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Abstract

In [2], Theo Grundhöfer showed that a projective plane admitting a
group acting regularly (sharply transitively) on the set of ordered ordi-
nary quadrangles must be a Pappian plane (a plane coordinatized by a
commutative field). The hard work of that result is done by Wagner [22]
who showed that such a plane must satisfy the Moufang property. We
extend Grundhöfer’s result to all generalized (2n− 1)-gons by showing
that no generalized (2n−1)-gon, n ≥ 3, admits a group acting regularly
on the set of ordered ordinary 2n-gons. Also, in the spirit of Wagner’s
result, we show that the self dual generalized quadrangles and hexagons
admitting a group G acting regularly on the set of ordered ordinary
pentagons and heptagons, respectively, and such that G is normalized
by at least one duality, belong to the class of Moufang polygons.

Mathematics Subject Classification 1991: 51E12.
Key words and phrases: Generalized polygons, Moufang polygons,Pappian planes.

1 Introduction and Main Result

Generalized polygons are the natural geometries for groups with a BN-pair of
rank 2. This class of groups comprises some algebraic groups, classical groups,
groups of mixed type, and the Ree groups of characteristic 2 (briefly groups
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of algebraic origin), but also some free groups. These generalized polygons
(for a precise definition, see below) have a large group of symmetries (called
collineations here). A natural question to ask is which property distinguishes
the polygons arising from groups of algebraic origin from the ones arising from
free groups, or from possibly other groups — in a yet unknown way. Tits
conjectured in the seventies (see [13]) that a condition he called the “Moufang
condition” does the job. The proof of this conjecture is now complete and
written down in a book (to appear) by Tits and Weiss, see [17]. The Moufang
condition, however, is a condition that requires a polygon to have “a lot” of
collineations “of a certain type” (fixing a lot of elements). Examples by Tits
[15] and Tent [8] show that the usual transitivity assumptions are not enough.
Nevertheless, Wagner proves in [22] that a projective plane (which is nothing
else than a generalized 3-gon) admitting a group acting sharply transitively on
the set of ordered ordinary quadrangles must be a Moufang projective plane,
and Grundhöfer further shows that it must necessarily be a Pappian plane (a
plane coordinatized by a commutative field). Yet, there exist non Moufang
projective planes with a “much larger” collineation group. Both Wagners’s
and Grunhöfer’s results hold for arbitrary projective planes, and not only for
planes in some restricted class. For instance in the category of finite general-
ized n-gons, transitivity on ordered ordinary (n+1)-gons implies the Moufang
condition (see [10, 19]). Using the classification of finite simple groups, one
can even show that distance transitivity on the set of points (in the graph
theoretic sense), and hence transitivity on ordered n-gons, suffices to prove
the Moufang condition (see [1]). For finite projective planes it is well known
that doubly transitivity on the point set forces the plane to be Desarguesian
(hence Moufang), see [5]. For the class of topological compact connected poly-
gons, flag transitivity suffices to characterize the Moufang ones, see [3, 4]. In
the general case, however, only the results of Wagner and Grundhöfer stated
above are available. In the present paper, we want to extend these results
to all generalized (2n− 1)-gons, and to self dual generalized quadrangles and
hexagons. Note that the latter are the most important cases of self dual poly-
gons since self dual Moufang n-gons necessarily satisfy n ∈ {3, 4, 6}. A further
generalization would consist in (1) proving that there are no self dual gener-
alized 2n-gons, n ≥ 4, with a group acting regularly on the ordered ordinary
(2n+1)-gons, and (2) delete the condition of self duality. For the moment, the
latter generalization is probably out of reach by lack of efficient methods; the
former, however, would be a possible and logical continuation of the research
presented in the present paper.

Let us now give precise definitions.

An incidence system is a triple Γ = (P ,L, I), where P and L are two disjoint
sets the elements of which are called points and lines, respectively, and where
I ⊆ (P × L) ∪ (L × P) is a symmetric relation, called the incidence relation.
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We use common terminology such as a point lies on a line, a line goes through
a point, a line contains a point, a line passes through a point, etc., to denote
the fact that a point and a line are incident.

A (simple) path in Γ is a sequence (x0, x1, . . . , xk) of points and lines such that
xi−1Ixi, for all i ∈ {1, 2, . . . , k} (and xi−1 '= xi+1, for all i ∈ {1, 2, . . . , k − 1}).
We say that the path joins the elements x0 and xk. The positive natural
number k is called the length of the path. If x0 = xk, then the path is called
closed. Note that a closed path of Γ always has even length. A closed simple
path (x0, x1, . . . , x2n = x0) of length 2n > 2 with x0 ∈ P is called an ordered
ordinary n-gon if x1 '= x2n−1. The incidence system obtained from the elements
of an ordered ordinary n-gon will be called an ordinary n-gon. The distance
δ(x, y) between two elements x, y of Γ is the length of a path of minimal length
joining x and y, if such a path exists. If not, then the distance between x and y
is by definition ∞. Points at distance 2 are also called collinear. A flag of Γ is
a pair {x, L} consisting of a point x and a line L which are incident with each
other. We say that a flag {x, L} is contained in a path γ if x and L occur in γ
in adjacent places. The set of flags of Γ will be denoted by F . Finally we call
Γ thick (firm) if each element is incident with at least three (two) elements.

We will now define generalized n-gons using Tits’ original definition of [11],
only slightly modified to avoid trivial cases.

Let n ≥ 2 be a positive integer, and let Γ = (P ,L, I) be a firm (thick) incidence
system. Then we call Γ a weak (thick) generalized n-gon if

(GP1) every two elements of P ∪ L can be joined by at most one simple path
of length < n,

(GP2) every two elements of P ∪L can be joined by at least one path of length
≤ n.

