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Abstract

In this paper, we characterize isomorphisms of generalized polygons (in partic-
ular automorphisms) by maps on flags which preserve a certain fixed distance. In
Part II, we consider maps on point and/or lines. Exceptions give rise to interesting
properties, which on their turn have some nice applications.
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1 Introduction

The theorem of Beckman and Quarles (see for instance [2]) states that a permutation
of the point set of a Euclidean real space preserves distance k between points (for some
positive real number k) if and only if it preserves all distances. The aim of the present
paper is to prove a similar theorem for generalized polygons, which are by far the most
important rank 2 geometries (they are the buildings of rank 2, and the standard examples
are related to Chevalley groups of rank 2, algebraic groups of relative rank 2, mixed groups
of rank 2, and Ree groups in characteristic 2).

For generalized polygons, a permutation of the union of the point set and the line set which
preserves all distances (measured in the incidence graph) is an (anti)automorphism. It is
clear that the condition for such a permutation can be weakened to preserving distance
1. We will investigate whether it is also enough to require that a certain distance k "= 1
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is preserved. In fact, if k is even, then we will only consider bijections between the point
sets. Moreover, it will be seen that we only have to ask the mapping to be surjective.
Also, there is a metric on the set of flags of a generalized polygon. We will also consider
surjections on that set and prove that, if a fixed distance k is preserved, then the map
extends to an (anti)automorphism (this generalizes results of Tits [6] for k = 1 and of
Abramenko and Van Maldeghem [1] for k the maximal value). In fact, we prove our
results for mappings between two generalized polygons satisfying only a weak additional
condition. We remark, though, that with “preserving distance k”, we mean that two
elements are at distance k if and only if their respective images are at distance k.

Before stating our main results, we introduce some notation and give some definitions.

A weak generalized n-gon ∆, n ≥ 2, is a point-line incidence geometry satisfying the
following properties (a chain of length k in a geometry is a sequence of k + 1 consecutive
different and incident elements):

(WGP1) every two elements of ∆ are connected by at least one chain of length at most n;

(WGP2) every two elements of ∆ are connected by at most one chain of length a most n− 1;

(WGP3) every element is incident with at least two other elements.

A weak generalized n-gon is a generalized n-gon if it satisfies additionally

(WGP4) every element is incident with at least three distinct elements.

If we do not want to emphasize n, we speak about a (weak) generalized polygon. These
geometries, without Condition (WGP3), were introduced by Jacques Tits in [5]. Condition
(WGP3) is added to avoid degenerate cases (geometries whose incidence graphs are trees).
For a survey on the topic of generalized polygons, see the monograph [7]. In particular,
Lemma 1.3.14 of [7] says that, if n ≥ 4, then any bijection between the point sets of two
generalized n-gons preserving collinearity (two points are collinear when they are incident
with a common line) extends to an isomorphism of the generalized n-gons. It is this
lemma that we shall generalize in the present paper.

Let ∆ be a generalized n-gon. For two elements x, y of ∆ (points and/or lines), we denote
by δ(x, y) the distance from x to y measured in the incidence graph of ∆. The distance
of two flags f, g in the flag graph of ∆ (i.e., the graph whose vertices are the flags, and
adjacency is having an intersection of size 1) is likewise denoted by δ(f, g). Also, there
are cardinals s, t such that every line of ∆ is incident with s + 1 points and every point
of ∆ is incident with t + 1 lines (s and/or t possibly infinite). The pair (s, t) is called the
order of ∆. We can now state our main results.
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In the following we view an (anti)isomorphism from one polygon ∆ to another polygon
∆′ as a bijection from the set of points of ∆ onto the set of points (lines) of ∆′, together
with a bijection from the set of lines of ∆ onto the set of lines (points) of ∆′, inducing in
the natural way a bijection from the set of flags of ∆ onto the set of flags of ∆′.

Theorem 1 Let ∆ and ∆′ be two generalized m-gons, m ≥ 2, let r be an integer satisfying
1 ≤ r ≤ m, and let α be a surjective map from the set of flags of ∆ onto the set of flags of
∆′. Furthermore, suppose that the orders of ∆ and ∆′ either both contain 2, or both do not
contain 2. If for every two flags f, g of ∆, we have δ(f, g) = r if and only if δ(fα, gα) = r,
then α extends to an (anti)isomorphism from ∆ to ∆′, except possibly when ∆ and ∆′ are
both isomorphic to the unique generalized quadrangle of order (2, 2) and r = 3.

There actually exists a counterexample in the case mentioned at the end of Theorem 1.
We give a description in Section 2. Also, there is a related result in terms of Coxeter
distances, which we formulate at the end of Part I of this paper. It has a similar proof,
which we omit.

Theorem 2 • Let Γ and Γ′ be two generalized n-gons, n ≥ 2, let i be an even integer
satisfying 1 ≤ i ≤ n − 1, and let α be a surjective map from the point set of Γ
onto the point set of Γ′. Furthermore, suppose that the orders of Γ and Γ′ either
both contain 2, or both do not contain 2. If for every two points a, b of Γ, we have
δ(a, b) = i if and only if δ(aα, bα) = i, then α extends to an isomorphism from Γ to
Γ′.

• Let Γ and Γ′ be two generalized n-gons, n ≥ 2, let i be an odd integer satisfying
1 ≤ i ≤ n− 1, and let α be a surjective map from the point set of Γ onto the point
set of Γ′, and from the line set of Γ onto the line set of Γ′. Furthermore, suppose
that the orders of Γ and Γ′ either both contain 2, or both do not contain 2. If for
every point-line pair {a, b} of Γ, we have δ(a, b) = i if and only if δ(aα, bα) = i, then
α extends to an isomorphism from Γ to Γ′.

The proof of Theorem 2 is contained in Part II of the present paper, see [4].

We remark that for i = n, there do exist counterexamples, and we will mention some in
Part II, where we also prove a little application. Also, the condition i "= n can be deleted
for n = 3, 4, of course, in a trivial way. For finite polygons, the condition i "= n is only
necessary if n = 6 and the order (s, t) of Γ satisfies s = t. For Moufang polygons, the
condition i "= n can be removed if Γ is not isomorphic to the split Cayley hexagon H(K)
over some field K (this is the hexagon related to the group G2(K)). We will prove these
statements in Part II of the present paper (see [4]).
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To close this section, we introduce some notation. Let Γ be a weak generalized n-gon. For
any point or line x, and any integer i ≤ n, we denote by Γi(x) the set of elements of Γ at
distance i from x, and we denote by Γ"=i(x) the set of elements of Γ not at distance i from
x. If κ is a set of integers, then Γκ(x) is the set of elements y of Γ satisfying δ(x, y) ∈ κ. If
two elements are at distance n, then we say that they are opposite. Non-opposite elements
x and y have a unique shortest chain (x = x0, x1, . . . , xk = y) of length k = δ(x, y) joining
them. We denote that chain by [x, y], and we set x1 = projxy (and hence xk−1 = projyx).
When it suits us, we consider a chain as a set so that we can take intersections of chains.
For instance, if [x, z] = (x = x0, x1, . . . , xi, x′i+1, . . . , x

′
# = z), with no x′j equal to any xj′ ,

0 < i < j ≤ k and i < j′ ≤ $, then [x, y]∩ [x, z] = [x, xi]. If for two non-opposite elements
x, y the distance δ(x, y) is even, then there is a unique element z at distance δ(x, y)/2
from both x and y; we denote z = x!"y, or, if x and y are points at distance 2 from
each other, then we also write xy := x!"y. If an element x is incident with exactly two
elements, then we call x thin; otherwise x is called thick. If all elements of Γ are thick,
then we call Γ itself thick.

Suppose now that Γ is thick. Let P be the point set of Γ, let L be the line set of Γ and
let F be the set of flags of Γ. We define the double 2Γ of Γ (see [5]) as the geometry with
point set F , line set P ∪L, and natural incidence relation. Then all points of 2Γ are thin
and all lines are thick. The distance of two points in 2Γ is the double of the distance of
the two corresponding flags in Γ. This observation will enable us to reduce Theorem 1 to
a particular case of Theorem 2 for weak polygons with thin points and thick lines. We
will not gain so much by doing that, because a separate proof remains necessary. But the
intuition is easier.

