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Abstract

In this paper, we define m-clouds in finite generalized hexagons and look for
possible sizes of these point sets. We also give some remarks on m-clouds and
dense clouds in generalized quadrangles.

1 Introduction

In [7], J. A. Thas studied interesting point sets in generalized quadrangles
(e.g. m-ovoids), obtaining strongly regular graphs. By modifying the defini-
tion of m-ovoid, we can apply it to the case of the hexagons. The thus defined
m-clouds are used to characterize thin subhexagons of a generalized hexagon
(these are important in connection with regularity conditions and for char-
acterizations of the classical hexagons). We are also able to extend ‘small’
m-clouds of any generalized hexagon to larger structures.

2 Definitions

A generalized n-gon Γ = (P ,B, I) of order (s, t) is an incidence structure of
points and lines with s+1 points incident with a line and t+1 lines incident
with a point, s, t ≥ 1, such that Γ has no ordinary k-gons for any 2 ≤ k < n,
and where any two elements belong to some ordinary n−gon.

1 The third author is a Research Director of the Fund for Scientific Research -
Flanders (Belgium)
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Distance between two elements x, y is measured in the incidence graph, and
denoted by δ(x, y). The set of elements at distance i of an element x is denoted
by Γi(x). If two points x, y are at distance 2, we call them collinear and write
x ∼ y. If two points x, y are at distance 4 and n > 4, then the unique point in
Γ2(x) ∩ Γ2(y) is denoted by x!y. If two elements x, y are at distance k < n,
the projection of x onto y is the unique element of Γk−1(x) ∩ Γ1(y) and is
denoted by projyx. If two elements x, y are at maximal distance n, they are
said to be opposite. For a survey on generalized polygons, see [6] (Chapter 6)
and [8].

An m-cloud of Γ, 2 ≤ m ≤ t, is a subset C of points of Γ at mutual distance
4, such that ∀x, y ∈ C : x!y is collinear with exactly m + 1 points of C.
We put C∗ = {x!y | x, y ∈ C}, throughout.

3 m-Clouds in Generalized Hexagons

Lemma 1 Let Γ be a generalized hexagon, and C an m-cloud of Γ. Then the
points of C are collinear with a constant number f + 1 of points in C∗.

Proof Take a point x ∈ C, and suppose x is collinear with f + 1 points zi

in C∗. For each zi there are m points yij in C collinear with zi, and different
from x. As yij (= ykl if i (= k (otherwise there arises a quadrangle with vertex
set {x, zi, yij = ykl, zk}), C has at least 1 + (f + 1)m points. As all points in C
are at mutual distance 4, we counted all points in C, hence |C| = 1+(f +1)m,
and f + 1 turns out to be a constant. "

Remark The geometry Γ′ = (C, C∗,∼) clearly is a 2− (1+(f +1)m, m+1, 1)-
design. Hence the number of points in C∗ is (1+(f+1)m)(f+1)

m+1 . This last expression
implies (m + 1) | f(f + 1).

The parameter f is called the index of the m-cloud. For m and f maximal
(i.e. f=m=t), we know that |C| = |C∗| = t2 + t + 1. For f = t, m = t− 1, we
have |C| = t2, |C∗| = t2 + t. (The values f = t− 1, m = t do not occur by the
divisibility condition mentioned above.) We will consider in detail these two
cases.

Lemma 2 No two distinct points of C∗ are collinear.

Proof Let z, u be in C∗ and suppose δ(z, u) = 2. Take points z′ and u′ of C at
distance 2 of z and u, respectively. If z′ = u′ then δ(z, u) = 4, a contradiction
with δ(z, u) = 2. If z′ (= u′, then δ(z′, u′) = 4 by definition of C, hence there
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arises a k-gon, with k < 6. "

Theorem 3 If C is an m-cloud of index m, then the geometry Γ′ = (C, C∗,∼)
is a projective plane of order m. Hence C∗ is also an m-cloud of index m, with
(C∗)∗ = C.

