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1 Introduction

Generalized polygons are rank 2 geometries that were introduced by Jacques
Tits in order to better understand the twisted triality groups, see [29]. As pre-
cursors of buildings, they were the spherical rank 2 buildings avant-la-lettre.
The standard examples are related to simple algebraic groups of relative rank
2, classical groups of rank 2, groups of mixed type of relative rank 2 and Ree
groups in characteristic 2. Many of these examples of generalized polygons
occur in projective spaces. This is no surprise as the corresponding groups
have natural projective modular representations. A natural question that
arises is whether these groups are characterized by the fact that they act
on a generalized polygon inside a projective space. In other words, can one
describe all the generalized polygons which occur in a projective space? In
order to tackle this question, one first needs a precise definition of “occurring
in a projective space”. The previous question has certainly not a general and
complete answer. But a lot of results are known that contribute to a possible
complete characterization of the standard examples via their occurrence in
projective space. It is the aim of the present paper to review all known results
in that direction. As we will see, there is a satisfying — basically complete
— answer for generalized quadrangles, but for the other generalized polygons
only partial and sometimes only fractional things are known.

2 Definitions

2.1 Generalized polygons

A generalized n-gon, n ≥ 2, or a generalized polygon, is a nonempty point-
line geometry Γ = (P ,L, I) the incidence graph of which has diameter n (i.e.
any two elements are at most at distance n) and girth 2n (i.e., the length
of any shortest circuit is 2n; in particular we assume that there is at least
one circuit). Recall that the incidence graph is the graph with P ∪ L as set
of vertices, and two vertices x, y form an edge if xIy; the distance between
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two vertices x, y in that graph will be denoted by δ(x, y). A thick generalized
polygon is a generalized polygon for which each element is incident with at
least three elements. In this case, the number of points on a line is a constant,
say s + 1, and the number of lines through a point is also a constant, say
t + 1. The pair (s, t) is called the order of the polygon; if s = t we say that
the polygon has order s. If for a non thick generalized polygon the number
of points on a line is a constant, and the number of lines through a point is
a constant, then we say that the generalized polygon has an order.

If Γ is a finite thick generalized n-gon, then, by the Theorem of Feit and Hig-
man [5], we have n ∈ {2, 3, 4, 6, 8}. The digons (n = 2) are trivial incidence
structures (any point is incident with any line), the thick generalized 3-gons
are the projective planes (then necessarily s = t), and the generalized 4-gons,
6-gons, 8-gons are also called generalized quadrangles, generalized hexagons,
generalized octagons, respectively.

There is a point-line duality for generalized polygons for which in any def-
inition or theorem the words “point” and “line” are interchanged and the
parameters s and t are interchanged.

As mentioned before, generalized polygons were introduced by Tits [29] in his
celebrated paper on triality, where the generalized hexagons play a central
role.

There are some equivalent definitions for generalized polygons. Let us men-
tion a rather geometric one (see Van Maldeghem [32]).

Let n ≥ 2 be again a natural number. Then a generalized n-gon may be
defined as a geometry Γ = (P ,L, I) with P $= ∅, L $= ∅, such that the
following two axioms are satisfied:

(GP1) Γ contains no ordinary k-gon (as a subgeometry), for 2 ≤ k < n.
(GP2) Any two elements x, y ∈ P ∪ L are contained in some ordinary n-gon in Γ,

a so-called apartment.

The generalized n-gon Γ is thick if and only if it satisfies also the following
axiom:

(GP3) there exists an ordinary (n + 1)-gon in Γ.

2.2 Embeddings

The definitions in this subsection in fact hold for many classes of geometries,
notably the polar spaces, partial geometries, etc. But since we will only deal
with embedded generalized polygons we restrict ourselves to these geometries
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for the following definitions, although we will use the below terminology for
a slightly larger class of geometries in Section 9.

In the sequel, we use the usual terminology for rank 2 point-line geometries,
such as collinear points, concurrent lines, etc.

A lax embedding of a generalized polygon Γ with point set P in a projective
space PG(V ), with V a (not necessarily finite dimensional) vector space over
some (not necessarily commutative) field K, is a monomorphism θ of Γ into
the geometry of points and lines of PG(V ) satisfying

(WE1) the set Pθ generates PG(V ).

In such a case we say that the image Γθ of Γ is laxly embedded in PG(V ).

A polarized embedding in PG(V ) is a lax embedding which also satisfies

(WE2) for any point x of Γ, the set X = {yθ | δ(x, y) is not maximal} does not
generate PG(V ).

In such a case we say that the image Γθ of Γ is polarly embedded in PG(V ).

A flat embedding in PG(d,K) is a lax embedding which also satisfies

(WE3) for any point x of Γ, the set X = {yθ | y is collinear with x} is contained
in a plane of PG(V ).

In such a case we say that the image Γθ of Γ is flatly embedded in PG(V ).

A full embedding in PG(V ) is a lax embedding with the additional property
that for every line L of Γ, all points of PG(V ) on the line Lθ have an inverse
image under θ. In such a case we say that the image Γθ of Γ is fully embedded
in PG(V ). In the case of full embeddings we also speak shortly of embeddings.

Usually, we simply say that Γ is laxly, or polarly, or flatly or fully embedded
in PG(V ) without referring to θ, that is, we identify the points and lines of
Γ with their images in PG(V ).

Note that in the finite case and for a thick generalized polygon Γ, a lax
embedding is full if and only if for some line L of Γ, all points of PG(V ) on
the line L are points of Γ (using the terminology of the previous paragraph).
In te infinite case, there are counter examples, see Section 9.
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3 Examples of generalized polygons

3.1 Generalized quadrangles

There is a so-called class of classical generalized quadrangles, constructed us-
ing pseudo quadratic forms. We give the general definition, and then we
specialize to the finite case. The motivation to give the precise definitions
here is that all the corresponding examples are fully embedded in some pro-
jective space.

The definitions in this subsection are based on Chapter 10 of [1] and Chap-
ter 8 of [30].

Let K be a skew field and σ an anti automorphism (that means (ab)σ = bσaσ,
for all a, b ∈ K) of order at most 2. Let V be a — not necessarily finite
dimensional — right vector space over K and let g : V × V → K be a
(σ, 1)-linear form, i.e., for all v1, v2, w1, w2 ∈ V and all a1, a2, b1, b2 ∈ K, we
have

g(v1a1 + v2a2, w1b1 + w2b2) =

aσ
1g(v1, w1)b1 + aσ

1g(v1, w2)b2 + aσ
2g(v2, w1)b1 + aσ

2g(v2, w2)b2.

