.

All the occurring functions have continuous extensions to R. Letting

y → 0+ we obtain the desired result, with the constants C±
p/q as in

(8.3.1) and with

Rq,p(h) =− 4q
e−3πi sgnh/4

√
2

ϕq,p

(
− 1

4q2h

)
|h|3/2

− 6q
eπi/4√

2

∫ h

0
t1/2ϕq,p

(
− 1

4q2t

)
dt. (8.3.2)
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The fact that the coefficients C±
p/q are both zero if and only if q ≡ 2 mod 4

is an immediate consequence of Theorem 8.2.2. The bound Rq,p(h) ≪
q3/2|h|3/2 easily follows since ϕq,p ≪ √

q, in view of (8.2.1), (8.2.2), and

Theorem 8.2.2.

Iterating the integration by parts procedure, we obtain a full asymp-

totic series for the remainder Rq,p. Indeed, for any K ∈ N,

Rq,p(h) =

− e−3πi sgnh/4

√
2

K∑
k=0

akq
2k+1ϕ(−k)

q,p

(
− 1

4q2h

)
ekπi(1−sgnh)/2|h|k+3/2

− eπi/4√
2
(K + 3/2)aKq

2K+1

∫ h

0
tK+1/2ϕ(−K)

q,p

(
− 1

4q2t

)
dt,

where1

ak = (−1)k4k+1
k∏

j=1

(j + 1/2)

and ϕ
(−k)
q,p stands for the k-th-order primitive

ϕ(−k)
q,p (x) =

∞∑
m=1

S(q, p,m)

(2πim2)k+1
e(m2x).

A similar asymptotic series was obtained by Duistermaat in [47] via a

different method.

Inspecting the k-th term in this asymptotic series, we see that it is of

the from |h|3/2+k g±k (|h|
−1), where ± = sgnh and where the functions g±k

are 4q2-periodic with zero mean and global Hölder regularity 1/2 + k.

One readily verifies that Rq,p is a so-called trigonometric chirp at 0

of type (3/2, 1) and of regularity 1/2. The latter refines a theorem

of Jaffard and Meyer [67, Theorem 7.1] for Riemann’s function; see [67,

p. 73] for the precise definition of a trigonometric chirp. The prototypical

example of a trigonometric chirp at 0 of type (α, β), α > −1, β > 0 is

the function |x|α sin(|x|−β).

Using the explicit expression for S(q, p) given by Theorem 8.2.2, we

can exhibit the behavior of Re
(
ϕ(p/q+h)−ϕ(p/q)

)
in a precise fashion,

1For k = 0, the product equals 1 in accordance with the empty product convention.
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Table 8.1: Behavior of Re
(
ϕ(p/q + h)− ϕ(p/q)

)

q mod 4 p mod 4 h < 0 h > 0

1 any −
(
p

q

)√
|h|

2
√
q
+Oq

(
|h|
) (

p

q

) √
h

2
√
q
+Oq(h)

3 any −
(
p

q

)√
|h|

2
√
q
+Oq

(
|h|
)

−
(
p

q

) √
h

2
√
q
+Oq(h)

2 any −h
2
+O

(
q3/2|h|3/2

)
−h
2
+O

(
q3/2h3/2

)
0 1 −

(
q

p

)√
|h|

√
q

+Oq

(
|h|
)

−h
2
+O

(
q3/2h3/2

)
0 3 −h

2
+O

(
q3/2|h|3/2

) (
q

p

)√
h

√
q
+Oq(h)

which we summarize in Table 8.1. Note that at some rational points the

function Reϕ has a (finite) left (resp. right) derivative, but an infinite

right (resp. left) derivative. By rescaling by a factor 1/2, we obtain the

well known regularity of Riemann’s function f at rational points.

Corollary 8.3.3. Suppose r = p/q is rational. If p and q are both odd,

then f is differentiable at r; otherwise the Hölder exponent of f at r

equals 1/2.

8.4 Behavior at irrational points

We now investigate the behavior of ϕ at irrational points ρ. Unlike in the

rational case, we will not be able to derive an asymptotic formula for ϕ

near ρ. Instead, we will determine the Hölder exponent α(ρ), introduced

in (8.1.1).

We need some preparation in order to state the formula for α(ρ).

Denote the n-th convergent in the continued fraction expansion of ρ by
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rn = pn/qn, where (pn, qn) = 1. The quality of the approximation of ρ

by rn is quantified by the number τn, which is defined via the relation

|ρ− rn| =
(

1

qn

)τn

.

Let (rnk
)k be the subsequence2 of approximants rnk

with qnk
̸≡ 2 mod 4,

and set

τ(ρ) := lim sup
k→∞

τnk
.

Theorem 8.4.1 (Duistermaat–Jaffard). Let ρ be irrational. The Hölder

exponent α(ρ) of ϕ at ρ is given by

α(ρ) =
1

2
+

1

2τ(ρ)
. (8.4.1)

The same result also holds for the Hölder exponent at ρ of Reϕ and

Imϕ.

The rest of this section is devoted to the proof of Theorem 8.4.1,

which consists of two parts, namely, establishing the two inequalities ≥
and ≤ in (8.4.1). The inequality ≤ was first proved by Duistermaat in

[47], while ≥ was first proved by Jaffard in [66].

Let us first recall some basic properties of continued fractions (we re-

fer to [91] for proofs and more advanced properties). The continued frac-

tions have the following properties: for every n ∈ N, τn > 2, consecutive

convergents rn and rn+1 lie on different sides of ρ, |ρ− rn+1| < |ρ− rn|,
and

pn+1qn − pnqn+1 = (−1)n. (8.4.2)

Since |rn − rn+1| = 1/(qnqn+1), we have

|ρ− rn| ≤
1

qnqn+1
≤ 2|ρ− rn| ,

so (
1

qn

)τn−1

≤ 1

qn+1
≤ 2

(
1

qn

)τn−1

. (8.4.3)

Note also that in view of (8.4.2), we have that qn and qn+1 are never

both ≡ 2 mod 4.
2Using a basic property of continued fractions (see (8.4.2) below), it is readily seen

that this is an infinite subsequence.
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8.4.1 The lower bound for α(ρ)

The lower bound for α(ρ) was first found by Jaffard [66] by means of

Tauberian arguments involving the continuous wavelet transform. To

estimate the wavelet transform, Jaffard deduced bounds for the theta

function near the irrational number ρ. We will present a simple proof of

these bounds, using Lemma 8.3.1. Furthermore, we will show how these

bounds directly furnish the lower bound for α(ρ), without needing to

pass through the wavelet transform.

Comparing the sum with an integral, we immediately obtain the

following estimate,
∞∑
n=1

e(n2z) ≪ y−1/2, (8.4.4)

for z = x+ iy with y > 0.

Proposition 8.4.2. Suppose z = x + iy with y > 0. For each ε > 0

there exists a δ > 0 such that for |z| < δ, y > 0 the following bound

holds:

θ(ρ+ z) ≪|z|
1

2τ(ρ)
−ε− 1

2 + y−1/2|z|
1

2τ(ρ)
−ε
. (8.4.5)

Proof. We first derive bounds for θ near a rational p/q with (p, q) = 1.

By Lemma 8.3.1,

θ

(
p

q
+ ζ

)
=
eπi/4

q
√
2
ζ−1/2

∑
m∈Z

S(q, p,m) exp

(
− πi

2q2ζ
m2

)
.

By the results obtained in Section 8.2, we have that S(q, p,m) ≪ √
q.

Estimating via (8.4.4),

θ

(
p

q
+ ζ

)
≪
∣∣S(q, p)∣∣
q|ζ|1/2

+

√
q|ζ|1/2

(Im ζ)1/2
. (8.4.6)

Let N be such that n ≥ N implies τn ≤ τ(ρ) + ε′ whenever qn ̸≡
2 mod 4, and where ε′ is such that 1/(2τ(ρ) + 2ε′) = 1/(2τ(ρ))− ε. Set

δ := 2|ρ− rN |. For z with |z| ≤ δ, let n be the unique integer ≥ N such

that 2|ρ− rn+1| < |z| ≤ 2|ρ− rn|, and set ζ = z + (ρ− rn+1). Then

1

2
|z| ≤|ζ| ≤ 3

2
|z| , Im ζ = Im z = y. (8.4.7)
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Suppose first that qn ̸≡ 2 mod 4. We then apply (8.4.6) with p =

pn+1, q = qn+1. For the second term, we use (8.4.3) to see that

√
qn+1 ≤ q

τn−1
2

n = |ρ− rn|
1

2τn
− 1

2 ≤
√
2|z|

1
2τn

− 1
2 .

Since 1/(2τn) ≥ 1/(2τ(ρ)) − ε (because qn ̸≡ 2 mod 4) and |ζ| ≍ |z|,
this second term is of the desired order. The first term vanishes if

qn+1 ≡ 2 mod 4, while otherwise we have

1
√
qn+1

= |ρ− rn+1|
1

2τn+1 ≤|z|
1

2τ(ρ)
−ε
,

so this first term is also of the desired order.

Suppose now that qn ≡ 2 mod 4. We when apply (8.4.6) with p = pn,

q = qn and get

θ(ρ+ z) = θ

(
pn
qn

+

(
ζ +

pn+1

qn+1
− pn
qn

))
≪

√
qn√
y

∣∣∣∣ζ + (−1)n

qn+1qn

∣∣∣∣1/2
=

1
√
qn+1

√
y

∣∣ζqnqn+1 + (−1)n
∣∣1/2 ≪ 1

√
qn+1

√
y
.

In the first estimate we employed (8.4.2), while in the last estimate we

used that |ζ| ≪ |ρ− rn| ≤ 1/(qnqn+1). Since qn ≡ 2 mod 4, we have

that qn+1 ̸≡ 2 mod 4 (by (8.4.2)), so that we can bound (qn+1)
−1/2 like

before.

Using this bound for θ near ρ, we now deduce the lower bound for

α(ρ). Pick ε > 0 arbitrary and use Proposition 8.4.2 to find a δ > 0

such that the bound (8.4.5) holds for |z| < δ. Suppose |h| < δ/
√
2. We

use again (8.1.3), so that

ϕ(ρ+ h)− ϕ(ρ) = −1

2
h+

1

2
lim

y→0+

∫ h+iy

iy
θ(ρ+ z) dz.

By Cauchy’s theorem, the limit of this integral equals∫ i|h|

0
θ(ρ+z) dz+

∫ h+i|h|

i|h|
θ(ρ+z) dz−

∫ h+i|h|

h
θ(ρ+z) dz =: I1+I2+I3.
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Using the bounds (8.4.5), we get

I1 ≪
∫ |h|

0
y
− 1

2
+ 1

2τ(ρ)
−ε ≪|h|

1
2
+ 1

2τ(ρ)
−ε
,

I2 ≪|h|−
1
2
+ 1

2τ(ρ)
−ε ·|h| = |h|

1
2
+ 1

2τ(ρ)
−ε
,

I3 ≪|h|−
1
2
+ 1

2τ(ρ)
−ε ·|h|+|h|

1
2τ(ρ)

−ε
∫ |h|

0
y−1/2 dy ≪|h|

1
2
+ 1

2τ(ρ)
−ε
.

Since ε was arbitrary, α(ρ) ≥ 1/2 + 1/(2τ(ρ)). A fortiori, this lower

bound also holds for the Hölder exponent at ρ of the real and imaginary

part of ϕ.

8.4.2 The upper bound for α(ρ)

An upper bound for the Hölder exponent at ρ can be obtained from

the expansion of ϕ at rationals, and was first done by Duistermaat [47,

Proposition 5.2]. For the sake of being self-contained, we repeat his

proof here.

Let ε > 0 be arbitrary, and let (rl)l be a subsequence of (rn)n with the

properties that ql ̸≡ 2 mod 4 and that τl ≥ τ(ρ)−ε. We will construct a

sequence of points (hl)l such that hl → 0 and ϕ(ρ+hl)−ϕ(ρ) is bounded
from below by a constant multiple of |hl|1/2+1/(2(τ(ρ)−ε)). We will do this

by exploiting the square root behavior of ϕ in rl. Set

xl = λ|ρ− rl| , (8.4.8)

where λ is a fixed positive constant, independent of l, to be determined

later. Using Theorem 8.3.2 and Theorem 8.2.2 we see that

∣∣ϕ(rl + xl)− ϕ(rl)
∣∣ ≥ x

1/2
l√
2ql

− 1

2
xl − Cq

3/2
l x

3/2
l ,

where C is an absolute constant (independent of ql). By equation (8.4.8),

and using that |ρ− rl| ≤ q−2
l , this is

≥
√
λ

√
ql
|ρ− rl|1/2

(
1√
2
− 1

2
√
ql

√
λ− Cλ

)
.

Now fix a λ with 0 < λ < 1/(
√
2C). If ql is sufficiently large, then∣∣ϕ(rl + xl)− ϕ(rl)

∣∣ ≥ δ
|ρ− rl|1/2√

ql
,
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for some fixed δ with 0 < δ <
√
λ(1/

√
2− Cλ). Using that q

−(τ(ρ)−ε)
l ≥

|ρ− rl|, we get∣∣ϕ(rl + xl)− ϕ(rl)
∣∣ ≥ δ|ρ− rl|

1
2
+ 1

2(τ(ρ)−ε) = δ′|xl|
1
2
+ 1

2(τ(ρ)−ε) .

Finally, since |ϕ(ρ)− ϕ(rl)| and |ϕ(ρ)− ϕ(rl + xl)| are not both smaller

than |ϕ(rl + xl)− ϕ(rl)| /2, we can take hl = rl − ρ or hl = rl + xl − ρ,

such that |ϕ(ρ)− ϕ(ρ+ hl)| is maximal, and we get∣∣ϕ(ρ)− ϕ(ρ+ hl)
∣∣ ≥ δ′′|hl|

1
2
+ 1

2(τ(ρ)−ε) , hl → 0.

Since ε was arbitrary, this shows that α(ρ) ≤ 1/2 + 1/(2τ(ρ)).

With a small modification, the above argument shows that the same

upper bound also holds for the Hölder exponent at ρ of the real and

imaginary part of ϕ. Indeed, using the same notation as above, we now

define xl by setting |xl| = λ|ρ− rl| and by choosing the sign of xl so that

rl + xl lies on the side where the square root behavior is present (see

Table 8.1 for Reϕ; for Imϕ one can make a similar table).
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Chapter 9

Micro-local and qualitative

analysis of the fractional

Zener wave equation

9.1 Introduction

In this chapter, we study the fractional Zener wave equation, that is,

the differential equation given by

∂2

∂t2
u(x, t) = L−1

{
1 + sα

1 + τsα
; t

}
∗t

∂2

∂x2
u(x, t), x ∈ R, t > 0.

(9.1.1)

Here, L−1 denotes the inverse Laplace transform, while τ and α are

constants satisfying 0 < τ ≤ 1, 0 ≤ α < 1. It is a generalization of the

classical wave equation

∂2

∂t2
u(x, t) = c2

∂2

∂x2
u(x, t), (9.1.2)

c being a positive constant representing the wave speed. Indeed, setting

α = 0, the inverse Laplace transform in (9.1.1) is 2
1+τ δ(t), δ(t) being the

Dirac delta distribution concentrated at the origin, yielding the classical

wave equation with c =
√

2/(1 + τ). Also the case τ = 1 leads to the

classical wave equation, with c = 1. In this chapter we shall study the

“non-trivial” case, and hence assume that 0 < τ < 1 and 0 < α < 1.

139
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The fractional Zener wave equation can be used to model wave prop-

agation in viscoelastic materials, whereas the classical wave equation

models waves in purely elastic media. It is derived from the so-called

fractional Zener law (cf. equation (9.3.4) below), which was proposed in

papers of Caputo and Mainardi [31, 30]. The equation (9.1.1) was stud-

ied in [70], where the existence and uniqueness of solutions to the Cauchy

problem in the space of tempered distributions was proved. A represen-

tation of the solution was also given, and some numerical examples were

provided. The micro-local analysis of this and other fractional wave

equations was initiated in [61], and an analogue of non-characteristic

regularity was shown. Recently, energy dissipation was proved for a

general class of fractional wave equations which includes the fractional

Zener wave equation in [100]. Let us also mention that the study of this

and related fractional wave equations is an active area of research, see

e.g. [1, 5, 6, 71, 85, 100].

In this chapter, we present a micro-local and qualitative analysis of

the fractional Zener wave equation. Completing and extending the re-

sults given in [61], we provide a complete description of the C∞-wave

front set of the fundamental solution of (9.1.1). In particular we show

that the fundamental solution is smooth on the boundary of the for-

ward light cone, in contrast with the classical wave equation. We also

determine the wave front set with respect to Gevrey classes of func-

tions, which assumes a finer notion of smoothness. As a consequence we

prove that for the order of the Gevrey class sufficiently close to 1, the

fundamental solution is singular at the boundary of the forward light

cone.

Next, we perform a qualitative analysis of solutions in two cases.

