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A Characterization of Q(5, q) Using One Subquadrangle Q(4, q)
LEEN BROUNS, JOSEPH A. THAS AND HENDRIK VAN MALDEGHEM†

Let ! be a finite generalized quadrangle of order (q, q2), and suppose that it has a subquadrangle"
isomorphic to Q(4, q). We show that ! is isomorphic to the classical generalized quadrangle Q(5, q)
if at least one of the following holds: (1) all linear collineations of " extend to !; (2) all subtended
ovoids are classical (and we present a uniform proof independent of the characteristic). Further, for
q odd, we prove that if every triad {x, y, z} of " is 3-regular in ! and {x, y, z}⊥⊥ ⊂ ", then !
is classical. We also show that, if for every centric triad {x, y, z} of an ovoid O of the quadrangle
" ∼= Q(4, q), q odd, all points of {x, y, z}⊥⊥ belong toO, thenO is classical.

c© 2001 Academic Press

1. DEFINITIONS

A finite generalized quadrangle ! of order (s, t), with s ≥ 1 and t ≥ 1, is an incidence
structure of points and lines with s+1 points incident with a line and t+1 lines incident with
a point, such that for every non-incident point–line pair (p, L) there is exactly one incident
point–line pair (M, q) such that p I M I q I L . The distance between two elements x, y is
measured on the incidence graph. If two points x, y (respectively lines L ,M) are at distance
2, we call them collinear (respectively concurrent) and write x ∼ y (respectively L ∼ M). If
two elements are at distance 4, we call them opposite. The set of all elements at distance i from
an element u is denoted by !i (u). The set of all elements at distance 2 from both elements u
and v (u and v both points or both lines) is denoted by {u, v}⊥. For p and q opposite points,
this set is called the trace, and may also be denoted by pq = q p. The set of all elements at
distance 2 from all elements of {u, v}⊥ is denoted by {u, v}⊥⊥. If p and q are opposite points,
{p, q}⊥⊥ is called the hyperbolic line defined by p and q . If two elements u, v are at distance
k < 4, we denote the unique element at distance 1 from u and at distance k − 1 from v by
projuv, and call this the projection of v onto u.
A triad is a set of three points at mutual distance 4. A center of a triad is an element at

distance 2 from each point of the triad. If a triad has at least one center, it is called centric. A
triad in a generalized quadrangle of order (q, q2), q '= 1, has exactly q + 1 centers [9, 1.2.4].
Such a triad {x, y, z} of a generalized quadrangle of order (q, q2), q '= 1, is called 3-regular
if the set of points collinear with all centers of the triad (i.e., {x, y, z}⊥⊥), has size q+1. Dual
notions hold for a triad of lines.
A subquadrangle" of order (s′, t ′) of a generalized quadrangle ! of order (s, t) is a subge-

ometry of ! which is itself a generalized quadrangle of order (s′, t ′). If s′ = s," is called full.
If t ′ = t , " is called ideal. A generalized quadrangle of order (s, t) is called thin, whenever s
or t is equal to 1, and is called thick whenever s, t ≥ 2. The dual of a generalized quadrangle
is obtained by interchanging the roles of points and lines.
For a survey on generalized quadrangles, see [9]. For a survey on generalized polygons (the

more general notion), see [13] and [15].
An ovoid O of a generalized quadrangle ! of order (s, t) is a set of points of ! such that

each line of ! is incident with a unique point of O. It follows that |O| = st + 1. Let ! be a
GQ of order (s, t) with a full sub-GQ " of order (s, t ′) and let p be a point of ! \ ". Then
the set of points of " which are collinear with p form an ovoid of " (see [9, 2.2.1]). Such an
ovoid is said to be subtended by p.
†The third author is a Research Director of the Fund for Scientific Research—Flanders (Belgium).
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An ovoid of the projective space PG(3, q), q > 2, is a set of q2 + 1 points of PG(3, q), no
three of which are collinear. An ovoid of PG(3, 2) is a set of five points no four of which are
coplanar.
Let" be a subquadrangle of the generalized quadrangle !. A group G acting on" extends

to !, if for all automorphisms α ∈ G, there is at least one automorphism β acting on ! such
that the restriction of β to " is exactly α.
A thick finite classical generalized quadrangle is, by definition, one of the following:

• the quadrangle arising from a non-singular Hermitian variety in PG(4, q2), denoted by
H(4, q2) and of order (q2, q3);

• the quadrangle arising from a non-singular Hermitian variety in PG(3, q2), denoted by
H(3, q2) and of order (q2, q);

• the quadrangle arising from a non-singular elliptic quadric in PG(5, q), denoted by
Q(5, q) and of order (q, q2); it is the dual of H(3, q2);

• the quadrangle arising from a non-singular (parabolic) quadric in PG(4, q), denoted by
Q(4, q) and of order (q, q);

• the quadrangle arising from a non-singular symplectic polarity in PG(3, q), denoted by
W (q) and of order (q, q); it is the dual of Q(4, q) and it is self-dual if and only if q is
even.

In this article, we take a closer look at Q(5, q) and Q(4, q). So the generalized quadrangle
Q(5, q) is the incidence geometry consisting of the points and lines on an elliptic quadric Q
in the projective space PG(5, q). If one intersects Q with a non-tangent hyperplane PG(4, q)

of PG(5, q), then the point–line structure on the resulting parabolic quadric is the finite gen-
eralized quadrangle Q(4, q). Hence Q(4, q) is in a natural way a sub-quadrangle of Q(5, q).
We consider a fixed sub-quadrangle " ∼= Q(4, q) contained in ! = Q(5, q). The ovoid of

the generalized quadrangle" subtended by a point p of Q(5, q)\", will be the set of all points
of an elliptic quadric in three dimensions. Indeed, all points of ! collinear with p are inside a
hyperplane % of PG(5, q) ⊃ Q(5, q). The intersection of % and the four-dimensional (4D)
space PG(4, q) that contains ", is a three-dimensional (3D) space, containing the elliptic
quadric mentioned. The ovoids of " which are elliptic quadrics in some 3D space are called
classical. For other examples of ovoids on Q(4, q) we refer to [14].

2. MAIN RESULTS

THEOREM 1. Let ! be a GQ of order (q, q2) and let " be a sub-GQ of ! of order (q, q)

with the property that every triad {x, y, z} of " is 3-regular in ! and {x, y, z}⊥⊥ ⊂ ". Then
" is classical and, if q is odd, each subtended ovoid in " is classical.

