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Abstract. The ten distance regular graphs of valency 3 and girth > 4 define ten non-isomorphic
neighborhood geometries, amongst which a projective plane, a generalized quadrangle, two gen-
eralized hexagons, the tilde geometry, the Desargues configuration and the Pappus configuration.
All these geometries are bislim, i.e., they have three points on each line and three lines through
each point. We study properties of these geometries such as embedding rank, generating rank,
representation in real spaces, alternative constructions. Our main result is a general construc-
tion method for homogeneous embeddings of flag transitive self-polar bislim geometries in real
projective space.

Keywords: Coxeter graph, Biggs-Smith graph, real embedding, universal embedding

1. Introduction

In 1971, Biggs and Smith [1] classified the trivalent distance regular graphs. There are
exactly thirteen of those, eight of which are bipartite. Hence these eight can be regarded
as the incidence graph of a geometry. For the other five, one can consider the so-called
neighborhood geometry, obtained from the graph by taking as points the vertices and
as lines a second copy of the vertices with the incidence relation induced by adjacency.
In this way, we obtain 14 geometries, because there is one graph which has no vertex
transitive automorphism group, and so this graph gives rise to two non-isomorphic ge-
ometries (generalized hexagons). Three graphs contain cycles of length 4, and so they
give rise to non-linear geometries. In view of the embedding problem we will discuss,
these are trivial and so we do not consider them (they are also trivial as geometries: two
of them are isomorphic to the geometry of all 3-sets of a 4-set, the other has three points
and three lines, and all points are incident with all lines). Hence there remain 11 more
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interesting geometries, two of which are mutual isomorphic (see below). So we end
up with a rather exceptional set of 10 bislim highly transitive and regular geometries
(bi-slim here means that each object is incident with three others; see below). Some of
these are well known and studied extensively. We mention the Desargues and the Pap-
pus configurations, the smallest (thick) projective plane, generalized quadrangle and
generalized hexagons, and the tilde geometry. In this paper, we are mainly interested
in real embeddings of these geometries, which can be regarded as n3 configurations.
There has been some interest from configurational point of view of realizations of such
structures, but most of the known results are obtained by computer, or are enumeration
results for rather small n, see for instance [6]. Therefore, they can not be applied to
most of our geometries. For instance, one of the problems we will solve is the existence
of a real embedding of the tilde geometry. This geometry has 45 points and 45 lines,
and it not captured by any previously developed theory. It is also too big to handle with
a computer in that the final result (whether it has a real embedding or not) does not
deserve a huge computer search, but it should rather be the case that the proof is more
worth mentioning (because of its beauty or the idea behind it) than the result itself. In
the present paper, we will develop some general theory about real embeddings of bis-
lim self-polar flag transitive geometries, and show how to apply it to all our self dual
geometries. Moreover, we will also provide some direct geometric constructions of the
universal embeddings in projective spaces over the field GF(2) of two elements.

We are also interested in some alternative constructions of some of our exceptional
geometries, sometimes giving rise to a new construction of the trivalent distance regu-
lar graph. In particular, we present a geometric construction of the Biggs-Smith graph,
which makes the full automorphism group apparent, and from which the classical con-
struction can be derived. This will yield a short new (computer free) proof of the exis-
tence of that graph as distance transitive graph.

The motivation of this work is twofold. First, we hope that the geometric look
will tell us more about the graphs themselves. Both the geometries and the graphs are
amongst the most symmetrical of their kind and so they reflect exceptional properties
of small groups. Some of these properties may now be explained geometrically, or at
least illustrated in a geometric way. Secondly, it has been a basic question to determine
whether a given geometry can be drawn in the real plane using points and straight lines.
Our work answers this question for many highly symmetric and thus beautiful but still
small geometries, so that one could really draw such a picture and admire its many
surprising and beautiful features.

2. Definitions

A point-line geometry is a system Γ = (P , L, I) consisting of a point set P , a line set
L and a symmetric incidence relation I between P and L expressing precisely when
a point is incident with a line. Usually we think of a line as the set of points incident
with it and we accordingly use phrases like “a point is on a line”, “a line goes through a
point”, etc. The dual of Γ is the point-line system ΓD obtained from Γ by interchanging
the point set with the line set. If all lines of Γ carry the same number s+ 1 of points
and all points are incident with the same number t+1 of lines, then we say that Γ has
order (s, t). If s= 1, then the geometry is usually called thin, while if both s and t are at
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least 2, the geometry is thick. If s= 2, then we call Γ slim. If the dual of Γ is also slim,
i.e., if also t = 2, then we call Γ bislim. The incidence graph I (Γ) or Levi graph of Γ
is the graph with vertex set P ∪L and adjacency relation I. The gonality of Γ is half of
the girth of I (Γ) (the girth being the length of the smallest cycle in I (Γ) is indeed an
even number since I (Γ) is obviously bipartite). If the gonality is at least 3, then lines
are determined by their point sets. A flag is an incident point-line pair. The geometry Γ
is called connected if its incidence graph is connected. An incidence matrix of a finite
point-line geometry Γ = (P , L, I) is a matrix A the columns of which are indexed by
P , the rows of which are indexed by L , and the (L, x)-entry of which is equal to 1 or
0 according whether xIL or not, for all x ∈ P , L ∈ L . Clearly, an incidence matrix
completely determines the geometry.

An monomorphism (isomorphism) from the point-line geometry Γ to the point-line
geometry Γ′ is an injective map (bijection) from the point set of Γ to the point set
of Γ′ together with an injective map (bijection) from the line set of Γ to the line set
of Γ′ such that, for any two elements of Γ, their images in Γ′ are incident (precisely)
when the elements themselves are incident. A collineation of a point-line geometry
Γ is an isomorphism from Γ to itself. The full collineation group is the group of all
collineations (and every subgroup is called a collineation group) of Γ and is denoted
Aut(Γ). If Aut(Γ) acts primitively on the point set of Γ, then we say that Γ is primitive.
A duality is an isomorphism from Γ to its dual. If a duality exists, then we say that Γ is
self-dual. A polarity is a duality of order 2; if it exists, then we say that Γ is self-polar.
It is easy to see that self-polar point-line geometries have some symmetric incidence
matrices.