For n = 2, a generalized 2-gon (digon) is an incidence system in which every
point is incident with every line. For n = 3 we obtain the definition of a
(generalized) projective plane. For n = 4, 5, 6, 7, we talk about (generalized)
quadrangles, pentagons, hexagons, heptagons, respectively.

Let Γ = (P ,L, I) be a generalized n-gon. An ordinary n-gon in Γ is also called
an apartment. Clearly (by (GP2)), the maximum distance between elements of
Γ is precisely n; elements at distance n are called opposite. If two elements x, y
are not opposite, then (GP1) implies that there is a unique element, denoted
projxy, incident with x and at distance δ(x, y) − 1 from y. Also, there is a
unique simple path, denoted [x, y], joining x with y. The type of an element
x ∈ P ∪L is the set P (if x ∈ P) or L (if x ∈ L). The set of elements incident
with some x ∈ P ∪L will be denoted by Γ(x). A collineation ϕ of Γ is a pair of
bijections ϕ1 : P → P and ϕ2 : L→ L such that, for all p ∈ P and all L ∈ L,
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we have ϕ1(p)Iϕ2(L) if and only if pIL. We will usually denote, for the sake
of simplicity of notation, ϕ = ϕ1 = ϕ2. A duality φ of Γ is a pair of bijections
φ1 : P → L and φ2 : L → P such that, for all p ∈ P and all L ∈ L, we have
φ1(p)Iφ2(L) if and only if pIL. Again we write φ = φ1 = φ2. A generalized
polygon admitting a duality is called self dual. In fact, if Γ = (P ,L, I) is a
generalized polygon, then so is ΓD := (L,P , I) (called the dual of Γ), and Γ is
self dual precisely if it is isomorphic to ΓD, for the usual notion of isomorphism.

We say that Γ satisfies the Moufang condition, or is Moufang if for every
simple path γ = (x0, x1, . . . , xn) of length n, the pointwise stabilizer G[γ] of the
set Γ1(x1) ∪ Γ1(x2) ∪ . . . ∪ Γ1(xn−1) acts transitively on the set of apartments
containing γ. Every element of G[γ] is called an elation. All Moufang n-gons,
n ≥ 3, are classified [17] and are of algebraic origin.

Our Main Result reads as follows.

Main Result. Let Γ be a thick generalized n-gon with a group G of collineations
acting sharply transitively on the set of all ordered (n + 1)-gons of Γ. If n is
odd, then n = 3 and Γ is a Pappian projective plane. If n = 4, 6 and Γ is self
dual such that at least one duality normalizes G, then Γ is a Moufang n-gon.

We will show this theorem in the next sections. In Section 2 we consider the
case n odd, in Section 3, we treat the case n = 4, and in Section 4 we look at
the case n = 6.

In Section 5, we mention some corollaries and related results (about regular
actions of groups of collineations of generalized (2m − 1)-gons), and we com-
ment on the Moufang quadrangles and hexagons satisfying the conditions of
our Main Result.

Note finally that considering ordinary (n + 1)-gons is a natural thing to do
in view of the observation that a weak generalized n-gon is thick precisely if
it contains some ordinary (n + 1)-gon (see for instance Lemma 1.3.2 of [20]).
Whence the assumption of thickness in our Main Result. Let us also remark
that every non thick weak generalized n-gon Γ is obtained in a unique way
(but possibly up to duality) from a single flag f or from a thick generalized
k-gon Γ′ by introducing new simple paths of fixed length n/k (with k = 1 in
case of a single flag) between every two incident elements (at least two paths
for a single flag, exactly one path for each incident point-line pair in a thick
generalized polygon, see Theorem 1.6.2 of [20]). We say that f or Γ′ is the
skeleton of Γ.

2 Proof of the Main Result for n = 2m− 1 odd

In this section, we assume that Γ = (P ,L, I) is a thick generalized (2m− 1)-
gon and G is a group of collineations of Γ acting regularly on the set of ordered
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ordinary 2m-gons of Γ. By Grundhöfer’s result, we may assume, by way of
contradiction, that m > 2.

We prove some lemmas.

Lemma 2.1 G contains involutions.

Proof. Let (x0, x1, . . . , x2m) be a closed simple path of length 2m. Considering
the closed simple path (x2m, x2m−1, . . . , x0), we know that, by assumption,
there exists an element σ ∈ G mapping xi onto x2m−i. Clearly, σ2 fixes xi, i ∈
{0, 1, . . . , 2m}, hence by the regular action of G, it is the identity. Consequently
σ is an involution. !

Lemma 2.2 The group G acts regularly on the set of triples (γ, p, L), where
γ = (x0, x1, . . . , x4m−2) is an ordered ordinary (2m− 1)-gon, pIx1, with x0 '=
p '= x2, and LIx0, with x4m−3 '= L '= x1.

Proof. Given a triple (γ, p, L) as in the statement, we construct as follows
an ordered ordinary 2m-gon. Since δ(x1, x2m) = 2m− 1, we have δ(p, x2m) =
2m − 2, hence δ(p, projx2m

p) = 2m − 3 and δ(x1, projx2m
p) = 2m − 2. So

δ(x0, projx2m
p) = 2m − 1 and δ(L, projx2m

p) = 2m − 2. Put [projx2m
p, L] =

(x′
2m+1, x

′
2m+2, . . . , x

′
4m−1), then we have constructed the ordered ordinary 2m-

gon (x0, x1, . . . , x2m, x′
2m+1, . . . , x

′
4m−1, x0). Conversely, given an ordered or-

dinary 2m-gon (y0, y1, . . . , y2m), we construct as follows a triple (γ, p, L) as
in the statement of the lemma. Since clearly y1 and y2m are opposite, we
have δ(y1, y2m+1) = 2m − 2 and δ(y0, y2m) = 2m − 2. Put p = projy1