THEOREM 2. Let ! be a GQ of order (q, q2) and let" be a classical sub-GQ of ! of order
(q, q). Then " ∼= Q(4, q). If the linear group G acting on " extends to !, then all subtended
ovoids in " are classical.

THEOREM 3. Let ! be a GQ of order (q, q2) and let " be a classical sub-GQ of ! of
order (q, q). If all subtended ovoids in " are classical, then ! itself is classical (and hence
isomorphic to Q(5, q)).

COROLLARY 4. Let ! be a GQ of order (q, q2) and let" be a sub-GQ of ! of order (q, q)

with the property that every triad {x, y, z} of " is 3-regular in ! and {x, y, z}⊥⊥ ⊂ ". If q is
odd, then ! is classical.
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COROLLARY 5. Let ! be a GQ of order (q, q2) and let " be a classical sub-GQ of ! of
order (q, q). If the linear group G acting on " extends to !, then ! is classical.

Theorem 1 and Corollary 4 are, for the odd case, the completion of a theorem stated in [12]
(see [9, 5.3.12]). In particular, we shall not need to prove that " is classical under the hy-
potheses of Theorem 1 since this is well known. Likewise, Theorem 3 is not new. For q even,
this theorem was already stated in [14]. For q odd, a proof using cohomology theory is given
in [1]; the same author has recently simplified the necessary calculations and extended his
proof to all q in a yet unpublished manuscript [3]. In the present article however, we provide
a purely geometrical proof, valid for any q. By doing so, we explain a step in the geometrical
proof provided in [14], that was not elaborated in depth.
Remark that we only deal with finite generalized quadrangles in this article, and as Q(5, 2)

(respectively Q(5, 3)) is the unique generalized quadrangle of order (2, 4) (respectively order
(3, 9)) (see e.g., [9]), we may assume that q ≥ 4.

3. PROOF OF THEOREM 1

PROOF. From [12], it follows that " is isomorphic to Q(4, q). To prove the assertion for q
odd, we proceed as follows. Let O be an ovoid subtended by a point p ∈ ! \ ". We say that
a conic of " is subtended by a point a ∈ ! if all its points are collinear with a.

• Let x, y ∈ O. First we show that there are at least q+1
2 conics on O through x and y.

The trace {x, y}⊥ has q + 1 points in common with ". Take a point a ∈ {x, y}⊥ ∩ ".
As O is an ovoid of ", each line of " through a has a point in common with O. Let
z be such a point of O \ {x, y} collinear with a. As each triad of Q(4, q), q odd, has
exactly zero or two centers in Q(4, q) ([9, 1.3.6.iii]), the triad {x, y, z} has a unique
second center b in ". The trace, in Q(4, q), of two non-collinear points of Q(4, q) is
a conic on Q(4, q). We show that the conic {a, b}⊥ ∩ " = Cxyz through x, y and z, is
completely contained in the ovoid O. As each point of {x, y, z}⊥⊥ is—by definition—
collinear with a, b ∈ {x, y, z}⊥ and—by assumption—{x, y, z}⊥⊥ ⊂ ", each point of
{x, y, z}⊥⊥ is in {a, b}⊥ ∩ " = Cxyz , with |Cxyz | = |{x, y, z}⊥⊥| = q + 1. Hence
Cxyz = {x, y, z}⊥⊥. As each point r of {x, y, z}⊥⊥ is collinear with p ∈ {x, y, z}⊥,
r(∈ ") will be a point of the ovoid O subtended by p. Hence the conic Cxyz through
x, y and z is completely contained in the ovoidO. As we can repeat the same reasoning
for all points in {x, y}⊥ ∩", we obtain exactly q+1

2 conics onO through x and y which
are subtended by two points of ". A conic on O subtended by two points of " will be
called an s-conic.

• Now we show that there are q(q+1)
2 s-conics on O through a point x ∈ O. By the

former reasoning, we constructed q+1
2 s-conics through each of the (q2 + 1)q2 pairs of

points onO, so there are (
q+1
2 )(q2+1)q2
(q+1)q = q(q2+1)

2 such conics onO. Hence there will be
q(q2+1)

2 (q+1)
q2+1 = q(q+1)

2 s-conics through a single point of O.
• Thirdly, we count the number of s-conics onO through a point x ofO that share exactly
one point (the point x) with a given s-conic C ⊂ O through x . As there are q points
on C different from x , and as there are q−1

2 s-conics different from C through x and a
second point of C , there are q( q−1

2 ) s-conics different from C that intersect C in two
points. Hence there are q(q+1)

2 − 1− q( q−1
2 )= q − 1 s-conics that share just the point

x with C . We shall denote those s-conics by Ci , i = 1, . . . , q − 1, and put C = C0.
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• Now we prove that also those q − 1 conics Ci , i > 0, mutually share exactly one point.
Suppose C is subtended by the points a, b ∈ ". Take a line L of " through x , not
through a or b. The projections y′, z′ on L of the points y, z ∈ C \ {x}, y '= z, will
never be equal, as this would imply that the triad {x, y, z} has three centers (i.e., a, b and
y′). Hence there is a one-to-one correspondence between the points of C and the points
on the line L through x . So every conic on O subtended by a point of L , will intersect
C in at least two points (x included). So none of the points of L can subtend a conic Ci .
Hence the subtending points of the q − 1 conics Ci , i = 1, 2, . . . , q − 1, can be found
on the lines xa and xb (for each conic, there is one subtending point on xa and one on
xb). If two of those conics, say subtended by r respectively s, with r, s ∈ xa, would
intersect each other in a point u '= x , there would arise a triangle with vertices u, r and
s. So we found q s-conics through x that mutually just have x in common—and hence
cover all q2 + 1 points of O.

• Now by Gevaert et al. [8] all conics Ci , i = 0, 1, . . . , q − 1, have a common tangent
line T at x . By the same paper, as O contains conics different from C0,C1, . . . ,Cq−1,
the ovoid O is classical, that is, belongs to a PG(3, q). !

Remark that we only used the fact that every triad {x, y, z} which is centric in" is 3-regular
in ! and satisfies {x, y, z}⊥⊥ ⊂ ". Triads without center in " are not needed to prove the
assertion for q odd.
From the previous proof, we can also deduce the following corollary.

COROLLARY 6. Let " be the classical GQ Q(4, q) of order (q, q), q odd, and letO be an
ovoid of " such that for every centric triad {x, y, z} of O, the set {x, y, z}⊥⊥ belongs to O.
Then the ovoid O is classical.