Denote Kσ := {tσ − t | t ∈ K}. We define q : V → K/Kσ as q(x) = g(x, x) +
Kσ, for all x ∈ V . We call q a pseudo quadratic, or more precisely, a σ-
quadratic form (over K). Let W be a subspace of V . We say that q is
anisotropic over W if q(w) = 0 if and only if w = 0, for all w ∈ W (where we
have written the zero vector as 0, and the element 0+Kσ also as 0). It is non
degenerate if it is anisotropic over the subspace {v ∈ V | g(v, w) + g(y, x)σ =
0, for all w ∈ V }. From now on we assume that q is non degenerate.

Noting that, if q(v) = 0, then q(vk) = 0, for all k ∈ K, we can define the
Witt index of q as the dimension of the maximal subspaces of V contained
in q−1(0).

For a non degenerate σ-quadratic form q over K with Witt index 2, we define
the following geometry Γ = Q(V, q). The points of Γ are the 1-spaces in
q−1(0); the lines are the 2-spaces in q−1(0); incidence is symmetrized inclu-
sion.

One can now show that Q(V, q) is a generalized quadrangle; it is non thick
if and only if the dimension of V is equal to 4 and σ is the identity (and
consequently K is commutative). We call Q(V, q) and its dual a classical
quadrangle. It is clear that Q(V, q) is fully embedded in PG(V ) and that the
embedding is polarized.

176



For V a 5-dimensional space and σ the identity, there is exactly one non
degenerate pseudo quadratic form, up to isomorphism. The dual of the
corresponding generalized quadrangle is called a symplectic quadrangle W(K),
because W(K) can be defined as the geometry of points and fixed lines of a
3-dimensional projective space over K with respect to a symplectic polarity.

Geometrically, examples of quadrangles arising from σ-quadratic forms are
quadrics (corresponding to the case σ the identity) and Hermitian varieties.
In the finite case, there are no others.

We now give a description in the finite case. Note that the projective space
PG(V ) is isomorphic to some projective space PG(d, q), where d is the di-
mension of the projective space, and GF(q) the underlying finite (Galois)
field of order q.

(i) Consider a nonsingular quadric Q of rank 2 of the projective space
PG(d, q), with d = 3, 4 or 5. Then the points of Q together with the
lines on Q (which are the subspaces of maximal dimension on Q) form
a generalized quadrangle Q(d, q) = (P ,L, I) with order (s, t), where
|P| = v and |L| = b, with

s = q, t = 1, v = (q + 1)2, b = 2(q + 1), when d = 3,

s = t = q, v = b = (q + 1)(q2 + 1), when d = 4,

s = q, t = q2, v = (q + 1)(q3 + 1), b = (q2 + 1)(q3 + 1), when
d = 5.

Since t = 1 for Q(3, q), its structure is trivial. Further, recall that the
quadric Q has the following canonical equation:

X0X1 + X2X3 = 0, when d = 3,

X2
0 + X1X2 + X3X4 = 0, when d = 4,

F (X0, X1) + X2X3 + X4X5 = 0, where F (X0, X1) is an irre-
ducible homogeneous quadratic polynomial over GF(q), when
d = 5.

(ii) Let H be a nonsingular Hermitian variety of the projective space PG(d, q2),
d = 3, 4. Then the points of H together with the lines on H form a
generalized quadrangle H(d, q2) of order (s, t) where again |P| = v and
|L| = b, with

s = q2, t = q, v = (q2 + 1)(q3 + 1), b = (q + 1)(q3 + 1), when
d = 3,
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s = q2, t = q3, v = (q2 +1)(q5 +1), b = (q3 +1)(q5 +1), when
d = 4.

Recall that H has the canonical equation

Xq+1
0 + Xq+1

1 + · · ·+ Xq+1
d = 0.

(iii) The points of PG(3, q), together with the totally isotropic lines with
respect to some nonsingular symplectic polarity, form a generalized
quadrangle W(q) of order (s, t), and with the same notation as before,

s = t = q, v = b = (q + 1)(q2 + 1).

Recall that the lines of W(q) are the elements of a nonsingular linear
complex of lines of PG(3, q), and that a nonsingular symplectic polarity
of PG(3, q) has the following canonical bilinear form:

X0Y1 −X1Y0 + X2Y3 −X3Y2.

We now present an example of a laxly embedded generalized quadrangle
which does not arise from a pseudo quadratic form.

Let O be a hyperoval of the projective plane PG(2, K), i.e., a set of points
of PG(2, K) such that any line of PG(2, K) has either 0 or 2 point in com-
mon with 0. Let PG(2, K) be embedded as a plane in PG(3, K). Define an
incidence structure T ∗

2 (O) by taking for points just those points of PG(3, K)
not in PG(2, K), and for lines just those lines of PG(3, K) which are not
contained in PG(2, K) and meet O (necessarily in a unique point). The inci-
dence is that inherited from PG(3, K). The incidence structure thus defined
is a generalized quadrangle. If K = GF(q) is finite, then it has parameters
(with above notation)

s = q − 1, t = q + 1, v = q3, b = q2(q + 2).

Note that the order of the previous example is different from the orders of
the classical examples, whenever q ≥ 4. In fact, the order of any known finite
generalized quadrangle with order is one of the following (and see Thas [17]
for additional examples):

(s, 1) with s ≥ 1;
(1, t) with t ≥ 1;
(q, q) with q a prime power;
(q, q2), (q2, q) with q a prime power;
(q2, q3), (q3, q2) with q a prime power;
(q − 1, q + 1), (q + 1, q − 1) with q a prime power.
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3.2 Generalized hexagons and octagons

All known thick finite generalized hexagons and octagons are classical, i.e.,
they arise in a natural way from Chevalley groups. The classical generalized
hexagons can also be defined in a geometric way; the classical generalized
octagons do not yet have a simple geometric description (although there
exists an elementary algebraic construction), except the non thick ones.

Let us start with a description of, in principal, all non thick finite generalized
hexagons and octagons.

The non thick examples.

Consider any projective plane Γ = (P ,L, I). We define P ′ = {(x, L) :
x ∈ P , L ∈ L and xIL}, L′ = P ∪ L and I′ the natural inclusion. Then
Γ′ = (P ′,L′, I′) is a (non thick) generalized hexagon such that every point is
incident with exactly two lines. If Γ has order q, then Γ′ has order (q, 1). The
dual of Γ′ is a generalized hexagon of order (1, q) and is sometimes called the
double of Γ. The hexagon Γ′ itself is sometimes called the flag geometry of
Γ.