2 The exception

Let W(2) be the symplectic quadrangle of order (2, 2), i.e., the unique generalized quad-
rangle with that order. Its automorphism group is isomorphic to the symmetric group S6,
which is isomorphic to the linear group PΣL2(9). It is well known that duads of a 6-set
correspond to one orbit under PSL2(9) of the set of Baer sublines of the projective line
over GF(9), and that synthemes of a 6-set correspond to the other orbit (see [3], page
4). The duads and the synthemes of a 6-set are the points and lines of W(2). It is not
difficult to see that a duad and a syntheme are incident precisely when the corresponding
Baer sublines are disjoint (this follows in fact from a counting argument, using the fact
that the group acts transitively on both the set of flags and the set of antiflags). Hence
we may identify a flag of W(2) with the pair of points of PG(1, 9) not contained in either
of the two disjoint Baer sublines. This identification is bijective since there are 45 flags
and 45 pairs of points, and every pair of points occurs by the 2-transitivity of PSL2(9).
Now an easy analysis shows that
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(1) flags at distance 1 correspond to disjoint point pairs whose union forms a Baer
subline (the latter corresponds to the unique element of W(2) which, together with
the intersection of the two flags, forms again a flag distinct from both original flags);

(2) flags at distance 2 correspond to disjoint point pairs {a, b} and {c, d} such that the
cross ration (a, b; c, d) is a square in GF(9) \GF(3);

(3) flags at distance 3 correspond to non-disjoint pairs of points;

(4) flags at distance 4 correspond to disjoint point pairs {a, b} and {c, d} such that the
cross ration (a, b; c, d) is a non-square in GF(9).

It is now clear that an arbitrary permutation of the points of PG(1, 9), which does not
belong to PΓL2(9), preserves the set of flags of W(2), even preserves the distance 3, but
does not extend to an (anti)automorphism of W(2).

Our description makes it obvious that the graph on the flags of W(2) where adjacency is be-
ing at distance 3, is the strongly regular graph with parameters (v, k, λ, µ) = (45, 16, 8, 4)
obtained from a 10-set by taking as vertices the pairs of points and adjacency being
non-disjoint.

3 Proof of Theorem 1

For the case r = m, see [1], Corollary 5.2. From now on we assume r < m.

First remark that α is necessarily bijective. Indeed, if f, f ′ are flags of ∆ with fα = f ′α,
then, since every flag of ∆′ at distance r from fα is also at distance r from f ′α, the set
of flags of ∆ at distance r from f coincides with the set of flags at distance r from f ′. It
easily follows that f = f ′. Henceforth, we assume that α is a bijection.

Let Γ and Γ′ be the doubles of ∆ and ∆′, respectively. Put n = 2m. Then Γ and Γ′ are
generalized n-gons, n ≥ 6, with thin points and with thick lines. Put 2r = i. The map α
induces a bijection (which we may also denote by α) from the point set of Γ to the point
set of Γ′ preserving distance i. We can now formulate Theorem 1 as follows:

If α is a bijection from the point set of Γ to the point set of Γ′ such that for every two
points a, b of Γ, we have δ(a, b) = i if and only if δ(aα, bα) = i, and if either both Γ and
Γ′ have lines incident with exactly 3 points or neither Γ nor Γ′ has lines with exactly 3
points, then α extends to an isomorphism from Γ to Γ′, except possibly when Γ and Γ′ are
isomorphic to the unique generalized octagon of order (2, 1) and i = 6.

We proof this assertion in several steps. Throughout we put Ta,b := Γi(a) ∩ Γi(b), for
points a, b of Γ, and we let P be the point set of Γ. The general idea of the proof is to
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show that distance 2 (between points in Γ) can be expressed only in terms of distance i
and distance "= i. The same thing will hold for Γ′, and this is enough to prove that α
preserves distance 2 and distance "= 2. The assertion then follows from [7], Lemma 1.3.14
(the latter is only stated for thick polygons, but is also valid in the general case without
any change in the proof). Obviously, we may also assume that i > 2.

3.1 Case i < m

Let S be the set of pairs of points (a, b) of Γ satisfying δ(a, b) "= i and Ta,b = ∅. We
claim that a pair (a, b) belongs to S if and only if δ(a, b) > 2i or δ(a, b) = k < 2i, with
k ≡ 0 mod 4 and 0 "= k "= i. Indeed, let (a, b) be an arbitrary pair of points of Γ. We
distinguish the following possibilities.

(i) δ(a, b) > 2i.
By the triangle inequality, Ta,b = ∅ and the claim follows.

(ii) δ(a, b) = k < 2i, with k ≡ 0 mod 4 and 0 "= k "= i.
Suppose by way of contradiction that c ∈ Ta,b. If projac "= projab, then there is a
circuit of length less than 2n, since [b, c] cannot contain a. Hence we may assume
projac = projab and projbc = projba. In this case, since there are no circuits of
length < 2n, the paths [a, c] and [b, c] must meet on [a, b], necessarily in a!"b. This
is impossible since a!"b is a (thin) point.

(iii) δ(a, b) = k < 2i, with k ≡ 2 mod 4 and k "= i.
Any point c at distance i − k

2 from M := a!"b with projMa "= projMc "= projMb
belongs to Ta,b (since M is thick, such a point c can be found). So (a, b) /∈ S.

(iv) The cases δ(a, b) = 0, i, 2i are trivial. Our claim is completely proved.

We put κ = {δ(a, b) | (a, b) ∈ S} (hence κ = {k ∈ N |n ≥ k > 2i or k < 2i, k ≡ 0 mod 4
and 0 "= k "= i}).

3.1.1 Case i ≡ 0 mod 4

Let P be the set of pairs of distinct points of Γ such that i "= δ(a, b) /∈ κ and Γi(a)∩Γκ(b) =
∅. We claim that P is exactly the set of pairs of collinear points of Γ. Indeed, let (a, b)
be an arbitrary pair of distinct points of Γ. There are two possibilities.

(i) δ(a, b) = 2.
Every point at distance i from a but not at distance i from b lies at distance i ± 2
from b, which is not a distance belonging to κ. Hence (a, b) ∈ P .
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(ii) δ(a, b) "= 2.
Clearly we may assume i "= k := δ(a, b) /∈ κ.

(a) First suppose k = 2i. Let L be the unique line of [a, b] at distance i/2− 1 from
a and let c be any point at distance i/2 + 1 from L such that projLa "= projLc "=
projLb. Then δ(a, c) = i and δ(b, c) = 2i + 2, hence δ(b, c) ∈ κ. Consequently
c ∈ Γi(a) ∩ Γκ(b), implying (a, b) /∈ P .

(b) Now suppose 2 < k < 2i with k ≡ 2 mod 4. Let L be the line of [a, b] at distance
k/2 − 2 from a, and let c be any point at distance i − (k/2 − 2) from L such that
projLa "= projLc "= projLb. Then δ(a, c) = i and δ(b, c) = i + 4. The latter is a
multiple of 4. So, if i "= 4, then 4 + i < 2i and δ(b, c) ∈ κ. If, on the other hand,
i = 4, then necessarily k = 6. We then re-choose the point c at distance 4 from a
and 10 from b (which can easily be done). Hence in both cases (a, b) /∈ P .

Our claim is proved.

3.1.2 Case i ≡ 2 mod 4

We proceed similarly as above. Now P is the set of pairs of distinct points of Γ such that
i "= δ(a, b) /∈ κ and Γi(a) ∩ Γ"=i(b) ⊆ Γκ(b) and we again prove that P is exactly the set
of pairs of collinear points of Γ. So let (a, b) be an arbitrary pair of distinct points of Γ.
There are two possibilities.

(i) δ(a, b) = 2.
Every point at distance i from a but not at distance i from b lies at distance i ± 2
from b, which is a distance belonging to κ. Hence (a, b) ∈ P .

(ii) δ(a, b) "= 2.
We may assume i "= k := δ(a, b) /∈ κ. First suppose k = 2i. Let L be the unique line
of [a, b] at distance i/2 from a and let c be any point at distance i/2 from L such
that projLa "= projLc "= projLb. Then δ(a, c) = i and δ(b, c) = 2i, hence δ(b, c) /∈ κ.
Consequently c is in Γi(a) ∩ Γ"=i(b), but not in Γκ(b), implying (a, b) /∈ P . For the
case k "= 2i, we consider a point c as in 3.1.1(ii)(b). Then δ(b, c) = i + 4 implies
δ(b, c) /∈ κ.

It now follows easily that α preserves collinearity. This completes the proof of Case i < m.

3.2 Case i = m

3.2.1 n = 8 and Γ has order (2, 1)

Note that also Γ′ has order (2, 1) by the bijectivity of α.
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It is easy to see that two points are at distance 6 from one another if and only if there
is exactly one point at distance 4 from both. Unfortunately, all straightforward counting
arguments do not lead to a distinction between points at distance 2 or 8. Hence we give
a more sophisticated reasoning.

Let a, b be points of Γ at distance 2 or 8 from each other. Put Ta,b = {c, d} (one indeed
verifies that Ta,b has exactly two elements) and S = {a, b, c, d}. We claim that there is a
unique point x such that

(*) Γ4(x) ∩ S = ∅ and Γ6(x) ∩ S = ∅.

Indeed, if a and b are collinear, then c and d are collinear points such that the line cd
meets the line ab in a point x /∈ S. One can easily check that x is the only point of Γ that
satisfies (*). If δ(a, b) = 8, then S is contained in the unique apartment through a and b.
Note that Γ is the double of the unique generalized quadrangle W(2) of order 2. In W(2)
the points a, b, c, d correspond to flags whose union is an apartment Σ in W(2). There is
a unique point u (respectively a unique line U) in W(2) opposite every point (respectively
line) of Σ and u is incident with U . The flag {u, U} corresponds in Γ with the unique
point x satisfying (*). This proves our claim.