4. PROOF OF THEOREM 2

PROOF. As each point of ! will induce an ovoid in ", and the classical generalized quad-
rangle W (q) has no ovoids for q odd (see [9, 3.4.1])," is isomorphic to Q(4, q). This proves
the first assertion.
From now on, O is a subtended ovoid in". The linear group G acting on" ∼= Q(4, q) (or,

equivalently, acting on the dual W (q)), is the group PGSp4(q) of all collineations of W (q)

induced by PGL4(q) (see [15, pp. 152–154]), and has order q4(q4 − 1)(q2 − 1).
As every point in ! \ " subtends exactly one ovoid, the number of points in ! \ " (i.e.,

q2(q2−1)) is an upper bound for the size of the orbit G(O) of a subtended ovoidO, and hence
we have a lower bound for the size of the stabilizer GO of a subtended ovoid O under G.

|G| = |GO| · |G(O)|
⇒ |GO| ≥ |G|

q2(q2−1)
⇒ |GO| ≥ q2(q4 − 1).

Now the proof is split up, according to the characteristic of GF(q).
For q odd, we proceed as follows. We take a triad in " which is centric in ", say {p0, p1,

p2}. Let p be a center of the triad in ! \ ", then p0, p1 and p2 belong to the ovoid Op
subtended by p. As we know a bound for the size of the group GO stabilizing Op, we can
deduce that {p0, p1, p2}⊥⊥ is contained in Op, hence contained in ". By Theorem 1, Op is
classical.
For q even, we point out that for the (self-) dual generalized quadrangle W (q) in PG(3, q),

the group stabilizing O is 3-transitive. This allows us to conclude that O is classical.
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q odd
The group GO has order at least q2(q4 − 1), but cannot act 3-transitively on the point set

of O. Indeed, we show that not all triads of O are centric, and as a centric triad will never be
the image of a non-centric triad, GO is not 3-transitive on O.
Let X be the number of points of " that are centers of some triad {p0, p1, p2} of O. As

a point of O can never be such a center, and each point not in O is a center of such a triad,
X = |"\O|= q3+q. So we count X (q+1)q(q−1)/6 = q2(q4−1)/6 pairs (c, {p0, p1, p2})
with c a center of the triad {p0, p1, p2}. If Y is the number of centric triads on O, we count
2Y pairs (c, {p0, p1, p2}) (as any triad has zero or two centers, see [9, 1.3.6iii]). Hence Y =
q2(q4−1)

12 , so not all triads of O (they are (q2 + 1)q2(q2 − 1)/6 in total) are centric. Similarly,
one shows that exactly q2−1

2 triads {p0, p1, p2} ⊂ O, with p0 and p1 given, are centric.
Now we concentrate on the stabilizer GO,x0,x1,x2 fixing O and three points x0, x1, x2 ∈ O.

As the orbit for GO of x0 has at most q2 + 1 elements, the stabilizer GO,x0 of x0 in GO has
order at least q2(q2 − 1).
As the orbit for GO,x0 of x1 has size at most q

2, the group GO,x0,x1 has order at least
(q2 − 1).
As GO,x0,x1 is not transitive on the point set of O \ {x0, x1}, the orbit for GO,x0,x1 of x2

has less than q2 − 1 elements, hence the group GO,x0,x1,x2 has order greater than 1. Let
{p0, p1, p2} ⊂ O be a centric triad of ", with centers x and y.

• Suppose the stabilizer GO,p0,p1,p2 has order greater than 2. As the orbit of the center
x for GO,p0,p1,p2 has size at most 2, the size of the stabilizer of x in GO,p0,p1,p2 is
greater than 1. Let α be a non-identity collineation of this group GO,p0,p1,p2,x . As α

fixes the three lines xp0, xp1, xp2, this linear collineation fixes all lines through x . As
also y is fixed under α, the trace x y is pointwise fixed. Let p3 be a point of O collinear
with x , and suppose p3 /∈ x y . As p3 = pα

3 , the points x, p3 and xp3 ∩ x y would be
three fixed points on the line xp3, hence all points on xp3 are fixed and α must be the
identity by [15, 4.4.2 (v)]. Hence p3 ∈ x y , and every point of x y = {p0, p1, p2}⊥⊥

belongs to the ovoid. So, by Corollary 6, O is classical.
• Suppose the stabilizer GO,p0,p1,p2 has order exactly 2. Hence we can assume that the
non-identity collineation of GO,p0,p1,p2 interchanges the centers x and y (otherwise,
the same reasoning as above holds, to conclude that all points of {p0, p1, p2}⊥⊥ are
inside O).
Also, the size of the orbit of the (ordered) triple (p0, p1, p2) is at least q

2(q4−1)
2 , hence

equal to 6Y = q2(q4−1)
2 since exactly 6Y ordered triples are centric. Hence GO acts

transitively on the set of ordered centric triads. Consequently GO acts 2-transitively
on O. Dually, with O there corresponds a spread S of W (q) on which PGSp4(q) acts
2-transitively. Now, by [10] and [4], the spread S is regular, hence O is classical.

q even
To simplify the argumentation, we consider the symplectic quadrangle W (q) in PG(3, q)

instead of Q(4, q) (which are isomorphic for q even). The groupGO has order at least q2(q4−
1). Let p0, p1 and p2 be three distinct points of O.
As the orbit for GO of p0 has at most q2 + 1 elements, the group GO,p0 has order at least

q2(q2 − 1).
As the orbit for GO,p0 of p1 has size at most q

2, the group GO,p0,p1 has order at least
q2 − 1.
As the orbit for GO,p0,p1 of p2 has at most q

2−1 elements, the group GO,p0,p1,p2 is trivial
if and only if GO acts sharply 3-transitively on O, and GO has order q2(q4 − 1).Note that O
being an ovoid of W (q) is also an ovoid of PG(3, q); see [11].
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• If GO,p0,p1,p2 is trivial and so GO acts 3-transitively on the ovoid O of PG(3, q), then
O is an elliptic quadric; see [5, p. 277, 53]. Hence O is classical.