The same construction starting with a generalized quadrangle Γ yields a
generalized octagon Γ′. If the quadrangle has order (s, t), then the octagon
has an order if and only if s = t, in which case the order is (s, 1).

In particular, one may start with non classical projective planes and non
classical generalized quadrangles.

There are also other types of non thick generalized hexagons and octagons.
Up to duality and isomorphism, we may describe these as follows (e.g. the
hexagons):

P = {xi,j : i = 0, 1, · · · , s1 and j = 0, 1, · · · , s2} ∪ {yi : i = 0, 1, · · · , s1},
s1 > 0 and s2 > 0,
L = {Li,j : i = 0, 1, · · · , s1 and j = 0, 1, · · · , s2} ∪ {Mj : i = 0, 1, · · · , s2},
xi,jIMk if and only if j = k; xi,jILk,m if and only if i = k and j = m; yiILk,m

if and only if i = k, and yi is never incident with Mk.

We leave it as an exercise to describe a similar example for octagons.

Let us now continue with a description of two classes of thick classical gen-
eralized hexagons. The first one is the only classical hexagon that is defined
over every field K.

The split Cayley hexagon H(K).

We consider the quadric Q in PG(6, K) given by the equation X0X4+X1X5+
X2X6 = X2

3 . The points of H(K) are all points of Q. The lines of H(K) are
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certain lines of Q, namely, those lines of Q whose Grassmann coordinates
satisfy the equations p01 = p36, p12 = p34, p20 = p35, p03 = p56, p13 = p64

and p23 = p45. If K = GF(q) is finite then we denote the corresponding split
Cayley hexagon by H(q). The order of H(q) is (q, q).

It is convenient to have the following elementary description of H(2) (see Van
Maldeghem [33]). The points are the points, lines and (unordered) point-line
pairs of the Fano plane PG(2, 2). The lines are of two types: (1) the triples
{p, L, {p, L}}, where the point p of PG(2, 2) is incident with the line L of
PG(2, 2), and (2) the triples {{p, L}, {a1, M1}, {a2, M2}}, where the points
p, a1, a2 are the three different points of PG(2, 2) incident with L, and, dually,
L, M1, M2 are the three different lines incident with p in PG(2, 2).

The twisted triality hexagon T(q3, q).

As already indicated in the title, we restrict (for reasons of simplicity) our-
selves to the finite case (for a treatment of the infinite case in the same style,
see [32]).

We consider the triality quadric Q+ in PG(7, q3) with equation

X0X4 + X1X5 + X2X6 + X3X7 = 0.

We call the point x(x0, x1, . . . , x7) 3-conjugate to y(y0, y1, . . . , y7) if






x1y
q
2 − x2y

q
1 + x3y

q
4 + x4y

q
7 = 0,

x2y
q
0 − x0y

q
2 + x3y

q
5 + x5y

q
7 = 0,

x0y
q
1 − x1y

q
0 + x3y

q
6 + x6y

q
7 = 0,

x5y
q
6 − x6y

q
5 + x7y

q
0 + x0y

q
3 = 0,

x6y
q
4 − x4y

q
6 + x7y

q
1 + x1y

q
3 = 0,

x4y
q
5 − x5y

q
4 + x7y

q
2 + x2y

q
3 = 0,

x0y
q
4 + x1y

q
5 + x2y

q
6 − x7y

q
7 = 0,

x4y
q
0 + x5y

q
1 + x6y

q
2 − x3y

q
3 = 0.

Note that this is not a symmetric relation. But it has the following property:
if x is 3-conjugate to y and to itself, and if y is 3-conjugate to x and to itself,
then the line xy of PG(7, q3) belongs to Q+ and every point of that line is
3-conjugate to every other point of that line and to itself. We call such a
line self-3-conjugate. Also, we call a point x of Q+ self-3-conjugate if x is
3-conjugate to itself. The self-3-conjugate points and self-3-conjugate lines
of Q+ now form, with the natural incidence, a generalized hexagon T(q3, q)
of order (q3, q).
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If a point x of Q+ has coordinates in GF(q), then it is easily seen that
it is self-3-conjugate if and only if it lies in the hyperplane with equation
X3+X7 = 0. The intersection of that hyperplane with Q+ and with PG(7, q)
is precisely the parabolic quadric Q of the previous subsection. We conclude
(although some additional calculations are needed for the proof) that H(q)
is a subhexagon of T(q3, q).

The classical generalized octagons do not have such a description. There is a
construction with coordinates (see Joswig and Van Maldeghem [9]), but we
will not give it here, because we will not need it. Let us simply remark that
the classical generalized octagons are generally called the Ree-Tits octagons
and that they arise from the Ree groups 2F4(q), with q = 22e+1. They have
order (q, q2) and are denoted by O(q).

4 Some properties of generalized polygons

We start with some general properties of finite generalized polygons. Then,
we review some specific properties of the classical quadrangles and of the
hexagons H(K) and T(q3, q) (related to their embedding in projective space),
and of the octagon O(q). Proofs can be found in [14] and [32] if no explicit
reference is given.

Theorem 1 (Feit & Higman [5]) Let Γ be a generalized n-gon of order
(s, t) with n ≥ 3. If Γ is finite, then one of the following holds:

(i) s = t = 1, and Γ is an ordinary n-gon;

(ii) n = 3, s = t > 1, and Γ is a projective plane;

(iii) n = 4 and the number
st(1 + st)

s + t

is an integer;

(iv) n = 6, and if s, t > 1, then st is a perfect square. In that case, we put
u =

√
st and w = s + t. The number

u2(1 + w + u2)(1± u + u2)

2(w ± u)

is an integer for both choices of signs;
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(v) n = 8, and if s, t > 1, then 2st is a perfect square; in particular s $= t.

If we put u =
√

st
2 and w = s + t, then the number

u2(1 + w + 2u2)(1 + 2u2)(1± 2u + 2u2)

2(w ± 2u)

is an integer for both choices of signs;

(vi) n = 12 and s = 1 or t = 1.

Theorem 2 Let Γ be a finite generalized n-gon of order (s, t), s, t > 1 and
n ≥ 4. Then one of the following holds.

(i) (Higman [7]). n = 4 and s ≤ t2; dually t ≤ s2;

(ii) (Haemers & Roos [6]). n = 6 and s ≤ t3; dually t ≤ s3;

(iii) (Higman [7]). n = 8 and s ≤ t2; dually t ≤ s2.

A very important corollary to the previous results is the following fact, which
we already mentioned before.

Corollary 3 Thick finite generalized n-gons, n ≥ 3, exist only for n ∈
{3, 4, 6, 8}.

