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On a Particular Class of Minihypers and its Applications.
III. Applications

P. GOVAERTS†, L. STORME AND H. VAN MALDEGHEM

In the first two articles of this series, the structure of certain minihypers was determined. Hamada
shows how these results translate into results on linear codes meeting the Griesmer bound, while
Govaerts and Storme show how they can be applied to obtain bounds on the size of maximal partial
t-spreads and minimal t-covers in finite projective spaces that admit a t-spread.
In this article, further applications are given. It is shown that the previously studied minihypers are

closely connected to partial t-spreads and t-covers of finite classical polar spaces whose size admits
a t-spread.
This connection is used to obtain new bounds on the sizes of maximal partial t-spreads of finite

classical polar spaces whose sizes admit t-spreads. In order to get a clearer view on which polar spaces
these are, divisibility conditions are rewritten into a more convenient form. This yields necessary
conditions for the existence of t-spreads in those spaces; it turns out that for some of the polar spaces
these conditions are also sufficient.
The results on minihypers are then applied to t-covers of the classical polar spaces, and give us a

better understanding of their structure.
As an immediate corollary to an extendability result for partial t-spreads, a theorem on the extend-

ability of partial ovoids of H ( 3 , q2) is given. This theorem is then used to prove a new upper bound
on the size of partial ovoids of H ( 4 , q2), which can be lifted to an upper bound on the size of partial
ovoids of H ( 2n , q2), n ≥ 2. Also partial ovoids on the generalized hexagon H ( q ) are studied.

c© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTORY RESULTS

The thick finite nondegenerate classical polar spaces are:

• W2n + 1 ( q ) , the polar space arising from a symplectic polarity of PG( 2n + 1, q ) , n ≥ 1;
• Q − (2n + 1, q ) , the polar space arising from a nonsingular elliptic quadric of PG ( 2n +
1, q ) , n ≥ 2;

• Q ( 2n , q ) , the polar space arising from a nonsingular quadric of PG( 2n , q ) , n ≥ 2;
• Q + (2n + 1, q ) , the polar space arising from a nonsingular hyperbolic quadric of
PG( 2n + 1, q ) , n ≥ 2;

• H ( n , q2 ) , the polar space arising from a nonsingular Hermitian variety in PG( n , q2 ) ,
n ≥ 3.

Let P be a finite classical polar space. A t-spread of P is a set of totally isotropic or singular
t-dimensional subspaces that partitions the point set of P . A partial t-spread of P is a set
of pairwise disjoint totally isotropic or singular t-dimensional subspaces. It is called maximal
when it is not contained in a larger partial t-spread. A t-cover C of P is a set of totally isotropic
or singular t-dimensional subspaces such that any point of P is contained in at least one
element of C . It is called minimal when it does not contain a smaller t-cover. A generator of
P is a maximal totally isotropic or maximal singular subspace of P . The set of all generators
of P is denoted by G (P ). The rank of P is by definition one more than the dimension of a
generator of P . A spread of P is an ( r − 1) -spread of P , where r denotes the rank of P .
An ovoid O of P is a set of points of P such that every generator of P contains exactly one
element of O; a partial ovoid O  of P is a set of points of P such that no generator of P
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contains more than one point of O  , whereas a blocking set B of P is a set of points of P such
that every generator of P contains at least one element of B.
More information on finite classical polar spaces can be found in [19], where also the

following theorems are proved.

THEOREM 1.1. The numbers of points of the finite classical polar spaces are:

(i) | W2n + 1 ( q ) | = ( q2n + 2 − 1) / ( q − 1) ;
(ii) | Q − ( 2n + 1, q ) | = ( qn − 1) ( qn + 1 + 1) / ( q − 1) ;
(iii) | Q ( 2n , g ) | = ( q2n − 1) / ( q − 1) ;
(iv) | Q + ( 2n + 1, q ) | = ( qn + 1) ( qn + 1 − 1) / ( q − 1) ;
(v) | H ( 2n , q2 ) | = ( q2n − 1) ( q2n + 1 + 1) / ( q2 − 1) ;
(vi) | H ( 2n + 1, q2 ) | = ( q2n + 2 − 1) ( q2n + 1 + 1) / ( q2 − 1) .

The ranks of these spaces are respectively n + 1, n, n, n + 1, n and n + 1. Therefore, the
number of elements of a hypothetical spread of P (which equals the number of elements of
a hypothetical ovoid of P ) is as given in the following theorem. We will denote this number
by o ( P ) .

THEOREM 1.2. The sizes of hypothetical spreads of the finite classical polar spaces are:

(i) o ( W2n + 1 ( q ) ) = qn + 1 + 1;
(ii) o ( Q − ( 2n + 1, q ) ) = qn + 1 + 1;
(iii) o ( Q ( 2n , q ) ) = qn + 1;
(iv) o ( Q + ( 2n + 1, q ) ) = qn + 1;
(v) o ( H ( 2n , q2 ) ) = q2n + 1 + 1;
(vi) o ( H ( 2n + 1, q2 ) ) = q2n + 1 + 1.

THEOREM 1.3. The numbers of generators of the polar spaces are given by:

(i) | G ( W2n + 1 ( q ) ) | = ( q + 1) ( q2 + 1) · · · ( qn + 1 + 1) ;
(ii) | G ( Q − ( 2n + 1, q ) ) | = ( q2 + 1) ( q3 + 1) · · · ( qn + 1 + 1) ;
(iii) | G ( Q ( 2n , q ) ) | = ( q + 1) ( q2 + 1) · · · ( qn + 1) ;
(iv) | G ( Q + ( 2n + 1, q ) ) | = 2( q + 1) ( q2 + 1) · · · ( qn + 1) ;
(v) | G ( H ( 2n , q2 ) ) | = ( q3 + 1) ( q5 + 1) · · · ( q2n + 1 + 1) ;
(vi) | G ( H ( 2n + 1, q2 ) ) | = ( q + 1) ( q3 + 1) · · · ( q2n + 1 + 1) .