Now if δ(a, b) = 8, then every point of Ta,x lies at distance 6 from b, as one verifies, while
if δ(a, b) = 2, every point of Ta,x is collinear with b. Hence we can distinguish distance 2
and the theorem follows.

3.2.2 The general case

Here we assume that, if n = 8, then Γ contains lines with more than 3 points. Note also
that necessarily n ≡ 0 mod 4.

In this case, we show that we can recover opposition. Let a, b be points of Γ. We claim
that δ(a, b) = n if and only if

(**) |Ta,b| = 2 and, putting Ta,b = {c, d}, Tc,d = {a, b}.

Obviously, if a and b are opposite, then they satisfy (**). So we may assume that δ(a, b) =:
k < n. We distinguish three cases.

(i) k ≡ 0 mod 4.
We show that Ta,b = ∅. Suppose by way of contradiction that c ∈ Ta,b. Assume first
that projab = projac and define L as [a, b] ∩ [a, c] = [a, L]. Let j = δ(a, L). Since
L "= a!"b, we have L /∈ [b, c]. Hence we obtain a circuit considering [c, L], [L, b] and
[c, b] of length ≤ (n/2− j) + (k − j) + (n/2) = n + k − 2j < 2n, a contradiction.

The case projab "= projac corresponds with j = 0 in the previous argument.
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(ii) k = n− 2.
Let c be an arbitrary element of Ta,b (Ta,b is easily seen to be nonempty; this will
also follow from our next argument). Similarly as in (i) above, one shows that
[a, b] ∩ [a, c] ∩ [b, c] = a!"b =: L. But then cIL and projLa "= c "= projLb. So if
(a, b) satisfies (**), then L contains 4 points c, d, projLa, projLb. But every point
on M := projab distinct from projMb belongs to Tc,d. Similarly for M ′ := projba.
Note that M "= L and M ′ "= L since n − 2 "= 2. Hence, since M ′ "= M (n "= 4), we
conclude by thickness of those lines that |Tc,d| ≥ 4.

(iii) k ≡ 2 mod 4 and k "= n− 2.
Every point c at distance n−k

2 from the line L := a!"b with projLa "= projLc "= projLb
belongs to Ta,b. So if |Ta,b| = 2, then necessarily n−k

2 = 3 and both L and projcL are
incident with exactly 3 points (note that n−k

2 = 1 corresponds with case (ii) above).
We put Ta,b = {c, d}. As in (ii) above, |Tc,d| ≥ 4 whenever projab "= projba. Hence
we may assume that a and b are incident with L and that 2 = k = n− 6. But this
is Case 3.2.1.

It now follows easily that α preserves opposition. By [1], Corollary 5.2, this completes
the proof of Case i = m.

3.3 Case m < i < n− 2

Let S be the set of pairs of points (a, b) of Γ such that Ta,b = ∅. Put κ = {k ∈ N | 0 <
k ≤ 2n − 2i − 4 and k ≡ 0 mod 4}. We claim that (a, b) ∈ S if and only if δ(a, b) ∈ κ.
Indeed, let a, b be points of Γ. Put k = δ(a, b).

(i) 0 < k ≤ 2n− 2i− 4 and k ≡ 0 mod 4.
Similarly as in 3.1(ii), one shows that Ta,b = ∅ in this case.

(ii) k ≤ 2n− 2i− 2 and k ≡ 2 mod 4.
Here, a point c ∈ Ta,b can be found similarly as in 3.1(iii).

(iii) k ≥ 2n− 2i.
Let c′ be a point opposite b and at distance n− k from a (c′ lies in some apartment
containing a, b). Let X be a line incident with c′, distinct from projc′a if k "= n.
Clearly, there is a point xIX, x "= c′, with x opposite b. Then δ(c′, x) = 2, and
an inductive argument shows that there is a point c′′ opposite b with δ(c′, c′′) =
k−2n+2i and with projc′a "= projc′c

′′ if k "= n. Note that δ(a, c′′) = 2i−n "= 0. Let
c ∈ Γi(b) ∩ Γn−i(c′′) be such that projc′′c "= projc′′a (c is uniquely defined). Clearly,
c belongs to Ta,b.

This shows our claim.
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3.3.1 Case i ≡ 0 mod 4 and i ≤ 2n− 2i− 4

In this case i precisely belongs to κ. We claim that two distinct points a and b are collinear
in Γ if and only if δ(a, b) /∈ κ and R := Γi(a)∩ Γ"=i(b)∩ Γκ(b) is empty. Indeed, let a, b be
two arbitrary distinct points of Γ.

(i) δ(a, b) = 2.
This is similar to 3.1.2(i).

(ii) δ(a, b) ≡ 0 mod 4.
We can assume δ(a, b) /∈ κ. Note that i < k := δ(a, b) < 2i. Let c ∈ Γi(a)∩ Γk−i(b).
Then c ∈ R because δ(b, c) = k − i is distinct from i, it is a multiple of 4 and it is
at most 2n− 2i− 4 (for i ≤ 2n− 2i− 4 < 2n− k − 4).

(iii) 2 "= δ(a, b) ≡ 2 mod 4.
First let i < k := δ(a, b) < 2i − 2. Let L ∈ Γi−1(a) ∩ Γk−i+1(b) and let cIL with
projLa "= c "= projLb. Then we show that c ∈ R. Indeed, δ(b, c) = k − i + 2, so
δ(b, c) = i implies k/2+1 = i, a contradiction. Also, the inequalities i ≤ 2n−2i−4
and k ≤ 2i− 6 imply δ(b, c) ≤ 2n− 2i− 4. Consequently δ(b, c) ∈ κ.

Now let k = 2i − 2. This implies, since 2i ≥ n + 2, that k ≥ n, hence k = n.
Let L ∈ Γi−3(a) ∩ Γn−i+3(b) and let c ∈ Γ3(L) with projLa "= projLc "= projLb.
Then c ∈ Γi(a) ∩ Γ"=i(b) (because δ(b, c) = n − i + 6 = (2i − 2) − i + 6 "= i;
noting n > 6). Also, δ(b, c) is a multiple of 4. If n ≥ 22, then one verifies that
δ(b, c) = n− i + 6 ≤ 2n− 2i− 4, hence c ∈ R. If n < 22, then, since i is a multiple
of 4, the only possibility is (n, k, i) = (14, 14, 8). But then κ = {4, 8} and we can
distinguish distance 4 in Γ; hence also distance 2 by Subsection 3.1.

Finally let k := δ(a, b) < i. Put L = projba. Let c ∈ Γi−k+1(L) with projLa "=
projLc "= projLb. As above, one checks that c ∈ R.

This shows our claim.

3.3.2 Case i ≡ 2 mod 4 and i ≤ 2n− 2i− 4

Here, we claim that two distinct points a, b of Γ are collinear if and only if i "= δ(a, b) /∈ κ
and Γi(a) ∩ Γ"=i(b) ⊆ Γκ(b). The proof is similar to the proof of 3.3.1.

3.3.3 Case i ≥ 2n− 2i− 2

We claim that two points a, b of Γ are at distance 2n−2i−4 from each other if and only if
δ(a, b) ∈ κ and R := Γκ(a)∩Γκ(b) contains exactly (2n− 2i− 8)/4 =: $ elements. Indeed,
let a, b be two distinct arbitrary points of Γ. We distinguish the following cases.
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(i) δ(a, b) = 2n− 2i− 4.
We show that every element of R is contained in [a, b] (and that shows the claim since
there are clearly $ elements of R on [a, b]). Suppose c ∈ R. If projac "= projab, we
obtain a circuit of length ≤ 3(2n− 2i− 4) < 2n, a contradiction. If projac = projab,
then we can avoid such a circuit only if [b, c] ∩ [a, b] ∩ [a, c] is nonempty, in which
case δ(b, c) cannot be a multiple of 4.

(ii) δ(a, b) := k ∈ κ \ {2n− 2i− 4}.
On the path [a, b], we already find k/4−1 members of R. Now let h ∈ κ with h > k.
Then every point x ∈ Γh(a) ∩ Γh−k(b) belongs to R. So for each such h, we find at
least two such points. It then follows that |R| > $.

It now follows easily that α preserves collinearity (because of Cases 3.3.1 and 3.3.2). This
completes the proof of Case m < i < n− 2.

3.4 Case i = n− 2

It is convenient to treat the cases n = 6, 8 separately.

3.4.1 Case n = 6

Here, i = 4, so we only have to distinguish distance 2 from 6. But for opposite points
a, b, the set Ta,b contains points at mutual distance i = 4, while this is not the case for
collinear points a, b. Hence in this case α preserves collinearity.