Let G = (V, E) be a graph, where V is the set of vertices, and E is the set of edges.
Denote the (usual) distance between two vertices v, w by δ(v, w). Then G is called
distance regular if for all positive integers i, j, k, and for all pairs of vertices (v, w) ∈V 2
such that δ(v, w) = k, the number of vertices of G at distance i from v and at the same
time at distance j from w is constant (which does not depend on the pair (v, w), but only
on the numbers i, j, k). Let G be a group of automorphisms of a connected graph G .
Then G is called distance transitive with respect to G if G acts transitively on V and if
for every positive integer k and every vertex v of G , the stabilizer Gv acts transitively
on the set of vertices at distance k from v.

Now let G be a connected graph which is not bipartite. Then the adjacency matrix
A of G is the incidence matrix of a unique point-line geometry Γ(G), which we call the
neighborhood geometry ofG (we borrow this terminology from [7] where an equivalent
definition of these geometries arising from graphs is given in the spirit of the one in
the introduction). Note that Γ(G) is indeed unique since it is isomorphic to its dual.
It is easy to see that Γ(G) is connected (precisely because Γ is not bipartite). If G
is a connected bipartite graph, then it is clearly the incidence graph of two mutually
dual connected point-line geometries. In this way, we have attached to every connected
graph a pair of mutually dual (but not necessarily non-isomorphic) connected point-line
geometries.

We will study the point-line geometries arising in this way from the distance regular
trivalent graphs. But before we start our investigation, we give some definitions and
prove some general results about embeddings.

Let Γ = (P , L, I) be a point-line geometry and PG(d, K) the d-dimensional pro-
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jective space over the field K. An embedding of Γ in PG(d, K) is a monomorphism
of Γ into the point-line geometry of PG(d, K) such that the image of P is not con-
tained in any hyperplane of PG(d, K). Usually, one identifies a point with its image
in PG(d, K). If Γ is slim, then we call an embedding of Γ in PG(d, K) barycentric
if fixed projective coordinates can be chosen for each point of Γ in such a way that,
if three distinct points p1, p2, p3 of Γ are on one common line of Γ, then the sum of
their coordinates is equal to the zero (d+1)-tuple. An embedding is semi-barycentric
provided fixed projective coordinates can be chosen for each point of Γ in such a way
that, if three distinct points p1, p2, p3 of Γ are on one common line of Γ, then either the
sum of their coordinates is equal to the zero (d+1)-tuple, or the sum of the coordinates
of two of them equals the third coordinate tuple. An embedding is G-homogeneous,
for G ≤ AutΓ, if every collineation of Γ belonging to G is induced by the semi-linear
projective group PΓLd+1(K). An AutΓ-homogeneous embedding is also simply called
homogeneous.

With the previous definitions, it is not forbidden that in some embedding of a geom-
etry Γ a point p of Γ is not incident with a line L of Γ, but that these objects are incident
in the projective space in which Γ is embedded. Embeddings for which this does not
occur will be called exclusive embeddings. It is shown in [10] that every bislim geom-
etry admits a representation in PG(2, R) such that for at most one line of the geometry
the three points on that line are not collinear in PG(2, R). For exclusive embeddings,
there are counterexamples for any number of such lines (see [13]).

Let Γ be a slim geometry. If the positive integer d is maximal with respect to the
property that Γ admits an embedding in PG(d, 2) (respectively a barycentric embedding
in PG(d, R)), then d+1 is called the universal embedding rank of Γ (respectively the
real (barycentric) embedding rank of Γ). If d > 0 does not exist, then we say that
the universal embedding rank (respectively real (barycentric) embedding rank) is zero.
Also, we say that a subset of points of Γ generates Γ if the smallest slim subgeometry
of Γ with the property that, whenever two points of that subgeometry are collinear in Γ,
they are also collinear in the subgeometry, coincides with Γ. The generating rank of Γ
is the minimal number of points needed to generate Γ. Obviously the generating rank
of Γ cannot be smaller than the universal and real embedding ranks of Γ.

Finally, we need the notion of a cover. Let Γ = (P , L, I) and Γ′ = (P ′, L ′, I) be
two point-line geometries, and let there be given a surjective map from P onto P ′ and
a surjective map from L onto L ′ such that incident elements are mapped onto incident
elements. Then we call Γ (together with this pair of maps) a cover (sometimes also
a local isomorphism) if for each element v ∈ P ∪L , the set of elements of Γ incident
with v is mapped bijectively onto the set of elements incident with the image of v. It is
easy to show that the size of the inverse images (fibers) of two collinear points is equal
to the size of the inverse image of the line they determine. In particular, the size of
fibers is constant if Γ is connected. If that size is k, then we speak of a k-fold cover of
Γ′. A 2-fold (3-fold) cover is also called a double (triple) cover. Every collineation of
Γ preserving the fibers induces a collineation in Γ; we also say that some collineation
group of Γ′ is induced by some collineation group of Γ. It is clear what is meant. If the
fibers are equivalence classes in P and in L with respect to the relation “is at maximal
distance of”, then we say that Γ is an antipodal cover of Γ′.

Finally, we mention the following well known result (see [8]).
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Lemma 2.1. Let Γ be a thick geometry embedded in PG(d, K), for some field K. Then
the only linear collineation of PG(d, K) fixing every point of Γ is the identity.

3. Construction of Homogeneous Embeddings

Our first result states a necessary condition for the existence of barycentric embeddings
of slim point-line geometries.

Lemma 3.1. Suppose the slim point-line geometry Γ with n points and m lines has some
barycentric embedding in PG(d, R), for some d ≥ 2. Then the rank of any incidence
matrix of Γ is at most n−d−1.

Proof. LetA be an incidencematrix, with the rows indexed by the lines and the columns
indexed by the points of Γ. Build the n× (d+1) matrix B, where the rows are labelled
by the points of Γ, by defining the row corresponding to the point p ∈ P as the coordi-
nate tuple of p with respect to the barycentric embedding in PG(d, R) under consider-
ation. Then clearly AB is the zero matrix and the result follows from the fact that the
rank of B is equal to d+1.