2. t -SPREADS IN POLAR SPACES

Clearly, if a polar space P admits a t-spread, then | PG( t , q ) | divides | P | . In this section, this
condition is rewritten in a more convenient expression. In order to do this, two lemmas are
stated, followed by the actual simplification of the divisibility condition. The greatest common
divisor of two integers a and b is denoted by ( a , b ) .

LEMMA 2.1. Let a and b be non-negative integers, a + b ≥ 1. Then ( qa − 1, qb − 1) =
q ( a , b ) − 1.

LEMMA 2.2. Let a and b be non-negative integers, a + b ≥ 1. Then

( qa + 1, qb − 1) =



�

�



�

�



q ( a , b ) + 1 if a / ( a , b ) is odd and b / ( a , b ) is even,
d = 1 if q is even,

d otherwise, where
d = 2 if q is odd.
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PROOF. We will prove this by induction on a + b. Therefore we first look at the cases a = 0
and b = 0. If a = 0, then ( 2, qb − 1) equals 1 if q is even and 2 if q is odd. This is in accordance
with the lemma, since in this case b / ( a , b ) = 1. If b = 0, then ( qa + 1, 0) = qa + 1. Clearly,
in this case the conditions a / ( a , b ) odd and b / ( a , b ) even are satisfied.
For the induction process we will need the following equalities. All of them are obtained by

using the algorithm of Euclides.
If a ≥ b, then ( qa + 1, qb − 1) = ( qa − b + 1, qb − 1) . If b > a, then ( qa + 1, qb − 1) =

( qa + 1, qb − a + 1) . Since we want to apply induction, the right-hand side of this equation is not
satisfactory. Therefore the following equation will be used: if n ≥ m, then ( qn + 1, qm + 1) =
( qm + 1, qn − m − 1) . Thus, if b > a, then b > 2a implies ( qa + 1, qb − 1) = ( qa + 1, qb − 2a − 1) ,
and b ≤ 2a implies ( qa + 1, qb − 1) = ( qb − a + 1, q2a − b − 1) .
Now suppose that a , b ≥ 0, a = 0 = b, and that the lemma holds for all a  , b  , where

a  + b  < a + b. We show that it also holds for a , b.
Suppose a ≥ b. Then ( qa + 1, qb − 1) = ( qa − b + 1, qb − 1) , which equals by induction



�

�



�

�



q ( a − b , b ) + 1 if ( a − b ) / ( a − b , b ) is odd and b / ( a − b , b ) is even,
d = 1 if q is even,

d otherwise, where
d = 2 if q is odd.

Note that ( a , b ) = ( a − b , b ) , implying b / ( a − b , b ) = b / ( a , b ) . Furthermore, under the
assumption that b / ( a , b ) is even, a / ( a , b ) odd implies that ( a − b ) / ( a − b , b ) is odd, and
( a − b ) / ( a − b , b ) odd implies that a / ( a , b ) is odd.
The cases a < b ≤ 2a and b > 2a are handled in a similar way. �

THEOREM 2.1. Suppose P is a polar space that has a t-spread. If P is:

(i) a symplectic space W2n + 1 ( q ) , then ( t + 1) | ( 2n + 2) ;
(ii) a parabolic quadric Q ( 2n , q ) , then ( t + 1) | ( 2n ) ;
(iii) a hyperbolic quadric Q + ( 2n + 1, q ) , then ( t + 1) | ( n + 1) ;
(iv) an elliptic quadric Q − ( 2n + 1, q ) , then ( t + 1) | n;
(v) a Hermitian variety H ( 2n , q2 ) , then ( t + 1) | n;
(vi) a Hermitian variety H ( 2n + 1, q2 ) , then ( t + 1) | ( n + 1) .

PROOF. If the polar space P has a t-spread, then ( qt + 1 − 1) / ( q − 1) divides | P | .

(i) If P = W2n + 1 ( q ) has a t-spread, then it follows immediately from Theorem 1.1 and
Lemma 2.1 that ( t + 1) | ( 2n + 2) .

(ii) If P = Q ( 2n , q ) has a t-spread, then it follows immediately from Theorem 1.1 and
Lemma 2.1 that ( t + 1) | ( 2n ) .

(iii) Suppose P = Q + ( 2n + 1, q ) has a t-spread. Then ( qt + 1 − 1) | ( qn + 1) ( qn + 1 − 1) . If
( t + 1) | ( n + 1) , then this condition is fulfilled.
Now suppose that t + 1 does not divide n + 1. Denote ( t + 1, n + 1) by a and ( t + 1, n )
by b. By Lemma 2.2, ( qt + 1 − 1) | ( qa − 1) ( qb + 1) . Therefore a + b ≥ t + 1 and
ab ≤ t + 1. We now consider possible solutions for { a , b } . If a (resp. b) equals one,
then b ∈ { t , t + 1} (resp. a ∈ { t , t + 1} ). If { a , b } = { 1, t } , then t | ( t + 1) , implying that
t = 1, such that ( 2, n + 1) = ( 2, n ) = 1, a contradiction. If { a , b } = { 1, t + 1} , then,
as t + 1 does not divide n + 1, a equals 1. Therefore ( qt + 1 − 1) | ( q − 1) ( qt + 1 + 1) ,
a contradiction. If a = b = 2, then 2 would divide n as well as n + 1, a contradiction.
Finally, if { a , b } = { x ≥ 2, y > 2} , then t + 1 ≤ a + b < ab ≤ t + 1, a contradiction.
Therefore we may conclude that ( t + 1) | ( n + 1) .
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(iv) Suppose P = Q − ( 2n + 1, q ) has a t-spread. Then ( qt + 1 − 1) | ( qn + 1 + 1) ( qn − 1) .
An argument similar to the one in case (iii) shows that ( t + 1) | n.

(v) Suppose P = H ( 2n , q2 ) has a t-spread. Then ( q2 ( t + 1 ) − 1) | ( q2n + 1 + 1) ( q2n − 1) . An
argument similar to the one in case (iii) shows that ( 2t + 2) | ( 2n ) .