First, we investigate the response of the system when it is submitted

to a forced harmonic oscillation at the origin. From this we detect the

presence of dissipation and anomalous dispersion. Second, we investigate

the evolution following a “delta impulse”, i.e. the solution with initial

conditions u(x, 0) = δ(x), ∂tu(x, 0) = 0 (and zero force term). This

solution consists of two wave packets moving in opposite directions. We

will provide an accurate description of the “limiting shape” of this wave

packet, and motivate the notion of a wave packet speed.
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The chapter is organized as follows. First we provide some prelim-

inaries in Section 9.2. In order to make the chapter self-contained, the

setup of the Cauchy problem for the fractional Zener wave equation with

some details from previous works is given at the beginning of Section

9.3. We further discuss representation formulas and properties of the

fundamental solution. The main result concerning the regularity of the

fundamental solution is given in Section 9.4. Theorem 9.4.1 and Theo-

rem 9.4.3 describe the wave front set of the fundamental solution with

respect to C∞ and the Gevrey classes respectively. The proof of the

latter theorem is long and quite technical. The main ideas are presented

there, but the proof of a technical lemma is provided in Appendix 9.A.

Section 9.5 concerns the qualitative analysis and is divided into

two subsections, treating the forced harmonic oscillation and the delta

impulse respectively. Section 9.6 addresses the case of a viscoelastic

medium described by the classical Zener model (or the Standard Lin-

ear Solid (SLS) model), which is (9.1.1) with α = 1. We show that, as

for the classical wave equation and in contrast to the fractional Zener

wave equation, the fundamental solution is not smooth on the boundary

of the light cone. Furthermore, we also observe a qualitative difference

between the fractional and classical Zener models in terms of dissipation.

This chapter is based on the article [25] of the author and Lj. Opar-

nica. The figures in Section 9.5 were produced with Sage.

9.2 Preliminaries

The Laplace transform

The Laplace transform of a tempered distribution supported on [0,∞)

is defined as Lf(s) = ⟨f(t), e−st⟩. In particular, for f ∈ L1(R) with

f(t) = 0 for t < 0, the Laplace transform is given by

Lf(s) =
∫ ∞

0
f(t)e−st dt, Re s ≥ 0.

Given a function F (s) holomorphic in the half-plane Re s > 0, its
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inverse Laplace transform exists as a distribution in S ′[0,∞) if F satisfies∣∣F (s)∣∣≪ (1 + |s|)m

|Re s|k
, Re s > 0,

for some m, k ∈ N. In that case, L−1F is given by

L−1F (t) = lim
Y→∞

1

2πi

∫ a+iY

a−iY
F (s)est ds, t > 0, a > 0, (9.2.1)

whenever this limit exists. By the bounds on F , the following represen-

tation is absolutely convergent:

L−1F (t) =
1

2πi

dm+2

dtm+2

∫ a+i∞

a−i∞
F (s)

est

sm+2
ds.

If f(x, t) ∈ S ′(R × [0,∞)), then the Laplace transform of f with

respect to the second variable t is the distribution-valued function

Ltf : {s : Re s > 0} → S ′(R) : s 7→
(
ϕ(x) 7→ ⟨f(x, t), ϕ(x)e−st⟩

)
.

Fractional derivatives

The equation (9.1.1) stems from the fractional Zener law (9.3.4), which

employs fractional derivatives. There are several ways to define frac-

tional differentiation. We employ the (left) Riemann–Liouville and

Liouville–Weyl derivatives.

The left Riemann–Liouville fractional derivative of order α ∈ [0, 1)

is defined for an absolutely continuous function f ∈ AC([0, a]), defined

on an interval [0, a], a > 0, by

0D
α
t f(t) =

1

Γ(1− α)

d

dt

∫ t

0

f(w)

(t− w)α
dw, t ∈ [0, a].

The left Liouville–Weyl fractional derivative of order α ∈ [0, 1) is defined

for f ∈ AC(R) with f(−t) ≪ 1/t for t→ ∞ by

−∞D
α
t f(t) =

1

Γ(1− α)

d

dt

∫ t

−∞

f(w)

(t− w)α
dw, t ∈ R.

Here Γ denotes the Euler gamma function. Fractional differentiation

can be expressed as a convolution operation by introducing the family

of distributions {χα
+}α∈C ∈ S ′[0,∞) given by

χα
+(t) =

1

Γ(α+ 1)
tα+.
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This family is initially defined for Reα > −1 as a family of L1
loc functions,

but can be extended to every α ∈ C by analytic continuation. When

α is not a negative integer, ⟨χα
+(t), φ(t)⟩ can be evaluated using the

Hadamard finite part [49, Section 2.4]:

⟨χα
+(t), φ(t)⟩ =

1

Γ(α+ 1)
F. p.

∫ ∞

0
tαφ(t) dt, φ ∈ S(R).

The convolution operator f 7→ χ−α−1
+ ∗f coincides with the left Riemann–

Liouville and left Liouville–Weyl fractional derivative of order α, for f ∈
AC([0, a]) and f ∈ AC(R) respectively. This also allows one to extend

the operation of fractional differentiation to distributions f ∈ S ′[0,∞).

For more details concerning the family {χα
+}α, we refer to [50, Section

I.3 and I.5.5] or [60, Section 3.2].

The Fourier transform of the Liouville–Weyl fractional derivative

of f ∈ AC(R) and Laplace transform of the left Riemann–Liouville

fractional derivative of f ∈ AC([0, a]) are given as follows:

F{−∞D
α
t f ; ξ} = (iξ)αFf(ξ), L{0Dα

t f ; s} = sαLf(s).

For more background on fractional derivatives we refer to [90].

The wave front set

When investigating the regularity of a distribution f , its singular support

sing supp f (the complement of the largest open set on which it coincides

with a smooth function) indicates where f is singular. The Hörmander

wave front set is an extension of this notion. It provides not only the

points x at which f is singular, but also the frequency directions ξ which

“cause” this singularity.

If the distribution f is smooth at a point x, then φf is a smooth

compactly supported function when φ ∈ D with suppφ ∋ x sufficiently

small. Consequently, the Fourier transform F{φf} is a rapidly decaying

smooth function. If f is not smooth at x, then F{φf} is never rapidly

decaying when φ(x) ̸= 0. The wave front set provides the directions

where the localized Fourier transform of f is not rapidly decaying, and

which are hence “responsible” for its singularity at x.
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Let f ∈ D′ and x ∈ Rn. First we define the set Σx of “singular

frequency directions” ξ at x. A non-zero vector ξ does not belong to Σx

if and only if there exists a test function φ ∈ D with φ(x) ̸= 0 and a

conical neighborhood Γ of ξ for which

∀k ∈ N : F{φf}(η) ≪ (1 +|η|)−k, as |η| → ∞, η ∈ Γ.

Note that Σx is a closed cone in Rn \ {0}, and that x ∈ sing supp f ⇐⇒
Σx ̸= ∅. The wave front set WF is then defined as follows:

WF(f) = {(x, ξ) ∈ Rn × Rn \ {0} : x ∈ sing supp f, ξ ∈ Σx}.

The wave front set has been proved an immensely valuable tool in the

theory of generalized functions. It allows one to (partially) extend many

classical operations to distributions (e.g. composition, restriction, prod-

uct) and is extensively used in the study of partial differential equations,

in particular for studying the propagation of singularities of solutions.

We refer to [60, Chapter VIII] or to the introductory paper [28] for more

background on the wave front set.

Gevrey classes

Let σ ≥ 0 and let Ω ⊆ Rn be open. A function φ ∈ C∞(Ω) belongs to

the Gevrey class Gσ(Ω) of order σ if for every compact K ⊆ Ω there

exists a constant C = CK > 0 such that

sup
x∈K

∣∣∂βφ(x)∣∣ ≤ C1+|β|(β!)σ, for every multi-index β ∈ Nn.

The case σ = 1 corresponds to real analytic functions. When σ > 1,

Gσ(Ω) contains compactly supported functions. For a distribution u ∈
D′(Ω), sing suppGσ u is defined as the complement of the largest open set

X where u ∈ Gσ(X). Similarly as in the C∞ case, one might perform a

spectral analysis of the Gσ-singularities of u, by investigating the decay

on cones of the Fourier transform of localizations of u. Since the space

Gσ, σ ≤ 1 does not contain compactly supported functions, one uses

so-called analytic cut-off sequences to localize in this case. This leads

to the notion of the Gσ-wave front set of u, denoted as WFGσ(u). For

more details we refer to [60, Section 8.4].
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9.3 The Cauchy problem and the fundamental

solution

9.3.1 Basic equations in viscoelasticity

Before we set up the Cauchy problem, let us give some background on

the equations of viscoelasticity. To describe waves in (one-dimensional)

viscoelastic media one uses a system of three basic equations of contin-

uum mechanics (see [4]). They involve three quantities: the displacement

or deformation u(x, t) of the material at time t and position x, which has

units of length; the strain ε(x, t), which is a measure for the deforma-

tion relative to a reference length and which is a dimensionless quantity;

and the stress σ(x, t), which represents the internal forces of the mate-

rial and which has units of pressure. The first equation is the equation

of motion, relating the displacement with the stress and coming from

Newton’s second law. It is

∂σ

∂x
= ρ

∂2u

∂t2
, (9.3.1)

where ρ is the density of the material, which we assume to be constant

here.

The second equation is the so-called strain measure for local small

deformations and gives the connection between strain and displacement:

ε =
∂u

∂x
. (9.3.2)

The final equation is the constitutive equation, relating the stress

with the strain. It depends on properties of the material. For example,

a purely elastic material can be modeled with Hooke’s law as constitutive

equation: σ = Eε. Here E is a constant known as the Young modulus of

elasticity. Another example is Newton’s law of viscous fluids: σ = µ∂tε,

µ being a constant referred to as the viscosity.

It turns out that materials exhibiting both elastic and viscous be-

havior can be suitably modeled with a constitutive equation containing

fractional derivatives [7, 78]. The constitutive equation leading to (9.1.1)

is the fractional Zener law :

σ(x, t) + τσ 0D
α
t σ(x, t) = E

{
ε(x, t) + τε 0D

α
t ε(x, t)

}
x ∈ R, t > 0,

(9.3.3)
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where 0 < α < 1 and E, τσ, and τε are positive constants known as

the Young modulus of elasticity, the relaxation time, and the retarda-

tion time, respectively. In order to be physically consistent, we require

that 0 < τσ < τε, see e.g. [9]. This restriction stems from energy con-

siderations and is called the thermodynamical restriction (referring to

the second law of thermodynamics). By transforming to dimensionless

quantities (see [70, Lemma 3.1]), the constitutive equation can be sim-

plified a bit to

σ + τ 0D
α
t σ = ε+ 0D

α
t ε, (9.3.4)

where τ is a constant satisfying the thermodynamical restriction 0 <

τ < 1.

We can solve equation (9.3.4) for the stress σ using the Laplace

transform: σ = L−1
(

1+sα

1+τsα

)
∗t ε. Substituting this in the equation of

motion (9.3.1) normalized to ρ = 1 and using (9.3.2) to eliminate the

strain ε, we obtain (9.1.1). The classical wave equation can be obtained

in the same manner, but now starting from Hooke’s law σ = Eε. We

obtain (9.1.2) with c =
√
E/ρ.

Finally we mention that the convolution kernel L−1
{

1+sα

1+τsα

}
can be

expressed using Mittag–Leffler functions as

L−1

{
1 + sα

1 + τsα
; t

}
=

1

τ
δ(t)− 1− τ

τ2
eα,α(t; 1/τ)

=
1

τ
δ(t) +

1− τ

τ

d

dt
eα(t; 1/τ).

We refer to [78, Appendix E] for the definition of these functions.

9.3.2 The Cauchy problem

Let us set

P =
∂2

∂t2
− L−1

{
1 + sα

1 + τsα
; t

}
∗t

∂2

∂x2
.

The (generalized) Cauchy problem refers to the following problem. We

consider initial data u0, v0 ∈ S ′(R) and force term f ∈ C([0,∞),S ′
x),

i.e. a continuous function of t with values in the space of tempered

distributions in the variable x. The Cauchy problem is to solve

Pu(x, t) = f(x, t), for x ∈ R and t > 0,



9.3. The Cauchy problem and the fundamental solution 147

with u(x, 0) = u0(x) and ∂tu(x, 0) = v0(x). The Cauchy data can be

incorporated in the equation; it is equivalent to solve

Pu(x, t) = f(x, t) + u0(x)δ
′(t) + v0(x)δ(t), for x, t ∈ R. (9.3.5)

(We refer to [97, Chapter II] for a general introduction to the Cauchy

problem for (hyperbolic) partial differential operators.)

In [70], it was shown that (9.3.5) has a unique solution expressed via

convolution of the fundamental solution S of P with the Cauchy data:

u(x, t) = S(x, t) ∗
(
f(x, t) + u0(x)δ

′(t) + v0(x)δ(t)
)
. (9.3.6)

The Laplace transform S̃ of the fundamental solution S can be calculated

by taking Laplace transforms in PS(x, t) = δ(x)δ(t) and solving the

ordinary differential equation in x. It is given by

S̃(x, s) =
1

2s

√
1 + τsα

1 + sα
exp

(
−|x| s

√
1 + τsα

1 + sα

)
, x ∈ R, Re s > 0,

(9.3.7)

where the principal branch of the logarithm is used for the function sα

and the square root. Note that for fixed s, this is a continuous function

of x. Denote by lα(s) the function defined1 as

lα(s) =

√
1 + τsα

1 + sα
, arg s ∈ [−π, π].

For comparison’s sake, let us also mention the2 fundamental solution

Scl of the classical wave equation (9.1.2). It is given by

Scl(x, t) =
1

2
H(ct−|x|), S̃cl =

1

2s
exp
(
−|x|
c
s
)
.

It is supported in the forward light cone t ≥ |x| /c, and its wave front

set equals

WF(Scl) = {(0, 0; ξ, η) : (ξ, η) ̸= (0, 0)}

∪ {(x, t; ξ, η) : t > 0, (ξ, η) ̸= (0, 0), |x| = ct, (x, t) · (ξ, η) = 0}.
1In this chapter, we implicitly work on the Riemann surface of the logarithm. In

particular, eiπ and e−iπ represent two different numbers with arguments π and −π,
respectively.

2The classical wave equation has infinitely many fundamental solutions, but only

one of them is supported on t ≥ 0.
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Let us now return to the study of S. First we derive some properties

of the function lα(s).

Lemma 9.3.1. The real and imaginary part of lα satisfy

Re lα(s) > 0, sgn Im lα(s) = − sgn Im s, arg s ∈ [−π, π]. (9.3.8)

Its asymptotic behavior near the origin and infinity is given by

lα(s) = 1− 1− τ

2
sα +O(|s|2α), as |s| → 0; (9.3.9)

lα(s) =
√
τ

(
1 +

1

2

(
1

τ
− 1

)
s−α +O(|s|−2α)

)
, as |s| → ∞. (9.3.10)

In particular, there exist positive constants c1 and c2 such that

Im lα(iy) ≤

−c1yα for 0 ≤ y ≤ 1;

−c2y−α for y ≥ 1.
(9.3.11)

Proof. A straightforward calculation shows that, with s = Reiφ, −π ≤
φ ≤ π,

1 + τsα

1 + sα
=

1 + τR2α + (1 + τ)Rα cos(αφ)− i(1− τ)Rα sin(αφ)

1 +R2α + 2Rα cos(αφ)
.

The denominator is real and positive. We see that 1+τsα

1+sα ∈ C \ (−∞, 0],

so the real part of its square root is positive. Since taking the square root

does not alter the sign of the imaginary part, the first claim of the lemma

follows. The formulas (9.3.9) and (9.3.10) follow immediately from Tay-

lor’s formula, and upon writing lα(s) =
√
τ
√
(1 + τ−1s−α)/(1 + s−α)

for large s.

In [70], the following representation of S inside the forward cone

|x| < t/
√
τ was given3

S(x, t) =
1

2
+

1

4πi

∫ ∞

0

(
lα(qe

iπ)e|x|qlα(qe
iπ)−lα(qe−iπ)e|x|qlα(qe

−iπ)
)e−qt

q
dq.

(9.3.12)

Note that it follows from the asymptotic behavior of lα that this integral

converges absolutely whenever |x| < t/
√
τ . The representation (9.3.12)

3The constant right after the equality sign in [70, eq. (18)] should be 1/2 instead

of 1.
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was shown by Laplace inversion via formula (9.2.1), i.e. by calculation

of the integral

1

2πi
lim

Y→∞

∫ a+iY

a−iY

lα(s)

2s
e−|x|slα(s)+ts ds, a > 0, (9.3.13)

There is some discrepancy in the literature (e.g. [6] and [70]) regard-

ing claims about the support of S. We will clarify this here and prove4

that S is supported in the forward cone |x| ≤ t/
√
τ . We will also indicate

how to deduce the representation (9.3.12), since this technique will be

used multiple times throughout this chapter.

Proposition 9.3.2. The fundamental solution S of (9.1.1) is supported

in a forward cone:

suppS ⊆ {(x, t) : |x| ≤ t/
√
τ}.

In the interior of this cone, S is given by (9.3.12).

Proof. Let x and t be such that |x| > t/
√
τ . We show that S(x, t) =

0. Using Cauchy’s formula, we may rewrite the integral (9.3.13) as an

integral over the arc of the circle of radius R =
√
a2 + Y 2 and center 0,

which connects the points a − iY and a + iY . The polar angle varies

between −φ(R) and φ(R), with φ(R) = arctan
√
(R/a)2 − 1. We get

S(x, t) = lim
R→∞

1

4π

∫ φ(R)

−φ(R)
lα(Re

iφ) exp
(
Reiφ(t−|x| lα(Reiφ))

)
dφ.