Theorem 4 Let Γ = (P ,L, I) be a finite generalized n-gon of order (s, t),
with n ∈ {3, 4, 6, 8}, then we have

v = |P| =






s2 + s + 1 if n = 3,
(1 + s)(1 + st) if n = 4,
(1 + s)(1 + st + s2t2) if n = 6,
(1 + s)(1 + st)(1 + s2t2) if n = 8.

Dually,

b = |L| =






s2 + s + 1 if n = 3,
(1 + t)(1 + st) if n = 4,
(1 + t)(1 + st + s2t2) if n = 6,
(1 + t)(1 + st)(1 + s2t2) if n = 8.
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Clearly, a generalized polygon of order (s, t) is finite if and only if s and t
are finite.

We now mention some properties of the classical quadrangles, and of the
hexagons H(K) and T(q3, q), and the octagon O(q).

Opposite elements of a generalized polygon are elements lying at maximal
distance in the incidence graph. For a generalized n-gon, this is precisely
distance n.

Also, a point p of a generalized n-gon Γ is called distance-i-regular, 2 ≤ i ≤
n/2, if for all points x opposite p, the set of points at distance i from p and
n− i from x is determined by any two of its elements. Dually, one defines a
distance-i-regular line.

Theorem 5 Let Γ be a generalized quadrangle arising from a pseudo quadratic
form in PG(V ). Then for every point x of Γ, the set of points of Γ not
opposite x is contained in a hyperplane of PG(V ) (which is the tangent hy-
perplane at x of the corresponding quadric or Hermitian variety in the finite
case). Hence the corresponding embedding is full and polarized. It is flat if
and only if the dimension of V is equal to 4, in which case all points are
distance-2-regular. If for the pseudo quadratic form the anti automorphism
σ is trivial, then all lines are distance-2-regular.

In the finite case, the quadrangles Q(4, q) and W(q) are dual to each other,
and also Q(5, q) and H(3, q2) are dual to each other. The quadrangle W(q),
or more generally, the quadrangle W(K), is self dual if and only if K has
characteristic 2 and is perfect.

For the classical hexagons, we use the notation above.

Theorem 6 (i) Two points of H(K) are opposite in H(K) if and only if
they are not collinear on the quadric Q.

(ii) The lines of H(K) through any point x of H(q) are all lines of Q
through x lying in a certain plane x⊥ of Q. If x has coordinates
(a0, a1, a2, a3, a4, a5, a6), then the plane x⊥ has equations (one might
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choose four independent equations out of the following list of eight):






a1X0 − a0X1 − a6X3 + a3X6 = 0,
a2X0 − a0X2 + a5X3 − a3X5 = 0,
a2X1 − a1X2 − a4X3 + a3X4 = 0,
a3X3 − a0X4 − a1X5 − a2X6 = 0,
a0X3 − a3X0 + a6X5 − a5X6 = 0,
a1X3 − a3X1 − a6X4 + a4X6 = 0,
a2X3 − a3X2 + a5X4 − a4X5 = 0,
a4X0 + a5X1 + a6X2 − a3X3 = 0.

(iii) All points of H(K) are distance-2-regular, all points and lines of H(K)
are distance-3-regular. All lines are distance-2-regular if and only if K
has characteristic 3. In that case H(K) is self dual if and only if K is
perfect.

Hence the embedding of H(K) in PG(6, K) is full, flat and polarized.

A similar theorem holds for T(q3, q).

Theorem 7 (i) Two points of T(q3, q) are opposite in T(q3, q) if and only
if they are not collinear on the quadric Q+.

(ii) The lines of T(q3, q) through any point x of T(q3, q) lie in a certain
plane x⊥ of Q+. If x has coordinates (a0, a1, a2, a3, a4, a5, a6), then the
plane x⊥ has equations (one might choose five independent equations
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out of the following list of sixteen):





aq
1X0 − aq

0X1 + aq
6X3 + aq

7X6 = 0,
aq

0X2 − aq
2X0 + aq

5X3 + aq
7X5 = 0,

aq
2X1 − aq

1X2 + aq
4X3 + aq

7X4 = 0,
aq

6X5 − aq
5X6 + aq

0X7 + aq
3X0 = 0,

aq
4X6 − aq

6X4 + aq
1X7 + aq

3X1 = 0,
aq

5X4 − aq
4X5 + aq

2X7 + aq
3X2 = 0,

aq
0X4 + aq

1X5 + aq
2X6 − aq

3X3 = 0,
aq

4X0 + aq
5X1 + aq

6X2 − aq
7X7 = 0,

aq2

1 X0 − aq2

0 X1 − aq2

6 X7 − aq2

3 X6 = 0,

aq2

0 X2 − aq2

2 X0 − aq2

5 X7 − aq2

3 X5 = 0,

aq2

2 X1 − aq2

1 X2 − aq2

4 X7 − aq2

3 X4 = 0,

aq2

6 X5 − aq2

5 X6 − aq2

0 X3 − aq2

7 X0 = 0,

aq2

4 X6 − aq2

6 X4 − aq2

1 X3 − aq2

7 X1 = 0,

aq2

5 X4 − aq2

4 X5 − aq2

2 X3 − aq2

7 X2 = 0,

aq2

0 X4 + aq2

1 X5 + aq2

2 X6 − aq2

7 X7 = 0,

aq2

4 X0 + aq2

5 X1 + aq2

6 X2 − aq2

3 X3 = 0.

(iii) All points of T(q3, q) are distance-2-regular, all points and lines of
T(q3, q) are distance-3-regular. No line is distance-2-regular.

Finally we have the following result.

Theorem 8 All points and lines of O(q), q = 22e+1, e ∈ N, are distance-
4-regular. No point or line of O(q) is distance-i-regular for i = 2, 3. In
fact, there does not exist a thick generalized octagon all points of which are
distance-i-regular, with i = 2, 3, respectively.

For more properties and information on generalized polygons, we refer to
Thas [17] and Van Maldeghem [32].

5 Embeddings of generalized quadrangles

5.1 Introduction

All (fully) embedded finite generalized quadrangles were first determined by
Buekenhout and Lefèvre [2] with a proof most of which is valid in the infinite
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case. Independently, Olanda [12, 13] has given a typically finite proof, and
Thas and De Winne [18] have given a different combinatorial proof under the
assumption that the 3-dimensional case is already settled. The infinite case
was settled by Dienst [3, 4]. We have the following result.

Theorem 9 (Dienst [3, 4]) If Γ is a generalized quadrangle fully embedded
in some projective space PG(V ), then Γ and the embedding arise from a
pseudo quadratic form in PG(V ). In fact, if

(∗) through every point of PG(V ) there is a line of PG(V ) meeting the point
set of Γ in at least two points,

then there exists a (non degenerate) polarity of PG(V ) such that all points
of Γ are contained in their polar hyperplane; if (∗) is not satisfied, then the
same holds for a degenerate polarity.