(vi) Suppose P = H ( 2n + 1, q2 ) has a t-spread. Then ( q2 ( t + 1 ) − 1) | ( q2n + 2 − 1) ( q2n + 1 + 1) .
The argument of case (iii) shows that ( 2t + 2) | ( 2n + 2) .

This concludes the proof of the theorem. �

In the following corollary, the case where P = H ( 2n + 1, q2 ) is omitted, since Thas [21, 23]
proved that H ( 2n + 1, q2 ) has no spread.

COROLLARY 2.1. (i) Suppose that t is even and that P = W2n + 1 ( q ) has a spread. Then
P has a t-spread if and only if ( t + 1) | ( 2n + 2) .

(ii) Suppose that t is even and that P = Q ( 2n , q ) has a spread. Then P has a t-spread if
and only if ( t + 1) | ( 2n ) .

(iii) Suppose P = Q + ( 2n + 1, q ) has a spread. Then P has a t-spread if and only if
( t + 1) | ( n + 1) .

(iv) Suppose P = Q − ( 2n + 1, q ) has a spread. Then P has a t-spread if and only if
( t + 1) | n.

(v) Suppose P = H ( 2n , q2 ) has a spread. Then P has a t-spread if and only if ( t + 1) | n.

An overview of the known results on the (non)existence of spreads in polar spaces can be
found in [24]. Using this overview and Corollary 2.1, the following results on the existence of
t-spreads are obtained.

COROLLARY 2.2. (i) If P = W2n + 1 ( q ) and t is even, then P has a t-spread if and only
if ( t + 1) | ( 2n + 2) .

(ii) If t is even and P = Q ( 2n , q ) satisfies either n ≥ 2 and q is even, or n = 3 and q is
an odd prime or n = 3, q is odd and q ≡ 0 or 2 ( mod 3) , then P has a t-spread if and
only if ( t + 1) | ( 2n ) .

(iii) If P = Q + ( 2n + 1, q ) satisfies either n = 1, or n = 2n  + 1, n  ≥ 1 and q is even, or
n = 3 and q is an odd prime, or n = 3, q is odd and q ≡ 0 or 2 ( mod 3) , then P has a
t-spread if and only if ( t + 1) | ( n + 1) .

(iv) If P = Q − ( 2n + 1, q ) satisfies either n = 2, or n ≥ 2 and q is even, then P has a
t-spread if and only if ( t + 1) | n.

3. MINIHYPERS AND CODES MEETING THE GRIESMER BOUND

An { f , m ; n , q } -minihyper ( F , w ) —introduced by Hamada and Tamari in [18]—is defined
by its weight function w on the points of PG( n , q ) , assigning to each point p ∈ PG( n , q )
a non-negative integer w ( p ) , such that



p ∈ PG ( n , q ) w ( p ) = f and min



p ∈ H w ( p ) � H is a
hyperplane



= m. The set F is the set of all points of PG( n , q ) that have nonzero weight.

REMARK. In the special case that w is a mapping onto the set { 0, 1} of integers, the mini-
hyper ( F , w ) can be identified with its set F of points of weight one, and is simply denoted
by F .

The main reason for the study of minihypers has been the close relation between mini-
hypers and linear codes meeting the Griesmer bound. In the following theorem, v µ denotes
( q µ − 1) / ( q − 1) , the number of points of PG( µ − 1, q ) .
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THEOREM 3.1 (HAMADA [16]). There is a one-to-one correspondence between the set of
all nonequivalent



θ v k −
 k − 2

i = 0 � i v i + 1 , k , θ q
k − 1 −

 k − 2
i = 0 � i q

i ; q


-codes meeting the Griesmer
bound and the set of all


 k − 2

i = 0 � i v i + 1 ,
 k − 2

i = 1 � i v i ; k − 1, q


-minihypers ( F , w ) such that
1 ≤ w ( p ) ≤ θ for every point p in F, where k, θ , and � i (i = 0, 1, . . . , k − 2) are integers
such that k ≥ 3, θ ≥ 1, 0 ≤ � i ≤ q − 1, and ( � 0 , � 1 , . . . , � k − 2 ) = ( 0, 0, . . . , 0) .

4. PARTIAL t -SPREADS AND t -COVERS OF POLAR SPACES

Apart from their relation to codes, minihypers are also closely connected to partial spreads
and covers of projective and polar spaces; especially those minihypers of type { δ v µ , δ v µ − 1 ; n,
q } . They were studied in the first two parts of this series, resulting in Theorems 4.2 and 4.3.
A blocking set of PG( 2, q ) is a set of points of PG( 2, q ) that meets every line. Clearly, any

set B of points of PG ( 2, q ) that contains a line is a blocking set of PG( 2, q ) ; a blocking set
that contains a line is called trivial. One easily sees that any blocking set of PG ( 2, 2) is trivial.
For q > 2, the following results are known.

THEOREM 4.1. Let B be a nontrivial blocking set of PG( 2, q ) , q > 2.

(i) (BLOKHUIS [1]) If q is a prime, then | B | ≥ 3( q + 1) / 2.
(ii) (BRUEN [6]) If q is a square, then | B | ≥ q +

√ q + 1; equality occurs if and only if B
is a Baer subplane of PG( 2, q ) .

(iii) (BLOKHUIS et al. [2, 4]) Let c2 = c3 = 2− 1 / 3 and cp = 1 for p ≥ 5. If q = p2e + 1, p
prime, e ≥ 1, then | B | ≥ max( q + 1 + cpq2 / 3 , q + 1 + pe + 1 ) .

A sum σ of δ µ -spaces in PG ( n , q ) is a weight function assigning to each µ -space π of
PG( n , q ) a non-negative integer σ ( π ) , such that



σ ( π ) = δ , where the sum ranges over
all µ -spaces. A sum σ of µ -spaces induces a weight function on the point set of PG( n , q ) ,
by assigning to each point p the integer



π ⊇ p , π ∈ M σ ( π ) , where M denotes the set of all
µ -spaces.