The second result is connected with homogeneous and real semi-barycentric em-
beddings. We define Scn(R) as the (multiplicative) group of real scalar n×nmatrices.

Lemma 3.2. Let Γ be a flag transitive (with respect to a collineation group G) slim
point-line geometry G-homogeneously embedded in PG(d, R), d ≥ 2, for some G ≤
Aut(Γ)∩PGLd+1(R). Then the group G lifts to a subgroup of GLd+1(R) if and only if
the embedding is barycentric. Also, some nontrivial central extension 2 ·G of G lifts to a
subgroup ofGLd+1(R), with 2 ·G/(2 ·G∩Scd+1(R)) =G, if and only if the embedding
is semi-barycentric, but not barycentric. In the latter case there is a connected double
cover Γ′ of Γ.

Proof. Suppose first the embedding is barycentric and identify each point of Γ with a
fixed coordinate tuple such that p1+ p2+ p3 = 0 if and only if p1, p2, p3 are collinear,
for each triple of distinct points (where we write 0 for the 0-coordinate tuple). Let
θ ∈ G, and choose an arbitrary point p of Γ. We choose the matrix M of θ such that
pM (obvious notation; M is unique by Lemma 2.1) is the fixed coordinate tuple of pθ.
It follows easily that for all points p′ collinear with p, the coordinate tuple p′M is the
fixed chosen one (use p1 + p2 + p3 = 0 if and only if p1M+ p2M+ p3M = 0). By
connectivity, this is the case for all points of Γ. Now let n be the order of θ, thenMn is
proportional to the identity (because the points of Γ generate PG(d, R)); since for each
point p of Γ we have pMn = p, we see that Mn is equal to the identity matrix and so
detM = ±1. The mapping θ )→M defines a lifting of G to GLd+1(R).

Now suppose that the embedding is semi-barycentric, but not barycentric. For each
point p of Γ, denote by p+ and p− (with p+ = −p−) two fixed coordinate tuples cor-
responding to p such that, for each triple {p1, p2, p3} of distinct points, p1, p2, p3 are
collinear if and only if either p+

1 + p+
2 + p+

3 = 0, or p+
1 + p+

2 + p−3 = 0, or p+
1 + p−2 +

p+
3 = 0, or p−1 + p+

2 + p+
3 = 0. Since we assume that the embedding is not barycentric,

there is no way to choose p+ in such a way that p+
1 + p+

2 + p+
3 = 0 whenever p1, p2, p3

are three distinct collinear points of Γ. For θ ∈ G, we choose matrices ±Mθ such that,
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for some fixed point p of Γ, the coordinate tuples p(±Mθ) are the two fixed chosen
ones. Similarly as in the previous paragraph, this is well defined and independent of
the point p. Also similarly one proves that detMθ ∈ {1,−1}. The mapping ±Mθ )→ θ
is clearly an epimorphism with kernel {I, −I} (I is the identity matrix) from the group
G† = {±Mθ |θ ∈ G} ≤ GLd+1(R) to G. Clearly the kernel is in the center of G†, and
so G† is a central extension of G, with G†/(G†∩Scd+1(R)) =G. If it were trivial, then
G† could be written as 2×G′, with G∼= G′. Since the size of the stabilizer of any point
of Γ in G′ is equal to that in 2×G′, we see that G′ would have two orbits on the fixed
chosen coordinate tuples of points of Γ. We claim that this defines a barycentric em-
bedding, which leads to a contradiction. Indeed, for three arbitrary but fixed collinear
points p1, p2, p3 of Γ, we may choose p+

1 , p+
2 , p+

3 as the coordinate tuples in one orbit
of G′. Suppose by way of contradiction that p+

1 = p+
2 + p+

3 . By flag transitivity of
G′, there exists an element M′ ∈ G′ mapping p+

1 onto p
+
2 while the set {p

+
1 , p+

2 , p+
3 }

is preserved. Hence we obtain p+
2 = p+

1 + p+
3 , implying 2p

+
3 = 0, a contradiction. So

p+
1 + p+

2 + p+
3 = 0, and the claim follows.

Now suppose thatG lifts to a subgroupG′ ofGLd+1(R). Let p be an arbitrary point
of Γ, and let p+ and p− be two fixed coordinate tuples for p, with p+ = −p−. Define
for each point x of Γ the coordinate tuples x+, x− as the image of p+, p− under some
suitable element ofG′, where an element is said to be suitable toG if it maps p to x. This
is well defined since we claim that, if θ stabilizes p, then the corresponding elementM
in G′ stabilizes {p+, p−}. Indeed,M maps p+ to some multiple r · p+. If n is the order
of θ, thenMn is the identity and maps p+ to rn · p+. Hence rn = 1 and the claim follows.
Now the group generated by −I and G′ is isomorphic to the direct product 2×G′, and
similar arguments as those in the previous paragraph show that G′ has two orbits on
the set {p+, p− | p is a point of Γ}, each of which defines a barycentric embedding (if
p1, p2, p3 are three distinct collinear points, and p+

1 , p+
2 , p+

3 are in the same orbit with
respect to G′, then, since every transitive group on three letters contains a 3-cycle, from
the flag transitivity it follows that p+

1 +r2p+
2 +r3p+

3 = 0 implies p+
2 +r2p+

3 +r3p+
1 = 0,

which easily leads to r2 = r3 = 1).
Finally, suppose that some nontrivial central extension 2 ·G of G lifts to a sub-

group G† of GLd+1(R), with G†/(G†∩Scd+1(R)) = G. As before, one easily shows
that for each point p there can be chosen two fixed coordinate tuples p+ and p−, with
p+ = −p− such that G† acts transitively on the set {p+, p− | p is a point of Γ}. The
conditions imply that −I ∈ G†. Let p1, p2, p3 be three distinct collinear points, and
suppose p+

1 +r2p+
2 +r3p+

3 = 0. Using flag transitivity, this implies p+
2 ±r2p

+
3 ±r3p

+
1 =

0, which yields r2 = ±1 and r3 = ±1. Hence the embedding is semi-barycentric,
and not barycentric by the second paragraph of our proof. Moreover, it is clear that
the point-line geometry Γ′ = (P ′, L ′, I), with P ′ = {p+, p− | p is a point of Γ}, L ′ =
{{pε11 , pε22 , pε33 }| p1, p2, p3 are points of Γ, ε1, ε2, ε3 ∈ {+,−}, pε11 + pε22 + pε33 = 0},
and natural incidence relation I, is a double cover of Γ. If it would not be connected,
then one could show that each connected component defines a barycentric embedding
and the stabilizer of one component is isomorphic to G, leading to the fact that the
extension is trivial after all, a contradiction.