Using (9.3.8) and extending the range of integration to [−π/2, π/2], we
can bound the absolute value of S by

∣∣S(x, t)∣∣≪ lim
R→∞

∫ π/2

−π/2
exp
(
−(|x|Re lα(Reiφ)− t)R cosφ

)
dφ.

Let us write ε =
√
τ |x|− t > 0. For R sufficiently large, |x|Re lα(Reiφ)−

t > ε/2, since Re lα(Re
iφ) →

√
τ by (9.3.10). For such large R the

integrand is bounded by e−(ε/2)R cosφ, which converges pointwise to 0

and is bounded. From this it follows that the above integral converges

to 0 when R→ ∞, by dominated convergence.

4We note that support properties for a more general class of models were also

proved in [71].
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Suppose now that |x| < t/
√
τ . Then Re(−|x| lα(s) + t) > 0 for |s|

sufficiently large. We will shift the contour to the left, resulting in a

Hankel contour encircling the branch cut (−∞, 0]. For a small ε > 0,

we set

Γ1 = [a− iY,−iY ]; Γ5 = [εeiπ, Y eiπ];

Γ2 = {Y eiφ : −π/2 ≥ φ ≥ −π}; Γ6 = {Y eiφ : π ≥ φ ≥ π/2};

Γ3 = [Y e−iπ, εe−iπ]; Γ7 = [iY, a+ iY ].

Γ4 = {εeiφ : −π ≤ φ ≤ π};

By Cauchy’s theorem, the contour integral in (9.3.13) equals

1

2πi

∫
∪iΓi

S̃(x, s)ets ds.

On Γ1 and Γ7, S̃(x, s)e
ts ≪ 1/Y , so the integral over these pieces

converges to zero as Y → ∞. On Γ2 and Γ3, Re(−|x| slα(s) + ts) ∼
(t−

√
τ |x|)(cosφ)Y . As before, the integrals over these contours tend to

zero by dominated convergence, since now t−
√
τ |x| > 0 and cosφ < 0

(except at the boundary points φ = ±π/2.) Since S̃(x, s)ets ∼ 1/(2s) for

s→ 0, the integral over Γ4 converges to iπ as ε→ 0. Finally, combining

the integrals over Γ3 and Γ5 and letting Y → ∞, ε → 0, we get the

absolutely convergent integral in (9.3.12).

Remark 9.3.3. (i) Proposition 9.3.2 implies that the convolution in

(9.3.6) is well-defined for arbitrary distributions u0, v0 ∈ D′
x, and f ∈

C([0,∞),D′
x), and therefore the result given in [70, Theorem 4.2] holds

with u0, v0 ∈ D′
x, f ∈ C([0,∞),D′

x). Moreover, the solution u satisfies

u ∈ C([0,∞),D′
x) and u ∈ C∞((0,∞),D′

x), as will follow from Theorem

9.4.1 below.

(ii) In fact, the inverse Laplace integral (9.3.13) converges absolutely

for every x, t with x ̸= 0. Writing s = a+iy, the approximation (9.3.10)

shows that

Re slα(s) =

√
τ

2

(1
τ
− 1
)
sin(απ/2)|y|1−α+O(1+|y|1−2α), as |y| → ∞,

(9.3.14)

locally uniformly in a. Recall that 0 < α < 1 and 0 < τ < 1, so for

non-zero x, the exponential in the integral decays like e−c|x||y|1−α

, where
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c =
√
τ/2(1/τ − 1) sin(απ/2) is a positive constant. This proves the

absolute convergence. It is convenient to move the contour of integration

to the line Re s = 0. For this we consider the following contours for a

small parameter ε > 0:

Γ1 = [iY, a+ iY ]; Γ4 = [−iY,−iε];

Γ2 = [iε, iY ]; Γ5 = [−iY, a− iY ].

Γ3 = {εeiφ : −π/2 ≤ φ ≤ π/2};

The estimate (9.3.14) of Re slα(s) immediately implies that the integrals

of S̃(x, s)ets along the contours Γ1 and Γ5 tend to 0 as Y → ∞, whenever

x ̸= 0. Since S̃(x, s)ets ∼ 1/(2s) as s → 0, the integral along Γ3 tends

to iπ/2 as ε → 0. Combining the integrals over Γ2 and Γ4 and letting

ε → 0, Y → ∞ yields the following representation for S(x, t) when

x ̸= 0:

S(x, t) =
1

4
+

1

4πi
p. v.

∫ ∞

−∞
lα(iy) exp

(
−|x| iylα(iy) + ity

)dy
y
, (9.3.15)

where p. v. denotes the Cauchy principal value.

The integral in (9.3.12) does not converge for |x| ≥ t/
√
τ , so the rep-

resentation (9.3.15) will be particularly useful for studying the behavior

of S near the boundary of the cone. On the other hand, the integral in

(9.3.15) does not converge absolutely for x = 0, so (9.3.12) will be useful

for studying S at small values of x.

Combining both integral representations (9.3.12), (9.3.15) of the fun-

damental solution S allows us to give a complete description of its reg-

ularity.

9.4 Micro-local analysis of S

In this section, we provide the full micro-local analysis of the fundamen-

tal solution S with respect to C∞ and Gσ, σ ≥ 1, extending previous

results in the literature. In [6], some regularity of S was shown, namely

that the map t 7→ S(x, t) is smooth for fixed x ̸= 0. The micro-local anal-

ysis of S was initiated in [61]. It reaches a form of non-characteristic
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regularity for solutions to the Cauchy problem (9.3.5). Namely, [61,

Theorem 3.2] states

WF(u+) ⊆
{
(x, t; ξ, η) : x ∈ R, t > 0, ξ ̸= 0, η = 0 or η2 =

1

τ
ξ2
}
,

where u+ denotes the restriction of the solution to (9.3.5) to the forward

time t > 0. This result suggests that apart from the frequencies (ξ, 0),

also the frequencies orthogonal to the boundary of the light cone could

be singular frequencies. We will show that this is not the case: S is

smooth on this boundary. This is in contrast with the classical wave

equation, whose fundamental solution is singular at the boundary of

the forward light cone, and for which the singular frequencies are those

orthogonal to this boundary.

9.4.1 C∞-regularity

The following theorem provides the evaluation of the C∞-wave front set

of S. In particular, it will imply that S is smooth off the half line x = 0,

t ≥ 0.

Theorem 9.4.1. The fundamental solution S is an L1
loc-function which

is continuous on R2 \ {(0, 0)}. Its partial derivative with respect to x,

∂xS, is discontinuous on the half-line x = 0, t > 0. Everywhere else, S

is of class C∞. In particular, for the wave front set we have

WF(S) = {(0, 0; ξ, η) : (ξ, η) ̸= (0, 0)} ∪ {(0, t; ξ, 0) : t > 0, ξ ̸= 0}.

Proof. The representations (9.3.12) and (9.3.15) imply the continuity of

S in the open sets |x| < t/
√
τ and x ̸= 0 respectively, showing that S

coincides with a continuous function on R2 \ {(0, 0)}. It is not possible

that S contains linear combinations of δ(n)(x)δ(m)(t), since these would

show up in the Laplace transform S̃ as linear combinations of smδ(n)(x),

and they are not present in (9.3.7). It also follows from Proposition 9.4.2

below that S is integrable in a neighborhood of (0, 0). Hence, S is an

L1
loc-function, continuous on R2 \ {(0, 0)}.
Differentiating formula (9.3.12) with respect to x, and taking the



9.4. Micro-local analysis of S 153

limit for x→ 0 from the right and from the left, we see that

∂S

∂x
(0±, t) = ± 1

4πi

∫ ∞

0

(
1 + τqαeiαπ

1 + qαeiαπ
− 1 + τqαe−iαπ

1 + qαe−iαπ

)
e−tq dq

= ∓ 1

2π

∫ ∞

0
(1− τ) sin(απ)

qα

1 + 2 cos(απ)qα + q2α
e−tq dq.

The integrand of the last integral is positive when q > 0, so the integral

is non-zero. This shows that ∂xS(x, t) is not continuous at x = 0.

Using the representation (9.3.15), we see that S is smooth at points

(x, t) with x ̸= 0. Indeed, differentiating under the integral yields an

additional factor which is of polynomial growth. Since the exponen-

tial in the integrand decays like ≪ e−c|x| |y|1−α

, with c =
√
τ/2(1/τ −

1) sin(απ/2) (see (9.3.14)), the integral remains convergent. Note that

it is crucial here that 0 < α < 1 and 0 < τ < 1.

To compute the wave front set, we use (9.3.12). Differentiating under

the integral, we see that ∂mt S(x, t) is bounded on compact subsets of the

cone |x| < t/
√
τ , for each m ∈ N. This implies that at a point (0, t), t >

0, the “singular frequencies” can only be along the positive and negative

(ξ, 0)-direction. Since S is real-valued, its wave front set is symmetric

about the origin in the frequency variables. Hence, both directions are

present in the wave front set. Finally, since PS(x, t) = δ(x)δ(t), and

differential and convolution operators do not enlarge the wave front set,

also (0, 0; ξ, η) ∈ WF(S) for every (ξ, η) ̸= (0, 0).

From (9.3.12), one readily sees that S converges to 1/2 for t → ∞.

Indeed, locally uniformly in x, the integral converges to 0 as t → ∞ by

dominated convergence: for q ≤ 1, the integrand in (9.3.12) is dominated

by e|x|qO(qα−1+|x| qα) (which can be seen by Taylor approximation using

(9.3.9)), while for q ≥ 1, it is dominated by e(|x| sup lα−T )q if t ≥ T .

We can also describe the behavior of S for (x, t) → (0, 0).

Proposition 9.4.2. Suppose λ ∈ [0, 1/
√
τ ]. Then

lim
t→0+

S(±λt, t) =
√
τ

2
(1− λ

√
τ).

Proof. The statement for λ = 1/
√
τ is trivial, since S(±t/

√
τ , t) = 0 for

t > 0.
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Suppose first that λ = 0. We compute the Laplace transform of

S(0, t)− (
√
τ/2)H(t). We get

L
(
S(0, t)−

√
τ

2
H(t)

)
(s) = S̃(0, s)−

√
τ

2s
=
lα(s)−

√
τ

2s
.

By (9.3.10), lα(s) =
√
τ + O(|s|−α) as |s| → ∞. Therefore, the above

Laplace transform decays as ≪|s|−1−α, so it is integrable on every verti-

cal line Re s = a, with a > 0. Hence, S(0, t)−(
√
τ/2)H(t) is a continuous

function, which vanishes for t ≤ 0.

For general λ ∈ (0, 1/
√
τ), we apply the same strategy, namely deter-

mining the asymptotic behavior of the Laplace transform of t 7→ S(λt, t).

Let s = 2+iy. Using the Laplace inversion for S(x, t) (9.3.13) with a = 1,

we get

L{S(λt, t)}(s) = 1

4πi

∫ ∞

0
e−st

∫ 1+i∞

1−i∞

lα(z)

z
exp
(
tz(1− λlα(z))

)
dz dt.

We want to swap the order of integration here, using the Fubini–Tonelli

theorem. This is allowed, since∫ 1+i∞

1−i∞

∫ ∞

0

∣∣∣∣ lα(z)z exp
(
t(z − λzlα(z)− s)

)∣∣∣∣ dt|dz|
=

∫ 1+i∞

1−i∞

∣∣∣∣ lα(z)z
∣∣∣∣ 1

−1 + λRe(zlα(z)) + 2
|dz| <∞.

Here we used that 1 − λRe(zlα(z)) − 2 ≤ −1 and that λRe(zlα(z)) ∼
λc|Im z|1−α for some c > 0, by (9.3.14), so that the above integral con-

verges absolutely. Swapping the order of integration and integrating

with respect to t, we get

L{S(λt, t)}(s) = − 1

4πi

∫ 1+i∞

1−i∞

lα(z)

z
(
z(1− λlα(z))− s

) dz.
We will evaluate this integral via Cauchy’s theorem. Let y = Im s be

large but fixed. The integrand above decays like ≪ 1/|z|2, and has a

unique pole in the right half plane Re z > 1, which we denote by z(s)

(this follows for example by applying the argument principle on the

region enclosed by the line [1− iR, 1 + iR] and the right semicircle with

center 1 and radius
√
1 +R2, for sufficiently large R). We have(

1− λlα(z(s))
)
z(s)− s = 0, z(s) =

s

1− λ
√
τ

(
1 +O(|s|−α)

)
,
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where we used (9.3.10). Applying Cauchy’s theorem and (9.3.10) again,

we get

L{S(λt, t)}(s) = lα(z(s))

2z(s)
=

√
τ(1− λ

√
τ)

2s

(
1 +O(|s|−α)

)
,

for |y| = |Im s| → ∞. It follows that S(λt, t)− (
√
τ/2)(1− λ

√
τ)H(t) is

a continuous function, vanishing for t ≤ 0, since its Laplace transform,

decaying like≪|s|−1−α, is absolutely integrable on the line Re s = 2.

9.4.2 Gevrey regularity

Using a finer notion of smoothness, namely by means of the Gevrey

classes Gσ, more singularities become visible. In the following theorem,

we describe the Gσ-regularity of S for every σ ∈ [1,∞). We see that for

σ sufficiently close to 1, namely 1 ≤ σ < 1/(1−α), the boundary of the

forward light cone becomes singular.

Theorem 9.4.3. On R2 \
(
{0}× [0,∞)

)
, S belongs to the Gevrey class

G
1

1−α . Furthermore, at points (x, t) with |x| ≠ t/
√
τ and x ̸= 0 it is

real analytic. For the wave front set with respect to Gσ, we have the

following equalities:

WFGσ(S) = {(0, 0; ξ, η) : (ξ, η) ̸= (0, 0)} ∪ {(0, t; ξ, 0) : t > 0, ξ ̸= 0},

WFGσ(S) = {(0, 0; ξ, η) : (ξ, η) ̸= (0, 0)} ∪ {(0, t; ξ, 0) : t > 0, ξ ̸= 0}

∪ {(x, t; ξ, η) : t > 0, (ξ, η) ̸= (0, 0), |x| = t/
√
τ , (x, t) · (ξ, η) = 0},

for σ ≥ 1/(1− α) and 1 ≤ σ < 1/(1− α), respectively.

Proof. The representation (9.3.12) readily implies that S is real analytic

at points (x, t) with x ̸= 0, |x| < t/
√
τ . Indeed, the integral and its

derivates with respect to x and t still converge when one replaces (x, t)

by (x+ z1, t+ z2), z1, z2 ∈ C with |z1| and |z2| sufficiently small.

Let us now see that S is in the Gevrey class G
1

1−α for x ̸= 0. Suppose

that x > 0. Differentiating under the integral sign in (9.3.15), we see

that

∂n

∂xn
∂m

∂tm
S(x, t) =

(−1)n

4πi

∫ ∞

−∞

(
lα(iy)

)n
(iy)n+m exp

(
−ixylα(iy)+ tiy

)dy
y
.
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Using (9.3.11), this is in absolute value bounded by

Dn+1
1

(∫ 1

0
yn+m−1e−c1xy1+α

dy +

∫ ∞

1
yn+m−1e−c2xy1−α

dy

)
≤ Dn+m+1

2

{
1 + x−

n+m
1−α Γ

(n+m

1− α

)}
,

for some positive constants D1, D2, by changing variables y′ = c2xy
1−α

in the second integral. For x in a closed subset F of R \ {0}, this is

bounded by Dn+m+1
F (n!m!)

1
1−α , where DF is a positive constant de-

pending on F .

Next, we will show that for σ < 1/(1 − α), the boundary of the

forward light cone is contained in sing suppGσ S. For this it is convenient

to perform the change of variables u =
√
τx + t, v =

√
τx − t, so that

points with (x, t) satisfying x > 0 and x = t/
√
τ have new coordinates

(u, 0) with u > 0. (To treat the boundary points with x < 0, one

considers an analogous change of variables, or one uses the symmetry

S(−x, t) = S(x, t).) We set

S♮(u, v) = S(x, t) = S
(u+ v

2
√
τ
,
u− v

2

)
.

Let u > 0 and σ < 1/(1−α). We claim that (u, 0) ∈ sing suppGσ S♮.

This is equivalent to the statement that for every neighborhood U of

(u, 0) and for every C > 0 there exists some β ∈ N2, and some point

(a, b) ∈ U for which ∣∣∣∂βS♮(a, b)
∣∣∣ > C1+|β|(β!)σ.

We will actually prove something stronger, namely that there exists a

constant C > 0 and a sequence (vm)m, vm > 0, vm → 0 (both C and vm

depending on u) so that∣∣∣∣∂mS♮

∂vm
(u,−vm)

∣∣∣∣≫ Cm(mm)
1

1−α , (9.4.1)

provided that m is sufficiently large. Showing this estimate requires an

intricate technical analysis of the inverse Laplace integral. First we write
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∂mS♮/∂vm as a contour integral:

∂mS♮

∂vm
(u, v) =

(−1)m

2π
Im

∫ +i∞

0
lα(s)

(s
2

)m( lα(s)√
τ

+ 1
)m

×

exp

(
−us

2

( lα(s)√
τ

− 1
)
− vs

2

( lα(s)√
τ

+ 1
))ds

s
.

Here, we integrate along the half-line [0,+i∞), and we used the symme-

try
∫ 0
−i∞ = −

∫ +i∞
0 to write the inverse Laplace integral as the imaginary

part of the integral over the part of the contour with Im s ≥ 0.