3.4.2 Case n = 8

First suppose that Γ is the double of a quadrangle ∆ of order (2, t) (with t automatically
finite). Then t = 2, 4 and ∆ is unique. If t = 2, then there is nothing to prove; if t = 4,
then it is easily verified that |Ta,b| ∈ {8, 24}, {8}, {4} for respectively δ(a, b) = 2, 4, 8.
Hence α preserves opposition and we are done. Notice that by the bijectivity of α, in this
case ∆ and ∆′ have the same order.

So from now on we may assume that all lines of Γ have at least 4 points. We claim
that two distinct points a, b of Γ are collinear if and only if there are no distinct points
c, c′ ∈ Γ6(b) ∩ Γ"=6(a) satisfying Ta,b ⊆ Γ6(c) ∪ Γ6(c′). Indeed, if δ(a, b) = 4, then we take
two different points c, c′ (unequal a) on the unique line through a at distance 5 from b;
if δ(a, b) = 8, then we take {c, c′} = Γ2(a) ∩ Γ6(b). In these cases one easily checks that
Ta,b ⊆ Γ6(c) ∪ Γ6(c′). Now let δ(a, b) = 2. Suppose by way of contradiction that there do
exist two points c, c′ as above. Let L be an arbitrary but fixed line meeting the line ab
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but not through a or b. Then the set of points R = Γ3(L)\Γ1(ab) is contained in Ta,b and
hence is a subset of Γ6(c) ∪ Γ6(c′). Either δ(a, c) = 4 or δ(a, c) = 8 (and similarly for c′).
First suppose δ(a, c) = 4. Clearly, for any line M "= ab meeting L, there is exactly one
point xIM at distance 6 from c. Since there are at least 2 points on M left in R, the line
M must be at distance 5 from c′. Since there are at least 3 such lines M , we similarly
have that δ(c′, L) = 3, and δ(c′, ab) = 1 (because projL(c′) cannot be on a line M , so must
be incident with ab), contradicting δ(b, c′) = 6.

So we showed that δ(a, c) = 8 and symmetrically, also δ(a, c′) = 8. So δ(c, L) = δ(c′, L) =
7, and hence, since δ(c, ab) = 7, there must be a unique line Mc "= ab meeting L having
distance 5 to c. Similarly, there is such a line Mc′ at distance 5 from c′. Now let M ∈
Γ2(L) \ {Mc, Mc′ , ab}, then at most two points on M are covered by Γ6(c) ∪ Γ6(c′), a
contradiction. This proved our claim. So α preserves collinearity and the theorem follows.

3.4.3 Case n > 8

If, up to duality, ∆ (or ∆′) has order (2, t) with t finite (hence n ∈ {12, 16}), or has
order (3, 3) (and then n = 12), then the same holds for ∆′ (or ∆), and a similar counting
argument as in 3.4.2 proves the theorem. So from now on we may assume that ∆ has
order (s, t) "= (3, 3) with s, t ≥ 3, or {s, t} = {2,∞}. We divide the proof in several steps.

Step 1: the set Sa,b

Let a, b be two arbitrary points of Γ not at distance n− 2, then we define

Sa,b = {c ∈ Γ"=n−2(a) ∩ Γ"=n−2(b) |Γn−2(a) ∩ Γn−2(b) ∩ Γn−2(c) = ∅}.

Note that, by symmetry, Sa,b \ {c} = Sb,c \ {a} for all c ∈ Sa,b.

We will prove the following claims (where w = a!"b whenever defined).

Claim 1. δ(a, b) = 2.
If the line ab contains at least 4 points, then Sa,b = Γ3(ab). Otherwise, Sa,b =
Γ{1,3,7}(ab) \ ({a, b} ∪ Γ6(a) ∪ Γ6(b)).

Claim 2. δ(a, b) = 4.
Here, Sa,b = Γ1(aw) ∪ Γ1(bw) ∪ Γ4(a) ∪ Γ4(b) \ ({a, b} ∪ Γ4(w)).

Claim 3. 2 "= δ(a, b) = k ≡ 2 mod 4, k ≤ n− 4.
Here Sa,b ⊆ {x ∈ Γ≤k/2+2(w) | projwa "= projwx "= projwb}. If k = 6, then no point
incident with w belongs to Sa,b. Also, if w contains at least 4 points, then no point
of Γk/2(w) belongs to Sa,b.
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Claim 4. 4 "= δ(a, b) = k ≡ 0 mod 4, k ≤ n− 4, n "= 12.
Put A = projwa and B = projwb. Also, define

S ′
a,b = {x ∈ Γ{k/2−1,k/2+1}(A) | projAa "= projAx "= w}

∪{x ∈ Γ{k/2−1,k/2+1}(B) | projBb "= projBx "= w}.

If k "= 8, then Sa,b ⊆ S ′
a,b. If k = 8 and if both projab and projba contain at least 4

points, then {w} ⊆ Sa,b ⊆ S ′
a,b ∪ {w}. If k = 8 and either projab or projba contains

exactly three points (and suppose without loss of generality that projba has size 3),
then {w, e} ⊆ Sa,b ⊆ S ′

a,b ∪{w, e}, where e is incident with projba and distinct from
both b and b!"w.

Claim 5. δ(a, b) = k = 8 and n = 12.
Here, with the notation of Claim 4, we have, if s, t ≥ 3, then w ∈ Sa,b ⊂ S ′

a,b ∪
(Γ8(a) ∩ Γ8(b)) ∪ {w}. If {s, t} = {2,∞} (and we may assume without loss of
generality that A′ := projab is incident with infinitely many points), then {w, e} ⊆
Sa,b ⊂ S ′

a,b ∪ (Γ8(a) ∩ Γ8(b)) ∪ S ′′
a,b ∪ {w, e}, where S ′′

a,b = {x ∈ Γ11(B) | projBb "=
projBx "= w} ∪ {x ∈ Γ7(A′) | projA′w "= projA′x "= a}.

We will prove these claims by induction on δ(a, b).

Claim 1.
Let c be an arbitrary point of Γ, a "= c "= b. Put

Ta,b,c = Γn−2(a) ∩ Γn−2(b) ∩ Γn−2(c).

First assume that projabc = a. Put j = δ(c, a). If j = 2, then δ(c, x) = n, for all x ∈ Ta,b,
hence c ∈ Sa,b. Otherwise a similar construction as in 3.3(iii) yields a point c′ opposite
c with δ(a, c′) = δ(b, c′) = n − 4. So if L ∈ Γ1(c′) ∩ Γn−4(ab), then projLc ∈ Ta,b,c, hence
c /∈ Sa,b.

So we may assume projabc /∈ {a, b}. Put j + 1 = δ(c, ab). If j = 0, then clearly c ∈ Sa,b if
and only if ab is incident exactly three points. If j = 2, then c always belongs to Sa,b. Now
let L ∈ Γj−1(c) ∩ Γ2(ab). If j = 4, then clearly there are points at distance n− 5 from L
which belong to Ta,b,c. If j = 6 and |Γ1(ab)| = 3, then one verifies c ∈ Sa,b. If |Γ1(ab)| > 3,
then again similarly as in 3.3(iii), we find a point c′ ∈ Ta,b,c with projabc

′ /∈ {projabc, a, b}.
Finally if j > 6, then, as before, we find a point c′ in Ta,b,c with δ(c′, L) = n− 5, and with
projLc′ /∈ {projLc, projLab}.
Claim 2.
Let c be an arbitrary point of Γ distinct from a, b and put j = δ(w, c). Let Ta,b,c be
as above. Without loss of generality, we may assume that a minimal path from c to w
contains aw, except if c = w. But in the latter case, clearly c ∈ Sa,b. So from now on
c "= w. If j = 2, then clearly c is opposite every point of Ta,b, hence c ∈ Sa,b. Now suppose
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j > 2. Let Σ be an apartment containing b, c. If j ≡ 0 mod 4, then there is a line M in Σ
at distance n−1−j/2 from both b, c and at distance n+1−j/2 from w. If j ≥ 8, then we
can find a point of Ta,b,c at distance j/2− 1 from M (whose projection onto M does not
belong to Σ). If j = 4 and δ(a, c) = 4, then projMa ∈ Ta,b,c. If j = 4 and δ(a, c) = 2, then
c ∈ Sa,b would imply b ∈ Sa,c, contradicting Claim 1. So we may assume j ≡ 2 mod 4.
If j "= n, then we consider an apartment Σ′ containing [b, projcw], but not containing c.
If j = n, then we consider an apartment Σ′ containing [b, L], with L the line of [aw, c]
at distance 3 from c, but not containing projLc. In this way we obtain a path of length
h ≡ 2 mod 4 between b and c, and we then argue similarly as before. We obtain c ∈ Sa,b

if and only if j = 6 and δ(a, c) = 4.

Claim 3.
Let c be any point of Γ. Suppose projwc = projwa. Again put δ(w, c) = j. If j > k/2 + 2,
then we can find a point c′ ∈ Ta,b,c at distance n− 2− k/2 from w. If j ≤ k/2 + 2, then
one calculates δ(a, c) ≤ k/2 − 2 + j − 2 < k. Hence, if c would be in Sa,b, then b ∈ Sa,c,
but one can check that this contradicts the induction hypothesis.