y2m+1,
then δ(p, y2m+1) = 2m − 3, which easily implies y0 '= p '= y2. Similarly,
y2m−1 '= projy0

y2m '= y1. Put [y2m, y0] = (x2m, x2m+1, . . . , x4m−3, x4m−2).
Putting L = y2m−1 and xi = yi, for i ∈ {0, 1, . . . , 2m − 1}, we have con-
structed the triple (γ, p, L), with γ = (x0, x1, . . . , x2n−2), as in the statement
of the lemma. It is easy to see that our constructions are mutually inverse to
each other. Hence the lemma is proved. !
A weak subpolygon Γ′ = (P ′,L′, I′) of Γ is a weak generalized (2m − 1)-gon
with P ′ ⊆ P, with L′ ⊆ L and with I′ the restriction of I to (P ′×L′)∪(L′×P ′).
Such a weak subpolygon is called solid if for every x′ ∈ P ′ ∪ L′, the following
two properties hold. (1) Whenever there are at least three elements of Γ′

incident with x′, all elements of Γ incident with x′ belong to Γ′ (and so are
incident with x′ in Γ′); (2) there exists at least one element of Γ′ incident with
at least three elements of Γ′. It is easy to see that every solid thick subpolygon
of Γ coincides with Γ itself.

Lemma 2.3 The elements of Γ fixed by any involution σ in G form a weak
non thick solid subpolygon of Γ.
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Proof. By Theorem 3.2 in [21], the fixed point structure of σ either is a
subpolygon Γ′ = (P ′,L′, I) with the property that every element x ∈ P ∪L is
at distance at most m− 1 from some element of P ′ ∪L′, or consists of the set
of all elements of Γ at distance at most m− 1 from a point p or a line L, with
pIL.

In the former case, the subpolygon Γ′ cannot be thick (otherwise it contains an
ordered ordinary 2m-gon, which is fixed by σ, contradicting the regular action
of G) and so Theorem 3.3 of [21] implies that Γ′ is a solid subpolygon.

In the latter case, σ is a nontrivial elation for any simple path γ = (x0, x1, . . . ,
x2m−1) with (p, L) = (xm−1, xm). Now let Σ1 and Σ2 be two apartments
containing γ. Let y and z be the unique elements of Σ1 and Σ2, respectively,
incident with x0 and different from x1. By Lemma 2.2, there exists g ∈ G
fixing y, fixing γ pointwise (and hence fixing the unique ordered ordinary
(2m−2)-gon (x0, [y, . . . , x2m−1], x2m−2, . . . , x1, x0)), and mapping yσ to z. The
conjugate σg is an elation for the simple path γ mapping Σ1 onto Σ2. By the
transitivity of G on simple paths of length 2m− 1 starting with an element of
fixed type, and noting that the last element of such path has different type,
we conclude that Γ is a Moufang polygon. Since Moufang (2m− 1)-gons only
exist for m = 2 (by [14, 16], see also [23]), this case cannot occur.

The lemma is proved. !
We can now finish the proof of the Main Result for n odd.

Let σ be an involution in G, and let Γ′ be the weak non thick subpolygon
defined by the fixed point structure of σ. We first show that the skeleton of Γ′

cannot be a single flag f = {p, L} (cp. Remark 3.4 of [21]). Suppose by way
of contradiction it is. Then p ∈ P and L ∈ L are opposite in both Γ and Γ′.
The only elements of Γ′ are contained in paths of length 2m− 1 joining p and
L. Let x be an element of Γ at distance m from some arbitrary point q on
L, and such that projqx does not belong to Γ′ (this is possible since there are
only 2 elements in Γ′ incident with q, and Γ is thick). We already remarked
at the beginning of the proof of Lemma 2.3 that there must exist an element
y of Γ′ at distance at most m− 1 from x. So we have a simple path of length
at most 2m− 1 joining q with y (but containing elements which do not belong
to Γ′). Since there also exists such a simple path inside Γ′, these paths have
to coincide (a contradiction) whenever δ(q, y) < 2m − 1. Hence q and y are
opposite. But the only elements of Γ′ opposite q are incident with p. Hence
y is a line through p and δ(x, y) = m − 1. Now let x′ be an element of Γ
incident with projxq, with the additional condition δ(x′, q) = m (by thickness
x′ exists). Then also x′ lies at distance m − 1 from some line y′ through p.
So we have two different simple paths of length m + 1 joining p and projxq.
Hence m + 1 ≥ 2m− 1, implying m = 2, a contradiction (this is only possible
in projective planes, where it is well known that it really occurs).
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So we may assume that the skeleton Ω of Γ′ is a generalized k-gon, with k
a divisor of 2m − 1, in particular, k is also odd. Let Σ be an apartment of
Γ′. By Lemma 2.2, there exists an element g ∈ G stabilizing Σ globally and
mapping every element of Σ onto an element at distance 2 (physically this is
some “clockwise or anti clockwise rotation”). Since k is odd, we see that the
conjugate σg does not fix any element of Γ′ that is incident with some element
of Σ and that is not itself contained in Σ (but Σ itself is fixed pointwise). Hence
the involution σg preserves Γ′ (see also Corollary 1.8.5 of [20]). But the induced
involution on Ω fixes an apartment pointwise and no other element incident
with some element of that apartment. Hence it cannot fix a thick subpolygon
and it cannot fix a weak non thick solid subpolygon. This contradicts Theorem
3.3 of [21].

3 Proof of the Main Result for n = 4

In this section, we suppose that Γ = (P ,L, I) is a self dual generalized quad-
rangle and G is a group of collineations acting regularly on the set of ordered
ordinary pentagons of Γ. We also assume that g is some fixed duality normaliz-
ing G. As in the odd case, one shows that G acts regularly on the set of triples
(γ, p, L), where γ = (x0, x1, . . . , x8 = x0) is an ordered ordinary quadrangle,
pIx1 with x0 '= p '= x2, and LIx0 with x7 '= L '= x1. We refer to this property
as Lemma 2.2 above.