The first step is to perform a change of variables in the above in-

tegral, which will bring out the (mm)
1

1−α -behavior, and to substitute a

well-chosen value for v, which will in some sense simplify the remaining

integral. Namely, we will set

s = µm
1

1−αw,

with µ =

(
u

4

(
1

τ
− 1

)
1

1− α

)− 1
1−α

and v = −vm = −κ
µ
m− α

1−α .

Here, κ is some large number depending on m, whose value will be

chosen later. For the moment, we only specify a fixed range for κ, say5

1000/ sin(απ) ≤ κ1−α ≤ 2000/ sin(απ).

With the above substitution we get

∂mS♮

∂vm
(u,−vm) =

(−1)m

2π

(µ
2

)m
(mm)

1
1−α×

Im

∫ +i∞

0
lα(µm

1
1−αw)wm

(
lα(µm

1
1−αw)√
τ

+ 1

)m

exp
{
. . .
}dw
w
,

where the argument of the exponential is

−uµm
1

1−αw

2

(
lα(µm

1
1−αw)√
τ

− 1

)
+
mκw

2

(
lα(µm

1
1−αw)√
τ

+ 1

)
.

Let us now consider the remainders

E1(s) =
lα(s)√
τ

− 1, E2(s) =
lα(s)√
τ

− 1− 1

2

(
1

τ
− 1

)
s−α, (9.4.2)

5The value 1000 occurring here is somewhat arbitrary, we just require some large

fixed number.



158 Chapter 9. Analysis of the fractional Zener wave equation

then by (9.3.10) we have

E1(s) ≪|s|−α , and E2(s) ≪|s|−2α , as |s| → ∞. (9.4.3)

The expression for ∂mv S
♮(u,−vm) can be rewritten as

(−1)m

2π

(µ
2

)m
(mm)

1
1−α Im

∫ +i∞

0
lα(µm

1
1−αw)em{f(w)+gm(w)}dw

w
,

where we have set

f(w) := κw − 1

1− α
w1−α + logw + log 2,

gm(w) :=
κw

2
E1(µm

1
1−αw)− uµm

α
1−αw

2
E2(µm

1
1−αw)

+ log
(
1 +

E1(µm
1

1−αw)

2

)
.

Lemma 9.4.4. For m sufficiently large, one can choose κ = κm in the

fixed range 1000/ sin(απ) ≤ κ1−α ≤ 2000/ sin(απ) such that

Im

∫ +i∞

0
lα(µm

1
1−αw) exp

(
m(f(w) + gm(w))

)dw
w

≫ cm√
m
.

Here, c is a positive constant independent of m.

We will not give the proof here, since it is rather lengthy and techni-

cal. Instead we provide a proof in Appendix 9.A. The main idea is the

following. In view of the estimates (9.4.3), g is small for large m. Also

lα(µm
1

1−αw) →
√
τ as m → ∞. In some sense, the analysis reduces to

the analysis of the simpler integral
∫
(
√
τ/w)emf(w) dw, which can be es-

timated with the saddle point method. Indeed, the constant c is related

to the value of eRe f at the saddle point w0 of f . The purpose of the free

parameter κ is to control the imaginary part of the integral. For each

m, we will choose a κm so that the argument of
∫
(
√
τ/w)emf(w) dw is

close to π/2.

Assuming Lemma 9.4.4, we get that∣∣∣∣∂mS♮

∂vm
(u,−vm)

∣∣∣∣≫ 1√
m

(µc
2

)m
(mm)

1
1−α ,

from which (9.4.1) follows for any C < µc/2. This shows that (u, 0) ∈
sing suppGσ S♮, as soon as σ < 1/(1− α).
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To determine the wave front set with respect to Gσ, we show that

at the point (u0, 0), u0 > 0, S♮ is “real analytic in the (u, 0)-direction”.

Indeed, taking partial derivatives with respect to u we get from (9.3.15)

with v ≥ −u/2

∂nS♮

∂un
(u, v) ≪

∫ ∞

0

(y
2

)n∣∣∣∣ lα(iy)√
τ

− 1

∣∣∣∣n exp( u

4
√
τ
y Im lα(iy)

)dy
y
.

Now by (9.3.10),
∣∣lα(iy)/√τ − 1

∣∣ ≪ y−α for large y. Using this and

(9.3.11), we get

∂nS♮

∂un
(u, v) ≪ Dn

1

(∫ 1

0
yn−1 exp

(
− uc1
4
√
τ
y1+α

)
dy

+

∫ ∞

1
(y1−α)n exp

(
− uc2
4
√
τ
y1−α

)dy
y

)
≤ Dn

1 (1 +Dn
2n!).

Here, D2 = D2(u) = 4
√
τ/(uc2(1 − α)) can be bounded uniformly on

some neighborhood of (u0, 0). This implies that at the point (u0, 0),

the “G1-singular frequencies6 ” can only occur along the positive and

negative (0, η)-direction. Since WFGσ(S♮) is symmetric about the origin

in the frequency variables, and since (u0, 0) ∈ sing suppGσ S♮ for any

σ < 1/(1−α), we get for such σ that (u0, 0; ξ, η) ∈ WFGσ(S♮) ⇐⇒ ξ =

0 and η ̸= 0.

A similar argument, now using representation (9.3.12), shows that

at points (0, t0) with t0 > 0, S is real analytic in the (0, t)-direction,

so that the wave front set with respect to Gσ, σ ≥ 1, can only contain

directions orthogonal to the line x = 0 at points (0, t0). This completes

the proof of the theorem.

9.5 Qualitative analysis

In this section, we will discuss some qualitative aspects of the Fractional

Zener wave equation and some of its solutions. First, we consider so-

called pseudo-monochromatic waves as a means to study dispersion and

dissipation. Next, we will analyse the solution of the Cauchy problem

6i.e. the points (ξ, η) with (u0, 0; ξ, η) ∈ WFG1(S♮)
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(9.3.5) with initial condition a delta concentrated at the origin. Studying

this solution will allow us to define a meaningful notion of “wave speed”

for this equation.

9.5.1 Dispersion and dissipation

When studying dispersion, one investigates the relation between the

phase velocity V (ω) and the frequency ω of a wave solutionAeiω(t−x/V (ω)).

In the absence of such purely monochromatic wave solutions of the ho-

mogeneous Cauchy problem, we will investigate the response when we

submit the system to a forced oscillation with frequency ω: let u be the

solution of (9.3.5) with initial conditions u0 = v0 = 0 and force term

f(x, t) = δ(x)H(t) cos(ωt) for some ω > 0. Let us first mention, for the

sake of comparison, the solution ucl to the classical wave equation with

these Cauchy data:(
∂2

∂t2
− 1

τ

∂2

∂x2

)
ucl(x, t) = f(x, t),

f(x, t) = δ(x)H(t) cos(ωt), u0(x) = v0(x) = 0

=⇒ ucl(x, t) = H(t/
√
τ −|x|)

√
τ

2ω
sin
(
ωt−

√
τω|x|

)
.

This solution represents two waves traveling in opposite directions. They

have wave number k related to the frequency ω via the simple dispersion

relation k(ω) =
√
τω, and phase speed V (ω) = 1/

√
τ .

Let us now analyze the solution in the fractional Zener case. In view

of Theorem 9.4.1, the solution u = S ∗ f is smooth for x ̸= 0. It has

Laplace transform

ũ(x, s) =
lα(s)

2
e−|x|slα(s) 1

s2 + ω2
.

From Proposition 9.3.2 it follows that u(x, t) = 0 if |x| > t/
√
τ . If

|x| < t/
√
τ , we transform the contour to the contour which encircles the

negative real axis, like was done to deduce (9.3.12). However in this case,

we get two contributions from the poles at s = ±iω, and no contribution

from s = 0. We get

u(x, t) = H(t/
√
τ −|x|)

(
uss(x, t) + uts(x, t)

)
,
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where, using the notation lα(iω) = a(ω) − ib(ω) = ρ(ω)e−iϕ(ω) with

sgn b(ω) = sgnϕ(ω) = sgnω,

uss(x, t) =
lα(iω)

4iω
e−|x|iωlα(iω)+iωt − lα(−iω)

4iω
e|x|iωlα(−iω)−iωt

=
ρ(ω)

2ω
e−b(ω)ω|x| sin

(
ωt− a(ω)ω|x| − ϕ(ω)

)
; (9.5.1)

uts(x, t) =
1

4πi

∫ ∞

0

(
lα(qe

−iπ)e|x|lα(qe
−iπ)q − lα(qe

iπ)e|x|lα(qe
iπ)q
) e−tq dq

q2 + ω2
.

We call uss the steady state, and uts the transient state. Indeed, from the

above formula it is clear that uts(x, t) → 0 as t → ∞, locally uniformly

in x.

Following Mainardi [78, Section 4.3], we call the steady state (9.5.1) a

“pseudo-monochromatic wave” with complex wave number k satisfying

the dispersion relation k(ω) = ωlα(iω). It has phase velocity

V (ω) = 1/a(ω),

and has an amplitude which is exponentially decreasing in space, with at-

tenuation coefficient d(ω) = b(ω)ω. The exponential dampening in space

indicates dissipation, quantified by the attenuation coefficient, which has

the following asymptotics, following from Lemma 9.3.1:

d(ω) ∼ 1− τ

2
sin(απ/2)ω1+α, ω → 0,

d(ω) ∼
√
τ

2
(1/τ − 1) sin(απ/2)ω1−α, ω → ∞. (9.5.2)

Since V (ω) is non-constant, there is some dispersion; however V (ω) is

nearly constant, in the sense that it increases monotonically from 1 to

1/
√
τ when ω increases from 0 to ∞. The fact that the phase velocity

V (ω) is increasing in ω, indicates that the dispersion is anomalous. One

may define the group velocity as

U(ω) =
(d(Re k)

dω
(ω)
)−1

=
1

a(ω) + ωa′(ω)
.

Note that U(ω) ≥ V (ω), with equality only for ω = 0 and in the limit

ω → ∞. In the presence of dissipation and anomalous dispersion, this

notion of group velocity loses its physical interpretation as velocity of a

wave packet. However, in the next subsection we will provide a natural

definition for the wave packet speed.
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9.5.2 Shape of the wave packet

We denote by K(x, t) the solution of (9.3.5) with Cauchy data u0(x) =

δ(x), v0(x) = 0, f(x, t) = 0; so K(x, t) = ∂tS(x, t). In this section we

will accurately describe the shape of the “wave packet” K(x, t), when t

is sufficiently large.

The solution with general initial condition u0(x) and v0(x) = 0 is

given by u(x, t) = K(x, t) ∗x u0(x). The evolution of a general wave

packet with initial shape u0(x) can then be described using the analysis

of K. Let us first list some simple properties of K.

Proposition 9.5.1. For any fixed t > 0, the function x 7→ K(x, t) is an

even continuous function of x, supported in [−t/
√
τ , t/

√
τ ], with integral

1.

Proof. The continuity, evenness, and statement on the support all follow

from properties of S. In order to compute the integral
∫∞
−∞K(x, t) dx,

we consider the representation of K as inverse Laplace transform:

K(x, t) =
1

4πi

∫ a+i∞

a−i∞
lα(s) exp

(
−|x| slα(s) + st

)
ds, x ̸= 0. (9.5.3)

We have∫ ∞

−∞
K(x, t) dx = 2 lim

ε→0+

∫ ∞

ε
K(x, t) dx

= lim
ε→0+

1

2πi

∫ a+i∞

a−i∞

1

s
exp
(
−εslα(s) + st

)
ds = 1.

Here we introduced the parameter ε to be able to swap the order of

integration, which is allowed for ε > 0 by the Fubini–Tonelli theorem.

The last equality follows for example by shifting the contour to a Hankel

contour, as in (9.3.12): if ε < t/
√
τ , one may write the above integral as

1

2πi

∫ a+i∞

a−i∞

1

s
exp
(
−εslα(s) + st

)
ds

= 1 +
1

2πi

∫ ∞

0

{
exp
(
εqlα(qe

iπ)
)
− exp

(
εqlα(qe

−iπ)
)}e−tq

q
dq.

The last integral converges to 0 as ε → 0 by dominated convergence.

Indeed, the integrand converges pointwise to 0, and for the dominating
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function, we can argue as follows. Suppose that ε < t/(2
√
τ), and let

Q be such that q ≥ Q =⇒ Re lα(qe
±iπ) ≤ 4

√
τ/3. For 0 ≤ q ≤ Q,

we apply Taylor’s theorem to see that the integrand is dominated by

OQ(e
−tq). For q ≥ Q, the integrand is dominated by e−tq/3.

1 2 3 4
x

0.5

1

1.5

2

2.5

K(x, t)

t=1

t=2

t=3

Figure 9.1: The wave packet K(x, t), x ∈ [0, 4.5], t ∈ {1, 2, 3}.

Let us write K+(x, t) = H(x)K(x, t). The wave packet K+ for the

parameter values α = τ = 1/2 is plotted at time instances t = 1, 2, 3 in

Figure 9.1. We will interpret K+ as a forward moving wave packet with

speed 1. To see why this is justified, consider the rescaled version

Kt(λ) := tK+(λt, t).

For each t > 0, Kt is a function supported in [0, 1/
√
τ ] with integral 1/2.

Proposition 9.5.2. The function Kt(λ) converges to (1/2)δ(λ − 1) as

t→ ∞ in the strong topology of S ′(R).

The proof consists essentially of justifying the following heuristic

calculation. Sweeping technicalities such as exchanging limits, order of
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integration, etc. under the carpet, we get

lim
t→∞

K̂t(ξ) = lim
t→∞

t

4πi

∫ ∞

0
e−iξλ

∫ a+i∞

a−i∞
lα(s) exp

(
−λtslα(s) + st

)
ds dλ

= lim
t→∞

t

4πi

∫ a+i∞

a−i∞
lα(s)

ets

tslα(s) + iξ
ds

= lim
t→∞

1

4πi

∫ a′+i∞

a′−i∞
lα(s/t)

es

slα(s/t) + iξ
ds

=
1

4πi

∫ a′+i∞

a′−i∞

es

s+ iξ
ds =

1

2
e−iξ =

1

2
F{δ(λ− 1)}(ξ).

Proof. We will show that K̂t(ξ) → (1/2)e−iξ, boundedly and locally

uniformly in ξ. Then also K̂t(ξ) → (1/2)e−iξ in the strong topology of

S ′(R). In order to avoid convergency issues of (9.5.3) when λ is close to

0, we first show that for some λ0 > 0,
∫ λ0

0

∣∣Kt(λ)
∣∣ dλ→ 0 as t→ ∞. Set

L := sup
|arg s|≤π

∣∣lα(s)∣∣ , λ0 :=
1

2L
. (9.5.4)

Note that L ≥ 1, λ0 ≤ 1/2. Using (9.3.12) and changing variables, we

have

Kt(λ) =
−1

4πi

∫ ∞

0

{
lα

(q
t
eiπ
)
eλlα(qe

iπ/t)q − lα

(q
t
e−iπ

)
eλlα(qe

−iπ/t)q
}
e−q dq.

For λ ≤ λ0, Kt(λ) is bounded by 2L
4π

∫∞
0 e(1/2)q−q dq = L/π, and con-

verges pointwise to 0 as t→ ∞, since the above integrand is dominated

by the integrable function e−(1/2)q, and converges pointwise to 0. By

bounded convergence, it then follows that
∫ λ0

0 Kt(λ)e
−iξλ dλ converges

to 0, uniformly in ξ.

To prove the claim, it then suffices to show that
∫∞
λ0

Kt(λ)e
−iξλ dλ

converges boundedly and locally uniformly to (1/2)e−iξ. Suppose ξ > 0

(the case ξ = 0 follows from Proposition 9.5.1). We use representation

(9.5.3) with some a > 0. Since∫ a+i∞

a−i∞

∫ ∞

λ0

∣∣∣lα(s) exp(−λtslα(s) + ts− iξλ
)∣∣∣dλ |ds|

=

∫ a+i∞

a−i∞

∣∣lα(s)∣∣ exp(−λ0tRe(slα(s)) + at
)

tRe(slα(s))
|ds| <∞,



9.5. Qualitative analysis 165

we may interchange the order of integration by the Fubini–Tonelli the-

orem. We get

∫ ∞

λ0

Kt(λ)e
−iξλ dλ

=
1

4πi

∫ a+i∞

a−i∞

lα(s)

slα(s) + iξ/t
exp
(
−λ0tslα(s) + ts− iξλ0

)
ds.

We evaluate this integral by shifting the contour to a Hankel contour

encircling the negative real axis, as was done to obtain (9.3.12). The

integral has one singularity, namely the unique zero s(ξ, t) of the function

slα(s) + iξ/t. Indeed, by applying the argument principle, one sees that

this function has a unique zero in the set bounded by the line [e−iπR,R]

and the semicircle with center 0 and radius R in the lower half plane,

and no zeros in the set bounded by the line [eiπR,R] and the semicircle

with center 0 and radius R in the upper half plane, provided that ξ > 0

and R is sufficiently large. Since

Re s(ξ, t)lα(s(ξ, t)) = Re s(ξ, t)Re lα(s(ξ, t))− Im s(ξ, t) Im lα(s(ξ, t))

= 0,

Re lα(s) > 0 (see (9.3.8)),

Im s Im lα(s) ≤ 0 (idem),

we have that Re s(ξ, t) ≤ 0.