The proof of this theorem uses a lot of basic work by Buekenhout and Lefèvre,
as already mentioned. One of the first things to prove, for instance, is that
a full embedding of a generalized quadrangle is automatically polarized (and
then the polarity to construct is already “known” in the points of the quad-
rangle).

Technically, the theorem of Buekenhout and Lefèvre is a corollary of the
preceding theorem, but it was proved earlier, and its proof was a main inspi-
ration for Dienst. Hence we mention the following result as a theorem rather
than as a corollary.

Theorem 10 (Buekenhout and Lefèvre [2]) If Γ = (P ,L, I) is a gen-
eralized quadrangle which is (fully) embedded in PG(d, s), d ≥ 3, then it is
obtained in one of the following ways:

(i) there is a unitary or symplectic polarity π of PG(d, s), d = 3 or 4,
such that P is the set of absolute points of π and L is the set of totally
isotropic lines of π;

(ii) there is a nonsingular quadric Q of rank 2 in PG(d, s), d = 3, 4 or 5,
such that P = Q and L is the set of lines on Q.

We will call the embeddings of the preceding theorems classical.
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6 Embeddings of the flag geometries of pro-
jective planes

6.1 The examples

In this section, we review the classification of all (full) polarized embeddings
of generalized hexagons of order (q, 1) in PG(d, q). Let us first give a descrip-
tion of all examples. Let Γ be the generalized hexagon of order (q, 1) arising
from PG(2, q) as its flag geometry.

Consider a coordinate system in PG(2, q). A flag in PG(2, q), which is an
incident point-line pair, is a pair {(x0, x1, x2), [a0, a1, a2]} with a0x0 + a1x1 +
a2x2 = 0 (the coordinates of points are denoted with parentheses; those of
lines with square brackets). Let σ be a field automorphism of GF(q). We
define as follows a mapping θσ from the set of flags of PG(2, q) into the set of
points of PG(8, q). The image under θσ of the flag {(x0, x1, x2), [a0, a1, a2]},
with a0x0 + a1x1 + a2x2 = 0, is by definition the point

(a0x
σ
0 , a0x

σ
1 , a0x

σ
2 , a1x

σ
0 , a1x

σ
1 , a1x

σ
2 , a2x

σ
0 , a2x

σ
1 , a2x

σ
2 )

of PG(8, q). In what follows coordinates of a general point of PG(8, q) will
be denoted by X00, X01, X02, X10, . . . , X22, respectively.

First suppose that σ is not the identity. Then one can check as an exercise
that the set of images under θσ generates PG(8, q). We now show that the
embedding is polarized.

Consider the flag F = {(x0, x1, x2), [a0, a1, a2]} of PG(2, q). Any flag of
PG(2, q) not opposite F (these flags here are viewed as points of Γ) has
the form {(y0, y1, y2), [b0, b1, b2]} with b0y0 + b1y1 + b2y2 = 0 and either

b0x0 + b1x1 + b2x2 = 0 (1)

or

a0y0 + a1y1 + a2y2 = 0. (2)

Hence we see that, by multiplying Equation (1) with yσ
0 , yσ

1 , yσ
2 , respectively,

and first raising Equation (2) to the power σ and then multiplying the
result by b0, b1, b2, respectively, the corresponding point p = (biyσ

j )i,j=0,1,2

of PG(8, q) satisfies either x0X0j + x1X1j + x2X2j = 0, j = 0, 1, 2, or
aσ

0Xi0 + aσ
1Xi1 + aσ

2Xi2 = 0, i = 0, 1, 2. Making the appropriate linear
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combinations (multiplying with aσ
j and xi, i, j = 0, 1, 2), we see that the

coordinates of point p satisfy the equation

2∑

i,j=0

aσ
j xiXij = 0, (3)

and so the points of Γ not opposite F all lie in the hyperplane determined by
(3). Remarking that the set of flags containing one fixed point (respectively
line) of PG(2, q) is mapped under θσ onto the set of points of a line of
PG(8, q) — which is immediately checked with an elementary calculation
— and identifying every flag of PG(2, q) with its image under θσ, we obtain a
full polarized embedding of Γ in PG(8, q). We call this embedding (and every
equivalent one with respect to the linear automorphism group of PG(8, q)) a
semi classical embedding of Γ in PG(8, q) (with respect to σ).

It is easily seen that the group PGL3(q) acts in a natural way as an auto-
morphism group and as a subgroup of PGL9(q) on the embedding.

Now suppose σ is the identity. Then all points of the image of θid belong
to the hyperplane PG(7, q) with equation X00 + X11 + X22 = 0. Also, the
points of Γθid not opposite a given point (a0x0, a0x1, . . . , a2x2) of Γθid are
contained in the hyperplane with equation (and this follows immediately
from Equation (3))

2∑

i,j=0

ajxiXij = 0. (4)

Now we note that the hyperplane with equation (4) is always distinct from
PG(7, q). Indeed, the conditions ajxi = 0, i, j = 0, 1, 2, i $= j, readily
imply that, without loss of generality, we may assume a0 = x0 = 1 and
a1 = a2 = x1 = x2 = 0, contradicting the fact that we have a flag. Hence, as
before, identifying every flag of PG(2, q) with its image under θid, we obtain a
full polarized embedding of S in PG(7, q). We call this embedding (and every
equivalent one with respect to the linear automorphism group of PG(7, q)) a
natural embedding of Γ in PG(7, q).

By another elementary calculation, one easily sees that the intersection of
all hyperplanes with equation (4) is the point k with coordinates xii = 1,
xij = 0, i, j ∈ {0, 1, 2}, j $= i. This point lies in PG(7, q) if and only if the
characteristic of GF(q) is equal to 3. Hence, in this case, we can project
the polarly embedded generalized hexagon Γ from k onto some hyperplane
PG(6, q) of PG(7, q) not containing k to obtain a full polarized embedding
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of Γ in the 6-dimensional projective space PG(6, q). We call this embedding
also a natural embedding of Γ.

The exceptional behaviour over fields with characteristic 3 is in conformity
with the special behaviour of classical generalized hexagons over such fields
(the hexagons H(q), q = 3e, are self dual, as remarked before).

Hence we see that with every Desarguesian projective plane Π ∼= PG(2, q),
there corresponds a full polarized embedding of the corresponding generalized
hexagon Γ in PG(7, q), and if q = 3e, then there is an additional full polarized
embedding of Γ in PG(6, q).