THEOREM 4.2 (GOVAERTS AND STORME [14]). Let q > 2 and δ < � , where q + � is
the size of the smallest nontrivial blocking sets in PG( 2, q ) . If ( F , w ) is a { δ v µ + 1 , δ v µ ; n , q } -
minihyper satisfying µ ≤ n − 1, then w is the weight function induced on the points of
PG( n , q ) by a sum of δ µ -spaces.

REMARK. Theorem 4.2 also holds when q = 2 and δ ∈ { 0, 1} , in which case it is the
theorem of Bose and Burton [5] for q = 2 (note that the proof of this theorem still holds
when weights are introduced). One easily checks that this implies that the proofs of Corollar-
ies 4.1(i), 4.4, 5.2 and 6.1, are also valid in the case that q = 2 and δ ∈ { 0, 1} .

THEOREM 4.3 (GOVAERTS AND STORME [13]). Suppose q is a square. If q > 16 and
δ < q5 / 8 /

√
2 + 1, then any { δ v µ + 1 ; δ v µ ; n , q } -minihyper F is a unique disjoint union of

µ -spaces and subgeometries PG( 2µ + 1, √ q ) .

The link between these minihypers and partial t-spreads and t-covers of polar spaces is
presented in Theorems 4.4 and 4.5. Note that, as shown in [14], in these two theorems ‘classi-
cal polar space whose size admits a t-spread’ may be replaced by ‘projective space PG ( n , q )
satisfying ( t + 1) | ( n + 1) ’.
Let P be a classical polar space whose size admits a t-spread, and denote the size of a

hypothetical t-spread by σ . If S is a partial t-spread of P of size σ − δ , then S is said to have
deficiency δ . Points that are not covered by S are called holes.
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THEOREM 4.4. Let P be a classical polar space in PG( n , q ) whose size admits a t-spread,
i.e., that satisfies the necessary conditions of Theorem 2.1. If S is a partial t-spread of P with
deficiency δ < q, then the set S of holes forms a { δ v t + 1 , δ v t ; n , q } -minihyper.

PROOF. Denote the number | P | ( q − 1) / ( qt + 1 − 1) by σ , i.e., σ is the size of a hypothetical
t-spread of P . Now let H be an arbitrary hyperplane of PG( n , q ) . Consider the system of
equations

α + β = σ , (1)
α v t + 1 + β v t = | H ∩ P | . (2)

One verifies that for any classical polar space P and for any hyperplane H the solutions α , β
to this system are integers.
Now suppose that H contains α  elements of S and intersects β  elements of S in a ( t − 1) -

space. Then α  and β  satisfy

α  + β  = σ − δ , (3)
α  v t + 1 + β  v t ≤ | H ∩ P | . (4)

Now consider the following cases.

Case 1. Suppose α  > α , say α  = α + a for some positive integer a. Then substituting (2)
in (4) yields ( β − β  ) v t ≥ a v t + 1, implying β  ≤ β − aq − 1. Therefore α  + β  ≤ α + a +
β − aq − 1. Substituting (1) and (3) in this inequality shows that δ ≥ a ( q − 1) + 1. It can be
concluded that in this case δ ≥ q, a contradiction.

Case 2. Suppose α  = α . Then, by (3), β  = β − δ , implying that the number of holes in
H equals δ v t .

Case 3. Suppose α  < α . If α  + β  would equal σ , then there would be at least v t + 1 − v t
holes in H . But since α  + β  < σ , there are at least v t + 1 − v t + v t holes in H . This number
is greater than q v t , which in its turn is greater than δ v t .
So any hyperplane of PG( n , q ) contains at least δ v t holes. Clearly, the total number of holes

in P is δ v t + 1. Theorem 2.2(2) of Hamada [17] states that any such set is a { δ v t + 1 , δ v t ; n , q } -
minihyper. �

COROLLARY 4.1. Let P be a finite classical polar space in PG( n , q ) , q = 2, whose size
admits a t-spread. Suppose, furthermore, that if P = Wn ( q ) , then q is even.

(i) Let q + � denote the size of the smallest nontrivial blocking sets in PG( 2, q ) . Then any
partial t-spread S  of deficiency δ < � of P can be extended to a t-spread of P .

(ii) Suppose q > 16 is a square, and δ < q5 / 8 /
√
2 + 1. If S  is a maximal partial t-spread of

P of deficiency δ , then the set of holes forms a disjoint union of subgeometries PG( 2t +
1, √ q ) , implying δ ≡ 0 (mod √ q + 1).

PROOF. Using Theorems 4.2 and 4.3, it is clear that these corollaries hold in the case that
P is a quadric or a Hermitian variety. It suffices to remark that, for q even, W2n + 1 ( q ) is
isomorphic to Q ( 2n + 2, q ) , to see that they also hold in the remaining case. �
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REMARK. Suppose that n ≤
√ q. If the points of P or the points or PG( n , q ) \ P can be

portioned by a set of subspaces of PG( n , q ) that may have different dimensions (but greater
than zero), then a weight argument of Blokhuis and Metsch [3] shows that also the case
δ =

√ q + 1 of Corollary 4.1(ii) cannot occur. This holds, in particular, for P = Wn ( q ) , q
even, since all points of PG( n , q ) are absolute with respect to the polarity corresponding to P .

A nonsingular quadric Q ( n , q ) cannot contain a Baer subspace of dimension d greater than
the dimension of a generator of Q ( n , q ) , since such a Baer subspace would generate a totally
singular subspace of dimension d. Consequently, Corollary 4.1(ii) can be refined in the case
that P is a quadric.

COROLLARY 4.2. Suppose Q is a nonsingular quadric Q ( n , q ) whose size admits a
t-spread, where q > 16 is a square, and 2t + 1 is greater than the dimension of a gener-
ator of Q . Then, every partial t-spread of deficiency δ < q5 / 8 /

√
2 + 1 can be extended to a

t-spread of Q .