• So we may assume that GO,p0,p1,p2 is not trivial. We show that in this case the order of
GO,p0,p1,p2 is exactly 2, by pointing out that the non-identity element of GO,p0,p1,p2 is
unique. First we remark that, since O is an ovoid of PG(3, q), the three distinct points
p0, p1, p2∈ O ⊂ W (q) define a plane in PG(3, q). If ζ is the symplectic polarity
defining W (q) and if π is the plane containing p0, p1, p2, then πζ = x is the unique
center of {p0, p1, p2}. As {p0, p1, p2} is fixed elementwise by every α ∈ GO,p0,p1,p2 ,
also x is fixed by every such α. As p0, p1, p2 and x are four linearly independent points
in the plane π = 〈p0, p1, p2〉, α fixes every point of this plane. Hence π is the axis of
the perspectivity α. Let c be the center of α and let a be a point ofO which is not fixed.
Then a, aα, aα2 are three points of O on the same line ac of PG(3, q), hence a = aα2 .
Consequently α is an involution. As there is an odd number of points on a line, the
center of the involution α should be in the axis, that is, c ∈ π , and hence α is an elation.
Now we look for the center c of α, somewhere in the plane π . If c ∈ O, there would

be three points of O on a line of PG(3, q) (namely, c, a and aα for all a ∈ O \ π ). If
c '= x , c ∈ π \ O, then there are (precisely) q lines of the quadrangle through c, not
in π . Let L be such a line, with l the unique point of O on L . Then lα also belongs to
O, lies on L , and is different from l. Hence there are two points of O on a line of the
quadrangle, a contradiction. So c = x is the center of the elation α. Now we show that
α is unique. Suppose α′ is different from α and also belongs to GO,p0,p1,p2 . Let b be
a point of O, not in the plane π . Then b, bα, bα′ are three different points of O on the
line xb of PG(3, q), a contradiction. Hence the order of GO,p0,p1,p2 is exactly 2.
By the formula |GO| = |GO,p0,p1,p2 ||GO(p0, p1, p2)|, we know that the orbit of an

ordered triple (p0, p1, p2) of O has length at least q
2(q4−1)
2 . Hence |GO(p0, p1, p2)|

is either q
2(q4−1)
2 or q2(q4 − 1). If |GO(p0, p1, p2)| = q2(q4 − 1), then GO acts 3-

transitively onO and we are done by [5, p. 277, 53]. So wemay assume that |GO(p0, p1,
p2)| = q2(q4−1)

2 . Hence |GO| = q2(q4 − 1). As |GO| = |GO,p0,p1 ||GO(p0, p1)| and
|GO(p0, p1)| ≤ (q2 + 1)q2, we have |GO,p0,p1 | ≥ q2 − 1. Also, |GO,p0,p1 | =
|GO,p0,p1,p2 ||GO,p0,p1(p2)|. We know that |GO,p0,p1,p2 | = 2. It follows that |GO,p0,p1
(p2)|≥ q2−1

2 . Hence |GO,p0,p1(p2)| ∈ {q2 − 1, q
2−1
2 }. As q is even, |GO,p0,p1(p2)| =

q2−1, and so |GO,p0,p1 | = 2(q2−1) and |GO(p0, p1)| = (q2+1)q2
2 . Now let (a, b) and

(a′, b′) be ordered pairs, each consisting of distinct points ofO. Let c1, c2 ∈ O\{a, a′},
with c1 '= c2. As |GO,c1,c2(a)| = q2 − 1, there is an element θ ∈ GO,c1,c2 for
which aθ = a′; let bθ = b′′. Now let d ∈ O \ {a′, b′′, b′}. Then there is an ele-
ment θ ′ ∈ GO,a′,d for which b′′θ ′ = b′. Hence aθθ ′ = a′ and bθθ ′ = b′. It follows that
|GO(p0, p1)| = (q2 + 1)q2, a contradiction. !

REMARK. Another approach of the proof for q odd goes as follows: one can show that
the subgroups of PGL4(q) large enough to contain GO can not contain GO unless they are
isomorphic to the stabilizer of the classical ovoid. The only cases to consider (and exclude)
were the stabilizer of a point and the stabilizer of a line, using [6]. This was suggested to us
by Penttila.

5. PROOF OF THEOREM 3

5.1. Definitions. Some of the lemmas and most notions used in the following paragraphs
can also be found in [1, 2, 14], but we recall them for coherency reasons.
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Let ! be a generalized quadrangle of order (q, q2), and " a generalized subquadrangle of
order (q, q), isomorphic to Q(4, q). If L is a line of ! \ ", then the unique point of L in
" will be denoted by the corresponding lowercase letter l. An ovoid O of " subtended by a
point p of ! \ ", is denoted by Op.
An ovoid O in " is called doubly subtended if there are exactly two points in ! \ " that

subtend O.
A rosette (of ovoids) R of a Q(4, q) based at a point r of Q(4, q) is a set of ovoids with

pairwise intersection {r} such that {O \ {r}|O ∈ R} is a partition of the points of Q(4, q)

not collinear with r . The point r is called the base point of R. It follows that a rosette has q
ovoids.
A rosette (of conics) R of a Q−(3, q) based at a point r is a set of plane intersections of

size q + 1 with pairwise intersection {r} such that {C \ {r}|C ∈ R} is a partition of the points
of Q−(3, q). It follows that a rosette of conics has q elements and that these q conics have the
same tangent at r .
A line L of ! \ " with L ∩ " = {l} will subtend a rosette as follows: every point of L \ {l}

subtends an ovoid of " through l. As there are no triangles in !, two ovoids Ox ,Oy with
x, y different points of L \ {l}, will never share a second point. Hence Ox ,Oy have pairwise
intersection l, and {Ox }x∈L\{l} is a rosette.
A flock F of an ovoid O of PG(3, q) is a partition of all but two points of O into q − 1

disjoint ovals Ci . The remaining points x, y are called the carriers of the flock. A flock F =
{C1, . . . ,Cq−1} is called linear if all planes πi , with Ci ⊂ πi , contain a common line L . It
has been proved that every flock of an ovoid is linear (see [7]).
A linear flock is uniquely defined by its two carriers, or by two of its ovals, or by an oval

and a carrier. (Indeed, the line L that is common to all planes πi of the ovals Ci ∈ F , is also
the intersection of the tangent planes of O at the carriers of F (equivalently, if q is odd, L is
the polar line of the line xy with respect to the polarity defining O).)

5.2. Lemmas. For the following lemmas, we assume ! to be a GQ of order (q, q2) with a
classical sub-GQ " of order (q, q). We also assume that all subtended ovoids of " by points
of ! \ " are classical.

LEMMA 7. Each subtended ovoid in " is doubly subtended.