Proof As Γ′ is a 2− (m2 + m + 1, m + 1, 1)-design, it is a projective plane
of order m. By the duality principle in projective planes, C∗ will also be an
m-cloud of index m. "

Theorem 4 If C is an (f − 1)-cloud of index f , then the geometry Γ′ =
(C, C∗,∼) is an affine plane of order f .

Proof As Γ′ is a 2−(f 2, f, 1)-design, this follows again from design theory. "

Corollary 5 If C is an m-cloud with |C| ≥ t2 +1, then C is a t-cloud of index
t, so |C| = t2 + t + 1. The geometry Γ′ = (C, C∗,∼) is a projective plane of
order t. The union C ∪ C∗ is the point set of a thin ideal subhexagon of Γ (i.e.
a subhexagon with 2 points on a line and t + 1 lines through a point).

Corollary 6 If |C| ≥ t2 − t + 2, then either |C| = t2 or t2 + t + 1.
If |C| = t2, then Γ′ = (C, C∗,∼) is an affine plane of order t.

Theorem 7 For k > t−
√

t + 1, a (k− 1)-cloud C of index k is extendable to
a k-cloud C of index k, so that Γ

′
= (C, C∗,∼) is a projective plane of order k.

Proof If k > t −
√

t + 1, then k > t+1
2 and k > t + 1 − k. The (k − 1)-

cloud C defines an affine plane of order k. We introduce some notations, to
make things easier to explain. A CC∗-line is a line intersecting C and C∗. A
C-line only intersects C, while a C∗-line only intersects C∗. We complete the
geometry Γ′ = (C, C∗,∼) with some extra elements (special points and lines)
to a projective plane.

(i) First we show that 2 ‘parallel affine lines’ in Γ′ define a unique (special)
point. This point is not in the affine plane, but it is in the hexagon.
Take two points u1, u2 ∈ C∗, with Γ2(u1) ∩ C and Γ2(u2) ∩ C disjoint. We
show that δ(u1, u2) = 4 in the hexagon. Suppose δ(u1, u2) = 6. Hence the
distance between u2 and a line through u1 is 5. The projection of one of
the k CC∗-lines through u1 onto u2, should be a C∗-line (because 2 points
of C are at mutual distance 4 and not 6). But as the number of CC∗-lines
through a point of C∗ (that is, k) is bigger than the number of C∗-lines
through a point of C∗ (that is, t+1−k), this gives a contradiction. Hence
δ(u1, u2) (= 6. Hence δ(u1, u2) = 4 and u1 ! u2 /∈ C. Put w = u1 ! u2

and suppose u1w and u2w are CC∗-lines , with uiw ∩ C = xi. Then w =
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x1 !x2 /∈ C∗, in contradiction with the definition of C∗. Suppose u1w is a
CC∗-line, u1w ∩ C = x1, and u2w is a C∗-line . Then the distance between
x1 and all points in Γ2(u2) ∩ C is 6, again a contradiction. So w is on a
C∗-line through u1 and on a C∗-line through u2.
All points ui ! uj obtained by this construction, will be referred to as
‘special points’.

(ii) Now we show that each parallel class defines exactly one special point.
We denote this fixed parallel class by C∗‖ , while the corresponding special
points are in (C∗‖)∗ = {ui !uj with ui (= uj and ui, uj ∈ C∗‖}. There are k
elements ui in C∗‖ , each incident with t + 1 − k C∗-lines. Each ui !uj, ui

and uj distinct points in C∗‖ , is on a C∗-line, and if ui !uj and ui !ul, with
ui, uj, ul ∈ C∗‖ and distinct, are on the same C∗-line, the points ui ! uj

and ui ! ul must coincide (as δ(uj, ul) = 4). Also, if a special point be-
longs to a C∗-line containing ui, it corresponds to the parallel class of
ui. Hence ui ∈ C∗‖ is collinear with at most t + 1 − k elements of (C∗‖)∗.
Two points ui, uj of a same parallel class are collinear with a unique
special point ui ! uj, and two special points are collinear with at most
one ui (otherwise there arises a k-gon with k < 6). Hence the geometry
Γ‖ = (C∗‖ , (C∗‖)∗,∼) is a linear space, with k points and at most t + 1− k
lines through a point. If there exists a triangle in Γ‖, there are at most
t + 1− k points on every line.
Now we count on different ways the pairs (q, L) with q a point of Γ‖, L
a line of Γ‖, q I L, and p I L, p (= q with p fixed; further we assume the
existence of a triangle in Γ‖. We obtain