For the rest of this section, we fix an ordered ordinary quadrangle γ = (x0, L0, x1,
L1, x2, L2, x3, L3, x0). Our goal is to construct an elation.

Lemma 3.1 Let x′
3 ∈ Γ(L3) \ {x0, x3}, and L′

3 ∈ Γ(x0) \ {L0, L3}. Let θ ∈ G
be such that it fixes x0, x1, L1, L′

3 and interchanges x3 with x′
3. Then θ fixes

Γ(x0) ∪ Γ(x1) pointwise.

Proof. Clearly θ is an involution, since θ2 fixes γ, x′
3 and L′

3 (cp. Lemma 2.2).
Let L′

1 ∈ Γ(x1) be arbitrary and suppose, by way of contradiction, that
L′′

1 := L′
1
θ '= L′

1. By composing g with a collineation mapping the ordered ordi-
nary pentagon (Lg

3, [x
′
3
g, L′′

1
g], xg

1, [L
′
1
g, xg

3], Lg
3) onto (x1, [L′′

1, x
′
3], L3, [x3, L′

1], x1)
(which we denote by γ′), we may assume that (x1, L3), (x3, L′

1) and (x′
3, L

′′
1) be-

long to both g and g−1. It is readily checked that the commutator [g, θ] fixes the
ordered ordinary pentagon γ′, hence g and θ commute. Hence Lg

i = Lθg
i = Lgθ

i ,
i = 1, 2, implying that θ fixes both Lg

0 and Lg
1. Now, Lg

0 is the unique point
of Γ incident with xg

1 = L3 and collinear with Lg
3 = x1, hence Lg

0 = x0. So
x′

0 := Lg
1 ∈ Γ(L3) \ {x0} is fixed by θ. Similarly, xg

0 = L0 and θ fixes the point
L′

3
g, which belongs to Γ(L0) \ {x0, x1}. But now θ fixes the ordered ordinary

quadrangle (x0, L0, x1, [L1, x′
0], L3, x0), and the elements L′

3, L
′
3
g, contradicting

Lemma 2.2.
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So θ fixes Γ(x1) pointwise, and reversing the roles of x1 and x0 now, we see
that θ also fixes Γ(x0) pointwise.

The lemma is proved. !

Lemma 3.2 There is a collineation σ ∈ G fixing Γ(x1)∪Γ(L1) pointwise and
acting nontrivially on both Γ(x2) and Γ(L0).

Proof. By the previous lemma, there exists some involution θ fixing Γ(x0) ∪
Γ(x1) pointwise, and not fixing x3. Dually, there is some involution ψ ∈
G fixing Γ(L1) ∪ Γ(L2) pointwise, and not fixing L0. It is clear that the
commutator σ = [θ, ψ] satisfies the conditions of the statement. !

Lemma 3.3 G contains at least one elation.

Proof. By the previous lemma, we may assume that there is a collineation
σ ∈ G fixing Γ(x1) ∪ Γ(L1) pointwise and not fixing x0, nor L2. Let φ ∈ G
be such that it fixes L2, Lσ

2 , L1, x0, but such that it does not fix xσ
0 . Then

the commutator [φ,σ] is non trivial and fixes Γ(x1) ∪ Γ(L1) ∪ {L2} pointwise.
Moreover, if φ fixes Γ(x2) pointwise, then [φ,σ] is a nontrivial elation. So we
may assume that there does not exist a nontrivial collineation fixing Γ(x2) ∪
{x0} pointwise (because by the transitivity assumption on G, in the form of
Lemma 2.2, we can always assume that such a collineation does not fix xσ

0 ).
Moreover, we may assume that σ′ := [φ,σ] is not an elation (and it does not
fix x0).

By the transitivity of G and by Lemma 3.1, there is an involution θ ∈ G fixing
Γ(x1)∪Γ(x2) pointwise and mapping x3 to xσ′

3 . But now the collineation σ′θ is
nontrivial (it does not fix Γ(x2) pointwise) and fixes Γ(x1)∪{x3}. Interchanging
the roles of x1 and x2, and of x0 and x3, this contradicts our assumption in
the previous paragraph. !
We can now finish the proof of the Main Result for the case n = 4. As in the
last part of the proof of Lemma 2.3, one easily shows that the existence of one
single elation for the path γ′′ = (L0, x1, L1, x2, L2) implies that the set of such
elation acts transitively on the apartments containing γ′′. Dually, we obtain
all elations related to simple paths of length 4 starting with a point. Hence Γ
is a Moufang quadrangle.

4 Proof of the Main Result for n = 6

In this section, we suppose that Γ = (PL, I) is a self dual generalized hexagon,
G is a group of collineations of Γ acting regularly on the set of ordered ordinary
heptagons of Γ, and g is some fixed duality normalizing G.
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We will basically use the geometric and combinatorial characterizations of
Moufang hexagons discovered by Ronan [6, 7]. Let us therefore introduce
the relevant notions first. We partly use the notation and terminology of [18].
Also, for two elements x, y at distance 4, we denote by x!"y the unique element
at distance 2 from both x, y.