The lemma is proved.

The previous lemma says that, if we want to construct real G-homogeneous semi-
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barycentric embeddings for flag transitive collineation groupsG, then we ought to look
at real representations of G. One possibility to find a real embedding this way is to
see whether a point stabilizer Gx, for x a point of Γ, fixes a 1-dimensional subspace in
the representation. This way, one finds the points of Γ in the associated real projective
space, and then one has to check whether collinear points of Γ are also collinear in this
real projective space. This approach is clearly very individual and does not guarantee
any success. However, if one considers the real representation arising from the permu-
tation representation of G on the points of Γ, if Γ is self-polar and G acts primitively on
the point set of Γ, then some general results can be obtained.

Theorem 3.3. Let Γ = (P , L, I) be a connected self-polar point-line geometry with n
points and let G a flag transitive collineation group acting primitively on P . Let A be a
symmetric incidencematrix ofΓ, and consider it as the matrix of a linear endomorphism
of real n-space. If detA= 0, then the projection of the basis vectors from ImA intoKerA
yields a G-homogeneous barycentric embedding of Γ. If detA ,= 0, and if Γ admits a
self-polar double cover Γ′ with corresponding symmetric incidence matrix A′ such that
detA′ = 0 and such that Γ′ admits a collineation group G′ which induces G in Γ, then,
considering A′ as the matrix of a linear endomorphism of real 2n-space, the projection
of the basis vectors from ImA′ into KerA′ yields a G-homogeneous semi-barycentric
(non barycentric) embedding of Γ (basis vectors corresponding to points of Γ′ in the
same fiber are indeed projected onto opposite vectors).

Proof. First suppose that detA = 0. Let V be a real n-space. From linear algebra it
follows that V = ImA⊕KerA, and we consider the action of A on V on the left (so
on column vectors). We denote the polarity corresponding to A by ρ. We may identify
each point p of Γwith a basis vector p ofV in such a way that, if p corresponds to the ith
row of A, then p is the ith basis vector (0, . . . ,0, 1, 0, . . . ,0), with the 1 on the ith entry.
So we can unambiguously write p = pIm+ pKer, with pIm ∈ ImA and pKer ∈ KerA. It
is clear that G is isomorphic with a subgroup of GL(V ) stabilizing KerA. Moreover,
G acts on the set P := {pKer | p ∈ P} and this action is permutation equivalent to the
action of G on P whenever |P | > 1 (using the primitivity of G on P ). We now show
that pKer+ p ′

Ker+ p ′′Ker = 0, for distinct collinear points p, p′, p′′ of Γ. This is clearly
equivalent to showing that pKer+ p ′Ker+ p ′′

Ker ∈ ImA, for p, p′, p′′ as above, which is on
its turn equivalent with p+ p ′+ p ′′ ∈ ImA. But this is clear, as p+ p ′+ p ′′ is the image
of the basis vector x, with xρ equal to the line pp′p′′. Now remark that P generates
KerA and so, if |P | = 1, then pKer = 0, for every p ∈ P , contradicting the assumption
detA= 0. So distinct points of Γ define distinct elements of KerA. Hence there remains
to show that distinct lines of Γ define distinct lines of PG(KerA) (implying in particular
that dimKerA≥ 3 and so, in view of the primitivity of G on P again, distinct points of
P define distinct points of PG(KerA)).

First we remark that, if two different collinear points p, p′ define proportional vec-
tors pKer, p ′Ker, then by flag transitivity, every point x collinear with p defines a vector
xKer proportional to pKer. By connectivity, all elements of P are proportional to each
other and so dimKerA = 1. Since Γ contains at least 3 points, there is some element
of G whose restriction to KerA acts as a linear isomorphism with determinant different
from 1 and −1, contradicting the finiteness of both G and Γ.

So we may assume that lines of Γ really define lines of PG(KerA). Assume, by
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way of contradiction, that two concurrent lines L1, L2 of Γ define the same line L of
PG(KerA). Let p be the intersection of L1 with L2. Since G is flag transitive, there is
a collineation in G fixing p and inducing a 3-cycle on the set of lines of Γ through p.
This implies easily that all lines of Γ through p define the same line L of PG(KerA).
Mapping p to any point x collinear with p, thereby preserving the line px, we see
that all points at distance 4 from p also correspond with points of PG(KerA) on L. By
connectivity, and going on like this, all elements of V lie on L and hence dimKerA= 2.

We recoordinatize KerA such that pKer has coordinates (1, 0), and the two other
points of some line through p in Γ correspond to the vectors (0, 1) and (−1,−1). By
flag transitivity, we can fix (1, 0) and map (0, 1) to some vector (a, b) corresponding
to a point of Γ collinear with p, but distinct from both (0, 1) and (−1, −1), and we
can do this using a collineation whose order is divisible by 3. The 2× 2 matrix M
corresponding to that transformation has finite multiplicative order if and only if either
b ∈ {1, −1} and a= 0, or b= −1. In the latter case

M =
(
1 a
0 −1

)

and consequently we see that in both casesM2 = I, contradicting the fact that the order
ofM must be divisible by 3.

So we have shown the theorem in the case that A is singular.
Now suppose that detA ,= 0 and that Γ admits a self-polar double cover Γ′ =

(P ′, L ′, I′) with corresponding symmetric incidence matrix A′ such that detA′ = 0,
and such that Γ′ admits a collineation group G′ inducing G in Γ. Note that |G′| = 2|G|,
since the unique involution interchanging the elements of each fiber is a collineation of
Γ′. Denote by ξ the natural epimorphism from Γ′ down to Γ.