For large t, this zero satisfies the asymptotic s(ξ, t) ∼ −iξ/t, as

t → ∞, locally uniformly in ξ. This can be seen by applying Rouché’s

theorem on the circle
∣∣s+ iξ/t

∣∣ = |ξ| /t1+α/2. By (9.3.9), we have for

sufficiently large t that on this circle

∣∣slα(s) + iξ/t− (s+ iξ/t)
∣∣≪ |ξ|1+α

t1+α
<

|ξ|
t1+α/2

=
∣∣s+ iξ/t

∣∣ .
Hence, slα(s) + iξ/t has the same number of zeros (i.e. 1) as s + iξ/t

inside this circle. We get the following representation for sufficiently
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large t:∫ ∞

λ0

Kt(λ)e
−iξλ dλ

=
1

2
lα(s(ξ, t)) exp

(
−λ0ts(ξ, t)lα(s(ξ, t)) + ts(ξ, t)− iξλ0

)
+

e−iξλ0

4πi

∫ ∞

0

{
lα(qe

iπ)eλ0tqlα(qeiπ)

iξ/t− qlα(qeiπ)
− lα(qe

−iπ)eλ0tqlα(qe−iπ)

iξ/t− qlα(qe−iπ)

}
e−tq dq

=
1

2
lα(s(ξ, t))e

ts(ξ,t)

+
e−iξλ0

4πi

∫ ∞

0

{
lα(

eiπq
t )eλ0qlα(eiπq/t)

iξ − qlα(
eiπq
t )

−
lα(

e−iπq
t )eλ0qlα(e−iπq/t)

iξ − qlα(
e−iπq

t )

}
e−q dq.

Since Re s(ξ, t) ≤ 0, the first term is bounded, and it converges locally

uniformly to (1/2)e−iξ, in view of the asymptotic s(ξ, t) ∼ −iξ/t. The

integral converges uniformly to 0 as t → ∞. Given ε > 0, one can first

find some Q so that∫ ∞

Q
2
Leλ0Lq

(
√
τ/2)q

e−q dq ≤ 4L√
τ

∫ ∞

Q

e−(1/2)q

q
dq ≤ ε

2
.

On the interval [0, Q], we will use a Taylor approximation. We get

lα(e
±iπq/t)eλ0qlα(e±iπq/t)

iξ − qlα(e±iπq/t)
=

eλ0q

iξ − q

{
1 +OQ

(
qα

tα
+
q1+α

tα
+

q1+α

tα|iξ − q|

)}
.

Let then t be so large that∣∣∣∣∣ lα(eiπq/t)eλ0qlα(eiπq/t)

iξ − qlα(eiπq/t)
− lα(e

−iπq/t)eλ0qlα(e−iπq/t)

iξ − qlα(e−iπq/t)

∣∣∣∣∣ ≤ αε

2Qα
qα−1,

for q ∈ [0, Q]. Then
∣∣∫ Q

0 . . .
∣∣ ≤ ε/2. We conclude that

∫∞
λ0

Kt(λ)e
−iξλ dλ

converges boundedly and locally uniformly to (1/2)e−iξ, which finishes

the proof of the proposition.

This proposition gives some indication that the wave packet K+

is concentrated around x = t. This “concentration” around x = t is

however much less drastic than the concentration of Kt around λ = 1.

It is for example not the case thatK+(x, t)−(1/2)δ(x−t) → 0. Actually,

the wave packet will spread out in space, albeit on a scale smaller than

|x− t| ≍ t. Namely, we will see that K+(x, t) can be described as a wave
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packet of height ≍ t−
1

1+α and width ≍ t
1

1+α centered around x = t. Let

us first give a dispersion estimate for K+(x, t). For later use, we also

bound the derivatives with respect to x.

Proposition 9.5.3. For every n ∈ N, we have the bound∥∥∥∥∂nK+

∂xn

∥∥∥∥
L∞
x

≪n t
−n+1

1+α .

Proof. Let L and λ0 be as before, see (9.5.4). Suppose first that 0 ≤
x ≤ λ0t. Then

∂nK+

∂xn
(x, t)

=
1

4πi

∫ ∞

0
qn
(
lα(qe

−iπ)n+1exqlα(qe
−iπ) − lα(qe

iπ)n+1exqlα(qe
iπ)
)
e−qt dq

≪n

∫ ∞

0
qnexLq−tq dq ≤

∫ ∞

0
qne−(1/2)tq dq ≪n t

−n−1.

For x ≥ λ0t, we use representation (9.5.3) and move the contour to the

imaginary axis. We get

∂nK+

∂xn
(x, t) =

1

4π

∫ ∞

−∞
(−iy)nlα(iy)

n+1 exp
(
−xiylα(iy) + tiy

)
dy

≪n

∫ ∞

0
yn exp

(
xy Im lα(iy)

)
dy.

By (9.3.11), we get

∂nK+

∂xn
(x, t)

≪
∫ 1

0
yn exp

(
−λ0tc1y1+α

)
dy +

∫ ∞

1
yn exp

(
−λ0tc2y1−α

)
dy

≪n t
−n+1

1+α .

We will now give a precise description of the shape of the wave packet,

in the limit t→ ∞. For this, we introduce the function

kt(ν) := t
1

1+αK+(t+ νt
1

1+α , t), ν ∈ R.
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Theorem 9.5.4. There exists a function k∞(ν) with the property that

kt(ν) → k∞(ν) as t → ∞, locally uniformly in ν. The function k∞ has

the following representation:

k∞(ν) =
1

4π

∫ ∞

−∞
exp
(1− τ

2
(iw)1+α − iνw

)
dw. (9.5.5)

Also, ∂nν kt(ν) → k
(n)
∞ (ν) locally uniformly in ν, for every n ∈ N.

Proof. We again use representation (9.5.3) on the imaginary axis. We

split the range of integration into three parts as follows:

kt(ν) =
t

1
1+α

4π

∫ ∞

−∞
lα(iy) exp

(
tiy(1− lα(iy))− νt

1
1+α iylα(iy)

)
dy

=
t

1
1+α

4π

(∫
|y|≤t

− 1
1+2α

+

∫
t
− 1

1+2α≤|y|≤1
+

∫
|y|≥1

)
=: I1 + I2 + I3.

When 0 ≤ y ≤ 1, we have Im lα(iy) ≤ −c1yα, see (9.3.11). By

(9.3.9), we also have
∣∣Im lα(iy)

∣∣ ≤ c̃1y
α for some c̃1 > 0. This yields

I2 ≪ t
1

1+α

∫ 1

t
− 1

1+2α

exp
(
−tc1y1+α +|ν| t

1
1+α c̃1y

1+α
)
dy

≪ t
1

1+α

∫ 1

t
− 1

1+2α

exp
(
−t(c1/2)y1+α

)
dy

≪
∫ (tc1/2)

1
1+α

(c1/2)
1

1+α t
α

(1+α)(1+2α)

e−w1+α
dw → 0,

as t → ∞. Here we used that c̃1|ν| t
1

1+α ≤ c1t/2 for sufficiently large t,

uniformly for ν in compact sets.

When y ≥ 1, we have Im lα(iy) ≤ −c2y−α and
∣∣Im lα(iy)

∣∣ ≤ c̃2y
−α

for some c̃2 > 0 (see again (9.3.11) and (9.3.10)). This implies that

I3 ≪ t
1

1+α

∫ ∞

1
exp
(
−tc2y1−α +|ν| t

1
1+α c̃2y

1−α
)
dy

≪ t
1

1+α

∫ ∞

1
exp
(
−t(c2/2)y1−α

)
dy

≪ t
1

1+α
− 1

1−α

∫ ∞

(tc2/2)
1

1−α

e−w1−α
dw → 0,
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as t → ∞, uniformly for ν in compact sets. Hence, in the limit t → ∞,

only the contribution from I1 remains.

To treat I1, we will approximate lα using (9.3.9). For the remainders,

we write

Ẽ1(s) = lα(s)− 1, Ẽ2(s) := lα(s)−
(
1− 1− τ

2
sα
)
.

In the integral I1, change variables to w = t
1

1+α y and approximate lα(iy)

by 1− (1/2)(1− τ)(iy)α. This gives

I1 =
1

4π

∫ tβ

−tβ
lα(t

− 1
1+α iw)×

exp
(1− τ

2
(iw)1+α−iνw−t

α
1+α iwẼ2(t

− 1
1+α iw)−νiwẼ1(t

− 1
1+α iw)

)
dw.

Here, β = α
(1+α)(1+2α) . Since Ẽ1(s) ≪|s|α and Ẽ2(s) ≪|s|2α for s → 0,

the integrand converges pointwise to the function

exp

(
1− τ

2
(iw)1+α − iνw

)
,

uniformly for ν in compact sets. Furthermore, on the interval [−tβ, tβ],

νiwẼ1(t
− 1

1+α iw) ≪ t
− α2

(1+α)(1+2α) ≪ 1, t
α

1+α iwẼ2(t
− 1

1+α iw) ≪ 1,

so the integrand is dominated by the integrable function

exp

(
−1− τ

2
sin(απ/2)|w|1+α

)
.

By dominated convergence,

I1 →
1

4π

∫ ∞

−∞
exp
(1− τ

2
(iw)1+α − iνw

)
dw =: k∞(ν),

as t→ ∞, uniformly for ν in compact sets.

The proof for ∂nν kt(ν) is completely analogous. The corresponding

integrals I2 and I3 tend to zero, while the integral I1 converges to

1

4π

∫ ∞

−∞
(−iw)n exp

(1− τ

2
(iw)1+α − iνw

)
dw =

dn

dνn
k∞(ν).
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In Figure 9.2 we compare the shape of the wave packet at some

large time with the function k∞(ν). We choose again parameter values

α = τ = 1/2. On the left we show K at time t = 100 scaled by factor

t
1

1+α = 100
2
3 ≈ 21.54, for x ∈ [80, 120]. On the right we show a plot of

the function k∞ for ν ∈ [−1, 1]. In Figure 9.3 we plot k∞ in a larger

range.

80 90 100 110 120
x0

0.2

0.4

0.6

0.8

1

1002/3K(x, 100)

-1 -0.5 0.5 1
ν

0.2

0.4

0.6

0.8

1

k∞(ν)

Figure 9.2: Comparison between 100
1

1+αK(x, 100) and k∞(ν).

Let us list some properties of the function k∞(ν).

• From the representation (9.5.5), it follows immediately that k∞

belongs to the Gevrey class G
1

1+α (R). In particular, it is an entire

function.

• The function k∞ is real valued, since it can be written as

k∞(ν) =
1

2π
Re

∫ ∞

0
exp
(1− τ

2
(iw)1+α − iνw

)
dw.

It is closely related to the family of Fourier–Laplace transforms

investigated in Chapter 6. With F as in (6.1.2), we get

k∞(ν) =
1

4π

( 2

1− τ

) 1
1+α

{
e−iπ

2
α

1+αF1+α,0

(
e−iπ

2
α

1+α

( 2

1− τ

) 1
1+α

ν

)
+ ei

π
2

2+α
1+αF1+α,0

(
ei

π
2

2+α
1+α

( 2

1− τ

) 1
1+α

ν

)}
=

1

2π

( 2

1− τ

) 1
1+α

Re

{
e−iπ

2
α

1+αF1+α,0

(
e−iπ

2
α

1+α

( 2

1− τ

) 1
1+α

ν

)}
,

where the first equality holds for any ν ∈ C, and the second for

ν ∈ R. Taking the first term from the asymptotic series (6.4.1)
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with non-vanishing real part, we see that

k∞(ν) ∼ sin(απ)

2π

(1− τ

2

) 1
1+α Γ(2 + α)

|ν|2+α , as ν → −∞. (9.5.6)

For ν → +∞, every term in the asymptotic series (6.4.1) is purely

imaginary, so this only tells us that k∞(ν) ≪n ν−n, as ν → ∞,

for every n. However, using the saddle-point method, one can

determine its precise asymptotic. We restrict ourselves here to

just sketching the method. Suppose ν > 0. In (9.5.5), change

variables w = ν
1
α y to get

k∞(ν) =
ν

1
α

4π

∫ ∞

−∞
exp
{
ν1+

1
α

(1− τ

2
(iy)1+α − iy

)}
dy.

The function ((1 − τ)/2)z1+α − z is holomorphic on C \ (−∞, 0]

and has a unique saddle point z0 =
(
(1−τ)(1+α)/2

)− 1
α . One can

shift the contour of integration to a contour passing through this

saddle point via the “steepest path.” Applying the saddle point

method then yields the following asymptotic:

k∞(ν) ∼ 1

4

√
2z0
απ

ν
1
2α

− 1
2 exp

(
− αz0
1 + α

ν1+
1
α

)
, as ν → ∞. (9.5.7)

• Another interesting property is that k∞ is a close cousin of the

Gaussian and Airy functions. Indeed, renormalizing by setting

k(ν) :=

(
(1− τ)(1 + α)

2

) 1
1+α

k∞

(
−
(
(1− τ)(1 + α)

2

) 1
1+α

ν

)
,

we have that k satisfies the fractional ordinary differential equation

−∞D
α
ν k(ν) + νk(ν) = 0.

This follows immediately by taking Fourier transforms, since

k̂(ξ) = exp

(
1

1 + α
(iξ)1+α

)
.

• From the previous property we can deduce that k and hence also

k∞ is everywhere positive. From both asymptotics (9.5.6) and

(9.5.7) we see that k is eventually positive and so it has (at most)
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finitely many zeros. Suppose that it does have zeros. Let ν0 be

the smallest one. Then k(ν) > 0 for every ν < ν0. From the above

differential equation, it follows that

−∞D
α
ν k(ν0) =

1

Γ(−α)
F. p.

∫ ν0

−∞
k(ν)(ν0 − ν)−α−1 dν = 0.

Here we used the Hadamard finite part to compute the α-th order

fractional derivative. However, if ν0 is a zero of k, then k(ν)(ν0 −
ν)−α−1 is integrable. Hence we get

0 =

∫ ν0

−∞
k(ν)(ν0 − ν)−α−1 dν > 0,

a contradiction. We conclude that k has no zeros, so it is every-

where positive.

-3 -2 -1 1 2 3
ν

0.1

0.2

0.3

0.4

0.5

0.6

k∞(ν)

Figure 9.3: The function k∞ for ν ∈ [−3, 3].

Remark 9.5.5. Theorem 9.5.4 can be rephrased by saying that K+(t+

νt
1

1+α , t) ∼ k∞(ν)t−
1

1+α , as t→ ∞, locally uniformly in ν. In particular

we have

K+(t, t) ∼ k∞(0)t−
1

1+α

=
1

2π(1 + α)
sin
( π

1 + α

)
Γ
( 1

1 + α

)( 2

1− τ

) 1
1+α

t−
1

1+α .

It is also possible to determine the asymptotics of K+(λt, t) with λ ̸= 1.

If 0 ≤ λ < 1, we have the power decay

K+(λt, t) ∼
sin(απ)(1− τ)(1 + 2λ)

4π(1− λ)2+α
Γ(1 + α)t−1−α.
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This asymptotic relation holds uniformly for λ ∈ [0, λ1], for any λ1 < 1.

If 1 < λ < 1/
√
τ , we have exponential decay. Set f(s) = s−λslα(s), and

denote by aλ the unique positive real zero of the function f ′(s). Then

K+(λt, t) ∼
lα(aλ)

4

√
2

πf ′′(aλ)

ef(aλ)t√
t
.

We remark that f(aλ) < 0 and f ′′(aλ) > 0, and that f(aλ) → −∞ if

λ→ 1/
√
τ .

Both of these asymptotic relations can be obtained via the method

of steepest descent, but we omit the details.

In view of the preceding discussion, it is natural to consider K+ as

a dispersive wave packet with speed 1 and wave front speed 1/
√
τ . In

previous works on (fractional) wave equations, several ways of assigning

a velocity to waves in dissipative media are used. See for example [76]. If

one defines the maximum position, the center of gravity, and the center

of mass of the wave respectively as

xmax(t) = argmaxxK+(x, t);

xg(t) =

∫∞
0 xK+(x, t) dx∫∞
0 K+(x, t) dx

;

xm(t) =

∫∞
0 xK2

+(x, t) dx∫∞
0 K2

+(x, t) dx
;

one can define associated velocities as the instantaneous or average prop-

agation speed of these points. In our case, it would appear that

xmax(t) ∼ t, xg(t) ∼ t, xm(t) ∼ t,

so the associated velocities would all be asymptotically equal to 1.

Remark 9.5.6. Note that (9.1.1) resulted from a reduction to dimen-

sionless quantities (i.e. (9.3.4)). For the model in its original form, in-

cluding the density constant ρ and with the fractional Zener constitutive

law in the form (9.3.3), the wave front speed and wave packet speed are

given by
√
Eτε/(ρτσ) and

√
E/ρ respectively. These speeds can be re-

lated to the limiting values of the material functions of the body. We
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have

wave front speed =

√
Eτε
ρτσ

=
1√
ρJg

=

√
Gg

ρ
,

wave packet speed =

√
E

ρ
=

1√
ρJe

=

√
Ge

ρ
.

Here, Jg and Gg are the glass compliance and glass modulus, related

to the instantaneous behavior of the material, and Je and Ge are the

equilibrium compliance and equilibrium modulus, related to the equilib-

rium behavior of the material, see e.g. [78, Chapter 2]. In dimensionless

form Gg = 1/Jg = 1/τ and Ge = 1/Je = 1. For a more general class

of materials (including the fractional Zener model) they are calculated

and presented in [100, Table 1].