Now suppose projwa "= projwc "= projwb and j ≥ k/2 + 4. If j "= k/2 + 6, then similarly
as before, we can find a point c′ ∈ Ta,b,c with |[w, c′] ∩ [w, c]| = 3. If j = k/2 + 6, then we
may argue with apartments as in Claim 2 to obtain a point c′ ∈ Ta,b,c. The assertions for
k = 6 and |Γ1(m)| ≥ 4 are easy and left for the reader.

Claim 4.
Let c again be an arbitrary point of Γ. If c = w, then c ∈ Sa,b implies b ∈ Sa,c, and by
the induction hypothesis this only happens if k = 8. So we may assume that c "= w and,
without loss of generality, that a minimal path from c to w contains A. Put j = δ(c, w)
and let $ be the distance from w to the unique element of [a, w] closest to c. If j < k/2+2$,
then δ(a, c) < k and, after some work as in the previous claims, the result follows from
the induction hypothesis. Now suppose j ≥ k/2 + 2$. The argument here is similar to
the one in Claim 2 above. The apartment Σ to consider must here be chosen through c
and the line N on [w, b] at distance 3 from w such that Σ does not contain projNb. For
k/2 − j a multiple of 4, we consider a suitable line of Σ at the same distance from b as
from c. The result follows as in Claim 2. If k/2 − j ≡ 2 mod 4, then one must consider
another apartment similarly as in Claim 2. We leave the details to the reader.

Claim 5.
This is completely similar to Claim 4. In fact, when dealing with Claim 4, the results of
Claim 5 arise naturally.

The claims are proved.

In order to make future arguments uniform, we redefine the set Sa,b for two points a, b of
Γ in the case n = 12 and {s, t} = {2,∞} as follows. Put

S̃a,b = Sa,b \ {x ∈ Sa,b |Γ10(x) ∩ Sa,b "= ∅},
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then we write Sa,b for S̃a,b from now on.

We proceed to Step 2.

Step 2: the set Ca,b;c

Let c ∈ Sa,b. We keep the same notation as in Step 1. Then we define Ca,b;c = {c′ ∈
Sa,b |Sc,c′ ∩ {a, b} "= ∅}.
For δ(a, b) = k ≡ 2 mod 4 and k /∈ {2, n− 2, n}, we will prove that Ca,b;c is always empty,
except possibly in the following cases:

(1) δ(c, w) = k/2− 2.
Here, a point c′ ∈ Ca,b;c lies at distance k/2− 2 from w, with projwc "= projwc′.

(2) δ(c, w) = k/2 + 2.
Here, a point c′ ∈ Ca,b;c lies at distance k/2 + 2 from w and either projwc "= projwc′

or projwc = projwc′ =: z (and let {w,Z} = Γ1(z)) but projZc "= projZc′; if {s, t} =
{2,∞} and k = 6, then there is an extra possibility (*) for c′ described below.

Indeed, let δ(c, w) = j and let c′ ∈ Ca,b;c be at distance j′ from w.

Suppose projwc = projwc′. Then δ(c, c′) ≤ j +j′−4 ≤ k (because j, j′ ≤ k/2+2 by Claim
3 above). Without loss of generality we may assume a ∈ Sc,c′ . Then, if δ(c, c′) /∈ {2, 4},

δ(a, c!"c′) ≤ δ(c, c′)

2
+ 2 ≤ k

2
+ 2.

Since clearly δ(a, c!"c′) ≥ k/2 + 2 (c!"c′ lies on [c, c′]!), this implies j = j′ = k/2 + 2.
Using Claim 2 and 3 above (in particular the part of k = 6), one checks that δ(c, c′) "= 4.
If δ(c, c′) = 2, then it is easy to see that we necessarily have {s, t} = {2,∞}, k = 6 and

(*) c, c′ are collinear points on a line incident with exactly 3 points and both c, c′ are
at distance 5 from w.

These are some of the possibilities mentioned in (2).

Suppose now projwc "= projwc′. Here, δ(c, c′) = j + j′ ≤ k + 4. We may again assume
a ∈ Sc,c′ . Then, if δ(c, c′) = 2, we must have k = 6 by Claim 1 above (noting that the line
w contains at least 4 points in this case). But this contradicts c ∈ Sa,b and Claim 3. Also,
it is easily verified that δ(c, c′) "= 4. Now, if δ(c, c′) /∈ {2, 4}, then we obtain the following
possibilities.
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(a) j + j′ ≡ 2 mod 4.
By Claim 3 above, w = c!"c′ and j = j′. Since a ∈ Sc,c′ and c, c′ ∈ Sa,b, we have
k/2 − 2 ≤ j ≤ k/2 + 2. The case j = j′ = k/2 + 2 corresponds to the remaining
part of possibility (2). The case j = j′ = k/2 contradicts Claim 3 above (noting w
contains at least 4 points here). Finally, the case j = j′ = k/2 − 2 corresponds to
possibility (1).

(b) j + j′ ≡ 0 mod 4.
Without loss of generality we may assume j > j′. By a ∈ Sc,c′ and Claim 4,
c!"c′ = projwc and hence j = j′+2. Furthermore, k/2 = (j + j′)/2±1. This implies
that either j or j′ is equal to k/2, contradicting c, c′ ∈ Sa,b and Claim 3.

Step 3: the sets D2 and D4 if s, t ≥ 3
The aim of Step 3 is to construct sets D2 and D4 consisting of all pairs of points of Γ at
mutual distance 2 and 4, respectively, possibly containing some pairs of opposite points
as well. Therefore, we first define the sets D′

2 and D′
4, as follows.

A pair (a, b) of points of Γ belongs to D′
2 if

(1) |Sa,b| > 1 and δ(a, b) "= n− 2;

(2) |Ca,b;c| > 1, for all c ∈ Sa,b;

(3) there exists a point c ∈ Sa,b such that c itself and all points c′ ∈ Ca,b;c satisfy
Property P(c) and P(c′) respectively, with

P(z) If y ∈ Ca,b;z and x ∈ Ty,z, then x is at distance n−2 from all points of Ca,b;z∪{a}
but exactly one;

(4) for all c ∈ Sa,b and all c′, c′′ ∈ Ca,b;c we have Sc,c′ ∩ {a, b} = Sc,c′′ ∩ {a, b} and
Ca,b;c \ {c′} = Ca,b;c′ \ {c}.

A pair (a, b) of points of Γ belongs to D′
4 if

(1′) |Sa,b| > 1 and δ(a, b) "= n− 2;

(2′) there exists a point c ∈ Sa,b such that Ca,b;c "= ∅ and such that no point of Γ is at
distance n− 2 from all the points of Ca,b;c.

We show the following assertions.

If δ(a, b) = 2, then (a, b) ∈ D′
2 \D′

4.
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Proof. Clearly, (1) holds. For c ∈ Sa,b, one easily sees Ca,b;c = Γ1(projcab) \ {c, projabc}.
Now (2) and (4) are clear, while (2′) cannot be satisfied. Every point c ∈ Sa,b collinear
with a (such c exists) satisfies P(c), whence (3).

If δ(a, b) = 4, then (a, b) ∈ D′
4 \D′

2.

Proof. Clearly, (1′) holds. Now we put c = a!"b. Then Ca,b;c = Γ1(ac) ∪ Γ1(bc) \ {a, b, c}.
So it is clear that (2′) is satisfied, but certainly not (4).

If δ(a, b) ≡ 2 mod 4 with 2 "= δ(a, b) < n, then (a, b) /∈ D′
2 ∪D′

4.

Proof. Put w = a!"b. We show that, if (1), (2) and (4) hold, then (3) is never satisfied.
Suppose by way of contradiction that we have a point c ∈ Sa,b satisfying (3). Let c′, c′′

be two distinct arbitrary elements of Ca,b;c. Then by Step 2 and the last part of (4), the
paths [w, c], [w, c′] and [w, c′′] have pairwise at most 3 elements in common. Hence it is
clear that some point x on one of these paths can be chosen at distance n−2 from exactly
two members of {a, c, c′, c′′}, contradicting (3).

Now we assume that (1′) holds. Let c ∈ Sa,b be arbitrary. If Ca,b;c = ∅, then (2′) is not
satisfied; otherwise, let Σ be any apartment through a, b. A point x of Σ at distance
n − 2 − δ(w, c) from w lies at distance n − 2 from all elements of Ca,b;c. Hence (2′) does
not hold.

For a pair (a, b) of points of Γ, we define

Sa,b = {x ∈ Sa,b | (a, x), (b, x) ∈ D′
2 ∪D′

4}.

Now a pair (a, b) of points of Γ belongs to D2 (respectively D4) if

(1′′) (a, b) ∈ D′
2 ((a, b) ∈ D′

4 respectively);

(2′′) |Sa,b| > 1;

(3′′) no point of Γ lies at distance n− 2 from all points of Sa,b, except possibly one.

We show the following assertions.