Corollary 4.1 does not include the case where P = Wn ( q ) , q odd. We consider this case
separately, and obtain a result similar to the result on partial ovoids on H ( q ) , see Section 6.
Unfortunately, we have to restrict ourselves to partial n-spreads of W2n + 1 ( q ) .

COROLLARY 4.3. Let S be a maximal partial n-spread of W2n + 1 ( q ) , q odd, with defi-
ciency δ . Suppose that either δ < � , where q + � is the size of the smallest nontrivial blocking
sets in PG( 2, q ) , or q > 16 is a square and δ < q5 / 8 /

√
2 + 1. Then δ is even.

PROOF. By the previous theorems, the set of holes is a unique disjoint union of n-spaces
and—in the case that q is a square—PG ( 2n + 1, √ q ) s. Note that each Baer subspace PG ( 2n +
1, √ q ) yields an additional amount of √ q + 1 to the deficiency. Since √ q + 1 is even, we can
omit these Baer subspaces from the remainder of the discussion.
Remark that if π n is an n-space consisting entirely of holes, then π n is one of the spaces of

the unique disjoint union of n-spaces and PG( 2n + 1, √ q ) s. Otherwise δ would clearly have
to be greater than q.
So, suppose π n is an n-space consisting entirely of holes. Since S is maximal, π n = π 1

n .
Let p ∈ π 1

n and suppose p is covered by an element π

n of S . Then π 

n ⊆ p ⊥ and π n ⊆ p ⊥ .
But p ⊥ is 2n-dimensional, implying that π 

n ∩ π n = ∅ , a contradiction.
Therefore, also π 1

n consists entirely of holes. As π n = π 1
n , it follows that π n and π

1
n must

be distinct n-spaces from the unique disjoint union of n-spaces and PG( 2n + 1, √ q ) s that the
set of holes consists of. Thus, each n-space π n in the minihyper corresponding to S , is paired
to a unique n-space π 1

n in this minihyper. We conclude that the number of n-spaces in the
minihyper is even. �

If C is a t-cover of a finite classical polar space P , then the surplus of a point p ∈ P is
defined as the number of elements of C that contain it minus one.
Let P be a classical polar space whose size admits a t-spread, and denote the size of a

hypothetical t-spread by σ . If C is a t-cover of P of size σ + δ , then C is said to have excess δ .

THEOREM 4.5. Let P be a finite classical polar space in PG( n , q ) whose size admits a
t-spread, i.e., that satisfies the necessary conditions of Theorem 2.1. If C is a t-cover of
P with excess δ < q, then the weight function w ( p ) = surplus( p ) for p ∈ P defines a
{ δ v t + 1 , δ v t ; n , q } -minihyper ( F , w ) , where F is the set of points of P that are covered at least
twice by elements of C .



666 P. Govaerts et al.

PROOF. This proof is very similar to the proof of Theorem 4.4.
Denote the number | P | ( q − 1) / ( qt + 1 − 1) by σ , i.e., σ is the size of a hypothetical t-spread

of P . Now let H be an arbitrary hyperplane of PG ( n , q ) . Consider the system of equations

α + β = σ ,

α v t + 1 + β v t = | H ∩ P | .

For any classical polar space P and for any hyperplane H , the solutions α , β to this system
are integers.
Now suppose that H contains α  elements of C and intersects β  elements of C in a ( t − 1) -

space. Then α  and β  satisfy

α  + β  = σ + δ ,

α  v t + 1 + β  v t ≥ | H ∩ P | .

As in the proof of Theorem 4.4, one verifies that α  ≥ α . So, for any hyperplane H of
PG( n , q ) ,



p ∈ H ∩ P w ( p ) ≥ δ v t . Clearly,


p ∈ P w ( p ) = δ v t + 1. The proof of Theorem 2.2(2)
of Hamada [17] can easily be modified for weighted points, in which case it shows that any
such weight function induces a { δ v t + 1 , δ v t ; n , q } -minihyper. �

COROLLARY 4.4. Let P be a finite classical polar space in PG( n , q ) , q > 2, whose size
admits a t-spread. If C is a t-cover of P with excess δ < � , where q + � denotes the size of the
smallest nontrivial blocking sets in PG( 2, q ) , then the function surplus is the weight function
induced on the points of PG( n , q ) by a sum of δ t-spaces.

REMARK. Corollary 4.4 was proved in [12] in the special case that P is a finite classi-
cal generalized quadrangle, i.e., when P is either Q + ( 3, q ) , Q ( 4, q ) , Q − ( 5, q ) , H ( 3, q2 ) ,
H ( 4, q2 ) or W3 ( q ) and C is a line cover of P .

Known results. More research has been done on the size of partial t-spreads and t-covers
of finite classical polar spaces. We state the results that are stronger than the ones obtained
above.

THEOREM 4.6 (THAS [22, 23]).
(i) The polar spaces Q − ( 4n + 1, q ) , n ≥ 1, and Q + ( 4n + 3, q ) , n ≥ 0, both have

linespreads.
(ii) If S is a partial spread of Q + ( 4n + 1, q ) , n ≥ 1, then | S | ≤ 2.
(iii) If S is a partial spread of H ( 2n + 1, q2 ) , n ≥ 1 and n odd, then | S | ≤ q2n + 1 − qn + 1 +

qn + 1.
(iv) If S is a partial spread of H ( 5, q2 ) , then | S | ≤ q2 ( q2 + q − 1) .

THEOREM 4.7 (EISFELD et al. [10–12]).
(i) Let S be a partial ( n − 1) spread of Q + ( 2n + 1, q ) . Then | S | ≤ q3 + q for n = 2 and

| S | ≤ qn + 1 + q − 1 for n > 2.
(ii) Let C be an ( n − 1) -cover of Q + ( 2n + 1, q ) . Then | C | ≥ qn + 1 + 2q + 1. For q even this

bound is sharp.
(iii) Let C be a plane cover of Q + ( 5, q ) . Then | C | ≥ q2 + q. This bound is sharp.
(iv) Let C be a cover of Q ( 4, q ) , q odd. Then | C | > q2 + 1 + ( q − 1) / 3.
(v) Let C be a cover of Q ( 4, q ) , q even, q ≥ 32, of size q2 + 1 + r , where 0 < r ≤

√ q.
Then C contains a spread of Q ( 4, q ) .