Finally, let us describe the shape of the solution with initial condi-

tions u(x, 0) = u0(x), ∂tu(x, 0) = 0, given by u(x, t) = K(x, t) ∗x u0(x).

Theorem 9.5.7. Suppose u0 ∈ S and suppose that
∫
u0(x) dx ̸= 0.

Then

∥u∥L∞
x

≪ t−
1

1+α
∥∥u0∥∥L1

x
,

and u(x, t) = K+(x, t)∗xu0(x)+K+(−x, t)∗xu0(x) =: u+(x, t)+u−(x, t),
where

t
1

1+αu+(t+ νt
1

1+α , t) → Ak∞(ν), t
1

1+αu−(−t− νt
1

1+α , t) → Ak∞(ν),

A :=

∫ ∞

−∞
u0(x) dx,

as t→ ∞, locally uniformly in ν.

Proof. By Proposition 9.5.3,

u(x, t) =

∫ x+t/
√
τ

x−t/
√
τ
K(x− y, t)u0(y) dy ≪ t−

1
1+α

∫ ∞

−∞
|u0(x)|dx.

Set now x = t+νt
1

1+α . Rewriting the convolution in terms of kt(ν) gives

u+(x, t) =

∫
K+(x− y, t)u0(y) dy = t−

1
1+α

∫
kt(ν − yt−

1
1+α )u0(y) dy.
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Applying Theorem 9.5.4 and dominated convergence, we see that locally

uniformly in ν

t
1

1+αu+(t+ νt
1

1+α , t) →
∫
k∞(ν)u0(y) dy =

(∫ ∞

−∞
u0(y) dy

)
k∞(ν).

The proof for u− is analogous.

Remark 9.5.8. If
∫
u0(x) dx = 0 and

∫
xu0(x) dx ̸= 0, than u0 has a

primitive u
(−1)
0 in S. We can integrate by parts in the convolution:

u(x, t) =

∫ x+t/
√
τ

x−t/
√
τ
K(x− y, t)u0(y) dy

=

∫ x+t/
√
τ

x−t/
√
τ

∂K

∂x
(x− y, t)u

(−1)
0 (y) dy,

since the boundary terms vanish. Similarly as in the above proof,

using Proposition 9.5.3 and Theorem 9.5.4, now defining u+(x, t) =

∂xK+(x, t) ∗x u(−1)
0 (x) and u−(x, t) = ∂xK+(−x, t) ∗x u(−1)

0 (x),

∥u∥L∞
x

≪ t−
2

1+α ∥u(−1)
0 ∥L1

x
,

t
2

1+αu+(t+ νt
1

1+α , t) →
(∫ ∞

−∞
u
(−1)
0 (x) dx

)
k′∞(ν)

=

(
−
∫ ∞

−∞
xu0(x) dx

)
k′∞(ν),

and similarly for u−.

If more moments of u0 vanish, then integrating by parts introduces

extra boundary terms, by the non-differentiability of K at x = 0. Sup-

pose n ≥ 2 is the smallest integer such that
∫
xnu0(x) dx ̸= 0. Denot-

ing the j-th order primitive, j ≤ n, of u0 in S by u
(−j)
0 , and setting

m = 2⌊n/2⌋, we get

u(x, t) = 2u
(−2)
0 (x)

∂K

∂x
(0+, t) + · · ·+ 2u

(−m)
0 (x)

∂m−1K

∂xm−1
(0+, t)

+

∫ x+t/
√
τ

x−t/
√
τ

∂nK

∂xn
(x− y, t)u

(−n)
0 (y) dy.

It is possible to estimate ∂jxK(0+, t) for large t; using these estimates,

one might then estimate the L∞
x -norm of u by a linear combination

of the L∞
x -norms of u

(−2)
0 , . . . , u

(−m)
0 and the L1

x-norm of u
(−n)
0 , where

the coefficients are negative powers of t depending on the order of the

respective primitive of u0 and α.
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9.6 The case α = 1

We now briefly discuss the case α = 1, which is known as the (classical)

Zener model, or the Standard Linear Solid (SLS) model. The SLS wave

equation is

∂2

∂t2
u(x, t) = L−1

{
1 + s

1 + τs
; t

}
∗t
∂2

∂x2
u(x, t), x ∈ R, t > 0, (9.6.1)

so (9.1.1) with α = 1. The fundamental solution S of (9.6.1) is again

supported in the forward cone |x| ≤ t/
√
t, but we will see that it is

not smooth on the boundary of this cone, in contrast with the case

0 < α < 1. The Laplace transform S̃ of S is now given by

S̃(x, s) =
1

2s

√
1 + τs

1 + s
exp

(
−|x| s

√
1 + τs

1 + s

)
.

Note that this function has analytic continuation to C\
(
{0}∪[−1/τ,−1]

)
.

The point s = 0 is a simple pole of S̃; the line segment [−1/τ,−1] is a

branch cut.

Theorem 9.6.1. The fundamental solution S of (9.6.1) is discontinu-

ous at the boundary of the forward light cone. More precise, it has the

following form:

S(x, t) =

√
τ

2
exp

(
−
√
τ

2

(1
τ
− 1
)
|x|
)
H(t−

√
τ |x|) + E(x, t),

where E is a continuous function supported in the forward cone {(x, t) :
|x| ≤ t/

√
τ}.

Proof. The fact that S(x, t), and hence also

E(x, t) := S(x, t)− (
√
τ/2)e−

√
τ
2

(1/τ−1)|x|H(t−
√
τ |x|)

is supported in the cone |x| ≤ t/
√
τ can be proved in a similar fashion as

in Proposition 9.3.2. (In fact, that proof does not require that α < 1.)

To show that E is continuous, we first note that, similarly as in

(9.3.10),

l1(s) :=

√
1 + τs

1 + s
=

√
τ

(
1 +

1

2

(1
τ
− 1
)
s−1 +O(|s|−2)

)
, as |s| → ∞.

(9.6.2)
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We have

L{E(x, t)}(s)

=
1

2s
l1(s) exp

(
−|x| sl1(s)

)
−

√
τ

2s
exp

(
−
√
τ |x| s−

√
τ

2

(1
τ
− 1
)
|x|
)

=

√
τ

2s
exp

(
−
√
τ |x| s−

√
τ

2

(1
τ
− 1
)
|x|
)((

1 +O
( 1

|s|

))
eO(|x

s
|) − 1

)
=

√
τ

2s
exp

(
−
√
τ |x| s−

√
τ

2

(1
τ
− 1
)
|x|
)
·O
(1 +|x|

|s|

)
, as |s| → ∞.

Thus, we see that Ẽ(x, s) = L{E(x, t); s} is absolutely integrable on

vertical lines Re s = a, a > 0, so E(x, t) = 1
2πi

∫ a+i∞
a−i∞ Ẽ(x, s)ets ds is a

continuous function of x and t.

Actually one can show that

WF(S) = {(0, 0; ξ, η) : (ξ, η) ̸= (0, 0)} ∪ {(0, t; ξ, 0) : t > 0, ξ ̸= 0}

∪ {(x, t; ξ, η) : t > 0, (ξ, η) ̸= (0, 0), |x| = t/
√
τ , (x, t) · (ξ, η) = 0}.

For |x| < t/
√
τ , one shifts the contour in the inverse Laplace transform

to the left to obtain

S(x, t) =
1

2
+

1

4πi

∫
Γ

l1(s)

s
exp
(
−|x| sl1(s) + ts

)
ds,

where Γ is a (finite) contour encircling the branch cut [−1/τ,−1] in the

counterclockwise direction. This shows that S is analytic on the set

0 < |x| < t/
√
τ . By differentiating the above formula with respect to x

and using the residue theorem, one gets that

∂S

∂x
(0+, t) = −1− τ

2
e−t,

∂S

∂x
(0−, t) =

1− τ

2
e−t, t > 0.

As in the proof of Theorem 9.4.3, S is analytic in the (0, t)-direction at

points (0, t0), t0 > 0. For x ̸= 0, consider S(−1)(x, t) =
∫ t
0 S(x, t1) dt1.

Changing variables as in the proof of Theorem 9.4.3 and differentiating

with respect to u =
√
τx+ t, we get

∂n(S(−1))♮

∂un
(u, v) =

1

4πi

∫ a+i∞

a−i∞

l1(s)

s2

{s
2

(
1− l1(s)√

τ

)}n
×

exp
{us

2

(
1− l1(s)√

τ

)
− vs

2

(
1 +

l1(s)√
τ

)}
ds.
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In view of (9.6.2), this integral converges absolutely for every n, and

is bounded even by Dn+1 for some D > 0, showing the (S(−1))♮ is real

analytic in the (u, 0)-direction at points (u0, 0), u0 > 0. We omit further

details.

We can again investigate the response in this model to a forced os-

cillation at the origin, starting at t = 0. As before, we set f(x, t) =

δ(x)H(t) cos(ωt), with ω > 0, and u0 = v0 = 0. Then the solution u of

the initial value problem (9.3.5) has Laplace transform

ũ(x, s) =
l1(s)

2
exp
(
−|x| sl1(s)

) 1

s2 + ω2
.

Notice that this Laplace transform is integrable on vertical lines Re s =

a, so u is continuous (although it is not of class C1). Again the solution

has support inside the cone t ≥
√
τ |x|. For x and t with t >

√
τ |x|, we

can move the contour in the Inverse Laplace transform to the left to get

u(x, t) = H(t/
√
τ −|x|)

(
uss(x, t) + uts(x, t)

)
,

with

uss(x, t) =
l1(iω)

4iω
exp
(
−|x| iωl1(iω) + iωt

)
− l1(−iω)

4iω
exp
(
|x| iωl1(−iω)− iωt

)
=
ρ1(ω)

2ω
e−b1(ω)ω|x| sin

(
ωt− a1(ω)ω|x| − ϕ1(ω)

)
;

uts(x, t) =
1

4πi

∫
Γ
l1(s) exp

(
−|x| sl1(s) + ts

) 1

s2 + ω2
ds;

where again Γ is a (finite) closed contour encircling the branch cut

[−1/τ,−1] in the counterclockwise direction, and

l1(iω) = a1(ω)− ib1(ω) = ρ1(ω)e
−iϕ1(ω),

as before. The transient state uts converges to 0 as t → ∞, locally

uniformly in x. For fixed ω, the steady state uss is formally identical

to the steady states in the fractional Zener model (9.5.1). We have

the complex dispersion relation k1(ω) = ωl1(iω), and phase velocity

V1(ω) = 1/a1(ω). However, there is a qualitative difference between
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the two models in terms of the dependency of the dissipation on the

frequency ω. In the SLS model (corresponding to α = 1), the attenuation

coefficient d1(ω) = b1(ω)ω has asymptotic behavior

d1(ω) ∼
√
τ

2

(1
τ
− 1
)
, as ω → ∞,

contrasting (9.5.2), which shows that the attenuation coefficient in the

fractional Zener model (0 < α < 1) grows to ∞ as ω → ∞. In the SLS

model, two pseudo-monochromatic waves with different frequencies have

roughly the same amount of spatial dampening, while in the fractional

Zener model, the wave with the higher frequency will experience more

dampening than the wave with the lower frequency.

9.A Proof of Lemma 9.4.4

In this appendix we provide a proof Lemma 9.4.4. We use the same

notations as in the proof of Theorem 9.4.3. Set

hm(w) := f(w) + gm(w), where

f(w) = κw − 1

1− α
w1−α + logw + log 2,

gm(w) =
κw

2
E1(µm

1
1−αw)− uµm

α
1−αw

2
E2(µm

1
1−αw)

+ log
(
1 +

E1(µm
1

1−αw)

2

)
.

Here, µ is a fixed constant, E1 and E2 are “remainder functions” given

by (9.4.2), and κ is a number in a fixed range, namely

κ ∈ I :=
[(
1000/ sin(απ)

) 1
1−α ,

(
2000/ sin(απ)

) 1
1−α
]
. (9.A.1)

We need to show that we can choose κ = κm in the interval I in such a

way that

Im

∫ +i∞

0
lα(µm

1
1−αw)emhm(w)dw

w
≫ cm√

m
. (9.A.2)

for some c > 0 independent from m.

First we show necessary estimates uniformly for κ ∈ I, and later we

show the existence of κm so that (9.A.2) holds. In order to prove (9.A.2),
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we will use the saddle point method. We view the phase function hm as

a small perturbation of f . Indeed, by the bounds (9.4.3) we get

gm(w) ≪ m− α
1−α |w|1−α , m→ ∞, (9.A.3)

provided that |w| is greater than some fixed ε > 0. In particular, gm, as

well as its derivatives, converges locally uniformly to 0 on the set |w| > ε.

This convergence is also uniform with respect to κ ∈ I. We want the

quantity gm and its derivatives to be very small near the saddle point, so

we also bound |w| from above, and consider the fixed range ε ≤|w| ≤W .

We will perform the saddle point analysis in this range, and show that

the parts of the integral with |w| ≤ ε and |w| ≥ W are negligible with

respect to the contribution from the saddle point. We now set

ε =
1

1 + 1/
√
τ

(
sin(απ)

2000

) 4
1−α

, W =
8

1− α
. (9.A.4)

It will be useful to consider f and gm as holomorphic functions on the

set Ω = {w : ε ≤|w| ≤ W, 0 ≤ argw ≤ 3π/2} by analytic continuation7.

If m is sufficiently large, then the zero and the pole of the function

(1+τ(µm
1

1−αw)α)/(1+(µm
1

1−αw)α) have modulus strictly smaller than

ε, so that gm is well defined and holomorphic in Ω. We let m be so large

that∣∣g(i)m (w)
∣∣ < sin2(απ)

10002
, for w ∈ Ω, κ ∈ I, i = 0, 1, 2, 3. (9.A.5)

Next we focus our attention on f . We have

f ′(w) = κ− w−α +
1

w
.

To solve the saddle point equation f ′(w) = 0, it is convenient to solve

for z := 1/w. The equation κ− zα + z = 0 will have a solution z0 near

κe−iπ. Indeed, noting that |zα| < |κ+ z| on ∂B(κe−iπ, κ/2), it follows

from Rouché’s theorem that κ − zα + z has a unique zero in the disc

B(κe−iπ, κ/2). Next, we will deduce a precise estimate for z0. We want

7Note that this continuation is different from the one to arg s ∈ [−π,−π/2], which
appeared in (the derivation of) (9.3.12). They are situated on different sheets of the

Riemann surface of the logarithm.
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to keep all the constants in the error terms explicit. For this, we will use

ζ to denote some complex number with |ζ| ≤ 1. At each next occurrence,

this number might have a different value than the previous occurrence,

but we will use the same notation ζ each time. We have

z0 = e−iπκ
1

1− zα−1
0

= e−iπκ
(
1 + zα−1

0 + 8ζ|z0|2α−2)
= e−iπκ

(
1 + zα−1

0 +
16 sin2(απ)

10002
ζ
)

= e−iπκ
(
1 + eiπ(1−α)κα−1

(
1 +

6 sin(απ)

1000
ζ
)
+

16 sin2(απ)

10002
ζ
)

= e−iπκ
(
1 + eiπ(1−α)κα−1 +

22 sin2(απ)

10002
ζ
)
.

Here we used Taylor’s theorem with explicit error terms, the a priori

estimate|z0| > κ/2, and the bound κ
1

1−α ≥ 1000/ sin(απ). For w0 = 1/z0

we get

w0 =
eiπ

κ

(
1− eiπ(1−α)κα−1 +

54 sin2(απ)

10002
ζ
)
, (9.A.6)

arg(w0) = π − 2 sin(απ)

998
ξ, for some 0 < ξ < 1.

Let us denote by wm the saddle point of hm = f + gm. By Hurwitz’s

theorem, we may assume that

wm = w0

(
1 +

sin2(απ)

10002
ζ
)
=

eiπ

κ

(
1− eiπ(1−α)κα−1 +

56 sin2(απ)

10002
ζ
)

(9.A.7)

for sufficiently large m. We will let the contour pass through wm via the

steepest path.

Lemma 9.A.1. There exists some δ > 0, and a contour Γ, the path of

steepest descent, which connects two (nearly) opposing points c and d on

the circle |w − wm| = δ. This path passes through wm, Imhm is constant

along it, while Rehm reaches its maximum at wm. The tangent vector

along Γ has its argument in the range (3π/4, 5π/4).

The proof will show that we may take δ = (27/680)κ−1.

Proof. The idea is to approximate hm(w) − hm(wm) by the quadratic

function (h′′m(wm)/2)(w − wm)2. By Taylor’s theorem, we have on a
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small neighborhood of wm

hm(w)− hm(wm) =
h′′m(wm)

2
(w − wm)2(1 + ηm(w)),

where ηm(w) is a holomorphic function satisfying

∣∣ηm(w)
∣∣ ≤ ( 2

3!
∣∣h′′m(wm)

∣∣ max
z∈[wm,w]

∣∣h′′′m(z)
∣∣)|w − wm| .

The derivatives of hm can be approximated by those of f . We have

f ′′(w) = − 1

w2

(
1− αw1−α

)
, f ′′′(w) =

2

w3

(
1− α(α+ 1)w1−α

)
,

so that by (9.A.5) and (9.A.7),

∣∣h′′m(wm)
∣∣ ≥ ∣∣f ′′(wm)

∣∣− sin2(απ)

10002

≥ κ2
( 998

1000

)2(
1− 2

1000

)
− sin2(απ)

10002
≥ 9κ2

10
.