Let x ∈ P ∪L, and let i = 2, 3. For an element y opposite x, we denote by xy
[i]

the set of elements of Γ at distance i from x and (at the same time) distance
6−i from y (and we sometimes write for convenience xy for xy

[2]). We say that x
is a distance i regular element if for every pair y, z of elements opposite x, either
xy = xz, or |xy ∩ xz| ≤ 1. We say that x has the trivial intersection property
if for every pair of elements z1, z2 opposite x, at distance 4 from each other
and such that δ(z1!"z2, x) = 4, either xz1 = xz2 or xz1 ∩ xz2 = {x!"(z1!"z2)}.
Finally, we say that x has the nontrivial intersection property if for every
pair of elements z1, z2 opposite x, at distance 4 from each other and such that
δ(z1!"z2, x) = 4, the intersection xz1∩xz2 always contains at least two elements.

We have the following well known results.

Lemma 4.1 (i) If every point of Γ is distance 2 regular, then every element
is distance 3 regular and Γ is a Moufang generalized hexagon. Conversely,
up to duality, all points of any Moufang hexagon are distance 2 regular.

(ii) If all points of Γ are distance 3 regular, and if all points have the trivial
intersection property, then all points are distance 2 regular and Γ is a
Moufang hexagon.

(iii If all points of Γ are distance 3 regular, and if all points have the non-
trivial intersection property, then all lines are distance 2 regular and Γ
is a Moufang hexagon.

Proof. The first assertion is the main result of [6]; the two others are proved
in [7]. !
Now we prove the following lemma.

Lemma 4.2 Suppose all points of Γ have the trivial intersection property.
Then every pair of mutually opposite points x, y of Γ is contained in a non
thick solid subhexagon Γ(x, y) with at least three lines through every point.

Proof. We define the point set P ′ of Γ(x, y) as follows. A point p ∈ P belongs
to P ′ if and only if it belongs to ab ∪ ba, with a ∈ xy and b ∈ yx, with a, b
opposite each other. The set L′ of lines is the subset of L whose members are
incident with at least (and then exactly, as we will see) two points out of P ′.
In fact, if we put Γ+(x, y) equal to the set of elements of P ′ a distance 4 or
0 from x, and Γ−(x, y) to the set of elements of P ′ at distance 0 or 4 from y,
then the following observations are easily verified.
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1. Γ+(x, y) is the union of the sets ab, with a ∈ xy and b ∈ yx; in this
notation, Γ−(x, y) is the union of all sets ba.

2. Every element of Γ+(x, y) is at distance 2 or 6 from y, and every element
of Γ−(x, y) is at distance 2 or 6 from x.

3. No two elements of Γ+ are collinear. Likewise, no two points of Γ−(x, y)
are collinear.

The last observation immediately implies that lines of Γ(x, y) contain exactly
to points, hence Γ(x, y) will be non thick.

Now we show that for every point z of Γ(x, y), every line of Γ through z belongs
to Γ(x, y). For z ∈ {x, y} ∪ xy ∪ yx, this is trivial. So let z ∈ ab, with a ∈ xy

and b ∈ yx, and with z /∈ {x, y} ∪ xy ∪ yx. Since y has the trivial intersection
property, yx = yz; hence every line L through z is incident with a point z′

collinear with some element c of yx. It follows that z′ ∈ ca and hence L ∈ L′.

By our observations above, it is clear that every line in Γ(x, y) contains one
point of Γ+(x, y) and one point of Γ−(x, y). So the lemma will be proved if
we show that every two elements of Γ+(x, y), respectively of Γ−(x, y), are at
mutual distance 4. So let z ∈ ab, with a ∈ xy and b ∈ yx, and z′ ∈ a′b

′
, with

a′ ∈ xy and b′ ∈ yx. Clearly we may assume that a '= a′ and z '= x '= z′. Put
c = a!"y and c′ = a′!"y. Since a has the trivial intersection property, we see
that ab = ac′

. Similarly a′b
′
= a′c. This already proves δ(z, z′) = 4 if one of

z, z′ belongs to yx. If not, then the trivial intersection property of a implies
az′

= ac′ , z.

The lemma is proved. !
Note that, with the notation of the proof of the previous lemma, the incidence
system P(Γ(x, y)) := (Γ+(x, y), Γ−(x, y),⊥), where a ⊥ b if and only if a and b
are collinear, is a projective plane. Remark also that we only used the fact that
x, y and all elements of xy ∪ yx have the trivial intersection property. Further,
it is easy to see that Γ(x, y) = Γ(u, v), for all points u, v of Γ(x, y), with u
opposite v.

The next two lemmas show the connection between the geometric notions we
just introduced and the transitivity of G on ordered ordinary heptagons.

Lemma 4.3 Let x, y be two opposite points of Γ and let L be some line at
distance 3 from both x, y. If some collineation σ ∈ G fixes Γ(x) ∪ Γ(L) ∪ {y}
pointwise, then every element of Γ is distance 3 regular.

Proof. Let M be any line distinct from L and at distance 3 from both x
and y. By the transitivity properties of G, it suffices to show that, for any
point z opposite x with L, M ∈ xz

[3], we have xy
[3] = xz

[3]. Suppose by way of
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contradiction that xy
[3] '= xz

[3] and let Ny ∈ xy
[3] \ xz

[3]. Let Nz be the unique
element of xz

[3] satisfying projxNy = projxNz. Since σ fixes y, z, projxNy and
all points on Ny, we see that, using Lemma 2.2, σ fixes an ordered ordinary
heptagon whenever Ny '= Nz. Hence all points are distance 3 regular, and
dually, all lines are distance 3 regular.

The lemma is proved. !

Lemma 4.4 Either all elements of Γ have the trivial intersection property, or
all elements of Γ have the nontrivial intersection property.

Proof. By transitivity and duality, we only have to show that some fixed point
p either has the trivial intersection property or has the nontrivial intersection
property. Suppose p does not have the trivial intersection property.