(k − 1)≤ (t + 1− k)(t + 1− k − 1)

0≤ k2 − 2k − 2kt + t2 + t + 1 (∗)

Solving for k, the roots of the associated equation are k = t + 1±
√

t, or
t+1−k = ±

√
t. As we assumed t+1−k <

√
t and clearly t+1−k > −

√
t,

the quadratic form (∗) is negative, hence the inequality is false, so Γ‖
cannot be a non-degenerate linear space. Hence Γ‖ is a unique line with k
points on it. Translated to Γ′ = (C, C∗,∼): each parallel class of affine lines
defines a unique special point. The set of all special points constructed
in this way, is denoted by W .

(iii) Subsequently we show that all points in C ∪W are at mutual distance 4
(this is a first step in proving that C ∪ W is a cloud). First we look at
δ(w, x), w ∈ W , x ∈ C. A point w ∈ W is at distance 2 of k points ui of
C∗, belonging to the same parallel class of lines in Γ′. These lines ui cover
all k2 points of Γ′, hence all k2 points of C are at distance 4 of w. Now
we look at δ(w1, w2), w1, w2 ∈ W . There are k C∗-lines through wi, hence
there are t + 1− k lines through wi not intersecting C∗.
Suppose δ(w1, w2) = 6. The projection of a C∗-line through w1 onto w2
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cannot be a C∗-line through w2 because points of C∗, belonging to different
parallel classes of lines in Γ′, are at distance 4. Hence the k C∗-lines
through w1 should all be mapped onto (different) lines through w2 but
not intersecting C∗. As there are only t+1−k of these lines, this situation
is impossible, hence δ(w1, w2) (= 6.
Clearly, δ(w1, w2) = 2 would imply the existence of a k-gon with k < 6.
Hence δ(w1, w2) = 4, and w1 !w2 /∈ C∗. Also, it is easy to show that the
line Ni joining wi and w1 !w2 is not a C∗-line , i = 1, 2. So Ni is one of
the t + 1 − k lines through wi which is not a C∗-line, i = 1, 2. If we put
W ∗ = {wi ! wj|wi, wj ∈ W}, the geometry Γ∗ = (W, W ∗,∼) is a linear
space with k + 1 points and at most t + 1 − k lines through a point (to
verify this, one can use exactly the same arguments as used in part (ii) of
this proof). By (nearly) the same counting argument, one concludes that
Γ∗ is degenerate, hence W ∗ is a singleton, containing the unique point
w∗ /∈ C∗.

(iv) At this point we can finish the proof: C ∪ W is a k-cloud of index k,
which means that all points of C ∪W are at mutual distance 4, and for
x, y ∈ C ∪W, x (= y : x!y is collinear with k +1 points of C ∪W . Indeed,
for x, y both in C, we know that x!y is collinear with k points of C and
with 1 point of W (the unique special point on the line x!y in Γ′). For
x in C and y in W , the point x! y is in Γ′ the unique line through x of
the parallel class corresponding with the special point y. So x ! y is an
element of C∗, and hence collinear with k + 1 points of C ∪W . For x, y
both in W , we know that x! y = w∗, and w∗ is collinear with all k + 1
points of W ; and as there should be no ordinary quadrangles, w∗ cannot
be collinear with any point of C (indeed, take y ∈ C; y is collinear with
some point a ∈ C∗, a is collinear with a unique point b ∈ W , and b is
always collinear with w∗. If y ∼ w∗, then there arises a quadrangle).