If δ(a, b) = 2, then (a, b) ∈ D2; if δ(a, b) = 4, then (a, b) ∈ D4.

Proof. If δ(a, b) = 2, then clearly Sa,b = Sa,b; if δ(a, b) = 4, then (putting w = a!"b)
Γ1(aw) ∪ Γ1(bw) ⊆ Sa,b ∪ {a, b}. The assertion follows.

If δ(a, b) ≡ 0 mod 4 with 4 "= δ(a, b) < n, then (a, b) /∈ D2 ∪D4.

Proof. If δ(a, b) "= 8, then Claim 4 of Step 1 implies that for any c ∈ Sa,b either δ(a, c) ≡
2 mod 4 or δ(b, c) ≡ 2 mod 4; hence Sa,b = ∅ (and (2′′) is not satisfied). If δ(a, b) = 8
and n "= 12, then similarly Sa,b = {a!"b} (and again (2′′) is not satisfied). If δ(a, b) = 8
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and n = 12, then Sa,b ⊆ (Γ8(a) ∩ Γ8(b)) ∪ {a!"b}. But then, if (2′′) holds, then (3′′) is not
satisfied by considering the point a!"(a!"b).

Hence we have shown that D2 consists of all pairs of collinear points of Γ and some (or
possibly no) pairs of opposite points; likewise D4 consists of all pairs of points of Γ at
mutual distance 4 and some (or possibly no) pairs of opposite points.

Step 4: the set Ω of pairs of collinear points for s, t ≥ 3
We define the set Ω of pairs of points of Γ as follows. A pair (a, b) belongs to Ω if it
belongs to D2 and if there exists a pair of points (c, c′) ∈ D2, with {a, b} ∩ {c, c′} = ∅,
satisfying

(1) whenever {a, b, c, c′} = {v, v′, w, w′}, then Tv,v′ ⊆ Γn−2(w) ∪ Γn−2(w′);

(2) for x ∈ {a, b} and y ∈ {c, c′}, we have (x, y) ∈ D2;

(3) whenever {a, b, c, c′} = {v, v′, w, w′}, then for all z ∈ Tv,v′ , we have (w, z), (w′, z) /∈
D2 ∪D4.

We claim that Ω is precisely the set of pairs of collinear points of Γ. Indeed, let (a, b) ∈ D2

be arbitrary.

First suppose δ(a, b) = 2. Then we can choose two distinct points c, c′ on the line ab (with
{a, b}∩{c, c′} = ∅). It is easy to check that (c, c′), which obviously belongs to D2, satisfies
(1), (2) and (3) above. We now show for later purposes that, if (c, c′) ∈ D2 satisfies (1),
(2) and (3), then both c and c′ are incident with the line ab. First assume c ∈ Γ2(a). If c
is not incident with the line ab, then δ(b, c) = 4 and so (b, c) /∈ D2. Hence cIab. If c′is not
incident with ab, then it must be opposite a, b and c, and hence projabc

′ /∈ {a, b, c}. But
then the point y collinear with c′ on the path [c′, ab] belongs to Ta,b and contradicts (3).
So we may assume that both c, c′ are opposite a, b. But then again the point y collinear
with c′ on the path [c′, ab] contradicts (3).

Hence we have shown that

(∗) if (a, b) ∈ Ω and δ(a, b) "= 2, then for any pair of distinct points c, c′ ∈ D2 satisfying
(1), (2) and (3), we must have δ(x, y) = n, for any two distinct points x, y in
{a, b, c, c′}.

Indeed, if two elements of {a, b, c, c′} would be collinear, then we can let them play the
roles of a and b in the previous paragraph and obtain a contradiction (by remarking that
all conditions (1) up to (3) are symmetric in a, b, c, c′).

Now suppose δ(a, b) = n. We must show (a, b) /∈ Ω. Suppose by way of contradiction
that there exists a pair of points (c, c′) ∈ D2, with {a, b} ∩ {c, c′} = ∅, and satisfying

18



conditions (1),(2) and (3). If n ≡ 2 mod 4, we choose a fixed line M of Γ at distance
n/2 from both a and b. If n ≡ 0 mod 4, we choose a fixed line M at distance n/2 + 1
from both a and b (such a line can be obtained as follows: fix a line A through a and let
B be the line through b opposite A; let a′ be a point on A, a "= a′ "= projAb, and put
b′ = projBa′; let then M be the line of [a′, b′] at distance n/2− 1 from both a′ and b′). In
both cases (by possibly interchanging the roles of the two lines through a, and hence also
of those through b), we may assume that M contains more than four points (this follows
from our assumption that at most one of the parameters s, t is equal to 3). Let Y be a
line at distance j from M , 0 ≤ j ≤ n − 3 − δ(a, M), with projMb "= projMY "= projMa
(note that δ(a, M) < n− 3 since n > 8). Define the following sets TY :

TY := {x ∈ P | δ(x, Y ) = (n− 2)− δ(a, M)− j and projY a "= projY x "= projY b}.

Note that TY ⊆ Ta,b. We first proof, by induction on j = δ(Y,M), that TY "⊆ Γn−2(v),
v ∈ {c, c′}, for all lines Y for which the set TY is defined.

First let j = 0. Then Y = M . Suppose TM ⊆ Γn−2(c). Then it is easy to see that
δ(a, M) = δ(c, M) and projMa = projMc or projMb = projMc. Assume projMa = projMc.
This implies that δ(a, c) ≤ n− 2, so (since (a, c) ∈ D2 by (2)), δ(a, c) = 2, contradicting
(∗). Hence TM "⊆ Γn−2(v) for any v ∈ {c, c′}. Now let j = 2. So let N be a line concurrent
with M , not through the projection of a or b onto M . Suppose TN ⊆ Γn−2(c). Then
δ(c, N) = δ(a, N) = δ(a, M) + 2 and projNc = projNa but projMa "= projMc "= projMb
(because otherwise TM ⊆ Γn−2(c)). Since δ(a, M) is either n/2 or n/2 + 1, we can find a
point of TM at distance 2 (if n ≡ 2 mod 4) or 4 (if n ≡ 0 mod 4) from c, a contradiction
with (3). Hence TN "⊆ Γn−2(v), v ∈ {c, c′} for all lines N concurrent with M , not through
the projection of a or b onto M .

Now let j ≥ 4 be arbitrary, j ≤ n − 3 − δ(a, M) and let Y be a line at distance j
from M with projMb "= projMY "= projMa. Suppose TY ⊆ Γn−2(c). Let [Y, M ] =:
(Y, p, Y ′, p′, Z, . . . , M) (with possibly Z = M). Then δ(c, Y ) = δ(a, Y ) = δ(a, M) + j and
projpc = projpa = Y ′ but projp′a "= projp′c (otherwise TY ′ ⊆ Γn−2(c), contradicting the
induction hypothesis). Let Y ′′ be the line through projY ′c = p′′, different from Y ′. Now
it is readily checked that TY ′′ ∩ Γn−2(c) = ∅, so TY ′′ ⊆ Γn−2(c′). Since also δ(Y ′′, M) = j,
we have that δ(c′, Y ′′) = δ(a, Y ′′) = δ(a, M) + j, projp′′c

′ = projp′′a = Y ′ but projp′a "=
projp′c

′. Let X be a line concurrent with Z, not through p′ or the projection of a or b
onto Z. Consider a line L at distance n−1− δ(a, M)− j from X with projXM "= projXL
(then L is a line all but one of its points are points of Ta,b). It is easy to check that
there is exactly one point of L at distance n − 2 from c, and the same for c′. This is a
contradiction with (1), since L contains at least 3 points of Ta,b. Hence TY "⊆ Γn−2(v),
v ∈ {c, c′}, for all lines Y for which the set TY is defined.

Now consider a line K at distance n−5−δ(a, M) from M for which the set TK is defined.
Let R, R′ and R′′ be three different lines concurrent with K at distance n− 3− δ(a, M)

19



from a (such lines exist because s, t ≥ 3 and since, if K = M , which occurs if n = 10
or n = 12, then M contains at least three points different from projMa or projMb). We
already know that TR "⊆ Γn−2(v), v ∈ {c, c′} , so the only remaining possibility for the
points c and c′ is that (since TR contains at least 3 points) the point c lies at distance
n − 4 from a point r on R, r not on K, with projrc "= R. Because then c is opposite all
but one point of TR′ , we must have that the point c′ lies at distance n − 4 from a point
r′ on R′, r′ not on K, with projr′c

′ "= R′. But now at most two points of TR′′ will be
contained in Γn−2(c)∪Γn−2(c′), a contradiction with (1) and the fact that R′′ contains at
least 4 points. This shows that the points c, c′ cannot exist, so (a, b) "∈ Ω.

This completes our proof in case s, t ≥ 3 and we conclude that α preserves collinearity in
this case.