Then there are points z1, z2 opposite p, at mutual distance 4 such that δ(z1!"
z2, p) = 4, with pz1 '= pz2 and |pz1 ∩ pz2| > 1. Since the stabilizer of p in G act
transitively on the set of points of Γ at distance 4 from p, since the stabilizer
in G of p and z1!"z2 acts doubly transitively on the set of lines at distance
5 of p through z1!"z2, and since the stabilizer in G of p, z := z1!"2 and the
lines projzz1 and projzz2, acts transitively on the set of points opposite p and
incident with the line projzz1, it suffices to show that |pz1 ∩ pz′

2| > 1, for every
point z′2 on the line L2 through z and z2, with z '= z′2.

By assumption, there exists a point x1 ∈ pz1 \ pz2 . Let L be the line through
p and x1, and let L1 be the line through z and z1. Then some collineation of
G fixes y, z, z1, x1 and L2 and maps projL1

projLz2 onto projL1
projLz′2. This

shows that p has the nontrivial intersection property. !
Remark that the previous lemma remains true if we only assume that G acts
transitively on the set of ordered ordinary heptagons. Hence the examples in
[8] also have the property that all points either have the trivial intersection
property or the nontrivial intersection property. Nevertheless, these examples
are far from being Moufang. So we cannot hope that the previous lemma is
enough to show our Main Result for n = 6. But it provides a way to use
Lemma 4.1 above, and it splits the proof in two cases. First we show a general
lemma, and then we consider the cases “all elements have the trivial inter-
section property” and “all elements have the nontrivial intersection property”
separately.

Let (x0, L0, x1, L1, x2, . . . , L5, x0) be an ordered ordinary hexagon, and let L′
1

be a line incident with x0, but distinct from both L1 and L5. Also, let x′
5 be a

point on L5 distinct from both x0 and x5. Similarly as for the case n = 4, we
may use Lemma 2.2 for our present case n = 6. Hence there is an involution
θ fixing x0, x1, X2, L2, L′

1, and interchanging x5 with x′
5.
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Lemma 4.5 The involution θ fixes all elements of Γ(x0). Moreover, if Γ is
not a Moufang hexagon, then θ also fixes all elements of Γ(x2).

Proof. Put x′
3 = xθ

3. Suppose that L is a line through x0 which is not fixed by
θ. As in the proof of Lemma 3.1, we may assume that the duality g maps the
ordered ordinary heptagon (x0, [L, x3], L2, [x′

3, L
θ], x0) onto the simple closed

path (L2, [x3, L], x0, [Lθ, x′
3], L2), and gθ = θg, which implies that θ fixes three

points on xg
0. Hence θ fixes three points on L5 and must be the identity by

Lemma 2.2. So θ fixes L, and hence all elements of Γ(x0).

Now suppose that Γ is not Moufang and assume that the line M through x2

is not fixed by θ. Similarly as in the previous paragraph, one can show that
θ must then fix all points on the line xh

0 , where h is a duality mapping the
ordered ordinary heptagon (x2, [M, x5], L5, [x′

5, M
θ], x2) onto the simple closed

path (L5, [x5, M ], x2, [M θ, x′
5], L5), and h commutes with θ. But xh

0 is a line
incident with x2 at distance 4 from xh

2 = L5. Consequently xh
0 = L1 and θ

fixes all points on L1. By Lemma 4.3, all elements of Γ are distance 3 regular
and Lemma 4.1(ii) implies that Γ is a Moufang hexagon.

The lemma is proved. !
So from now on, we may assume that θ fixes Γ(x0) ∪ Γ(x2) pointwise.

First we note the following.

Lemma 4.6 If G contains a nontrivial elation, then Γ is Moufang.

Proof. This follows by taking conjugates (as in the last part of the previous
section — the case n = 4) of that elation. !
We now first handle the case where all elements of Γ have the trivial intersection
property.

Proposition 4.7 If all elements of Γ satisfy the trivial intersection property,
then Γ is a Moufang generalized hexagon.

Proof. Clearly Lθ
3 belongs to Γ(L0, L3) (which exists by Lemma 4.2), so

Γ(L0, L3) = Γ(L0, Lθ
3), implying that θ preserves Γ(L0, L3). Hence θ induces

an involution in the projective plane Γ′ = P(Γ(L0, L3)). If θ fixes pointwise
some apartment, then it also fixes three points on some line of Γ′, hence the
same holds for Γ, and we thus see that θ fixes an ordered ordinary heptagon
pointwise (use again Lemma 2.2). So θ is an elation in Γ′ and must therefore
fix Γ(L0) ∪ Γ(L1) pointwise. Also, for any point x′ ∈ Γ(L0) ∪ Γ(L1) \ {x1},
the collineation θ fixes the unique line of Γ(L0, L3) through x′ and different
from L0, L1. Now we can interchange the roles of x′ and either x0 or x2, and
we conclude, with Lemma 4.5, that θ fixes Γ(x′) pointwise. Hence, if θ′ is a

12



conjugate of θ fixing Γ(x2)∪ Γ(L2)∪ Γ(L3)∪ Γ(x4) pointwise, then [θ, θ′] fixes
Γ(x1)∪Γ(L1)∪Γ(x2)∪Γ(L2)∪Γ(x3), and hence it is an elation. The induced
collineation in Γ′ is clearly nontrivial, hence [θ, θ′] is a nontrivial elation of Γ.
By Lemma 4.6, we conclude that Γ satisfies the Moufang condition.

The proposition is proved. !
Hence from now on we may assume that all elements have the nontrivial in-
tersection property. We first prove some further properties of θ.

Lemma 4.8 The collineation θ does not fix Γ(L0) pointwise.