LetV ′ be a real 2n-space. We again haveV ′ = ImA′⊕KerA′ and consider the action
of A′ on V ′ on the left. We again identify each point p of Γ′ with a basis vector p of V ′

in such a way that, if p corresponds to the ith row of A′, then p is the ith basis vector
(0, . . . ,0, 1, 0, . . . ,0), with the 1 on the ith entry. We again write p = pIm + pKer, with
pIm ∈ ImA′ and pKer ∈ KerA′. The group G′ is isomorphic with a subgroup of GL(V ′)
stabilizing KerA′ and acting on the set P ′ := {pKer | p ∈ P ′} permutation equivalently
to the action of G′ on P ′ if |P ′| > 1. We now claim that pKer+ p ′Ker = 0, for p, p′ two
distinct points of the same fiber of Γ′. As before, it suffices to show that p+ p ′ ∈ ImA′.
First we note that there is a natural injective morphism α : V ← V ′ which maps the
basis vector x, x ∈ P , to the vector x1 + x2, where x1, x2 ∈ P ′ are the distinct points
in the fiber of x. It is easily verified on the basis that for every vector w ∈ V we have
α(Aw) = A′α(w). As detA ,= 0, there is a (unique) vector v ∈ V with Av = pξ, so
A′α(v) = p+ p ′ and the claim is proved.

Similar to the first part of the proof, one shows that pKer + p ′
Ker + p ′′

Ker = 0, for
distinct collinear points p, p′, p′′ of Γ′ and that P ′ generates KerA′. Hence there re-
mains to show that points (lines) in different fibers of Γ′ define distinct points (lines) of
PG(KerA′). But this is similar to the first part of the proof.

Hence we do obtain a G-homogeneous semi-barycentric embedding of Γ in
PG(KerA). It cannot be barycentric by Lemma 3.1.

The theorem is proved.
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This theorem has an interesting corollary. For a given slim point-line geometry
Γ = (P , L, I), we let Rp be a copy of the additive group of real numbers, where we
denote the 1 by p. We define the group GP as the direct product of these copies Rp, for
p∈P . We then define the quotient groupGΓ by requiring the relations p1+ p2+ p3= 0,
for each triple of distinct collinear points of Γ. Now let there be given any barycentric
embedding of Γ in PG(d, R), then we may fix the coordinates of every point of Γ
and obtain a representation of Γ in the vector space V = Rd+1, where the sum of each
three distinct collinear points is zero. It is clear that there is a canonical epimorphism
from GΓ onto the additive group of V such that, for each point p of Γ, the point of GΓ

corresponding to p is mapped onto the point of V corresponding to p. Hence, in this
case, the representation of Γ in GΓ can be considered as a universal barycentric real
embedding of Γ. It follows that, if a slim point-line geometry Γ has some barycentric
real embedding, then it has a unique universal one. In view of Lemma 3.1, Theorem 3.3
now implies:

Corollary 3.4. Suppose a slim self-polar flag transitive point-line geometry Γ admits at
least one real barycentric embedding. Let A be a symmetric incidence matrix of Γ, and
consider it as the matrix of a linear endomorphism of real n-space, with n the number
of points of Γ. Then detA = 0, and the projection of the basis vectors from ImA into
KerA yields the (homogeneous) universal real barycentric embedding of Γ. Hence the
real barycentric embedding rank of Γ is equal to the corank of the matrix A.

Proof. This is clear if Γ admits a flag transitive collineation group acting primitively on
the point set of Γ. If not, and if detA= 0, then we must show that, if the construction of
the Corollary does not yield an embedding, then Γ does not admit any real barycentric
embedding at all.

The proof of Theorem 3.3 shows that, if the given algorithm does not lead to an
embedding, then it leads to an embedding of some quotient geometry, and so two points
p, p′ of Γ give rise to either opposite vectors pKer =−p ′Ker or equal vectors pKer = p ′

Ker
(using the notation of the proof of Theorem 3.3). It follows that, with the right choice
of sign, the vector p± p ′ belongs to ImA. But ImA is generated by vectors of the form
x1+ x2+ x3, with x1, x2, x3 distinct collinear points of Γ (using the symmetry of A). It
follows that the relation p± p′ = 0 in GP follows from the relations x1+ x2+ x3 = 0,
with x1, x2, x3 distinct and collinear. This means that there is no universal barycentric
embedding, and hence no real barycentric embedding at all.

This yields in principal a complete classification of all barycentric embeddings of
slim self-polar flag transitive geometries. Indeed, if some incidence matrix is non-
singular, then there is no real barycentric embedding; otherwise we apply the construc-
tion given in Theorem 3.3 or Corollary 3.4 and see whether it gives rise to an embedding
(in the primitive case it always does).

One can compare the previous results with the situation over GF(2). Indeed, if
a slim geometry admits any embedding in some projective space PG(d, 2) over the
field GF(2) of two elements, then it admits a universal such embedding and every
other embedding over GF(2) arises from the universal embedding by projection. The
universal embedding is always homogeneous (so is the universal real barycentric one).
But there is no concrete general geometric construction algorithm known in this case.
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We will provide some ad hoc constructions for our exceptional geometries in the next
section. Notice that the dimensions of the universal embedding and the real universal
barycentric embedding may be different.

4. Application to Ten Exceptional Bislim Geometries

We now apply the previous results to the ten exceptional bislim geometries arising from
the ten trivalent distance regular graphs of girth ≥ 5. We also mention some other
properties of these geometries, in casu, some alternative descriptions. Note that all the
geometries we consider admit flag transitive collineation groups.

We arrange the geometries by their underlying graphs, sometimes considering small
classes of two or three related graphs.

4.1. The Petersen Graph, the Desargues Graph and the Dodecahedron

These graphs give rise to the Desargues configuration Dc and a certain unique double
cover D̃c of it. We present some known, but still worthwhile mentioning, constructions.

First of all, there is the classical construction of the Desargues configuration in the
real projective plane with two triangles in perspective from a point, implying that the
corresponding sides of the triangles meet on a common line (and hence the triangle
are also in perspective from that line). It is easy to check that this can never give rise
to a homogeneous embedding. However, the axiom of Desargues, from which this
construction emerges, is valid in every Desarguesian projective plane. In particular,
it holds in finite Pappian planes. In some small planes, there are alternative ways to
describe it, and they yield G-homogeneous embeddings for rather large collineation
groupsG of Dc.