By putting C = C ∪W and C∗ = C∗ ∪ {w∗}, we constructed the desired exten-
sion of Γ′ to a projective plane. "

Corollary 8 A (t−1)-cloud C of index t is extendable to a t-cloud C of index
t, so that Γ

′
= (C, C∗,∼) is a projective plane of order t.

4 m-Clouds in distance-2-regular hexagons

A subgeometry Γ′ = (P ′,B′, I′) of a geometry Γ = (P ,B, I) is an incidence
structure such that P ′ ⊆ P, B′ ⊆ B and I′=I ∩(P ′×L′). The trace pq with p, q
opposite points of a generalized hexagon Γ, is the set of all elements at distance
2 of p and distance 4 of q. A point p is distance-2-regular if |pq∩pr| ≥ 2, for q, r
opposite p, implies pq = pr. A generalized hexagon is point-distance-2-regular
if all points are distance-2-regular.
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For point-distance-2-regular hexagons, m-clouds turn out to be well stud-
ied objects in projective planes. Such a plane is derivable from a generalized
hexagon with a distance-2-regular point as follows. If p is distance-2-regular
and q is opposite p, then there exists a unique weak ideal (i.e. of order (1, t))
subhexagon Γ(p, q) through p and q. If we define Γ+(p, q) to be the set of all
points of Γ(p, q) at distance 0 or 4 of p, and Γ−(p, q) to be the complementary
pointset in Γ(p, q), then Γπ = (Γ+(p, q), Γ−(p, q),∼) is a projective plane. (See
[8] Lemma 1.9.10.) If all points of Γ are distance-2-regular, then Γ is classical
(see [4]), and every associated projective plane Γπ will be classical too (this
means Desarguesian).

Theorem 9 Let Γ be a generalized hexagon of order (s, t), such that all points
are distance-2-regular. Let C be an m-cloud of Γ, with x1, x2, x3 ∈ C and
x1 ! x2 (= x1 ! x3. The geometry ΓC = (C, C∗,∼) is a subgeometry of the
projective plane Γπ = (Γ+(x3, x1 !x2), Γ−(x3, x1 !x2),∼) of order t, such that
all lines of Γπ intersect ΓC in 0, 1 or m + 1 points. The constant f + 1 is the
number of (m + 1)-secants of ΓC through a point of ΓC.

Proof Take the unique weak ideal subhexagon Γ′ := Γ(x3, x1 ! x2). This
geometry contains the ordinary hexagon with vertices {x1, x1 ! x2, x2, x2 !

x3, x3, x3 ! x1}. We put y := x1 ! x2. Now take a point x4 ∈ C and sup-
pose x4 is not contained in Γ′. If x4 ! xi (for i ∈ {1, 2, 3}) is different from
x1 !x2, x2 !x3, x3 !x1, the unique shortest path between x4 and x3 is denoted
by (x4, M, z, L, x3). As Γ′ is ideal, each line of Γ through a point of Γ′ is also a
line of Γ′. So if z belongs to Γ′, x4 = projMx1 also belongs to Γ′ — a contradic-
tion. Hence, u := projLy is different from z. As x1, x2 ∈ yx3 ∩ yx4 , y!u ∈ yx3 ,
and y is distance-2-regular, y!u should be in yx4 . Hence δ(x4, y!u) = 4, and
there arises a pentagon through y!u, u, z and x4. This is a contradiction.
If on the other hand x4 !x1 is equal to x1 !x2 (or some equivalent condition),
we put L = projx1!x2

x4. As x4 = projLx3, x4 belongs to Γ′, again a contra-
diction. Hence each point of C belongs to Γ′. Next, let y1 ∈ C∗, y1 (= y. Then
y1 = x5 ! x6 for points x5, x6 ∈ C. As x5, x6 are points of Γ′, also x5 ! x6 = y
belongs to Γ′. So each point of C∗ belongs to Γ′.
This shows that all points of C are in Γ+(x3, x1 !x2), and all points of C∗ are
in Γ−(x3, x1 ! x2). In particular any two distinct points of C∗ are at mutual
distance 4. If a line of Γπ belongs to C∗, it will be incident with m+1 points of
ΓC. If a line does not belong to C∗, it can (by definition of C∗) only be incident
with 0 or 1 point of ΓC. Clearly f + 1 is the number of (m + 1)-secants of ΓC
through a point of ΓC. "