Remark. Everything in this section can be generalized to the infinite case
without notable change, but since the classification results only hold in the
finite case, we did not make an attempt to include the infinite case explicitly
in the foregoing.

We now have the following theorem.

Theorem 11 (Thas and Van Maldeghem [22, 23, 24, 25]) If the gen-
eralized hexagon Γ of order (q, 1) is fully embedded in PG(d, q), and if the
embedding is polarized, then it is a classical or semi classical embedding of
the flag geometry of the Desarguesian plane PG(2, q) in either PG(6, q), or
PG(7, q), or PG(8, q).

7 Embeddings of thick generalized hexagons

As we already noted, the hexagons H(q) and T(q3, q) admit a full, polarized
flat embedding in PG(6, q) and PG(7, q3), respectively. We call these embed-
dings classical. Moreover, if q is even, then we may project H(q) from the
nucleus of the corresponding (parabolic) quadric onto a hyperplane PG(5, q)
not containing the nucleus. In this way, we obtain a full polarized flat em-
bedding of H(q), q even, which we also call classical.

Theorem 12 (Thas and Van Maldeghem [19]) Let the generalized hexa-
gon Γ be fully embedded in PG(d, q), and suppose that the embedding is po-
larized and flat. Then Γ is isomorphic to either H(q) or T(q, 3

√
q) and the

embedding is classical.

Now consider the classical embeddings of H(q). Taking Grassmann coordi-
nates, we obtain a set of points in PG(20, q) which corresponds bijectively
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with the set of points of the dual H(q)D of H(q). Moreover, since the classical
embeddings are flat, we obtain a full embedding of H(q)D in some subspace
PG(d, q) of PG(20, q). One can show that d = 13 and that the embedding
is polarized (but, of course, not flat). We call this embedding the classical
embedding of H(q)D. For q even, we obtain the same (up to isomorphism)
embedding of H(q)D starting from the classical embedding of H(q) in PG(5, q).

We have now the following characterization of this embedding.

Theorem 13 (Thas and Van Maldeghem [28]) If H(q)D is fully embed-
ded in PG(d, q), d ≥ 13, then d = 13 and the embedding is classical (and
hence polarized).

For q = 2, one shows a more general result by direct computation (see The-
orem 17 below).

For q ≥ 3, one uses the fact that every two opposite lines L, M of H(q)D are
contained in a unique subhexagon H(L, M) of order (q, 1). Then one can use
the results of the preceding section.

Finally we mention the following result.

Theorem 14 (Thas and Van Maldeghem [19]) No full flat polarized em-
bedding of a thick generalized octagon in any projective space exists.

8 Polarized, flat and lax embeddings of gen-
eralized polygons

A way to obtain lax polarized embeddings which are not full is to start from
a full polarized embedding and extend the field of the ambient projective
space. Let us refer to this method by saying that the embedding is obtained
from a full embedding by field extension.

One can hope that all lax (maybe polarized) embeddings of a certain class of
generalized polygons are obtained from full embeddings by field extension.
This is sometimes true, but not always. First, let us mention two cases where
it is true, up to one single counter example.

The following theorem was proved in case d = 3 by Lefèvre-Percsy [10].
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Theorem 15 (Thas and Van Maldeghem [20]) Let Γ be a finite thick
generalized quadrangle of order (s, t) laxly embedded in the projective space
PG(d, q). Suppose the embedding is polarized. Then either the embedding is
obtained from a full embedding of a classical generalized quadrangle by field
extension, or Γ is isomorphic to W(2), the unique generalized quadrangle of
order 2, and the embedding is unique in a projective 4-space over an odd
characteristic finite field.

The embedding of W(2) referred to in the last part of the statement is the
following.

Let x1, x2, x3, x4, x5 be the consecutive vertices of a proper pentagon in
W(2). Let K be any field and identify xi, i ∈ {1, 2, 3, 4, 5}, with the point
(0, . . . , 0, 1, 0, . . . , 0) of PG(4, K), where the 1 is in the ith position. Identify
the unique point yi+3 of W(2) on the line xixi+1 and different from both xi

and xi+1, with the point (0, . . . , 0, 1, 1, 0, . . . , 0) of PG(4, K), where the 1’s
are in the ith and the (i+1)th position (subscripts and positions to be taken
modulo 5). Finally, identify the unique point zi of the line xiyi (it is easy
to see that this is indeed a line of W(2)) different from both xi and yi, with
the point whose coordinates are all 0 except in the ith position, where the
coordinate is −1, and in the positions i − 2 and i + 2, where it takes the
value 1 (again subscripts and positions are taken modulo 5). It is an ele-
mentary exercise to check that this defines a polarized embedding of W(2) in
PG(4, K). We call it an exceptional embedding of W(2).

Theorem 16 (Thas and Van Maldeghem [21]) If Γ is a thick finite gen-
eralized hexagon laxly embedded in PG(d, q), and if the embedding is both flat
and polarized, then d ∈ {5, 6, 7}, Γ is a classical generalized hexagon, and the
embedding arises from a natural embedding by field extension.

Despite the previous theorem, there exists an analogue for H(2) of the em-
bedding of W(2) in PG(4, K), K any field. Let us give a description.

Let {x0, x1, . . . , x6} be the points of PG(2, 2) and let {L7, L8, . . . , L13} be
the lines of PG(2, 2). The fourteen points and lines of PG(2, 2) are fourteen
points of H(2). We identify the point xi with the 14-tuple (0, . . . , 0, 1, 1, 0, . . . , 0),
where the 1s are in the (i+1)st and (i+2)nd positions, and we identify the line
Li with the 14-tuple (0, . . . , 0, 1,−1, 0, . . . , 0), where the 1 is in the (i + 1)st
position, and the −1 either in the (i+2)nd position (if i < 13), or in the first
position (if i = 13). We identify a flag {xi, Lj} with the 14-tuple obtained
by summing the 14-tuples xi and Lj. Finally, let {xi, Lj} be a non incident

191



point-line pair. Then there are exactly three points xi1 , xi2 , xi3 unequal xi

which are not incident with Lj, and there are exactly three lines Lj1 , Lj2 , Lj3

unequal Lj which are not incident with xi. If the set of points incident with
Lj is {xi′1

, xi′2
, xi′3

}, and if the set of lines incident with xi is {Lj′
1
, Lj′

2
, Lj′

3
},

then we identify the pair {xi, Lj} with the 14-tuple

1

2
(xi1 +xi2 +xi3 −xi′1

−xi′2
−xi′3

−xi +Lj1 +Lj2 +Lj3 −Lj′
1
−Lj′

2
−Lj′

3
−Lj)

(we compute this as integers; the result is inside the set of integers). This
identification gives us an embedding of H(2) in PG(13, K), for any field K.
One can check as an exercise that this embedding is polarized.