Consider a non-degenerate conic in the projective plane PG(2, 5). Then the points
ofDc are the 10 internal points of the conic (i.e., the points not incident with any tangent
line to the conic) and the lines are the 10 external lines (i.e., the lines not meeting the
conic), while incidence is natural. From this construction it is clear that PGL2(5) is a
collineation group, and thatDc is a self-polar bislim geometry. Hence, this construction
yields a homogeneous (exclusive) embedding into PG(2, 5) (it is indeed well known
that the full collineation group is isomorphic to PGL2(5) ∼= S5).

In fact, it is rather straightforward to calculate using coordinates that:

Proposition 4.1. If a Desargues configuration in any Desarguesian projective plane is
homogeneously embedded, then the characteristic of the underlying skew field is equal
to 5 and there is a subplane over GF(5) such that Dc is embedded in that subplane as
in the previous paragraph.

Consider a triangle T in the projective plane PG(2, 3) (this is a set of three non-
collinear points together with the three joining lines). The points of Dc are the points of
PG(2, 3) different from those of T and the lines are the lines of PG(2, 3) different from
those of T . A point p and a line L are incident in Dc if they are incident in PG(2, 3)
and if either p lies on a line of T or L contains a point of T , or both conditions hold.
One checks that this indeed yields Dc. Viewing S4 as a subgroup of AutDc, this yields
a S4-homogeneous (non-exclusive) embedding of Dc in PG(2, 3) (it can be seen as a
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“little Desargues configuration” from each of the four points not on any of the lines of
T ).

In fact, the way to prove that projective spaces of dimension ≥ 3 are always De-
sarguesian is to consider a Desargues configuration in projective 3-space, i.e., a point
together with two triangles in perspective from that point, but lying in different planes,
and together with the intersection points of the corresponding sides and the intersection
line of the two planes. For the smallest projective 3-space (the one over GF(2)), there
is a more elegant description as follows. Consider an elliptic quadric in PG(3, 2). The
points of Dc are the points off that quadric, and the lines are the lines disjoint from the
quadric. Incidence is natural. All embeddings in projective 3-space of Dc are homo-
geneous and exclusive. Over the real numbers, it is never barycentric, for otherwise
any incidence matrix must be singular. But such a matrix is an adjacency matrix of
the Petersen graph, and this matrix is non-singular. However, such an embedding is
homogeneous over any field.

A combinatorial construction goes as follows. The points are the pairs of the 5-set
{1, 2, 3, 4, 5}; the lines are the triples of that 5-set and incidence is natural (and the
action of the symmetric group S5 is apparent here). We now recognize the Desargues
configuration as the neighborhood geometry of the Petersen graph. Indeed, the vertices
of the Petersen graph can also be taken as the pairs of the 5-set {1, 2, 3, 4, 5}, with
two vertices adjacent if the corresponding pairs are disjoint. Hence the lines of the
neighborhood geometry are triples of pairs disjoint from a fixed pair, or in other words,
contained in the complementary 3-set.

It is an elementary exercise to show that the generating rank of Dc is equal to 4.
Since there are embeddings of Dc in PG(3, 2) the universal embedding rank is equal to
4. Since any incidence matrix is non-singular, the real embedding rank is 0.

We now consider the question whether there is a semi-barycentric embedding of Dc
in PG(3, R) and PG(2, R). Therefore, we consider the neighborhood geometry of the
dodecahedron. Since the dodecahedron graph is a double cover of the Petersen graph,
this geometry, which we will denote by D̃c, is an antipodal double cover of Dc. It is
straightforward to show the following.

Proposition 4.2. The geometry Dc admits, up to isomorphism, a unique double cover
which does not contain any triangle as a subgeometry, and this double cover is isomor-
phic to D̃c.

It is a peculiar fact that Aut D̃c is not entirely induced by the automorphism group
of the dodecahedron graph. Indeed, every collineation of Dc lifts to some collineation
of D̃c, hence |AutD̃c|= 240, while the automorphism group of the dodecahedron graph
has size 120. In fact, the full correlation group of D̃c is isomorphic to the groupGL2(5).
Note that these observations provide a counterexample to Lemma 3.5 of [7] (which is
stated without proof, and which claims that the automorphism group of a graph and its
neighborhood geometry are the same).

Clearly an adjacency matrix of the dodecahedron graph is an incidence matrix of
D̃c. Now it is known that such a matrix is singular, hence we can apply Theorem 3.3
and we obtain a semi-barycentric embedding of Dc in real projective 3-space. We also
conclude with Corollary 3.4 that D̃c does not admit any real barycentric embedding.
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With some tedious calculations, one can prove that D̃c does admit a real embedding in
PG(2, R), but I was not able (yet) to find a (nice) geometric construction of such an
embedding or a geometric argument about why such an embedding should exist.

4.2. The Pappus Graph

The Pappus graph is the incidence graph of the Pappus configuration Pc. The points
of Pc are the 9 vectors of a 2-dimensional vector space over the field GF(3); the lines
are the translates of all vector lines but one (arbitrarily chosen). In other words, it is
the biaffine plane of order 3, or, with still different terminology, the net of order 3 and
degree 3.

The Pappus configuration originates from the following property in Pappian pro-
jective planes (planes coordinatized by commutative fields). Consider three collinear
points a1, a2, a3, and three collinear points b1, b2, b3 such that the intersection point of
the corresponding lines is not amongst a1, . . . ,b3. Then the lines aib j and a jbi meet
at some point ck, with {i, j, k} = {1, 2, 3}, and c1, c2, c3 are automatically collinear.
The points and lines just mentioned define an embedding of the Pappus geometry. This
embedding cannot be barycentric since it is easy to check that any incidence matrix of
Pc has corank 2. But a simple calculation shows that it can neither be semi-barycentric.
Also easy to see is that Pc is generated by 3 points, hence the universal embedding rank
can be at most 3. But clearly Pc cannot be embedded in PG(2, 2) since the later only
has 7 points. So Pc does not admit any embedding at all in any projective space over
GF(2).