Step 5: the sets D2, D′
2 and D4 if {s, t} = {2,∞}

The aim of Step 5 is to construct sets D2, D′
2 and D4 (for the case {s, t} = {2,∞}) con-

sisting of all pairs of points of Γ at mutual distance 2 (and the joining lines have infinitely
many points or exactly three points, for D2 and D′

2 respectively) and 4, respectively, pos-
sibly containing some pairs of opposite points as well. Therefore, we first define the sets
E2 and E4, as follows.

A pair (a, b) of points of Γ belongs to E4 if

(1) |Sa,b| > 1 and δ(a, b) "= n− 2;

(2) there is a point c ∈ Sa,b such that |Ca,b;c| = ∞ and such that no point x of Γ satisfies
{c} ∪ Ca,b;c ⊆ Γn−2(x).

A pair (a, b) of points of Γ belongs to E2 if

(1′) |Sa,b| > 1 and δ(a, b) "= n− 2;

(2′) no point lies at distance n− 2 from all elements of Sa,b;

(3′) for every point c ∈ Sa,b we have |Ca,b;c| = 1, and, putting Ca,b;c = {c′}, we must have
(c, c′) ∈ E4.

Similarly as in Step 3, one verifies the following easy observations (using the results about
Sa,b and Ca,b;c in Steps 1 and 2).

If two points a, b are collinear in Γ and the line ab contains exactly three points, then
(a, b) ∈ E4 and (a, b) /∈ E2;
If two points a, b are collinear in Γ and the line ab contains infinitely many points, then
(a, b) ∈ E2 and (a, b) /∈ E4;
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If two points a, b are at mutual distance 4 in Γ, then (a, b) ∈ E4 and (a, b) /∈ E2;
If two non-collinear non-opposite points a, b satisfy δ(a, b) ≡ 2 mod 4, then (a, b) /∈ E4

and (a, b) /∈ E2.

Note that Condition (2′) is needed only to handle the case k = 6 (see the extra possibility
(*) in Step 2 above).

Now we define
Sa,b = {x ∈ Sa,b | (a, x), (b, x) ∈ E2 ∪ E4}.

By definition, a pair (a, b) of points of Γ belongs to D2 if (a, b) ∈ E2 and |Sa,b| = ∞. Also,
a pair (a, b) of points of Γ belongs to D4 if (a, b) ∈ E4, |Sa,b| = ∞ and there are some
c, c′ ∈ Sa,b such that (a, c), (b, c′) ∈ D2. Finally, D′

2 consists precisely of those pairs (a, b)
of points of E4 \ D4 that satisfy |Sa,b| = ∞. As in Step 3, we conclude that D2 consists
of all pairs (a, b) of collinear points with |Γ1(ab)| = ∞, possibly together with some pairs
of opposite points; D′

2 consists of all pairs (a, b) of collinear points with |Γ1(ab)| = 3,
possibly together with some pairs of opposite points; D4 consists of all pairs (a, b) of
points at mutual distance 4, possibly together with some pairs of opposite points.

Step 6: the set Ω of pairs of collinear points for {s, t} = {2,∞}
Note that n ≡ 0 mod 4. We first pin down the set Ω of pairs (a, b) of collinear points
with |Γ1(ab)| = ∞. Therefore we define Va,b, for two arbitrary points a, b of Γ, as Va,b =
Γn−2(a) \ Γn−2(b). Now let Ω be the set of pairs (a, b) of D2 such that there exist points
c, c′, c′′ in Γ, all distinct from a and from b, with the following properties.

(1) Va,b is the disjoint union of the sets Va,b∩Γn−2(c), Va,b∩Γn−2(c′) and Va,b∩Γn−2(c′′);

(2) (a, c′), (a, c′′) ∈ D′
2; (b, c′), (b, c′′) ∈ D4 and (a, c), (b, c) ∈ D2;

(3) no point x in Γn−2(a) ∩ Γn−2(c) satisfies (b, x) ∈ D2 ∪ D′
2; likewise no point x in

Γn−2(b) ∩ Γn−2(c) satisfies (a, x) ∈ D2 ∪D′
2;

(4) a ∈ Sb,c′ ∩ Sb,c′′ ;

(5) if {u, v, w} = {c, c′, c′′}, then v, w ∈ Sa,u ∩ Sb,u.

We now show that Ω is the set of pairs (a, b) of collinear points with |Γ1(ab)| = ∞. Clearly,
if δ(a, b) = 2 and |Γ1(ab)| = ∞, then choosing c ∈ Γ1(ab) \ {a, b} arbitrarily, and putting
{c′, c′′} = Γ2(a) \ Γ1(ab), we see that (a, b) ∈ Ω.

So there remains to show that no pair of opposite points belongs to Ω. By way of
contradiction, let (a, b) be a pair of opposite points of Γ belonging to Ω. Let c, c′, c′′ be
as in (1) up to (5) above.
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Note that δ(a, x) = n = δ(b, x), for x ∈ {c, c′, c′′}. Indeed, by (2), we already know
that δ(a, c′) and δ(a, c′′) are either 2 or n. But distance 2 would contradict the fact that
b ∈ Sa,c′ ∩ Sa,c′′ (Condition (4)). Similarly for (b, c′) and (b, c′′). By (2), we also know
that δ(a, c) and δ(b, c) are either 2 or n. If δ(a, c) = 2 (and so δ(b, c) = n), then the point
collinear with b at distance n− 3 from the line ac lies at distance n− 2 from both a and
c, contradicting Condition (3). Similarly for δ(b, c).

Form now on until the end of the proof, we assume that n is “large enough” (the generic
case) in certain arguments. When n is too small, then either the given argument can be
skipped or a separate but easier argument can be given (and we do not do that explicitly).

Let γ be the path of length n between a and b for which the line of γ through b contains
exactly three points. Denote by Lj the line of γ at distance j (j is odd!) from a and
define for n/2− 1 ≤ j ≤ n− 5,

TLj = {x ∈ P|δ(x, Lj) = n− 2− j, projLj
a "= projLj

x "= projLj
b}.

Let TLn−3 be the set of points on the line Ln−3 different from the projection of a onto this
line. Note that the sets TLj are subsets of Va,b, and that these sets consist of unions of
certain sets Γ1(L) \ {projLa}, with |Γ1(L)| = ∞.

For an element z at distance ≤ n− 2− j from Lj for which projLj
a "= projLj

z "= projLj
b,

we define the set

Tz = {x ∈ P|δ(x, z) = n− 2− j − δ(z, Lj), projza "= projzx "= projzb}.

Note that Tz is the subset of TLj containing the points x for which [x, Lj] contains z.

Let Z be a line for which the set TZ is defined. We first show by induction on iZ :=
n− δ(a, Z) that

(♦) for such a line Z there exist points v, v′ ∈ {c, c′, c′′} such that TZ ⊂ Γn−2(v) ∪
Γn−2(v′). Moreover, for any two points z′, z′′ ∈ Γ1(Z) \ {projZa, projZb}, we have
that Tz′ ⊆ Γn−2(v) ∩ Γn−2(v′), with Tz′ ∩ Γn−2(v) "= ∅ "= Tz′ ∩ Γn−2(v′), implies
Tz′′ ⊆ Γn−2(v) ∩ Γn−2(v′), with Tz′′ ∩ Γn−2(v) "= ∅ "= Tz′′ ∩ Γn−2(v′).

The case iZ = 3 is a straightforward exercise. Now we assume iZ = 5. Then necessarily
|Γ1(Z)| = 3. If Z = Ln−5, then (♦) follows from the previous case, so suppose Z "= Ln−5.
Let r and r′ be the two points on Z different from projZa, and let R, R′ be the lines
through r respectively r′ different from Z. Put Z ′ the line through projZa, different from
Z. We claim that

(*) no point v ∈ {c, c′, c′′} is at distance n−2 from exactly one point of Γ1(R)\{projRa}
and from exactly one point of Γ1(R′) \ {projR′a}.
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Indeed, suppose some v ∈ {c, c′, c′′} is at distance n− 2 from exactly one point of TR and
from exactly one point of TR′ . Then there exists v′ ∈ {c, c′, c′′} \ {v} such that δ(v′, R) =
n − 3 and projR(v) = projR(v′). But then projR′v "= projR′v′ (because δ(v′, projR′v′) =
n− 2) and so the unique point of {c, c′, c′′} \ {v, v′} lies at distance n− 2 from all but two
or three points of R′, a contradiction. Our claim is proved.

If R is not contained in Γn−2(v) for a point v ∈ {c, c′, c′′}, then some point w ∈ {c, c′, c′′}
is at distance n− 4 from exactly one point of TR, and at distance n− 2 from all the other
points of TR. But then there is exactly one point of TR′ at distance n− 2 from w. So the
only possibility to satisfy Condition (1) is that a point w′ ∈ {c, c′, c′′} \ {w} is at distance
n− 4 from exactly one point of TR′ (namely projR′w) and at distance n− 2 from all the
other points of this set and at distance n− 2 from projRw. Whence (♦).