THEOREM 4.8 (EBERT AND HIRSCHFELD [9]). The largest partial spreads in H ( 3, 9)
have size 16.
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5. PARTIAL OVOIDS OF H ( 4, q2 )

For the definition of a generalized quadrangle (GQ) and more information on this subject
we refer to the monograph [20].
Since H ( 4, q2 ) is a GQ( q2 , q3 ) , we can use the results on k-caps of generalized quadrangles

in order to study partial ovoids on H ( 4, q2 ) (a k-cap is a partial ovoid of size k).

THEOREM 5.1 (PAYNE AND THAS [20, Section 2.7]). Suppose Q is a GQ( s , t ) .

(i) Any ( st − ρ ) -cap of Q with 0 ≤ ρ < t / s is contained in a uniquely defined ovoid of Q .
Hence if Q has no ovoid, then any k-cap of Q necessarily has k ≤ st − t / s.

(ii) Let O be a complete ( st − t / s ) -cap of Q = ( P , B , I ) . Let B  be the set of lines incident
with no point of O; let P  be the set of points on (at least one) line of B  ; and let I  be
the restriction of I to the points of P  and the lines of B  . Then Q  = ( P  , B  , I  ) is a
subquadrangle of order ( s , t / s ) .

From the theorem of Buekenhout and Lefèvre [7] and Theorem 5.1(ii), it follows that if
O is a complete ( q5 − q ) -cap of H ( 4, q2 ) , then the external lines to O on H ( 4, q2 ) form a
Hermitian variety H ( 3, q2 ) . We show that such caps cannot exist.

COROLLARY 5.1. H ( 4, q2 ) has no complete cap of size q5 − q.

PROOF. Suppose that H4 : = H ( 4, q2 ) has a complete cap O of size q5 − q. Denote by H3
the H ( 3, q2 ) that consists of the lines of H4 external to O and by π 3 the 3-space containing
H3. Let L be a line in π 3 that intersects H3 in an H ( 1, q2 ) ; denote this H ( 1, q2 ) by H1. In
π 3 there are q2 + 1 planes through L , q + 1 of which intersect H3 in a cone pH1, for some
p ∈ H3; the other q2 − q planes intersect H3 in an H ( 2, q2 ) .
Let p1 and p2 be two distinct points of H3 such that the cones p1H1 and p2H1 lie on H3.

Now consider the 3-spaces Tp1 ( H4 ) and Tp2 ( H4 ) (the tangent spaces to H4 in p1 and p2).
They intersect in a plane π containing neither p1 nor p2, but containing L . Clearly, π is not
contained in π 3; so it intersects π 3 in L . The plane π intersects H4 in an H ( 2, q2 ) containing
H1; denote this H ( 2, q2 ) by H2.
There are q2 + 1 solids on π , q + 1 of which intersect H4 in a cone p i H2 , i = 0, 1, . . . , q;

the q2 − q other ones intersect in an H ( 3, q2 ) . The vertices p i , i = 0, 1, . . . , q, are concurrent
and the line joining them is the polar line of π , a ( q + 1) -secant to H4 that is skew to π . Since
p1 and p2 lie on this line, all q + 1 of these points lie in H3.
Now suppose π contains x points of O and count the points of O by counting the points of

O in the hyperplanes through π . This yields

q5 − q = x + ( q + 1) ( q3 − q − x ) + ( q2 − q ) ( q3 + 1 − x ) ,

or x = q − 1/ q, a contradiction. �

REMARK. This result was proved independently by Thas [25].

As seen above, the external lines in H ( 4, q2 ) to a hypothetical complete partial ovoid of size
q5 − q would have formed an H ( 3, q2 ) . One might suspect that, for a complete partial ovoid
O of size q5 − q − x of H ( 4, q2 ) , x small, and a given external line to O in H ( 4, q2 ) , through
this line there exists an H ( 3, q2 ) that contains many external lines. This actually happens,
and this observation can be used to improve upon the bound on the size of partial ovoids of
H ( 4, q2 ) that is implied by Corollary 5.1. To obtain the new bound, once more results on caps
of GQs will be used.
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THEOREM 5.2 (PAYNE AND THAS [20, Section 2.7]). Suppose Q is a GQ( s , t ) and let O
be an ( st − ρ ) -cap of Q . Let B  be the set of lines of Q incident with no point of O. Then
every line of B  is concurrent with t + ρ other lines of B  . If O is complete, then any point on
a line of B  is incident with at most ρ other lines of B  .

Also a result on the extendability of partial ovoids of H ( 3, q2 ) will be applied. It is an
immediate corollary of Corollary 4.1(i), since H ( 3, q2 ) is the dual of Q − ( 5, q ) [20, 3.2.3].

COROLLARY 5.2. Let q > 2 and let q + � denote the size of the smallest nontrivial blocking
sets of PG( 2, q ) . Then every partial ovoid of H ( 3, q2 ) of deficiency δ < � can be extended to
an ovoid of H ( 3, q2 ) .

THEOREM 5.3. If O is a partial ovoid of H ( 4, q2 ) , then | O | < q5 − ( 4q − 1) / 3.

PROOF. In [21] Thas proves that H ( 4, q2 ) has no ovoid. By Theorem 5.1(i) and Corol-
lary 5.1, this implies that a partial ovoid of H ( 4, q2 ) has size smaller than q5 − q. This proves
the theorem for q ∈ { 2, 3} .
Now, suppose by way of contradiction that O is a maximal partial ovoid of H ( 4, q2 ) of size

q5 − q − x , x ≤ ( q − 1) / 3. By the arguments above, x > 0 and q > 3. The main part of this
proof will consist of showing that through each external line to O , there exists an H ( 3, q2 )
containing more than ( q4 + q3 + xq3 + x ) / 2 + q + 1 external lines.
A counting argument shows that the number of external lines equals ( q + 1 + x ) ( q3 + 1) .