Note that Pc is not a primitive geometry; it is the unique (antipodal) 3-fold cover
of the trivial bislim geometry (trivial in the sense that all points are incident with all
lines) which does not contain digons itself (i.e. which does not contain two different
lines incident with two different points).

4.3. The Heawood Graph, the Coxeter Graph, Tutte’s 12-Cage

The Fano geometry PG(2, 2) is the smallest projective plane the incidence graph of
which is the Heawood graph. The point set of PG(2, 2) is the set of 7 nonzero vectors
of a 3-dimensional vector space over the field GF(2) of 2 elements, the lines are the 7
vector planes in this vector space, with natural incidence relation.

Another well known construction of PG(2, 2) is to take as point set the integers
modulo 7, and the lines are the translates of the 3-set {0, 1, 3}. We refer to this as the
cyclic construction.

From this geometry, one defines the Coxeter graph as follows. The vertices are
the antiflags (non-incident point-line pairs) and two vertices {x1, L1}, {x2, L2}, with
x1, x2 points of PG(2, 2) and L1, L2 lines of PG(2, 2) such that xi , ILi, i = 1, 2, are
adjacent whenever |{x1, x2, L1, L2}| = 4 and {x1, L2}, {x2, L1} are also antiflags. The
neighborhood geometryCox of the Coxeter graph has not been studied yet individually
in the literature, although it is mentioned as an example of neighborhood geometry
in Table 1 of [7]. In view of the definition of the Coxeter graph, it can be described
as follows (other constructions follow from other constructions of the Coxeter graph,
see [5]). The points are the antiflags of the Fano geometry, three antiflags form a line
of Cox if their union forms a triangle in PG(2, 2). In fact, this definition may be



Exceptional Geometries 13

generalized to arbitrary projective planes to yield many slim geometries with many
symmetries. Each line of Cox is corresponding to a unique point of Cox (the line
viewed as a triangle in PG(2, 2), this point is the antiflag none of whose elements are
incident with any element of the triangle) and this induces a (unique) polarity without
absolute points (a point being absolute with respect to a polarity if it is incident with its
image under the polarity). Clearly, Cox is primitive, and every adjacency matrix A of
the Coxeter graph is an incidence matrix of Cox. It is well known that the rank of A is
28, hence by Lemma 3.1 Cox does not admit a real barycentric embedding. But it can
be shown (unpublished) that Cox admits an antipodal double cover with collineation
group GL2(7); in fact this geometry is the neighborhood geometry of an (antipodal)
non-bipartite graph with 56 vertices and automorphism group SL2(7). So, as is the
case with the neighborhood geometry of the dodecahedron, the collineation group of
the geometry is not completely induced by the automorphism group of the graph.

We now show that the generating rank is equal to 8. We first exhibit a set of 8 points
that generatesCox. Afterward, we construct an embedding of Cox in PG(2, 7) proving
that the generating rank is 8 and that this embedding is the universal one.

First we recall an old notation, namely, {n}+{n/m} refers to the graph with vertex
set {1, 2, . . . ,n, 1′, 2′, . . . ,n′} and adjacency relation ∼ defined by i ∼ j (respectively
i′ ∼ j′ and i∼ j′) if and only if i− j ≡±1 mod n (respectively i− j ≡±m mod n and
i= j). For instance, the Petersen graph is {5}+{5/2} in this notation and the incidence
graph of the Desargues configuration is {10}+{10/3}.

Now, in the cyclic construction of PG(2, 2), consider the antiflags (i, {i− 2,
i− 1, i+ 1}), i ∈ Z mod 7. They form a 7-gon in Cox with as additional points on
the sides the antiflags (i, {i+1, i+2, i+4}), i ∈ Z mod 7. These 14 points form a geo-
metric hyperplane the complement of which contains two 7-gons with respective point
sets C1 = {(i, {i+2, i+3, i+5}) | i ∈ Z mod 7} and C2 = {(i, {i−4, i−3, i−1}) | i ∈
Z mod 7}, so organized that, together, they form the connected graph {7}+ {7/2}.
Hence the points (i, {i− 2, i− 1, i+ 1}), i ∈ Z mod 7, together with any element of
C1∪C2, generate Cox. Hence the generating rank of Cox is at most 8.

We now give an explicit construction of the universal embedding of Cox. All
3× 3 matrices over GF(2) form a 9-dimensional vector space V with standard basis
{Ei j | i, j = 1, 2, 3}. We consider the quotient space W = V/T , where T is the vec-
tor line generated by the identity matrix I = E11+E22+E33. Note that the points of
PG(2, 2) can be identified with triples (x1, x2, x3) ∈ GF(2)3 and the lines with triples
[a1, a2, a3] ∈ GF(2)3 such that a point (x1, x2, x3) is incident with a line [a1, a2, a3] if
and only if a1x1 + a2x2+ a3x3 = 0. We identify an antiflag {(x1, x2, x3), [a1, a2, a3]}
with the point ∑i, j xia jEi j + T . We claim that this defines an embedding in PG(W ).
Since the collineation group of PG(2, 2) is transitive on triangles, we can represent
every line of Cox as a triple ({(1, 0, 0)M, [1, 0, 0]M−t}, {(0, 1, 0)M, [0, 1, 0]M−t},
{(0, 0, 1)M, [0, 0, 1]M−t}). The sum of the coordinates of points of this line of Cox in
V is equal toMtE11M−t +MtE22M−t +MtE33M−t =Mt IM−t = I; hence they represent
collinear points of PG(W ). It remains to show that these points generate PG(W ). But
this follows by considering the antiflags (denoting the antiflag {(x1, x2, x3), [a1, a2, a3]}
briefly by 〈x1x2x3, a1a2a3〉) 〈100, 100〉, 〈100, 110〉, 〈100, 101〉, 〈010, 010〉, 〈010, 110〉,
〈010, 011〉, 〈001, 101〉, 〈001, 011〉. So we have the satisfying situation that the univer-
sal embedding rank is equal to the generating rank of Cox.
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Tutte’s 12-cage can also be constructed from PG(2, 2), see for instance [12]. It is
convenient to use the elements of the Heawood graph and the Coxeter graph in terms of
the points, lines, flags and antiflags of PG(2, 2). Then the vertices of Tutte’s 12-cage
are the points and lines (the vertices of the Heawood graph), the antiflags (vertices of
the Coxeter graph) and flags of PG(2, 2), together with the edges of the Heawood graph
and the Coxeter graph. Adjacency is the natural incidence in the Heawood graph and
the Coxeter graph, together with the rule: a flag (p, L) is adjacent to the unique edge of
the Heawood graph containing the vertices p and L, and also with the two edges of the
Coxeter graph containing vertices corresponding to antiflags the lines of which are both
incident with p in PG(2, 2), and the points of which are both incident with the line L
in PG(2, 2). Clearly Tutte’s 12-cage is bipartite. In fact, it is distance regular, but not
distance transitive. It is almost distance transitive in the sense that stabilizer of a vertex
v acts transitively on each set of vertices at fixed distance from v. Tutte’s 12-cage has
diameter 6 and girth 12 and thus is the incidence graph of two (non-isomorphic) gener-
alized hexagons. Hence some results of the previous section do not apply here. On the
other hand, these hexagons are well studied and the following is known. Both the uni-
versal embedding rank and the generating rank of both generalized hexagons are equal
to 14. Moreover, there are real embeddings of both geometries in PG(13, R). These
are explicitly constructed (giving precise coordinates to each point) in [11], and one
can check easily that they are barycentric. In fact, as shown in [11], the full collineation
groups are induced by GL14(R), and so the embeddings are automatically barycentric
by Lemma 3.2. Consequently the real embedding ranks are also equal to 14. This is
again a very desirable situation.