Proof. Suppose, by way of contradiction, that θ fixes all points of L0. Con-
jugating θ with the stabilizer in G of x0, x1 . . . , x5, we obtain a group H fixing
Γ(x0) ∪ Γ(L0) ∪ Γ(x2) pointwise and acting transitively on Γ(L5) \ {x0}. By
conjugating with an element of G interchanging the points x0 and x2, we see
that there is a group H ′ fixing Γ(x0)∪Γ(L1)∪Γ(x2) pointwise and acting tran-
sitively on the set Γ(L5) \ {x0}. Let θ′ ∈ H ′ be such that xθ

5 = xθ′
5 . Then θ′θ−1

fixes Γ(x0)∪ Γ(x2)∪ {x3, x4, x5} pointwise, and hence also Γ(x3). Let z ∈ xx0
3 ,

x4 '= z '= x2. Then z is fixed by θ′θ−1. Since x0 has the nontrivial intersection
property, xx3

0 '= xz
0, so there is some line LIx0 with the property projLz '=

projLx3. But the two latter points are fixed by θ′θ−1, so Lemma 2.2 readily
implies that θ′θ−1 is the identity. Consequently H = H ′ and θ also fixes Γ(L1)
pointwise. Let H∗ be the conjugate of H by a collineation mapping the path
(x0, L0, x1, L1, x2) onto the path (x1, L1, x2, L2, x3). Every element of [H, H∗]
is readily seen to be an elation (fixing Γ(L0) ∪ Γ(x1) ∪ Γ(L1) ∪ Γ(x2) ∪ Γ(L3)
pointwise). Hence, if [H, H∗] is nontrivial, then Lemma 4.6 implies that Γ is
Moufang. Lemma 4.1(i) and (iii) imply that either the points or the lines have
the trivial intersection property, a contradiction.

So [H, H∗] is trivial. Since the orbit of L5 induced by H∗ is precisely LL3
0 \

{L1}, we deduce that θ fixes LL3
0 pointwise. But that implies LL3

0 = L
Lθ

3
0 ,

contradicting the fact that L0 has the nontrivial intersection property.

The lemma is proved. !

Lemma 4.9 The collineation θ does not fix Γ(x1) pointwise.

Proof. Let H be the group defined in the previous proof. Let H ′ be the conju-
gate of H under a duality (which normalizes G) mapping the path (x0, L0, x1,
L1, x2) on the path (L1, x2, L2, x3, L3). Suppose first that [H, H ′] is triv-
ial. Then the orbit of L5 under H ′ is fixed pointwise by H. This orbit is
(x1)

x4
[3]. Hence, for each z ∈ xH

4 (the orbit of x4 under H), we have (x1)
x4
[3] =

(x1)z
[3]. This implies that every point of Γ is distance 3 regular, contradicting

Lemma 4.1(iii).
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Hence [H, H ′] is nontrivial. Let σ be a nontrivial element of [H, H ′]. Then
σ fixes Γ(x1) ∪ Γ(L1) ∪ Γ(x2) ∪ Γ(L2) pointwise. Without loss of generality,
we may assume that Lσ

3 '= L3 (if both Lσ
3 = L3 and xσ

0 = x0, then σ must
be the identity, see Theorem 4.4.2(vi) in [20]). Suppose that σ does not fix
x0. Let ϕ ∈ G fix x0, xσ

0 , x1, x2, x3, x4, x5 and not fix Lσ
3 . Then σϕσ−1 fixes

Γ(x1)∪Γ(L1)∪Γ(x2)∪Γ(L2)∪{x0} pointwise, and maps L3 to some line L′
3 '=

L3. There is some conjugate σ′ of σ fixing Γ(L0)∪Γ(x1)∪Γ(L1)∪Γ(x2) pointwise
and mapping L3 to L′

3. The collineation σ′σ−1 is the identity by Theorem
4.4.2(vi) of [20]. Hence σ = σ′ and this is an elation. But again, Lemma 4.6
implies that Γ is Moufang, contradicting our hypotheses and Lemma 4.1(i)
and (iii).

The lemma is proved. !

Lemma 4.10 There does not exist a collineation fixing Γ(x1) ∪ Γ(x4) point-
wise.

Proof. Suppose by way of contradiction that σ is a collineation in G fix-
ing Γ(x1) ∪ Γ(x4) pointwise. By Lemma 4.3, there is some point xIL5 with
xσ '= x (indeed, otherwise all elements of Γ are distance 3 regular, contra-
dicting Lemma 4.1(iii) and our hypotheses). Without loss of generality, we
may assume that x = xθ

5. The commutator θ′ = [θ,σ] is nontrivial and fixes
Γ(x0) ∪ Γ(x1) ∪ Γ(x2) pointwise. This contradicts Lemma 4.9 with θ′ in the
role of θ.

The lemma is proved. !

Lemma 4.11 There exists a collineation ϕ ∈ G fixing Γ(x1)∪Γ(x2) pointwise
and not fixing x3.

Proof. Let H be the subgroup of G fixing Γ(x0)∪Γ(x2) pointwise (as before).
Note that H acts transitively on Γ(L5) \ {x0}. Let θ′ be a conjugate of θ by
a collineation mapping x0 and x2 to x1 and x3, respectively. Since θ′ does not
fix Γ(L2) pointwise (Lemma 4.8), there exists a nontrivial element in [θ′, H].
Indeed, if θ′′ ∈ H maps x3 to some point not fixed by θ′, then [θ′, θ′′] does not
fix x3, but fixes Γ(x1) ∪ Γ(x2) pointwise.

The lemma is proved. !
From now on, we denote by ϕ a collineation as in the statement of Lemma 4.11.
We conclude our proof.