Let L be an external line. Then through L , there exists a plane π containing q points of O .
This plane intersects H ( 4, q2 ) in a cone; denote its vertex by p. Denote the hyperplanes
through π by T1 , T2 , . . . , Tq2 + 1, and define the deficiency δ i of Ti in the following way:
δ i = q3 + 1 − | Ti ∩ O | . Each hyperplane Ti has—since L contains no point of O—a ‘deficiency
of 1 in the plane π ’. Denoting the deficiency of Ti outside π by δ i = δ i − 1, the points of O
can be counted, resulting in

q +
q2 + 1


i = 1
( q3 − q − δ i ) = q5 − q − x ,

or
q2 + 1


i = 1
δ i = q + x . (5)

Now suppose q is an odd prime, resp. q = s2e, resp. q = s2e + 1; here s is a prime and e
is a positive integer. By Corollary 5.2, any partial ovoid on H ( 3, q2 ) of deficiency at most
( q + 1) / 2, resp. se, resp. se + 1, can be extended to an ovoid of H ( 3, q2 ) . Suppose that ξ
hyperplanes have a deficiency δ i > ( q + 1) / 2, resp. δ i > se, resp. δ i > se + 1; then these
satisfy δ i ≥ ( q + 1) / 2, resp. δ i ≥ se, resp. δ i ≥ se + 1, such that, by (5)

ξ ≤ 2
q + x
q + 1

, resp. ξ ≤ se +
x
se
, resp. ξ ≤ se +

x
se + 1

. (6)

Substitution of x < q yields

ξ < 4, resp. ξ < 2se , resp. ξ < 2se ,

such that in all three cases ξ satisfies
ξ ≤ q . (7)

Three (not necessarily disjoint) types of hyperplanes Ti can be distinguished:
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( i) a tangent hyperplane;
( ii) hyperplanes with deficiency greater than ( q + 1) / 2, resp. se, resp. se + 1;
( iii) non-tangent hyperplanes with deficiency at most ( q + 1) / 2, resp. se, resp. se + 1.

The hyperplanes of type (iii) intersect H ( 4, q2 ) in a H ( 3, q2 ) and O in a cap of this H ( 3, q2 )
that is extendable to an ovoid of this H ( 3, q2 ) . Therefore, for each such hyperplane, there
exists a point p  on L that lies on a pencil of q + 1 external lines in this hyperplane. Taking into
account that, as implied by Theorem 5.2, no point of L can lie on two of the aforementioned
pencils, by (7), there are at least q2 − q > 3 such points on L .
Let l , m , n be three points of L , each one lying on a pencil of q + 1 external lines: L , L1,

. . . , Lq ; L , M1 , . . . , Mq ; L , N1 , . . . , Nq . Define an E-line as being an external line different
from L that intersects a line Li , a line Mj and a line Nk .
We now show that such an E-line exists. By Theorem 5.2, there are at least q4 external lines

not through l that intersect one of the lines Li , i = 1, . . . , q. Let γ denote the number of
external lines skew to



j ∈ { 1 . . . , q } Mj . Amongst these are the external lines ( = L ) that intersect
L in a point different from m. There are at least q3 such lines. Surely they are different from
the q4 external lines not containing l that intersect a line Li . Let γ  denote the number of
external lines skew to

 q
k = 1 Nk . Then, there are at least

q4 − ( γ − q3 ) − ( γ  − q3 ) (8)

E-lines.
An upper bound on γ can be obtained as follows. Let ζ denote the number of external lines

through m. Then ζ ∈ { q + 1, . . . , q + x + 1} and the number of external lines intersecting
 q

j = 1 Mj equals ζ ( 1 − q ) + q4 + q2 + qx + q. The total number of external lines equals
( q3 + 1) ( q + x + 1) , implying γ = ( x + 1) q3 − q2 + ζ ( q − 1) − qx + x + 1. Therefore γ is
maximal when ζ is maximal and

γ ≤ ( x + 1) q3 . (9)

Clearly, the bound on γ is also a bound on γ  .
Substituting x ≤ ( q + 1) / 3 in these bounds for γ and γ  and taking into account that q > 2,

it follows that (8) is greater than zero. Therefore E-lines exist.
Let E be an E-line. Then E intersects a line Li , a line Mj , and a line Nk , say L1, M1, and

N1. Then L and L1 lie in the 3-space 〈 L , E 〉 , such that all lines Li , i = 1, 2, . . . , q, lie in
〈 L , E 〉 . Similarly, also the lines Mj and Nk , j , k = 1, 2, . . . , q, are contained in this 3-space.
We conclude that all lines L , Li , Mj , Nk and all E-lines are contained in a common H ( 3, q2 )

and that the E-lines are exactly these external lines different from L that intersect both a line
Li and a line Mj . Denote the H ( 3, q2 ) by H3.
As seen before, there are at least q4 external lines not through l that intersect one of the

lines Li , i = 1, . . . , q. At least q4 − ( γ − q3 ) of those are E-lines. Therefore, in H3, there
are at least 1 + 3q + q4 − ( γ − q3 ) external lines. By (9) and the fact that x ≤ ( q − 1) / 3, it
follows that there are more than ( q4 + q3 + xq3 + x ) / 2 + q + 1 external lines in H3.
Now consider an external line L  not in H3. Note that since x > 0, such a line exists.

Through L  , there exists a H ( 3, q2 ) , say H 
3 containing more than ( q

4 + q3 + xq3 + x ) / 2 +
q + 1 external lines. But H3 and H 

3 have at most q + 1 lines in common. This implies that
there are more than

2
q4 + q3 + xq3 + x

2
+ q + 1 = ( q + 1 + x ) ( q3 + 1)

external lines. However, this number is exactly the number of external lines, a contradiction. �
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A theorem of Govaerts and Storme [15] permits to lift this bound to bounds on the size of
partial ovoids of H ( 2n , q2 ) , n ≥ 3.