Theorem 10 Let Γ be a generalized hexagon of order (s, t) with a distance-
2-regular point p. Let q be a point opposite p and suppose C is a subset of the
point set of the projective plane Γπ = (Γ+(p, q), Γ−(p, q),∼), such that all lines
of Γπ intersect C in 0, 1 or m + 1 points. Then C is an m-cloud of Γ.
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Proof Immediate. "

Examples

Let Γ be a generalized hexagon of order (s, t), with a distance-2-regular point
p and Γπ as above.
A conic in Γπ corresponds with a 1-cloud of index t− 1 of Γ.
A maximal arc of type (0, m) in Γπ corresponds with an (m−1)-cloud of index
t of Γ.
Unitals in Γπ correspond with

√
t-clouds of index t− 1 of Γ.

Baer subplanes in Γπ correspond to
√

t-clouds of index
√

t of Γ.

Baer subplanes are special subplanes of a given plane. But any subplane of Γπ

corresponds with a certain cloud, as stated in the following corollary.

Corollary 11 For Γ a point-distance-2-regular hexagon of order (s, ph), there
exists a pi-cloud of index pi for every i dividing h, as well as a (pi − 1)-cloud
of index pi.

If we focus on very small subplanes of a given plane, we have a result about
sets of 4 points xi at mutual distance 4, such that all xi !xj are different. Such
a set is a 1-cloud of index 2, and corresponds with the affine plane of order 2,
contained in every projective plane — unlike the projective plane of order 2.

Corollary 12 Let Γ be a generalized hexagon of order (s, t), such that all
points are distance-2-regular, and t odd. Then a 1-cloud of index 2 in Γ is not
extendable to a 2-cloud of index 2.

Proof If the converse were true, the Fano plane PG(2, 2) would be contained
in a classical projective plane of odd order. "

5 m-Clouds in anti-regular hexagons

Let Γ be a generalized hexagon with 3 distinct points p, u, v such that δ(p, u) =
6 = δ(p, v). We introduce the following subset of the intersection of the traces
pu and pv:

p{u,v} = {x ∈ pu ∩ pv | projxu (= projxv}
A generalized hexagon of order q is anti-regular if |p{u,v}| ≥ 2 implies |pu∩pv| =
3 and |p{u,v}| = 3 for all traces pu, pv. A finite generalized hexagon Γ of order q
is anti-regular if and only if Γ is isomorphic to the dual Split-Cayley hexagon
H(q)D with q not divisible by 3. (This characterization can be found in [1].)
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Theorem 13 Suppose Γ is a generalized hexagon of order q. If Γ is anti-
regular, then Γ contains no m-cloud for m ≥ 2 with |C∗| > 1.

Proof Take a point p ∈ C∗ collinear with x, y, z ∈ C. Let u ∈ C be at
distance 6 of p. Consider u ! z ∈ C∗. This point is collinear with a third
point of C, say v. Put L = projvx and M = projvy As there are no pentagons
in Γ, projxv (= projxu and L (= M . But now we have x, y, z ∈ pv ∩ pu with
projxu (= projxv, projyu (= projyv and projzu = projzv. This is in contradiction
with the antiregularity of Γ. "

6 Remark

As the existence of (t − 1)-clouds of index (t − 1) in point-distance-2-regular
generalized hexagons is impossible, we could wonder whether such a cloud can
exist in a non-classical generalized hexagon. We tried the extended Higman-
Sims technique (see [3] p 9 and [2] p 144) for proving the non-existence of those
clouds in non-classical generalized hexagons, but unfortunately, this gives no
usable result.