PROOF. For any triad {x, y, z} of ! we have |{x, y, z}⊥| = q + 1, so an ovoid of " is
subtended by at most two points of !. As there are q2(q2−1)

2 classical ovoids in Q(4, q) (i.e.,
the number of elliptic quadrics on Q(4, q)), there are at most that many subtended classical
ovoids in Q(4, q). As each subtended ovoid in " is maximally doubly subtended, there are
at most 2 q

2(q2−1)
2 points in ! \ " (as each point of ! \ " subtends a classical ovoid). As the

number of points of ! \ " is equal to q2(q2 − 1), each subtended ovoid is exactly doubly
subtended. !

If two distinct points x, y ∈ ! \ " subtend the same ovoid, they are called twins, and we
write x tw = y. Also, we call two ovoids tangent at a point x if their intersection is precisely
{x}.
LEMMA 8. IfO1 andO2 are two subtended ovoids in", tangent at a, then there is a unique

rosette of classical ovoids through O1 and O2, and moreover this rosette is subtended by a
line.

PROOF. Let %i be the 3D space containing Oi , with i = 1, 2. As O1 ∩ O2 = {a}, the
common plane π of %1 and %2 contains a. As π contains a unique point of Oi , it is the
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unique tangent plane of Oi at a in %i , i = 1, 2. Let R∗ = {Oi }qi=1 be the rosette we want
to construct. If 〈O3〉 had an intersection plane with 〈O1〉 different from π , we would have
|O1 ∩ O3| = q + 1, a contradiction. So all 〈Oi 〉, with Oi in R∗, should contain π . Hence
taking the intersection of Q(4, q) with the q 3D spaces through π that are not tangent to
Q(4, q) at a, we constructedR∗ in a unique way.
Now we show that R∗ is subtended. Let O1 be subtended by the point k1. The rosette RL

subtended by L := ak1 will, of course, contain O1. Let O′
i be an ovoid of RL subtended

by xi ∈ L \ {k1}, xi collinear with a point of O j \ {a}. Let %′
i be the 3D space containing

O′
i . Using the same arguments as above, we conclude that %1 and %′

i intersect in the unique
plane π tangent to O1 at a in %1. As this plane is the same as the one constructed above, O j
coincides with O′

i . HenceR∗ is subtended by the line L . !

From this result, it follows that to each line L of !\" subtending the rosetteRL = {Oi }qi=1,
one can associate the unique plane πL being the common plane of all 3D spaces %i , with %i
containing Oi . We shall refer to the plane constructed in this way as the tangent plane πL of
" defined by L .

LEMMA 9. If two subtended ovoids O1 and O2 of " are tangent at some point a, and the
point ki subtends Oi (i = 1, 2), then either k1 and k2 (and hence ktw1 and ktw2 ) are collinear,
or ktw1 and k2 (and hence k1 and ktw2 ) are collinear.

PROOF. By assumption we have O1 ∩ O2 = {a}. Suppose ktw1 '∼ k2, k1 '∼ k2. Then
the q ovoids subtended by the q points on ak1 form the unique rosette through O1 and O2
(Lemma 8). But the same holds for the points on aktw1 and ak2. Hence there are 3q different
points defining q ovoids. This is impossible, as we know that each ovoid is doubly subtended
(Lemma 7). !

LEMMA 10. Let R be a rosette of classical ovoids with base point r , and let O be a clas-
sical ovoid not belonging to this rosette. If r /∈ O, then the intersection of R ∪ {πr }, with πr
the tangent hyperplane of Q(4, q) at r , and O consists of a flock F and its carriers a, b. If
r ∈ O, then the intersection ofR and O is a rosette of q conics on O through r.

PROOF. Obvious. !

5.3. Sketch of the proof of Theorem 3. In order to prove the result, we use the concept of a
regular pair of lines. A pair of lines of a generalized quadrangle of order (s, t) is called regular
if it is contained in a (necessarily unique) subquadrangle of order (s, 1).
In the first part of the proof, we show that all pairs of lines of ! are regular if they contain

twins. Secondly, we show the same for lines not containing twins. These results make sure
that we can use a lot of grids for constructing a lot of classical subquadrangles, as shown in
the third part. In the fourth part, we show that we constructed enough classical subquadrangles
(i.e., one through every dual window of !), so that we must conclude that ! is classical too.

5.4. Part 1: regularity for line pairs containing twins.

THEOREM 11. Let ! and " be as above. Let the points l ′ and k′ of ! \ " be twins, and
consider a line L through l ′, and a line K through k′, with L ∩ K = φ. Then (L , K ) is a
regular pair of lines.

PROOF. The subtended ovoid O = Ol ′ = Ok′ intersects L in l and K in k. The flock of O
with carriers l and k is denoted by F .
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1. First we show that every line of {L , K }⊥ \ {l ′k, lk′} corresponds to the flock F of O.
Consider a line U of {L , K }⊥, different from lk′ and l ′k. We put U ∩ " = {u},

U∩L = {l ′′},U∩K = {k′′}. LetR be the rosette of ovoids with base point u subtended
by the line U . As u /∈ O (avoiding triangles), R intersects O in a flock together with
its two carriers (Lemma 10). As l ′′ ∈ U ∩ L subtends an ovoid Ol ′′ touching O in l, l ′′
defines the single point l on O. Similarly for k defined by k′′ ∈ U ∩ K . Hence every
line U ∈ {L , K }⊥ \ {l ′k, lk′} defines on O the flock F of O with carriers l and k.

2. Now we can show the regularity of L and K .
Put U0 := lk′,U1 := l ′k and {L , K }⊥ := {Ui }i :0→q . Let N be any line of ! distinct

from L and from K . We claim that, if N intersects U2 and U3, then it will also intersect
U0 and U1. Using this result, we shall show that N also intersects Ui for i ≥ 4.
The intersection points of N with U2 and U3 are respectively n2 and n3. As n2 and

n3 are on lines of {L , K }⊥, both conics Cn2 := O∩On2 and Cn3 := O∩On3 belong to
the flock F ofO. Hence, by Lemma 10, every point ni of N will define an elementOni
of F ∪ {l, k}. So one of the points of N , say n0, will define the carrier l, or, equivalently,
subtend an ovoid tangent to O at the point l. Hence n0 ∼ l. But On0 tangent to O
implies n0 ∼ l ′ or n0 ∼ k′ (see Lemma 9). The first case (n0 ∼ l ′) yields a triangle, so
n0 is collinear with k′. This implies n0 ∈ lk′ = U0, so N and U0 intersect.
The same argument holds for the point n1 ∈ N that defines the carrier k of F : the

point n1 belongs to l ′k = U1, so N and U1 intersect. This shows our claim.
Nowwe show that, if N intersectsU2 andU3 (and henceU0 andU1), N also intersects

Ui for i ≥ 4. To avoid too many indices, we show this for i = 4. Put projU4n2 = p.
By our claim, the line n2 p intersects k′l, inducing a triangle if n2 p '= N . Hence p I N .
This concludes the proof. !