THEOREM 5.4. If O is a partial ovoid of H ( 2n , q2 ) , n ≥ 2, then | O | < q2n + 1 + 1 −
2/ 3( q2 − 1) n − 2 ( 2q + 1) .

6. PARTIAL OVOIDS IN THE SPLIT CAYLEY HEXAGON

For information on the subject of generalized hexagons, we refers to [26].
Let q be a prime power and let H ( q ) be the split Cayley hexagon, i.e., the generalized

hexagon defined in the following way. The points of H ( q ) are the points of PG( 6, q ) on the
quadric Q ( 6, q ) with equation X0X4 + X1X5 + X2X6 = X23; the lines are the lines of this
quadric whose Grassmann coordinates satisfy the equations

p12 = p34 , p54 = p32 , p20 = p35 ,
p65 = p30 , p01 = p36 , p46 = p31 ,

and incidence is the natural one.Opposite points of H ( q ) are points that are at distance 6 from
each other in the incidence graph of H ( q ) (and that is also the maximal possible distance).
The generalized hexagon H ( q ) has the property that the set of points collinear with a given
point x in H ( q ) is the point set of a unique plane x ⊥ contained in Q ( 6, q ) . An ovoid of H ( q )
is a set of q3 + 1 mutually opposite points. A simple counting argument yields that every point
outside a given ovoid of H ( q ) is collinear with exactly one point of the ovoid, see also [26,
Chapter 7]. Hence, if O is an ovoid of H ( q ) , then the set of q3 + 1 planes x ⊥ , with x ∈ O , is
a plane spread of Q ( 6, q ) . A partial ovoid of H ( q ) is a set of mutually opposite points, and
this set is called maximal if no point of H ( q ) is opposite every point of the partial ovoid. The
deficiency of a partial ovoid containing N points is δ = q3 + 1 − N .

COROLLARY 6.1. If the deficiency δ of a maximal partial ovoid of H ( q ) , q > 2, is smaller
than � , where q + � denotes the size of the smallest nontrivial blocking sets in PG( 2, q ) , or if
q is a square and δ is smaller than q5 / 8 /

√
2 + 1, then δ is even.

PROOF. Let O be a maximal partial ovoid of H ( q ) with deficiency δ satisfying the condi-
tions above. The set of planes x ⊥ , with x ∈ O , is a partial plane spread S of Q ( 6, q ) , and
hence by Corollary 4.1(i) and 4.2, we can find a set S  of δ planes of Q ( 6, q ) such that S ∪ S 

is a spread of Q ( 6, q ) . Let π be any plane belonging to S  . If π were equal to a plane y ⊥ , for
some point y of H ( q ) , then { y } ∪ O would be a partial ovoid, a contradiction. Hence the point
set of π defines a set of q2 + q + 1 points of H ( q ) at mutual distance 4 (again measured in
the incidence graph of H ( q ) ).
By the third paragraph of the proof of Theorem 6.3.1 of [26], these q2 + q + 1 points are

a subset of the point set of a subhexagon of order ( 1, q ) of H ( q ) , the remaining points of
which from a plane π  of Q ( 6, q ) . This plane is uniquely defined by the following property:
the point set of π  is the set of points of H ( q ) that are collinear with exactly q + 1 points of
π , and such a set of q + 1 points of π is the point set of a line of π (all lines arise in this way).
Note that, since there are q + 1 lines of H ( q ) through every point of H ( q ) , every line of H ( q )
containing a point of π  contains a point of π , and vice versa.
Assume by way of contradiction that a point z of π  belongs to a member ζ of S . Let

ζ = a ⊥ , with a ∈ O . The line az contains a unique point of π , a contradiction. Hence all
points of π  are contained in members of S  , implying that π  ∈ S  . Since π was arbitrary in
S  , we conclude that δ must be even. �
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COROLLARY 6.2. A partial ovoid of H ( q ) , q even, has size at most q3 − 1.

PROOF. The previous result says that every partial ovoid of H ( q ) , q > 2, of size q3 can
be extended to an ovoid. In the remark after Theorem 4.2, as well as in [8], it is shown that
this property also holds for q = 2. But for q even, H ( q ) has no ovoid, see [21]. It can be
concluded that a partial ovoid of H ( q ) , q even, has size at most q3 − 1. �

For q = 2, this bound is sharp. We give an example of a partial ovoid of H (2) contain-
ing seven points. In order to do so, we need another description of H (2), as given in [27].
Let π be the projective plane of order 2. The point set of H (2) is the set of points, lines and
point-line pairs of π . There are two kinds of lines: (1) the triples { x , L , { x , L } } , with x a point
of π incident with the line L of π ; (2) the triples { { x , L } , { x1 , L1 } , { x2 , L2 } } , where x and L
are as above, and { x , x1 , x2 } is the point set of L , while { L , L1 , L2 } is the set of lines incident
with x (in π ). Incidence is natural. Two non-incident point-line pairs { x , L } and { y , M } of π
correspond to two opposite points in H (2) if and only if either x is incident with M or y is
incident with L , but not both (this follows from Proposition 3 of [27]). We now represent the
point set of π as the integers modulo 7. The lines are the translates of the set { 1, 2, 4} . It is
easily checked that the seven translates of the point-line pair { 0, { 1, 2, 4} } define a set of seven
mutually opposite points in H (2), and hence a maximal partial ovoid.

ACKNOWLEDGEMENT

The authors wish to thank the referee for a detailed review that improved the readability and
the coherence of this article.

REFERENCES

1. A. Blokhuis, On the size of a blocking set in PG( 2, p ) , Combinatorica, 14 (1994), 111–114.
2. A. Blokhuis, Blocking sets in Desarguesian planes, in: Combinatorics, Paul Erdős is Eighty,

Vol. 2 (Keszthely, 1993), János Bolyai Math. Soc., Budapest, 1996, pp. 133–155.
3. A. Blokhuis and K. Metsch, On the size of a maximal partial spread,Des. Codes Cryptogr., 3 (1993),
187–191.
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