There also exists such an embedding of H(2)D in PG(13, K). We will not give
an explicit description. We have the following theorem.

Theorem 17 (Thas and Van Maldeghem [28]) Every lax embedding of
H(2) in PG(d, K), K any field, d ≥ 13, is projectively equivalent with the
embedding described above. Similarly for H(2)D.

All polarized lax embeddings of quadrangles in arbitrary projective space
(over any skew field) are classified by Steinbach and Van Maldeghem [15, 16].
They do not all arise from field extensions. More precisely, we have the
following result.

Theorem 18 (Steinbach and Van Maldeghem [15, 16]) Let Γ be a gen-
eralized quadrangle embedded in the projective space PG(V ) (not necessarily
finite dimensional) over the (not necessarily commutative) field K. Then
either Γ is isomorphic to W(2), the characteristic of K is odd and the em-
bedding is the exceptional one, or there exists a generalized quadrangle Γ′

laxly embedded in PG(V ) and obtained by field extension such that Γ is a
subquadrangle of Γ′.

The ultimate question for embeddings of generalized polygons, however, is:
can one classify all lax embeddings of generalized polygons? In the previous
theorems, there always was an extra condition, going from full, to polarized,
flat, or the polygon being classical. In the finite case, it turns out that we
always need an extra condition, but one of the weakest additional conditions
is a condition on the dimension of the ambient projective space, possibly
combined with a condition on the order of the polygon. For quadrangles,
here is everything that is known put together in one theorem. The proofs of
the distinct cases are very different and sometimes quite involved.
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Theorem 19 (Thas and Van Maldeghem [27]) If the generalized quad-
rangle Γ of order (s, t), s, t > 1, is laxly embedded in PG(d, q), then d ≤ 5.
Furthermore we have the following.

(i) If d = 5, then Γ ∼= Q(5, s). Either the embedding is obtained by field
extension of a classical embedding, or the embedding is obtained by field
extension of an embedding of Q(5, 2) in PG(5, q), with q an odd prime
number (the latter embedding is not polarized and it is unique up to a
special linear transformation; if q = 3, then it is full in an appropriate
affine space). In all cases, the full automorphism group of Γ is induced
by PGL6(q).

(ii) If d = 4, then s ≤ t.

(a) If s = t, then Γ ∼= Q(4, s). Either the embedding is obtained by
field extension of a classical embedding, or the embedding is ob-
tained by field extension of an embedding of Q(4, 2) in PG(4, q),
with q an odd prime number (and the latter is polarized and unique
up to a linear transformation; if q = 3, then it is full in an appro-
priate affine space), or the embedding is obtained by field extension
of an embedding of Q(4, 3) in PG(4, q), with q ≡ 1 mod 3 and with
q either an odd prime number or the square of a prime number p
with p ≡ −1 mod 3 (the latter embedding is not polarized, and it
is unique up to a special linear transformation; if q = 4, then it
is full in an appropriate affine space). In all cases, the full au-
tomorphism group of Γ is induced by PGL5(q), except in the last
case, where the group PSp4(3) (which is a proper subgroup of the
full automorphism group of Γ) acting naturally as an automor-
phism group on W(3) (which is dual to Q(4, 3)) is induced on Γ
by PGL5(q).

(b) If t = s + 2, then s = 2 and Γ ∼= Q(5, 2).

(c) If t2 = s3, then Γ ∼= H(4, s) and the embedding is obtained from a
classical embedding by field extension.

(d) If Γ is classical or dual classical, then either we have case (a)
or case (c), or Γ ∼= Q(5, s) and arises from a projection of an
embedding of Γ in PG(5, q) (see (i)).

(iii) If d = 3 and s = t2, then Γ ∼= H(3, s) and the embedding is obtained
from a classical embedding by field extension.
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(iv) If d = 3 and Γ is classical or dual classical, but not isomorphic to W(s),
with s odd, then either we have case (iii), or the embedding arises from
projecting an embedding described in (i) or (ii) above.

For non thick generalized hexagons, we have the following result.

Theorem 20 (Thas and Van Maldeghem [26]) If the generalized hexagon
Γ of order (q, 1) is fully embedded in PG(d, q), and if the corresponding projec-
tive plane is Desarguesian then the embedding is polarized, and hence a clas-
sical or semi classical embedding in either PG(6, q), or PG(7, q), or PG(8, q),
whenever one of the following conditions is satisfied.

(i) d ≥ 8,

(ii) d ≥ 7 and q is a prime,

(iii) for every two opposite lines L, M in Γ, the set of points of Γ at distance
3 from both L and M is contained in a plane of PG(d, q).

This theorem is still true without the assumption of the corresponding plane
being Desarguesian, if (iii) is satisfied.

For thick generalized hexagons, we have the following result.

Theorem 21 (Thas and Van Maldeghem [21]) (i) If the thick gen-
eralized hexagon Γ of order (s, t) is flatly and fully embedded in PG(d, s),
then d ∈ {4, 5, 6, 7} and t ≤ s. Also, if d = 7, then Γ ∼= T(s, 3

√
s) and

the embedding is the classical one. If d = 6 and t5 > s3, then Γ ∼= H(s)
and the embedding is the classical one. If d = 5 and s = t, then
Γ ∼= H(s), with s even, and the embedding is the natural one.

(ii) If the thick generalized hexagon Γ of order (s, t) is flatly lax embedded
in PG(d, q), then d ≤ 7. Also, if d = 7, then the embedding is also
polarized, and hence we can apply Theorem 16. If d = 6, and if Γ is
classical or dual classical with s $= t3, then Γ ∼= H(s) and the embedding
is polarized, and hence we can apply Theorem 16 again.

(iii) If the thick generalized hexagon Γ of order (s, t) is laxly embedded in
PG(d, q), and if the embedding is polarized, then d ≥ 5. Also, if d = 5,
then the embedding is also flat, s is even, and hence we can apply The-
orem 16. If d = 6, if the embedding is full and if q is odd, then Γ is a
classical embedding of H(q) in PG(6, q).
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9 Some more examples in the infinite case

Most theorems of the previous sections were only valid in the finite case. In
the infinite case, the problem of polarized embeddings for generalized quad-
rangles is completely solved, but all other cases seem hopeless, except for the
polarized flat embeddings. In this section, we want to present some free con-
structions of embeddings, showing that some classifications are completely
out of reach.