Also for
∣∣∣w − eiπ/κ

∣∣∣ ≤ 1/(2κ),

∣∣h′′′m(w)
∣∣ ≤ 2

1/(2κ)3
(
1 + 2(3/(2κ))1−α

)
+

sin2(απ)

10002
≤ 17κ3.

Hence we get∣∣ηm(w)
∣∣ ≤ (170/27)κ|w − wm| , for

∣∣w − eiπ/κ
∣∣ ≤ (1/2)κ−1. (9.A.8)

We now set δ = (27/680)κ−1, then for |w − wm| ≤ δ,

hm(w)− hm(wm) =
h′′m(wm)

2
(w − wm)2(1 + ηm(w)),

∣∣ηm(w)
∣∣ ≤ 1

4
,

(9.A.9)

=:
(
ψm(w)

)2
.

Here8, ψm(w) = −
√
h′′m(wm)/2(w − wm)

√
1 + ηm(w), where

√
de-

notes the principal branch of the square root. We claim that this is a

holomorphic bijection from the closed disk B(wm, δ) onto some compact

8The minus sign here is introduced for convenience. With this minus sign, the

steepest path defined later on will have the desired orientation.
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neighborhood F of zero. This will follow if we show that its derivative

does not vary too much. We have

ψ′
m(w) = −

√
h′′m(wm)

2

(√
1 + ηm(w) + (w − wm)

η′m(w)

2
√

1 + ηm(w)

)
.

Estimating η′m by Cauchy’s formula, if |w − wm| ≤ δ, then

∣∣η′m(w)
∣∣ ≤ 1

2π

∣∣∣∣∣
∫
∂B(wm,12δ)

ηm(z)

(z − w)2
dz

∣∣∣∣∣ ≤ 1

2π
· 1

(11δ)2
·3 · (24δπ) = 36

121δ
.

Here we used that |z − w| ≥ 11δ, and that
∣∣ηm(z)

∣∣ ≤ 3 on the circle

|z − wm| = 12δ, by (9.A.8). Hence, if |w − wm| ≤ δ, then

ψ′
m(w) = −

√
h′′m(wm)

2

(
1 +

ζw
2

)
, for some ζw with |ζw| ≤ 1.

In particular, if w,w′ ∈ B(wm, δ), w ̸= w′, then ψm(w′) − ψm(w) =∫ w′

w ψ′
m(z) dz ̸= 0, showing that ψm is injective.

We now set Γ := ψ−1
m (L), where L = [ia, ib] is the maximal line

segment along the imaginary axis, which contains the origin and lies

completely within F . This line segment connects the boundary points

ia, ib ∈ ∂F via the imaginary axis, passing through the origin, and Γ

is a path which connects the points c := ψ−1
m (ia) and d := ψ−1

m (ib) on

the circle ∂B(wm, δ) via a path passing through the saddle point wm.

For points w ∈ Γ, clearly Imhm(w) = Imhm(wm), and Rehm(w) ≤
Rehm(wm), with equality only when w = wm.

Let us now locate the points c and d on the circle a bit more, using

(9.A.9). Writing h′′m(wm) =
∣∣h′′m(wm)

∣∣ eiφm , similar calculations as before

show that

φm = π − 8ξ

992
, for some ξ with 0 < ξ < 1.

Setting c = wm + δeiθc , d = wm + δeiθd , we get the following relations

for θ = θc, θd, by taking real and imaginary part in (9.A.9):

0 >

∣∣h′′m(wm)
∣∣

2
δ2
(
cos(φm + 2θ)(1 + Re ηm(δeiθ))

− sin(φm + 2θ) Im ηm(δeiθ)
)
,
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0 =

∣∣h′′m(wm)
∣∣

2
δ2
(
cos(φm + 2θ) Im ηm(δeiθ)

+ sin(φm + 2θ)(1 + Re ηm(δeiθ))
)
.

The first inequality implies that θ ∈ (−3π/8, 3π/8) ∪ (5π/8, 11π/8) (if

not, then using the estimate of φm and the bound on ηm, one shows

that the right-hand side would be positive). Using this initial local-

ization, we can narrow the range down using the second equality, to

θ ∈ (−π/8, π/8) ∪ (7π/8, 9π/8) say. Actually, θc ∈ (−π/8, π/8), while
θd ∈ (7π/8, 9π/8). This will follow from the following estimate for the

argument of the tangent vector along Γ.

We have the following parametrization of Γ: γ : [a, b] → Γ : y 7→
ψ−1
m (iy). We have

γ′(y) =
i

ψ′
m(ψ−1

m (iy))
= −i

√
2

h′′m(wm)

(
1 +

ζy
2

)
,

for some ζy with
∣∣ζy∣∣ ≤ 1. Using the bounds on φm, we see that this

tangent vector has its argument in the range (5π/6 − 4/992, 7π/6 +

4/992).

We will now use the obtained information to estimate∫
Γ
lα(µm

1
1−αw)w−1emhm(w) dw,

with Γ as in the above lemma. First we reparametrize Γ with arc length:

γ̃ : [ã, b̃] → Γ : u 7→ γ̃(u), γ̃(0) = wm,
∣∣γ̃′(u)∣∣ = 1.

From the lemma, we have
∣∣arg γ̃′(u)− π

∣∣ < π/4. Ifm is sufficiently large,

then
∣∣arg lα(µm 1

1−αw)
∣∣ ≤ 1/1000 and∣∣∣argw−1 + π
∣∣∣ ≤ arctan

2/1000 + 27/680

998/1000− 27/680
≤ 1

20
,

for w on the steepest path Γ. We have∫
Γ
lα(µm

1
1−αw)emhm(w)dw

w

= emhm(wm)

∫ b̃

ã
lα(µm

1
1−α γ̃(u)) exp

{
m
(
hm(γ̃(u))− hm(wm)

)} γ̃′(u)
γ̃(u)

du

=: emhm(wm)Reiϕ.
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Here,

|ϕ| ≤ π/4 + 1/1000 + 1/20,

R ≥ cos(π/4 + 1/1000 + 1/20)

∫ b̃

ã
|. . . |du

(see Lemma 4.2.5). Using (9.A.9) and the estimates lα ≫ 1, 1/γ̃(u) ≫ κ,

and
∣∣h′′m(wm)

∣∣ ≍ κ2, we get

R≫ κ

∫ b̃

ã
exp

{
m

(
h′′m(wm)

2
(γ̃(u)− wm)2(1 + ηm(γ̃(u)))

)}
du

≫ κ

∫ b̃

ã
exp

{
−m

5
∣∣h′′m(wm)

∣∣
8

u2
}
du≫ κ · 1√

m
∣∣h′′m(wm)

∣∣ ≫ 1√
m
,

as m → ∞. Here we used that the exponent is real and non-positive

along Γ, so that

h′′m(wm)

2
(γ̃(u)− wm)2(1 + ηm(γ̃(u)))

= −
∣∣h′′m(wm)

∣∣
2

∣∣γ̃(u)− wm

∣∣2∣∣1 + ηm(γ̃(u))
∣∣

≥ −
∣∣h′′m(wm)

∣∣
2

· u2 · 5
4
.

The last inequality follows from the fact that u is arc length:

∣∣γ̃(u)− wm

∣∣ = ∣∣γ̃(u)− γ̃(0)
∣∣ ≤|u| .

For the same reason |b̃− ã| = length(Γ) ≫ 1/κ, so that the integral

above can be transformed to the integral of e−t2 over an interval con-

taining 0 of length ≫ 1. We can conclude that∣∣∣∣∫
Γ
lα(µm

1
1−αw)emhm(w)dw

w

∣∣∣∣≫ emRehm(wm)

√
m

(9.A.10)

≫ cm√
m
, c =

(
sin(απ)

2000

) 2
1−α

. (9.A.11)

The value for c arises from the following lower bound for Rehm(wm):
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using 1/(2κ) ≤|wm| ≤ 2/κ and κ ∈ I we get

Rehm(wm) = Re
(
κwm − 1

1− α
w1−α
m + logwm + log 2 + gm(wm)

)
≥ −2− 2 sin(απ)

1000(1− α)
− 1

1− α
log

2000

sin(απ)
− 1

10002

≥ − 2

1− α
log

2000

sin(απ)
.

To control the phase of
∫
Γ, we need a precise estimate of Imhm(wm).

Using (9.A.7), we get (now using ξ for a real number satisfying |ξ| ≤ 1,

with a possibly different value at each occurrence)

Imwm =
1

κ

(
sin(απ)κα−1 +

56 sin2(απ)

10002
ξ
)
;

Imw1−α
m = sin(απ)κα−1

(
1 +

4 sin(απ)

1000
ξ
)
= sin(απ)κα−1 +

4 sin2(απ)

10002
ξ;

argwm = π − arctan

(
sin(απ)κα−1 + 56 sin2(απ)

10002
ξ

1 + 2 sin(απ)
1000 ξ

)
= π − sin(απ)κα−1 +

63 sin2(απ)

10002
ξ.

This implies that

Imhm(wm) = κ Imwm − 1

1− α
Imw1−α

m + argwm + Im gm(wm)

= π − sin(απ)

1− α

(
κα−1 +

124 sin(απ)

10002
ξ
)
,

where we also used (9.A.5) to bound Im gm(wm). Now that we have such

a precise estimate for Imhm(wm), we will demonstrate how to choose

κ ∈ I. We have(
Imhm(wm)

)∣∣
κ1−α= 1000

sin(απ)
= π − sin(απ)

1− α

(sin(απ)
1000

+
124 sin(απ)

10002
ξ
)

<
(
Imhm(wm)

)∣∣
κ1−α= 2000

sin(απ)
= π − sin(απ)

1− α

(sin(απ)
2000

+
124 sin(απ)

10002
ξ′
)
.

We now note that the value of wm depends continuously on κ, and so also

hm(wm) depends continuously on κ. Hence, for each sufficiently large

m, we may choose κ = κm ∈ I in such a way that m
(
Imhm(wm)

)
∈

π/2 + 2πZ. This guarantees that

Im

∫
Γ
lα(µm

1
1−αw)emhm(w)dw

w
= Im

(
emhm(wm)Reiϕ

)
≫ cm√

m
.
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Finally, we have to deform the complete contour [0,+i∞) to a con-

tour containing Γ, and show that the contribution from the other pieces

is negligible. We do this in several steps. First, we set Υ1 = [0, iε]. For

points w with |w| < ε, the asymptotic estimates (9.4.3) on the remain-

der functions E1 and E2 cannot be used. Writing the integrand in its

original form, that is before introducing the functions E1, E2, f , and g,

we get∫
Υ1

lα(µm
1

1−αw)emhm(w)dw

w

=

∫
Υ1

lα(µm
1

1−αw)wm

(
lα(µm

1
1−αw)√
τ

+ 1

)m

×

exp

{
−uµm

1
1−αw

2

(
lα(µm

1
1−αw)√
τ

− 1

)
+
mκw

2

(
lα(µm

1
1−αw)√
τ

+ 1

)}
dw

w

≪ εm
( 1√

τ
+ 1
)m

= c2m.

Here we used that
∣∣lα(s)∣∣ ≤ 1 and Im lα(s) ≤ 0 for s ∈ iR≥0, and the

definitions of ε and c, (9.A.4) and (9.A.11). Since c < 1, this is of strictly

lower order than the contribution from the integral over Γ.

Next we set Υ2 := {εeiφ : π/2 ≤ φ ≤ θm}, were θm = argwm. We

have

Rehm(εeiφ)

= κε cosφ− 1

1− α
ε1−α cos((1− α)φ) + log ε+ log 2 + Re g(εeiφ)

≤ 1

1− α
+

1

10002
− 4

1− α
log

2000

sin(απ)
≤ 3

2
log c.

Hence, ∫
Υ2

lα(µm
1

1−αw)emhm(w)dw

w
≪ c3m/2,

which is negligible.

Next we set Υ3 := {reiθm : ε ≤ r ≤ r1}, where r1 is such that this line

segment connects εeiθm to the circle |w − wm| = δ, so r1 = |wm|−δ. Note
that r1 ≈ 653

680κ
−1 ≥ 1

2

(
sin(απ)/2000

) 1
1−α > ε. Consider the function

r 7→ Re f(reiθm). This function is non-decreasing for r ∈ [ε, r1]. Indeed,
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using that r ≤ r1 ≤ 682−27
680 κ−1 we get

∂

∂r
Re f(reiθm)

=
∂

∂r

(
κr cos(θm)− 1

1− α
r1−α cos((1− α)θm) + log r + log 2

)
= κ cos(θm)− cos((1− α)θm)r−α +

1

r

≥ κ
(680
655

+ cos θm − 2

1000

)
> 0.

Therefore, Rehm(reiθm) ≤ Rehm(r1e
iθm) + 2/10002. Comparing

hm(r1e
iθm) to hm(wm), using the notations and estimates from Lemma

9.A.1, we get

Rehm(reiθm)− Rehm(wm)

≤
∣∣h′′m(wm)

∣∣
2

δ2
(
cos(φm + 2θm)

(
(1 + Re ηm(r1e

iθm)
)
+
∣∣Im ηm(r1e

iθm)
∣∣)

+
2

10002

≤ 9/10

2
· 272

6802
(
(3/4) cos(3π/4− 8/992) + 1/4

)
+

2

10002
≤ − 1

10000
.

We can conclude that∫
Υ3

lα(µm
1

1−αw)emhm(w)dw

w
≪ emRehm(wm)

em/10000
,

which is negligible compared to (9.A.10).

We now let Υ4 be the arc of the circle |w − wm| = δ which connects

r1e
iθm to the initial point c of Γ. Similarly, let Υ5 be the arc of the circle

which connects the end point d of Γ to the point r2e
iθm , where r2 :=

|wm|+ δ. Since these arcs lie in the sectors arg(w − wm) ∈ (−π/8, π/8)
and (7π/8, 9π/8) respectively, the same estimate as before holds:∫

Υ4∪Υ5

lα(µm
1

1−αw)emhm(w)dw

w
≪ emRehm(wm)

em/10000
.

Next, we set Υ6 := {reiθm : r2 ≤ r ≤W}, withW as in (9.A.4). This

line segment is treated similarly as the line Υ3. We now use that the

function r 7→ Re f(reiθm) is non-increasing in the range r2 ≤ r ≤W , as

apparent from a similar calculation. If r ≥ r2 ≥ 678+27
680 κ−1, then

∂

∂r
Re f(reiθm) ≤ κ

(680
705

+ cos θm +
1

1000

)
< 0,
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since |θm − π| ≤ 2/1000, so |cos θm + 1| ≤ 2/1000. Similarly as for Υ3,

we conclude that∫
Υ6

lα(µm
1

1−αw)emhm(w)dw

w
≪ κW

emRehm(wm)

em/10000
.

Finally we set Υ7 := {reiθm : r ≥ W}. Using estimate (9.A.3), we

get for r ≥W :

Reh(reiθm)

= κr cos θm − 1

1− α
r1−α cos((1− α)θm) + log r + log 2 + Re gm(reiθm)

= r

(
κ cos θm − cos((1− α)θm)

1− α
r−α +

log r + log 2

r
+O

(
m− α

1−α r−α
))

≤ −κ
2
r.

Hence,∫
Υ7

lα(µm
1

1−αw)emhm(w)dw

w
≪
∫ ∞

W
e−mκr/2 dr =

2

mκ
e−mκW/2.

This is of lower order than the contribution from the integral over Γ,

since e−κW/2 < c, by the definitions of W (9.A.4) and c (9.A.11), and

the fact that κ ∈ I (9.A.1). We may thus conclude that

Im

∫ i∞

0
lα(µm

1
1−αw)emhm(w)dw

w
= Im

∫
Γ∪

⋃
i Υi

lα(µm
1

1−αw)emhm(w)dw

w

≫ Im

∫
Γ
lα(µm

1
1−αw)emhm(w)dw

w
≫ cm√

m
,

as claimed earlier.
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Appendix A

Open problems

We list here a selection of open problems connected with the work in

this thesis.

• The discretization procedure 2.1.2 allows one to construct a Beur-

ling number system with control on the prime-counting function

π(x) up to a O(1) error. The property (2.1.3) implies good esti-

mates of its zeta function ζ(s) in the half-plane Re s > 1/2, which

yields control on the integer-counting function N(x) up to an error

of size O(x1/2+ε). In view of Hilberdink’s result [56] that every dis-

crete [α, β]-system1 satisfies max{α, β} ≥ 1/2, one cannot expect

to improve the control on N without surrendering the O(1)-control

on π. The question is if this is indeed possible with such a con-

cession: can one develop a discretization procedure which controls

the integers and primes up to errors of size O(xβ) and O(xα),

respectively, for some β < 1/2 and 1/2 < α < 1?

• A closely related question concerns the existence of [α, β]-systems.

Let α, β ∈ [0, 1) be such that max{α, β} ≥ 1/2. Does there exist

a discrete [α, β]-system? In the case α = 0, β = 1/2, the answer

is affirmative (see Theorem 2.3.1). For α and β with β ≥ 1/2,

this also seems the case: one might construct a template zeta

function which has no zeros in the half-plane Re s > α, some zeros

1Defined similarly as [α, β, γ]-systems (see Section 2.3), but without considering

the Möbius function.
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on the line Re s = α, and which has extremal growth along the

line Re s = β (for example by modifying the construction used in

Chapter 4), giving rise to an [α, β]-system in the extended sense.