5.5. Part 2: regularity for line pairs not containing twins.

THEOREM 12. Let ! and" be as above. Let L , K be two opposite lines of ! \", such that
no pair of points (l ′, k′), with l ′, k′ /∈ ", can be found such that l ′ ∈ L , k′ ∈ K and l ′tw = k′.
Then (L , K ) is a regular pair of lines.

PROOF. Consider two linesU, V of !\" in {L , K }⊥. Again, corresponding uppercase and
lowercase letters are used for a line of ! \ ", respectively the unique point of " on that line.
So we can consider the four points l, k, u and v in", and we assume that they are all different.
By Theorem 11 we may suppose that {U, V }⊥, respectively {L , K }⊥, does not contain two
lines A and B for which there exist points a′, b′ with a′ ∈ A, b′ ∈ B and a′tw = b′.

1. In the first part of this proof, we show that l, k, u and v belong to a common plane.
Consider the tangent planes πL , πK , πU and πV at " defined by respectively L , K ,U
and V (see definition following Lemma 8).

• Let a be the common point of U and L . As a subtends the ovoid Oa that belongs
to the rosette RL as well as to the rosette RU , the planes πL and πU both belong
to the 3D space %a defined by %a ∩ Q(4, q) = Oa . Hence πL and πU share
a common line (as l '= u, πL and πU are not equal). The same result holds for
each of the pairs (πL , πV ), (πK , πU ) and (πK , πV ). Let πL ∩ πU = NLU—with
similar notation for all other above pairs of planes.

• Now we show that πL and πK only have a point in common. Indeed, if πL ∩ πK
were a line and l ∼ k, then 〈πL , πK 〉 would be a 3D space intersecting Q(4, q) in
the cone Q(4, q) ∩ 〈l⊥〉 respectively Q(4, q) ∩ 〈k⊥〉, yielding a contradiction. If
πL ∩ πK were a line and l '∼ k, then 〈πL , πK 〉 is a 3D space intersecting Q(4, q)
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in an ovoid touching both πL and πK , which hence is subtended by a point of L
and by a point of K . As L ∩K = φ, this would imply that L and K contain a twin
pair (l ′, k′), in contradiction with the assumptions.
If πU and πV intersected in a line, then U and V would contain a twin pair

(u′, v′) (u′ ∈ U, v′ ∈ V ), a contradiction. So πU ∩πV is a point. This also implies
that the four lines NLU , NLV , NKU and NKV are all distinct. Since both πK and
πL contain NLU ∩ NKU and NLV ∩ NKV , these points coincide. Hence all lines
contain a common point t .

• Now we are ready to show that l, k, u and v belong to a common plane.† (We
refer to the picture.) From now on, throughout the whole argument and unless
stated otherwise, we work in the standard quadratic extension PG(4, q2) of the
ambient projective space PG(4, q) of Q(4, q). Hence, for instance, the plane πL
will be viewed as a plane over GF(q2) and contains q4 + q2 + 1 points. Also, the
quadric Q(4, q) extends uniquely to a quadric Q(4, q2) in PG(4, q2).
First we consider πL and πU . In PG(4, q), the 3D space 〈πL , πU 〉 intersects

Q(4, q) in an ovoid tangent to πL at l and tangent to πU at u. In PG(4, q2),
however, the intersection of Q(4, q2) with πL is the union of two lines through
l, say L1 and L2. The same holds for Q(4, q2) ∩ πU : this is the union of two
lines U1,U2 through u. Up to choice of indices, L1 and U1 will intersect in a
point of NLU = πL ∩ πV—as L2 and U2 will do. The line through the points
L1 ∩ πV and U1 ∩ πK is denoted by X1; the line through the points L2 ∩ πV and
U2 ∩ πK is denoted by X2. Hence we obtain two triangles with lines respectively
{L1,U1, X1} and {L2,U2, X2}, that are in perspective from the point t (indeed,
the vertices of both triangles are on NLU , NKU and NLV ). Hence we can apply
the theorem of Desargues to conclude that l, u and x , with {x} = X1 ∩ X2, are
collinear.
Using the same arguments in the 3D space 〈πK , πV 〉, we can conclude that k, v

and x (indeed the same point x) are collinear.
Hence l, k, u and v are in the same plane πlkuv := 〈l, k, u, v〉, and this plane

clearly also defines a plane of PG(4, q), since it contains the non-collinear set of

†This is the point where the proof of Theorem 7.1 of [14] is incomplete. At p. 250 (a), two planes (in particular πl
and lmu, with m renamed k in our version) are supposed to intersect in a line, whereas this is not the case in the
general 4D setting.
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points {l, k, u, v}. We conclude that l, k, u and v are either on an irreducible conic
or on two different lines (lk and uv) of Q(4, q).

2. In the second part of this proof, we show that (L , K ) is a regular pair of lines.
• Suppose the conic πlkuv ∩ Q(4, q) = C defined by L , K ,U, V is irreducible.
Put {L , K }⊥ = {U, V, W1, . . . ,Wq−1} where l ∈ W1, k ∈ W2. Let wi be the
common point of Wi and " (i ≥ 3). Then L , K ,U,Wi (i ≥ 3) also define the
conic C (as a plane is defined by three non-collinear points), implying wi ∈ C .
Hence C = {l, k, u, v, w3, . . . , wq−1}.
To prove that (L , K ) is regular, we have to check the following: if Y intersects

U, V ∈ {L , K }⊥, then Y will also intersect Wi , i ∈ {1, . . . , q − 1}. And indeed,
interchanging the roles of L , K andU, V in the first part of this section, it follows
that y ∈ C . Now again by this reasoning (substituting Y for K ), every line con-
taining a point of L and a point of Y , should meet Q(4, q) in a point of C . Hence
Wi and Y are concurrent for all i . Hence Y ∈ {L , K }⊥⊥. It follows that the pair
(L , K ) is regular.