Let θ′ be a nontrivial collineation fixing Γ(L1)∪Γ(L3) pointwise (it is a “dual”
of θ). By lemma 4.9 (or rather its dual), θ′ does not fix Γ(L2) pointwise.
Replacing ϕ with a conjugate if necessary, we may suppose that θ′ does not fix
xϕ

3 . Hence the commutator φ = [θ′, ϕ] fixes Γ(x1) ∪ Γ(L1) ∪ Γ(x2) pointwise,
but does not act trivially on Γ(L2).
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First suppose that φ fixes x0. If it does not fix L5, then let τ ∈ G fix
L5, L

φ
5 , L0, L1, L2, x3 and not fix xφ

3 . Then φτφ−1 fixes Γ(x1)∪ Γ(L1)∪ Γ(x2)∪
{L5} pointwise, and maps x3 to some point x′

3 '= x3. Hence we may assume
that φ fixes L5. Replacing φ with a suitable conjugate, we may assume that
xφ

3 = xθ
3. Hence φθ−1 fixes Γ(x2) pointwise, and hence fixes also Γ(x5) point-

wise. This contradicts Lemma 4.10.

Hence φ does not fix x0, and we may suppose that φ does not fix x3 either
(otherwise we let x3 play the role of x0 in the previous paragraph). Let K be
the subgroup of G whose elements fix Γ(x1)∪ Γ(L1)∪ Γ(x2)∪ {L5} pointwise.
Then K acts sharply transitively on Γ(L2)\{x2} (use once again conjugation).
If for all L ∈ LK

5 , the orbit LK
3 is contained in the set LL5

2 , then L2 has the trivial
intersection property, a contradiction. Hence we may assume without loss of
generality that Lφ

3 /∈ LL5
3 . Now, we may assume that there are at least 4 lines

through every point, since, if every element is incident with exactly 3 elements,
then θ is already a nontrivial elation. So there is some line L ∈ Γ(xφ

3) \
({L2, L

φ
3}∪LL5

2 ). Let ψ ∈ G be the collineation fixing L0, L1, L2, L3, L4, L5, x
φ
3 ,

and mapping Lφ
3 to L. Then [ψ, φ−1] is nontrivial, belongs to K and fixes x3,

contradicting the sharp transitive action of K on Γ(L2) \ {x2}.
The proof of our Main Result is complete.

5 Some remarks

We now comment on the Moufang quadrangles and hexagons satisfying the
hypotheses of our Main Result.

By Theorem 7.3.2 of [20], the self dual Moufang quadrangles are the quadran-
gles related to groups of mixed type C2 and F4. But the latter can have no
group acting transitivity on the set of all ordered pentagons, because they are
of type (BC − CB)2, with the notation of Chapter 5 of [20] (indeed, being of
that type, the commutator [U1, U3] of two root groups related to simple paths
(x1, x2, x3,4 , x5) and (x3, x4, x5, x6, x7), respectively, is not equal to the root
group U2 related to the path (x2, x3, x4, x5, x6), and is not trivial either; this
contradicts the transitivity of G in the form of Lemma 2.2). By an unpub-
lished observation of Tom De Medts (personal communication), the Moufang
quadrangles of mixed type C2 satisfying the conditions of our Main Result are
necessarily of the type Q(K, K′; K, K′) (with K a field of characteristic 2 and
K2 ⊆ K′ ⊆ K, using the notation of [20], Chapter 3). Now Theorem 7.3.2 of
[20] describes all possibilities.

Likewise, Theorem 7.3.4 of [20] describes all possible Moufang hexagons (nec-
essarily of mixed type G2) satisfying the assumptions of our Main Result (they
al “live” in characteristic 3).
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We mention the following corollary of our Main Result (where an automor-
phism of a generalized polygon is either a collineation or a duality).

Corollary 5.1 Let Γ be a (thick) generalized n-gon, with either n odd, or
n ∈ {4, 6}. If Γ has an automorphism group acting regularly on the set of
closed simple paths of length 2n + 2, then Γ is a self polar Moufang polygon.

If n = 3, then Γ is again a Pappian projective plane; if n = 4, 6, then all
possibilities are given by Theorems 7.3.2 and 7.3.4 of [20].

Now, what if we ask a regular action on the set of ordered ordinary n-gons of a
generalized n-gon? To the best of my knowledge, the case n = 3 is not treated
yet in the literature. In the finite case, it is easy to show that only the unique
projective plane with 3 points per line qualifies. I conjecture that no infinite
plane satisfies that condition. Concerning generalized n-gons with n odd, one
has the following negative result.

Proposition 5.2 Let m ≥ 3 be a positive integer and let j ∈ {1, 2, . . . ,m}.
There exists no (thick) generalized (2m−1)-gon with a group G of collineations
acting regularly on the set of simple paths of length 2j starting with some
element of fixed type. The same holds for m = 2 and j = 1.

Proof. Let Γ be a generalized (2m − 1)-gon and G a group of collineations
acting regular on the set of simple paths of length 2j starting with a point
(with j as in the statement of the proposition). Clearly, G again contains
involutions. But involutions fix simple paths of length 2m−1 (see [21]), hence
j = m. But then for every involution σ there exist a point p and a line LIp such
that σ fixes all elements at distance m−1 from p, and all elements at distance
m − 1 from L. Considering two such involutions σ1, σ2 with corresponding
points and lines p1IL1 and p2IL2 such that

max{δ(p1, p2), δ(p1, L2), δ(L1, p2), δ(L1, L2)} = m + 1

and
min{δ(p1, p2), δ(p1, L2), δ(L1, p2), δ(L1, L2)} = m− 1,

the commutator [σ1, σ2] cannot exist if m ≥ 3 by Section 3, Case 1 of [9]. !
Note that the last lines of the previous proof provide an alternative argument
for the last paragraph of the proof of Lemma 2.3.

The case j = m of the previous proposition corresponds precisely with sharply
transitive action on the set of ordered ordinary (2m− 1)-gons.

The cases of regular action on simple paths of some fixed odd length starting
with an element of fixed type are open. Also a lot of work still has to be done
for the generalized n-gons with n even. The present paper provides a solid
start.
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