Discretizing with Theorem 2.1.2 would then yield a discrete [α, β]-

system, since β ≥ 1/2.

The existence of such systems with β < 1/2, 1/2 ≤ α < 1 seems

also plausible: many systems arising from the prime and integral

ideals from number fields are expected to belong to this category.

(This would follow from generalizations of the Riemann hypoth-

esis.) A new discretization procedure as described above would

confirm the existence of such systems unconditionally.

Of course, one may also extend the question further to the exis-

tence of [α, β, γ]-systems for α, β, γ ∈ [0, 1) with the largest two

being equal and ≥ 1/2.

• Balazard’s question 2.1.3 remains unsolved in the case of classical

Dirichlet series. A solution via Beurling number systems would

require constructing a system with the desired properties and with

primes supported on the rational integers N>1. This seems like a

very hard problem (see e.g. the requirement on the sequence (vk)k

needed to prove Corollary 2.2.2).

• The celebrated result of Diamond, Montgomery, and Vorhauer [45]

states that the de la Vallée Poussin-error term in Landau’s PNT

3.1.1 is sharp for systems satisfying N(x) = ρx+O(xθ), for some

ρ > 0 and θ ∈ (1/2, 1). Naturally, one wonders whether Landau’s

PNT is also optimal in the case θ < 1/2. For discrete systems,

this would again require a new discretization procedure described

in the first point. However, even for systems in the extended sense,

the matter is not clear. The template zeta function of Diamond,

Montgomery, and Vorhauer has analytic continuation only up to

Re s > 1/2. I could not immediately find a modification which goes

beyond this line. A modification (or even an entirely new example)

which achieves analytic continuation to a larger half-plane would

be of great interest.
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• Malliavin’s first problem remains unsolved. The potential for im-

provement in Hall’s method seems to be limited. I expect that a

breakthrough in this problem requires an entirely novel method.

An approach I wish to investigate in the future, is the following.

Suppose P = (Π, N) is a number system for which

N(x) = ρx+O
(
x exp(−c logβ x)

)
, (A.1)

for some ρ, c > 0 and β ∈ (0, 1). The idea is to approximate

this system by a sequence (Pj)j of Beurling systems for which the

corresponding zeta functions ζj(s) have analytic continuation to

some half-plane Re s > θ, with θ ∈ (0, 1). Then Landau’s method

using the Borel–Carathéodory lemma and Jensen’s formula could

be applied to ζj . More concretely, suppose for example that

Πj(x) = Π(x) +O
(
x exp

(
−c1(log x)

β
β+1
))
, x ∈ [xj , xj+1),

(A.2)

where c1 is some positive constant and (xj)j is some unbounded

increasing sequence. Suppose further that the relation (A.1) and

the fact that Pj “approximates” P imply that one can deduce the

following bound for the zeta functions ζj in the half-plane Re s > θ:

ζj(σ + it) ≪ exp
(
log1/β(|t|+ 1)

)
, uniformly in j.

Then Landau’s method would lead to a uniform zero-free region

of the form

σ > 1− c2

log1/β(|t|+ 2)

for some c2 > 0, which would lead to a uniform PNT

Πj(x) = Li(x) +O
(
x exp(−c3

(
log x)

β
β+1
))

for some c3 > 0. Together with (A.2), this implies the above

relation with Π instead of Πj (assuming c3 ≥ c1, which we may).

This approach is motivated by the example ΠC from Chapter 5,

which is approximated by the sequence (ΠC,K)K , where the cor-

responding zeta functions ζC,K satisfy all the above properties.
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Whether one can find such an approximating sequence Pj for ar-

bitrary systems P satisfying (A.1) is of course not clear, but might

be worth investigating.

• For κ ∈ N, κ ≥ 2, consider the function

ϕκ(x) :=

∞∑
n=1

e2πin
κx

2πinκ
.

We have ϕ2(x) = ϕ(x), the function related to Riemann’s function

studied in Chapter 8. Using Poisson summation and the asymp-

totic behavior of the Fourier transform of eix
κ
/xκ, one may obtain

an expansion of ϕk near rational points (see e.g. [32, Theorem

2.1]). From this and some properties of the higher order Gauss

sums

Sκ(q, p) :=

q∑
j=1

exp

(
2πipjκ

q

)
,

one may deduce the pointwise Hölder exponent of ϕκ at rationals.

The behavior of ϕκ at irrationals is an open problem, although

some partial results on the so-called spectrum of singularities are

known (see e.g. [32, 33]).

• In Subsection 9.5.2, we investigated the shape of the wave packet

solution K(x, t) of the fractional Zener wave equation. We expect,

but were unable to prove, that this is a non-negative function of x

for any t > 0.

Let us finally mention the following generalization of the fractional

Zener wave equation. Instead of the constitutive equation (9.3.4),

one considers the following “distributed order” constitutive law:∫ 1

0
0D

β
t σ(x, t) dµσ(β) =

∫ 1

0
0D

β
t ε(x, t) dµε(β).

Here, µσ(β) and µε(β) are two positive Radon measures; both

sides of this equation represent a weighted average of all frac-

tional derivatives with orders between 0 and 1 of σ and ε, re-

spectively. For example, the choice µσ(β) = δ(β) + τδ(β − α),

µε(β) = δ(β)+δ(β−α) reduces to the fractional Zener law (9.3.4).
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Together with Lj. Oparnica, we are preparing a paper where we

investigate questions concerning these distributed order fractional

wave equations, such as thermodynamical restrictions, existence

and uniqueness of solutions, and qualitative aspects.
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Appendix B

Summary

In this thesis we present several advances in analytic number theory and

analysis. The problems, although diverse, have in common that they are

solved using methods from asymptotic analysis.

The first part of this work is on the theory of Beurling generalized

primes. A system of Beurling generalized primes P is an unbounded,

non-decreasing sequence of real numbers (p1, p2, p3, . . . ), p1 > 1, and the

corresponding system of generalized integers N = (n0 = 1, n1, n2, . . . ) is

the multiplicative semigroup generated by 1 and P. A large part of the

theory focusses on the relationship between the counting functions

π(x) =
∑
pk≤x

1 and N(x) =
∑
nk≤x

1.

In Chapter 2, we describe a new method for finding Beurling num-

ber systems which are in a precise sense “close” to a given distribution

function F . The main idea is to choose pk randomly from the inter-

val (qk−1, qk], according to the probability law dF |(qk−1,qk], for a suitable

sequence (qk)k≥0. As an application, we discuss a question raised by Bal-

azard on the existence of Dirichlet series satisfying certain properties.

Other applications of the method are given in later chapters.

In Chapters 3–5, we treat Malliavin’s problems, which concern the

asymptotic relations

π(x) = Li(x) +O(x exp(−c logα x)), for some c > 0 (Pα)

197



198 Chapter B. Summary

and

N(x) = ρx+O(x exp(−c′ logβ x)), for some ρ > 0 and c′ > 0. (Nβ)

Chapter 3 describes the previous state of the art. Some important

theorems are Diamond’s theorem, stating that (Pα) implies (Nβ) with

β = α/(α+ 1), and Hall’s theorem, stating that (Nβ) implies (Pα) with

α = β/(β + 6.91). We also provide a proof of a quantitative version of

Diamond’s theorem.

In Chapter 4, we show the optimality of Diamond’s theorem. Our

example is inspired by an old construction of Bohr, and yields a zeta

function with certain extremal growth properties. A detailed saddle

point analysis is performed to transfer this growth to an oscillation es-

timate for N .

Chapter 5 is about the reverse problem (Nβ) → (Pα). It is widely

believed that Hall’s exponent α = β/(β + 6.91) is not optimal. We give

an upper bound for the optimal exponent: α ≤ β/(β + 1). (It is actu-

ally conjectured by Bateman and Diamond that the optimal exponent

is given by α = β/(β + 1).) The proof is based on an ingenious con-

struction of Diamond, Montgomery, and Vorhauer. We generalize this

construction to obtain a zeta function with infinitely many zeros on a

certain critical contour. These zeros “produce” oscillations in the prime

counting function, allowing us to show α ≤ β/(β + 1).

In the second part of the thesis we study various other problems

from analysis. In Chapter 6, we discuss the Fourier–Laplace transforms

of the family of distributions fα,β supported on [0,∞) and given by

fα,β(t) = tβeit
α
. Their Fourier–Laplace transforms Fα,β define entire

functions via analytic continuation. We provide a detailed asymptotic

analysis of these functions on rays emanating from the origin. Several

applications in Tauberian theory are also mentioned.

Chapter 7 deals with the Wiener–Ikehara and Ingham–Karamata

theorems, two cornerstone theorems of complex Tauberian theory. These

theorems yield asymptotic information of a function based on regular

boundary behavior of its Laplace transform on some critical line and a

Tauberian condition. Remainder versions of these theorems are achiev-

able if one has analytic continuation of the transform beyond the critical
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line and suitable bounds on this continuation. The result of the chapter

is that these additional bounds are crucial: merely analytic continuation

cannot lead to remainders. In fact, for an arbitrary remainder function,

we explicitly construct a function having entire Laplace transform, but

that nonetheless violates the asymptotic formula with the chosen re-

mainder function.

In Chapter 8, we discuss the regularity of Riemann’s “other” function

defined by

f(x) =
∞∑
n=1

sin(n2πx)

n2
.

The study of the pointwise regularity of this function has a rich history,

with as highlights the work of Gerver, who showed that f is differentiable

at x if and only if x is a rational of the form (2r+1)/(2s+1) in reduced

form; and the work of Duistermaat and Jaffard, whose combined efforts

lead to the evaluation of the pointwise Hölder exponent of f at every

point. The purpose of this chapter is to provide simple and transparent

proofs of these results. We only rely on the Poisson summation formula,

the evaluation of the quadratic Gauss sums, and Cauchy’s theorem.

The final chapter, Chapter 9, is about the fractional Zener wave

equation. This is a modification of the classical wave equation to model

wave propagation in viscoelastic materials. We provide a complete anal-

ysis of the regularity of the fundamental solution by determining the

wave front sets with respect to C∞ and the Gevrey classes Gσ, σ ≥ 1.

We also discuss qualitative aspects of some of its solutions. In particular,

we describe the “asymptotic shape” of wave packet solutions.
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Appendix C

Nederlandse samenvatting

In deze thesis presenteren we verscheidene nieuwe resultaten in de ana-

lytische getaltheorie en de analyse. Hoewel de behandelde vraagstukken

divers zijn, delen ze het feit dat ze opgelost worden met methodes van

de asymptotische analyse.

Het eerste deel behandelt de theorie van Beurling veralgemeende

priemgetallen. Een systeem van Beurling veralgemeende priemgetallen

P is een onbegrensde, zwak-stijgende rij van reële getallen (p1, p2, p3, . . . )

met p1 > 1, en het overeenkomstige systeem van veralgemeende gehelen

N = (n0 = 1, n1, n2, . . . ) is de multiplicatieve semigroep voortgebracht

door 1 en P. Een groot deel van de theorie behelst het verband tussen

de telfuncties

π(x) =
∑
pk≤x

1 en N(x) =
∑
nk≤x

1.

In Hoofdstuk 2 beschrijven we een nieuwe methode om Beurling

getalsystemen te vinden die in precieze zin “nabij” een gegeven dis-

tributiefunctie F liggen. Het idee is om pk in het interval (qk−1, qk] te

kiezen volgens de kansverdeling dF |(qk−1,qk], voor een goedgekozen rij

(qk)k≥0. Als toepassing bespreken we een vraagstuk van Balazard over

het bestaan van Dirichletreeksen die aan bepaalde eigenschappen vol-

doen. Andere toepassingen van de nieuwe methode worden in latere

hoofdstukken gegeven.

In de Hoofdstukken 3–5 behandelen we de problemen van Malliavin,
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die de volgende asymptotische relaties behelzen:

π(x) = Li(x) +O(x exp(−c logα x)), voor zekere c > 0 (Pα)

en

N(x) = ρx+O(x exp(−c′ logβ x)), voor zekere ρ > 0 en c′ > 0. (Nβ)

Hoofdstuk 3 beschrijft de voorafgaande state of the art. Belangrijke

stellingen zijn die van Diamond, die zegt dat (Pα) de relatie (Nβ) im-

pliceert met β = α/(α+1), en die van Hall, die zegt dat (Nβ) de relatie

(Pα) impliceert met α = β/(β+6.91). We geven ook een bewijs van een

kwantitatieve versie van de stelling van Diamond.

In Hoofdstuk 4 tonen we de optimaliteit van Diamonds stelling aan.

Ons voorbeeld is gëınspireerd door een oude constructie van Bohr, en

produceert een zèta-functie die bepaalde extremale groei vertoont. We

voeren een gedetailleerde zadelpuntsanalyse uit om een oscillatieresul-

taat voor N af te leiden uit die groei-eigenschappen.

Hoofdstuk 5 behandelt het omgekeerde probleem (Nβ) → (Pα). Men

verwacht dat de exponent van Hall, α = β/(β + 6.91), niet optimaal is.

Hier geven we een bovengrens voor de exponent: α ≤ β/(β + 1). (Een

vermoeden van Bateman en Diamond zegt bovendien dat de optimale ex-

ponent hieraan gelijk is: α = β/(β+1).) Het bewijs is gebaseerd op een

ingenieuze constructie van Diamond, Montgomery, en Vorhauer. We ve-

ralgemenen deze constructie om een zèta-functie te bekomen die oneindig

veel nulpunten op een zekere kritieke contour heeft. Deze nulpunten

“veroorzaken” oscillaties in de priemtelfunctie, wat ons toelaat om aan

te tonen dat α ≤ β/(β + 1).

Het tweede deel van de thesis behandelt verscheidene andere resul-

taten in de analyse. In Hoofdstuk 6 bespreken we de Fourier–Laplace-

transformatie van de familie distributies fα,β, gedragen door [0,∞) en

gedefinieerd als fα,β(t) = tβeit
α
. Hun Fourier–Laplacetransformaties

Fα,β definiëren gehele functies via analytische voortzetting. We geven

een gedetailleerde asymptotische analyse van deze functies op halfrechten

vanuit de oorsprong. We vermelden ook verschillende toepassingen.
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Hoofdstuk 7 behandelt de stellingen van Wiener–Ikehara en Ingham–

Karamata, twee primordiale stellingen in complexe Tauberse theorie.

Deze stellingen garanderen een asymptotische formule voor functies wiens

Laplacetransformatie regulier randgedrag op een zekere kritieke lijn ver-

toont, en die voldoen aan een Tauberse conditie. Het is bovendien mo-

gelijk om een asymptotische formule met restterm af te leiden, indien

men veronderstelt dat de Laplacetransformatie analytische voortzetting

voorbij deze kritieke lijn heeft, en men geschikte afschattingen heeft

voor deze voortzetting. Het resultaat van dit hoofdstuk is dat deze af-

schattingen cruciaal zijn: louter analytische voortzetting volstaat niet

om een versie met restterm te bekomen. Voor een willekeurige restterm

construeren we namelijk expliciet een functie met gehele Laplacetrans-

formatie, maar die desalniettemin niet voldoet aan de asymptotische

formule met de gekozen restterm.

In Hoofdstuk 8 bespreken we Riemanns “andere functie”, gedefini-

eerd als

f(x) =
∞∑
n=1

sin(n2πx)

n2
.

De studie van de puntsgewijze regulariteit van deze functie kent een rijke

geschiedenis, met als hoogtepunten het werk van Gerver, die aantoonde

dat f afleidbaar is in x als en slechts als x een rationaal getal van de vorm

(2r+1)/(2s+1) (in gereduceerde vorm) is; en het werk van Duistermaat

en Jaffard, wiens gezamenlijke inspanningen leidden tot het bepalen van

de puntsgewijze Hölderexponent van f in elk punt. Het doel van dit

hoofdstuk is om eenvoudige en transparante bewijzen van deze resul-

taten te geven. We maken enkel gebruik van de sommatieformule van

Poisson, de evaluatie van de kwadratische Gausssommen, en de stelling

van Cauchy.

Het laatste hoofdstuk, Hoofdstuk 9, behandelt de fractionele Zen-

ergolfvergelijking. Dit is een aanpassing van de klassieke golfvergelijk-

ing om golven in visco-elastische media te beschrijven. We voeren een

volledige analyse van de regulariteit van de fundamentele oplossing uit,

door de wave-frontverzamelingen met betrekking tot C∞ en de Gevrey-

klassen Gσ, σ ≥ 1, te bepalen. We bespreken ook kwalitatieve aspecten

van enkele oplossingen. In het bijzonder bespreken we de “asymptotische
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vorm” van golfpakketoplossingen.



Bibliography

[1] M. Ait Ichou, H. El Amri, A. Ezziani, On existence and unique-

ness of solution for space–time fractional Zener model, Acta Appl.

Math. 170 (2020), 593–609.

[2] T. M. Apostol, Introduction to analytic number theory, Springer-

Verlag, New York-Heidelberg, 1976.

[3] W. Arendt, C. J. K. Batty, M. Hieber, F. Neubran-

der, Vector-valued Laplace transforms and Cauchy problems,
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[96] F. Trèves, Topological vector spaces, distributions and kernels,

Academic Press, New York-London, 1967.
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