• Secondly, consider the case where πlkuv ∩ Q(4, q) = C is reducible. So lk and
uv are distinct lines, and the conic C = lk ∪ uv is uniquely defined by any three
of the points l, k, u and v. Let {L , K }⊥ = {U, V,W1, . . . ,Wq−1} with W1 = lk.
Let wi be the common point of Wi and Q(4, q) for i > 1 and let w1 be the
common point of lk and uv. Then U,Wi , L and K , i > 1, also define the conic
C , so wi ∈ C . Clearly wi ∈ uv, i > 1. Hence uv = {u, v, w1, . . . , wq−1}. Let
Y ∈ {U, V }⊥ \ {L , K , uv}. Then, if y is the common point of Y and Q(4, q),
we have y ∈ lk. Now, interchanging roles of L and Y , we see that every line
containing a point of uv and a point of L must contain a point of Y . Hence for
i ≥ 1, Wi and Y are concurrent. Hence Y ∈ {L , K }⊥⊥. It follows that the pair
(L , K ) is regular. !

COROLLARY 13. All lines of ! are regular.

PROOF. This follows from Theorems 11 and 12. !

COROLLARY 14. The intersection of " and a grid not contained in " is a conic (either
irreducible or consisting of two distinct lines).

PROOF. This follows from the proof of previous theorems. !

5.6. Part 3: construction of sub-GQs. As all lines of ! are regular, two opposite lines U, V
define a (q + 1) × (q + 1)-grid G in !. We shall say G is the grid based on U, V and denote
it by G(U, V ).
In this part, we give the construction of a lot of new sub-GQs of order (q, q) in !. Starting

from an elliptic quadric (respectively a quadratic cone, a hyperbolic quadric) inside ", we
choose an additional line of ! \ " containing a point of the elliptic quadric (respectively
quadratic cone, hyperbolic quadric) and construct a sub-GQ"′ of order (q, q) containing this
structure.
THEOREM 15. Let ! and " be as above. Given an elliptic quadric O in " and a line L of

! \ " intersecting this ovoid, with L a line not containing a point subtending O, there exists
a sub-GQ "′ of order (q, q) of ! through O and L.

PROOF. Construction of "′.
Let O be an elliptic quadric in ", L a line of ! \ " intersecting O in l, and L not through a
point subtending O. We construct "′ as follows.
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• The basic line of "′ is—by definition—the line L itself.
• As the ovoid O is not subtended by any point of L , and the base point l of the rosette
RL belongs toO, the rosetteRL will intersectO in a rosette of conics (see Lemma 10).
This means that every point x of L \ {l} is collinear with q+ 1 points ofO, constituting
a conic Cx through l. The q lines joining this point x to the set Cx \ {l}, are also lines
of "′, and are said to be of the first generation. Hence there are q2 lines of the first
generation in "′. Every point of such a line will be a point of "′, so we have already
defined q3 + q + 1 points of "′. These points, including the point l, are the points of
the first generation.

• The third set of lines belonging to "′ is constructed as follows: take two opposite lines
U, V of the first generation. As all lines of ! are regular, we can construct the (q+1)×
(q + 1)-grid G(U, V ) based on these lines U, V . This grid contains L , and intersects O
in a conic C through l, but this conic is not one of the conics in the rosetteRL ∩O. All
(new) lines of the grid G(U, V ) that are opposite L belong to the second generation of
lines of "′.

• Every line that is the projection of a line of the second generation onto l, belongs to the
third generation. These are precisely the lines through l belonging to the above grids.
In total, there will be q such lines (this will be proved by showing that "′ is indeed a
GQ; see the last part of the proof for more explanation), and the q2 new points on these
lines are the points of the third generation.

Note that through each conic C of O through l, not belonging to the rosette RL ∩ O (i.e.,
not defined by one of the q points of L \ {l}), one can construct a unique grid G(U, V ) based
on two lines of the first generation. Indeed, choose u, v ∈ C \ {l} and put U := proju L (so
U ∩ L is the unique point of L collinear with u) and V := projvL . Then, as C does not belong
to the rosette Rl ∩O, U, V will be at distance 4 and of the first generation. By Corollary 14,
the grid G(U, V ) intersects O in a conic which must necessarily coincide with C because it
shares three points u, v, l with C .

(∗) We now claim that if a line K of ! through a point p of the first generation with p /∈ O,
p /∈ L , intersects the ovoid O, then K is of the first or second generation.
Indeed, suppose K is not of the first generation and K ∩O = {k}. If we project L onto
k and put projk L = V , then V is a line of the first generation. As p ∈ K is a point of
the first generation, it belongs to a line U of the first generation. As K intersects both
U and V , K belongs to the grid G(U, V ) and hence K is of the second generation. The
claim is proved.

"′ is indeed a GQ
We show that for p a point and K a line of "′, p /∈ K , the line M := projpK belongs to

"′. This is obvious if K is the basic line. We now consider all other cases.

(1, 1) If p and K both belong to the first generation, projpK = M belongs—by definition of
the second generation of lines—to "′.

(1, 2) Let p be of the first, and let K be of the second generation. If p ∈ L , then clearly
M belongs to "′. So assume p /∈ L . Hence p belongs to a unique line S of the first
generation, and K belongs to some grid G(U, V ) with S,U, V three lines of the first
generation (i.e., intersecting L and O in two different points). We may assume U '=
S '= V . If we can show that the line M =projpK intersects O, then by (∗) the line
M belongs to "′. We put S ∩ L = {s′}. The line W := projs′K belongs to the grid
G(U, V ), so W intersects O in a point w. We may assume S ∩ K = φ, otherwise we
are done. The line W also belongs to the grid G(S, K ), so this grid intersects O in the
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conic Cskw through s, k and w. As M belongs on its turn to the grid G(S, K ), the point
{m} = M ∩ " belongs to the conic Cskw by Corollary 14. Hence m ∈ O, and this part
of the proof is finished.

(3, 1) Let p be of the third, and let K be of the first generation. Then p is on a line L ′ through l,
with L ′ through a point u′ of a line U of the second generation. So the line U intersects
O in the point u. The point k′′ := projK u′ is of the first generation as k′′ ∈ K . As u′k′′

is a line of the second generation taking account of case (1, 2), the line u′k′′ meetsO in
a point x . So the grid G(L ′, K ) meetsO in the conic Ckxl . As M := projpK belongs to
the same grid G(L ′, K ), the line M meets O in the same conic. Hence, by (∗), M is of
the second generation and so it belongs to "′.