If TR ⊂ Γn−2(v) for some v ∈ {c, c′, c′′}, then δ(v, r) = n−4 and projrc = Z. If projZv = r′,
then we consider a line Z ′′ concurrent with Z ′, different from Z and at distance (n − 5)
from a. But now δ(v, Z ′′) = n − 1 and δ(v, projZ′′Z) = n − 2, so v is at distance n − 2
from exactly two points of TZ′′ , contradicting (*). So projZv = projZa and TZ ⊆ Γn−2(v).

This shows (♦) for the line Z.

Now suppose iZ > 5. Put j = n − iZ = δ(a, Z). Suppose first that |Γ1(Z)| = 3. If
Z = Lj (i.e., if Z belongs to γ), then TLj = TL, with L the unique line concurrent with
Lj and not contained in γ, and with iL = iZ − 2. So the result follows from the induction
hypothesis. Hence we may assume that Z does not belong to γ. Put Γ1(Z) = {x, x1, x2}
with x = projZa, put L = projxa and let Xi be the line through xi distinct from Z,
i = 1, 2. By the induction hypothesis, there are two cases to consider.

(i) There exists v ∈ {c, c′, c′′} such that TX1 ⊆ Γn−2(v). We show that TX2 ⊆ Γn−2(v).
Indeed, δ(v, x1) = j+1 and projx1

v = Z. If projZv "= x2, then clearly TX2 ⊂ Γn−2(v).
If projZv = x2, then consider an arbitrary point p at distance n− 4− j from L for
which projLp /∈ {x, projLa, projLb}. The point p lies at distance n− 2 from c and a
contradiction against (*) arises (considering Tp).

(ii) Suppose now that we are not in case (i) and there exist v, v′ ∈ {c, c′, c′′}, v "= v′,
such that TX1 ⊆ Γn−2(v) ∪ Γn−2(v′). From the proof of the case iZ = 5 now follows
that δ(v, x1) = δ(v′, x1) = δ(a, x1) + 6 = j + 7. If δ(v, x2) = δ(v′, x2) = j + 7, then
TX2 ⊆ Γn−2(v)∪Γn−2(v′). Suppose now by way of contradiction that δ(v, x2) = j+5.
Then we consider a point p at distance n−(j+8) from L such that projLa "= projLp "=
projLb and put Γ1(p) = {projpa, R}. Note that v and p are opposite points of Γ. Put
[R, v] = (R, p′, R′, p′′, . . . , v), and let r be any point incident with R′, p "= r "= p′′.
Then considering Tr and v, we obtain a contradiction to (*).

This shows (♦) for the case |Γ1(Z)| = 3.
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Suppose now |Γ1(Z)| = ∞. Suppose first Z /∈ γ. Let x be any point on Z different from
projZa. By the induction hypothesis, there are two cases.

(i) There exists v ∈ {c, c′, c′′} such that Tx ⊆ Γn−2(v). Similarly as above, one shows
that in this case Ty ⊆ Γn−2(v), for all y ∈ Γ1(Z) \ {projZa}, except possibly for one
point x∗ ∈ Γ1(Z), in which case Tx∗ ∩ Γn−2(v) = ∅.

(ii) There exists v ∈ {c, c′, c′′} such that Tx "= Tx∩Γn−2(v) "= ∅. Again similarly as above,
one shows that in this case Ty "= Ty ∩ Γn−2(v) "= ∅ for all y ∈ Γ1(Z) \ {projZa},
except possibly for one point x∗ ∈ Γ1(Z), in which case Tx∗ ∩ Γn−2(v) = ∅.

Combining (i), (ii) and |Γ1(Z)| = ∞, we readily deduce (♦). If Z ∈ γ, then a similar
reasoning shows the result.

So we have shown (♦) for all appropriate lines Z. Suppose now that there exists v ∈
{c, c′, c′′} with TLn−3 ⊆ Γn−2(v). Define j ∈ N as [a, Ln−3] ∩ [v, Ln−3] = [Lj, Ln−3].
Suppose first n/2 < j ≤ n− 5. Then v lies at distance j from Lj. Consider a point p at
distance n− j − 4 from Lj−2 satisfying projLj−2

a "= projLj−2
p "= projLj−2

b. Then p lies at
distance n− 2 from v and at distance n− 6 from a, and we obtain a contradiction to (*)
by considering Tp and v.

Suppose finally j ≤ n/2 − 1. Then δ(a, v) ≤ δ(a, Lj) + δ(Lj, v) ≤ n − 2, the final
contradiction.

Hence, since at least one element of {c, c′, c′′}must be at distance n−2 from infinitely many
points of Ln−3, there exists v ∈ {c, c′, c′′} satisfying δ(v, Ln−3) = n− 3 and projLn−3

v /∈ γ
(remembering v is opposite b). Now v lies at distance n−2 from exactly one point of TLn−5 ,
so there is a v′ ∈ {c, c′, c′′} \ {v} at distance n − 1 from Ln−5 with projLn−5

v′ /∈ γ. Note
that both v and v′ are opposite the point w := projLn−7

b. Let j be defined as [Ln−7, a] ∩
[Ln−7, v] = [Ln−7, Lj] and let j′ be defined as [Ln−7, a] ∩ [Ln−7, v′] = [Ln−7, Lj′ ] (these are
well-defined since a /∈ [Ln−7, v] ∪ [Ln−7, v′]). Then δ(v, Lj) = j + 6 and δ(v′, Lj′) = j′ + 6,
with projLjv, projLj′v

′ /∈ γ.

Suppose first n/2− 2 < j, j "= n/2− 1 if n ≡ 0 mod 8.

(i) If |Γ1(Lj)| = 3, then, because of the conditions on j, the line Lj−2 has infinitely
many points and the set TLj−2 is defined. We proceed similarly as in (ii) of the proof
of (♦), case iZ > 5 and |Γ1(Z)| = 3 (see above) to obtain a contradiction with (∗).

(ii) If |Γ1(Lj)| = ∞, then let x = projLj
v. Calculating distances, it is easy to check that

Tx∩Γn−2(v) = ∅ and Tx′∩Γn−2(v) "= ∅, for all points x′ ∈ Γ1(Lj)\{x, projLj
a, projLj

b}.
This contradicts (♦).

We now treat the remaining cases. Note that in the foregoing, we may interchange the
roles of j and j′.

24



(iii) If n ≡ 0 mod 8 and j ≤ n/2 − 1, then j′ ≤ n/2 − 1 and |Γ1(Ln/2−1)| = 3. Note
that {j, j′} ⊆ {n/2 − 1, n/2 − 3} (since both v and v′ are opposite a). If j = j′ =
n/2 − 1, then TLn/2−1

∩ Γn−2(v) = ∅ = TLn/2−1
∩ Γn−2(v′), so TLn/2−1

⊂ Γn−2(v′′),
with {v, v′, v′′} = {c, c′, c′′}. But this implies that δ(v′′, Ln/2−1) = n/2 − 1 and
projLn/2−1

v′′ ∈ γ. So, calculating distances, we see that either δ(a, v′′) < n or

δ(b, v′′) < n, a contradiction.

Suppose j = n/2 − 1 and j′ = n/2 − 3, or j = j′ = n/2 − 3. Let a′ and a′′ be the
two points on the line L3 at distance n − 2 from b. Then at least one of these two
points lies at distance n − 2 from the points v, v′ and b, contradicting Condition
(5). This concludes the case n ≡ 0 mod 8.

(iv) If n ≡ 4 mod 8 and j ≤ n/2− 3, then again the case j < n/2− 3 can not occur. So
j = n/2 − 3, and by symmetry, also j′ = n/2 − 3. We proceed similarly as in the
last part of (iii) above to obtain a contradiction with Condition (5).

This shows that a pair of opposite points never belongs to Ω. Hence Ω consists precisely
of all pairs (a, b) of collinear points with Γ1(ab) = ∞.

Finally, we define

Ω = {(a, b) ∈ D′
2|(∀z ∈ Γn−2(b))((a, z) /∈ Ω)}.

Now clearly Ω := Ω ∪ Ω is the set of all pairs of collinear points of Γ.

Hence α preserves collinearity. This completes the proof of the theorem. "

4 A further result

In fact, using the same techniques and ideas, one can show the following variation of
Theorem 1. An explicit proof will be contained in the first author’s Ph.D.-thesis.

Theorem 3 Let (W, S) be the Coxeter system associated with the dihedral group W =
D2m of order 2m. Let ∆ and ∆′ be two generalized m-gons, m ≥ 2, let r be an element
of W , and let α be a surjective map from the set of flags of ∆ onto the set of flags of ∆′.
Denote by δ∗ the Coxeter distance between flags in both ∆ and ∆′. Furthermore, suppose
that the orders of ∆ and ∆′ either both contain 2, or both do not contain 2. If for every
two flags f, g of ∆, we have δ∗(f, g) = r if and only if δ∗(fα, gα) = r, then α extends to
an (anti)isomorphism from ∆ to ∆′.

Note that there are no counterexamples, unlike Theorem 1. This follows from the general
proof, so no separate analysis of W(2) is necessary.
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