A free generalized polygon is a generalized polygon constructed by the method
of free closure as introduced by Tits in [31]. Let us briefly explain how this
works. We start with a geometry Γ0 = (P0,L0, I0) and a natural number
n > 2 with the following properties.

(1) Γ0 does not have ordinary k-gons as subgeometries, for k < n, but there
is a subgeometry isomorphic to an ordinary %-gon for some % > n,

(2) Γ0 is connected, i.e., every pair of elements is at finite distance from each
other.

(3) There are two elements of Γ0 at distance n + 1 from each other.

For each positive integer i, we define by induction the following geometry
Γi = (Pi,Li, Ii). For every pair of elements {x, y} of Γi−1 at distance n +
1 from each other, we define new elements x1, x2, . . . , xn−2 and we define
xIix1Ii · · · Iixn−2Iiy, which defines the type of each xj in a natural way.
This way we obtain a new geometry Γi+1 = (Pi+1,Li+1, Ii+1), which still
satisfies the properties (1), (2) and (3) above. The direct limit Γ∞ of the
system (Γi)i∈N is a thick generalized n-gon.

It is clear that, if Γ0 is finite, then there are a countable but infinite number
of points (lines) on a line (point) of Γ∞.

Now suppose that n ≥ 6, and suppose that Γ0 is finite and laxly embedded
in a projective space PG(d, Q) over the field of rational numbers Q, with
the additional condition that no two non intersecting lines of Γ0 meet in
PG(d, Q). This implies in particular that d > 2. Clearly every geometry
Γi, i ∈ N, is finite. Whenever a new line L is defined in some Γi, i > 0 (in
order to construct Γi+1), we order the set of points of PG(d, Q) on L that
do not belong to Γi+1 (so exactly two points are not considered). For i = 0,
we order the set of points of PG(d, Q) on each line of Γ0 that do not belong
to Γ0. Let L be some line of Γ∞. Suppose L ∈ Li \ Li−1 (for i = 0 we put
L−1 = ∅). Whenever an element x in Γk, k > i, is at distance n + 1 from
L, we have to introduce a path of elements (x1, x2, . . . , xn−2) with x1Ik+1L
and xn−2Ik+1x. For x1 we choose the point with the smallest number on L
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that is “available” (i.e., that does not belong to Γk and not “yet” to Γk+1).
Since there are only a finite number of elements in Γk, and since we have
henceforth only constructed up to that point a finite number of elements of
Γk+1 yet, there are, in PG(d, Q), an infinite number of lines through x1 that
do not meet any point or line of PG(d, Q) that we already declared to belong
to Γk+1. We take one of these lines to be x2, and we choose freely x3 on that
line, x3 $= x1. Then, we again choose a line x4 through x3 similarly as we
chose x2 through x1. We continue this procedure until we choose xn−5, for n
odd, and xn−4, for n even.

First let n be even. Then we choose the point xn−3 on xn−4 in such a way
that the line xxn−3 of PG(d, Q) does not meet any other line of Γk+1 yet
constructed. Indeed, no line of Γk+1 yet constructed is contained in the
plane P spanned by x and xn−4 (by the construction of xn−4), and hence
there are only a finite number of intersection points of P with lines of Γk+1

already constructed. So we can choose xn−3 on xn−4 such that the line xxn−3

does not contain such an intersection point, and hence does not meet any
other line of Γk+1 already constructed. The line xxn−3 is now by definition
xn−2.

If n is odd, then we choose the point xn−2 as the first numbered point available
on the line x. Then we let xn−2 and xn−5 play the role of x and xn−4,
respectively, of the previous paragraph and thus construct xn−4 and xn−3

accordingly.

It is clear that Γ∞ is now fully embedded in PG(d, Q).

We can also slightly alter the above construction in the following way. Sup-
pose the lax embedding of Γ0 in PG(d, Q) is flat. Suppose also that, by
induction, the embedding of Γk in PG(d, Q) is flat. If x and y are at distance
n + 1 in Γk, if x is a point, and we introduce the path (x, x1, x2, . . . , xn−2, y)
in Γk+1, then we may choose the line x1 in PG(d, Q) inside the plane of
PG(d, Q) that already contains all lines of Γk through x. A slight modifica-
tion of the above arguments show that we can always do that in such a way
that Γk+1 is flatly embedded in PG(d, Q).

Hence by choosing appropriate embedded Γ0, we have shown the following
result.

Theorem 22 For each n > 5, and each d > 2, there exists fully flatly em-
bedded free generated generalized n-gons in PG(d, Q) (or PG(d, K) for any
infinite countable field K).

Of course, variations of this construction are now possible, e.g., transfinite
induction allows one to replace the field Q by any infinite field; not requiring
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the embedding to be full and flat, we may allow n = 4, 5. Also, by leaving
out points of PG(d, Q) when numbering the points of some lines in the above
procedure, we obtain flat non full embeddings with some full lines, (i.e., all
points of some lines of PG(d, K) belong to Γ, but that is not true for all lines
of Γ).

The preceding theorem shows that a classification of full flat embeddings of
generalized n-gons, n > 5, in the infinite case is out of reach. The case n = 5
remains open in that respect. Can one modify the above construction so as
to contain n = 5, or can one show that there are no fully (flatly) embedded
generalized pentagons?

10 Convex embeddings

Recently, Mühlherr and Van Maldeghem [11] introduced the concept of a
convex embedding. It seems interesting to try to classify these kind of em-
beddings, because they fit into a larger picture of inclusions of buildings.
Such a classification would be a geometric counterpart of the theory of “rel-
ative” simple algebraic groups.

An embedding of a generalized polygon Γ = (P ,L, I) in a projective space
PG(d, K) is called convex if each element x ∈ P∪L is contained in some flag fx

of PG(d, K) such that the set of flags {fx |x ∈ P∪L} is convex (in the sense of
buildings, see Tits [30]). Let us give one example here. Let H(K) = (P ,L, I)
be embedded in PG(6, K) with its points on the non degenerate quadric Q.
Let π be the (possibly degenerate) polarity of PG(6, K) related to Q. For each
point p of H(K), we let p⊥ be the unique plane of Q containing all points of
H(K) collinear with p in H(K). Then the set of flags {{p, p⊥, (p⊥)π, pπ} | p ∈
P} ∪ {{L, Lπ} |L ∈ L} is a convex set of flags in PG(6, K). Hence the
classical embedding of H(K) in PG(6, K), and if the characteristic of K is
equal to 2 also the one in PG(5, K) by projection, is convex. In fact, a similar
construction can be done for the classical embedding of T(q3, q). Also the
classical embeddings of the classical quadrangles are convex.
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