7 m-Clouds in generalized quadrangles

As for generalized hexagons, we can define an m-cloud C of a generalized
quadrangle to be a set of points at mutual distance 4, such that ∀x, y ∈ C :
x ! y is collinear with exactly m + 1 points of C. But as quadrangles are now
allowed, one can not compute the size of C as done in Theorem 1. So we could
define a proper m-cloud to be an m-cloud such that no 4 points of C∪C∗ form
an ordinary quadrangle. In this way, counting is possible, but this is still not
sufficient for deriving good results from the extended Higman-Sims technique
— whereas this technique is very useful in the case of the most degenerate
m-cloud possible: if ∀x, y ∈ C, ∀u, v ∈ C∗: x, y, u, v form a quadrangle, then
|C| = m + 1, |C∗| = n + 1 and (m + 1)(n + 1) ≤ s2. (See [3] p 11.) However,
by computer-search, we can tell something about the smallest possible proper
m-cloud of index m in some classical quadrangles of odd order. This cloud is a
2-cloud of index 2, and is in fact the double of a Fano-plane. Let Q(5, s) (resp
Q(4, s)) be the generalized quadrangle of order (s, s2) (resp (s, s)) consisting of
all points and lines on the elliptic quadric in PG(5, s) (resp parabolic quadric
in PG(4, s)). Then we showed that Q(5, 3) and Q(4, 5) do not contain 2-clouds
of index 2, whereas Q(4, 7), Q(4, 11) and Q(4, 13) do contain 2-clouds.
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From m-clouds to dense clouds

For generalized quadrangles, a derived notion is that of a dense cloud. It is
inspired by taking C and C∗ together in one set D. A dense cloud D of index
a is a set of d points such that any point p of D is collinear with exactly
a points of D \ {p}. Then, with the Higman-Sims technique, we can prove
that d ≤ (a+t+1)(st+1)

t+1 . If d attains this bound, then every point outside D is
collinear with exactly a + t + 1 points of D, and D is called maximal.

Remark We have also d ≥ (s+1)(a+1− s) with equality if and only if every
point outside D is collinear with exactly a + 1 − s points of D (see 1.10.1 of
[3]).

Theorem 14 Let Γ be a generalized quadrangle, and let D be a dense cloud
of index a of Γ. If |D| = (a+t+1)(st+1)

t+1 , then every line of Γ is incident with a
constant number of points of D, this constant being equal to a

t+1 + 1.

Proof Take a line L of Γ and suppose L intersects D in k points. Each point
of D on L is collinear with a− k + 1 other points of D, and as |D| attains the
bound (a+t+1)(st+1)

t+1 , each point off D on L is collinear with (a+t+1)−k points
of D not on L. As all points of Γ are at distance at most 3 of L, we counted all
points of D in this way. Hence k+k(a−k+1)+(s+1−k)(a+t+1−k) = |D|,
implying that k is equal to a

t+1 + 1. "

Corollary 15 With notations as above and with the terminology of [7], the
maximal dense clouds of a generalized quadrangle Γ of order (s, t) are the
( a

t+1 + 1)-ovoids of Γ.

The generalized quadrangle Q(5, q) of order (q, q2) is the dual of the hermitian
polar space H(3, q2) in 3 dimensions. Segre [5] shows that, if there is a subset
K of the line set of H(3, q2), such that through every point of H(3, q2) there
pass exactly m lines of K, this set K is either the set of all lines of H(3, q2)
or m = q+1

2 . If m = q+1
2 , such a set of lines is called a hemisystem of H(3, q2).

By dualizing this, we obtain the following: the proper maximal dense clouds
of the generalized quadrangle Q(5, q) are the q+1

2 -ovoids. At present such a
q+1
2 -ovoid is only known for q = 3; it is the 56-cap of Hill in PG(5, 3).

Examples

Let Γ be a generalized quadrangle of order (s, t).
The point set of each subquadrangle of order (s′, t′) is a non-maximal dense
cloud of index s′(t′ + 1). The set Γ2(x) of all points at distance 2 of a given
point x is a dense cloud of index s − 1, but is never maximal. Each partial
ovoid of Γ is a dense cloud of index 0, while each ovoid of Γ is a maximal dense
cloud of index 0. Each union of 1 + i disjoint ovoids is a maximal dense cloud
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of index i(t + 1).
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