(1, 3) Let p be of the first, and let K be of the third generation. Clearly we may assume that
p /∈ L . The line U := projpL is of the first generation and intersects O in the point u.
As K is of the third generation, K contains l and a point k′ on a line N of the second
generation. If p ∈ U we are done, so assume p /∈ U . The line J := projk′U is of the
second generation, as it is the projection of a line of the first generation on a point of
the third generation (see case (3, 1)); so J intersects O in the point j . Hence the grid
G(K ,U ) intersects O in at least l, j and u, so M = projpK , belonging to G(K ,U ),
will also intersect O. By (∗), the line M is of the second generation, and so it belongs
to "′.

(3, 2) Let p be of the third, and let K be of the second generation. Then p is on a line L ′

through l, with L ′ through a point u′ of a line U of the second generation. We may
assume that u′ = p. SoU intersectsO in the point u. As K is of the second generation,
K intersects O in a point k. Take a point u′′ ∈ U \ {p}, which is necessarily of the
first generation. We may assume that K ∩ U = φ, otherwise we are done. The line
V := proju′′K belongs to either the first or the second generation (by case (1, 2)),
so V intersects O in the point v. Hence G(U, K ) intersects O in a conic Cuvk . As
M = projpK also belongs to G(U, K ), the line M meets O in a point of Cuvk . If this
point is l, M is of the third generation, so the proof is done. If this point is different
from l, the point M ∩K is of the first generation. Indeed, K is of the second generation,
so it has one point in O, q − 1 points of the first generation not in O, and one point of
the third generation; if M ∩ K were of the third generation, the points M ∩ K , l and u′

would constitute a triangle. Hence, relying on (∗), M is of the second generation.
(3, 3) Let p as well as K be of the third generation. This case is trivial.

Hence "′ is a generalized quadrangle. Clearly it is thick. As each line of "′ contains q + 1
points of "′, and as any point of L \ {l} is incident with q + 1 lines of "′, the quadrangle "′

has order (q, q). !

THEOREM 16. Let ! and" be as above. Given a quadratic cone C in", i.e., a set of q+1
lines through a point p, and a line L of ! \ " intersecting this cone in a point different from
p, there exists a sub-GQ "′ of order (q, q) of ! through C and L.

PROOF. The proof is completely similar to the previous case. Let us just indicate how "′

is defined.
Let C be a quadratic cone in " with vertex p, L a line of ! \ " intersecting C \ {p}. Put

L ∩ C = {l}. We construct a sub-GQ "′ as follows.

• The basic lines of "′ are the q + 1 lines of the cone C and the line L .
• The lines of the first generation are the q2 lines joining a point x ∈ L \ {l} and a point
y ∈ C \ {pl}. (For every point x ∈ L \ {l}, the q + 1 points on C collinear with x
constitute a conic Cx through l.) In this way, one obtains q2(q − 1) new points of "′.
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Those points, together with the (q + 1)2 points on C ∪ L , constitute the first generation
of points.

• The lines of the second generation are the q3 − q new lines opposite L of the q2 grids
G(U, V ) with U, V lines of the first generation.

• The lines of the third generation are the lines through l intersecting a line of the second
generation. The proof will imply that there are q − 1 such lines. On these lines, we find
q(q − 1) new points of "′, said to be of the third generation. (Again, no points of the
second generation are defined.) !

THEOREM 17. Let ! and " be as above. Given a hyperbolic quadric G in " and a line L
of ! \ " intersecting this hyperbolic quadric, there exists a sub-GQ "′ of order (q, q) of !

through G and L.

PROOF. Again similar to the proof of Theorem 15. The construction of "′ is now as fol-
lows. Put L ∩ G = {l}.

• The basic lines of "′ are the 2q + 2 lines of G and the line L .
• The lines of the first generation are the q2 lines joining a point x ∈ L \ {l} and a point
y ∈ G, with y not on a line of" containing l. (For every such point x the q+1 points of
G collinear with x constitute a conic Cx through l.) Including all points of G we obtain
in this way q3 + 3q + 1 points of "′, said to be of the first generation.

• The lines of the second generation are the new lines in the grids G(U, V ) with U, V
opposite lines of the first generation. There are q3 − 2q lines of the second generation.

• The lines of the third generation are the lines containing l and concurrent with any line
of the second generation. The points of the third generation are the new points incident
with lines of the third generation. As the structure "′ defined in this way turns out to
be a GQ, there are q − 2 lines of the third generation and q2 − 2q points of the third
generation. !

5.7. Part 4: sub-GQs through every dual window. A dual window of a generalized quad-
rangle is a set of five points, two of which, say a and b, are at distance 4, while the other three
are in ab, together with the six lines through the pairs of collinear points.

LEMMA 18. Let ! be a GQ of order (q, q2). Through every dual window of !, there is at
most one sub-GQ of order (q, q).

PROOF. Let !1 and !2 be two subquadrangles of order (q, q) of !. As each line of !1
intersects !2 ([9, 2.2.1]), the intersection !1 ∩ !2 of these subquadrangles is a grid of !1,
or an ovoid of !1, or the set of all points of !1 collinear with a fixed point of !1. As a dual
window is never contained in !1 ∩ !2, we have a contradiction. !

THEOREM 19. Let ! be a GQ of order (q, q2) and let " be a classical sub-GQ of order
(q, q) of !, such that every subtended ovoid of " is classical. Then there exists a sub-GQ "′

of order (q, q) through every dual window of !. Hence ! is classical.

PROOF. We perform a double counting on the pairs (W,D) withW a dual window of !,
andD a subquadrangle constructed as explained in Theorems 15, 16 or 17, such thatW ⊂ D.
By Lemma 18, there is at most one subquadrangle of order (q, q) through every dual window.
The number of dual windows in ! isW = 1

12 (q
3+1)(q2+1)(q+1)2q6(q−1). Given a fixed

subquadrangle D of order (q, q), one counts x = 1
12 (q

2+ 1)(q + 1)2q4(q − 1) dual windows
in D. We count the number S of subquadrangles of order (q, q) constructed so far as follows.
There are q2(q2−1)

2 classical ovoids in ". Through every such ovoid, one constructed q − 2
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subquadrangles"′ different from" (through every point p of the ovoid, there are q2 − q − 2
lines to choose for starting the construction of "′, but there are q + 1 lines of "′ through
p). There are q2(q2+1)

2 grids in". Through every grid, one constructed q new subquadrangles
"′. There are (q2 + 1)(q + 1) cones in ". Through every cone, one constructed q − 1 new
subquadrangles "′. This gives us a total of S = q5 + q2 subquadrangles (" included). We
conclude that W = xS, and hence we constructed exactly one subquadrangle through every
dual window. Hence ! is classical by [9, 5.3.5(ii)]. !
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