For other constructions of the generalized hexagons related to Tutte’s 12-cage, see
[9].

4.4. Tutte’s 8-Cage and the Foster Graph
Tutte’s 8-cage is the incidence graph of the unique bislim generalized quadrangleW(2).
There are many very different constructions of this geometry and its incidence graph.
We mention two of them: a less known one and a well known one, respectively.

Consider a conic C in the projective plane PG(2, 9). Define a graph with vertex
set being the polar triangles with respect to C (i.e., the triples of distinct points such
that the polar line with respect to C of each of these points is spanned by the two other
points) which consist entirely of exterior points (i.e., points incident with exactly two
tangent lines to C ). Declare two vertices adjacent if the corresponding polar triangles
intersect non-trivially. This graph is Tutte’s 8-cage, see [9].

Now define the following bislim geometry. The points are the pairs of elements of
the set {1, 2, 3, 4, 5, 6}, the lines are the triples of pairs that partition {1, 2, 3, 4, 5, 6}
(and incidence is the natural one). We obtainW(2).

An ovoid of a point-line geometry Γ is a set of points with the property that each
line is incident with exactly one point of the ovoid. The generalized quadrangle has
six ovoids. Each of them may be identified with an element of {1, 2, 3, 4, 5, 6}; the
ovoid consists of all pairs containing a fixed element of {1, 2, 3, 4, 5, 6}. We deduce
that every point is contained in exactly 2 ovoids.

A spread of a point-line geometry is the dual of an ovoid: it is a set of lines parti-
tioning the point set.
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It is well known and easy to verify that both the generating rank and the universal
embedding rank of W(2) are equal to 5. Concerning the real embedding rank, we
consider a symmetric incidence matrix A (which is not equal to the adjacency matrix
of any graph because every polarity ofW(2) has five absolute points; the points of an
ovoid). Then A2 = B+3I, where B is an adjacency matrix of the point graph ofW(2)
and which has −3 as an eigenvalue with multiplicity 5 (see e.g. [2]). Hence the real
embedding rank is also equal to 5. We now present a direct and explicit construction of
the universal barycentric embedding ofW(2). To this end, we consider the construction
of W(2) as given in the previous paragraph and we label the coordinates of points of
PG(5, R) (but the construction will work over an arbitrary fieldK) with the elements of
the set {1, 2, 3, 4, 5, 6}. The point {i, j}, with i, j ∈ {1, 2, 3, 4, 5, 6}, i ,= j, is assigned
the coordinates (x1, x2, . . . ,x6) with xk = 1 if k /∈ {i, j} and xk = −2 if k ∈ {i, j}. In
fact, this is the result of labelling the coordinates of points of a real projective space by
the ovoids ofW(2) and assigning to any point coordinates according to the rule: the ith
coordinate is 1 if the point does not belong to ovoid number i, and −2 if it does belong
to that ovoid. We will use this construction later on again.

Clearly we obtain a real embedding in some subspace. Indeed, fix a line L and an
entry in the coordinate tuples, i.e., an ovoid O. Since L contains exactly one point of
O, the sum of the corresponding entries of the three points incident with L is equal to
1+1−2= 0, hence we already have the “barycentric property”. We leave it as an easy
exercise to check that distinct points and lines ofW(2) are represented by distinct points
and lines of PG(5, R). It remains to determine the dimension of the space generated
by the points of W(2) in PG(5, R). For each ovoid O, we consider the point pO of
PG(5, R) obtained by adding the coordinates of all points of O. We obtain a point with
all coordinates equal to 2, except the entry corresponding with O, which equals −10.
The coordinates of the six points pO thus obtained form a 6× 6 matrix whose rank is
equal to 5 (indeed,−6 is an eigenvaluewith multiplicity 5 if the numbers−10 are all put
on the diagonal; hence 0 is an eigenvalue with multiplicity 1). Hence the points ofW(2)
generate a hyperplane PG(4, R) and we do have the universal barycentric embedding.
The explicit equation of PG(4, R) is X1+X2+X3+X4+X5+X6 = 0 (indeed, as every
point ofW(2) belongs to exactly 2 ovoids, every point has 4 coordinates equal to 1 and
two equal to −2, so the sum of coordinates is indeed 0). Note that this construction,
taken overGF(2), produces the universal embedding overGF(2).

So the situation forW(2) is similar to the one of the two bislim generalized hexagons.
This changes when considering the bislim geometry related to the Foster graph. This
is the so-called tilde geometry W̃(2); it is the unique (antipodal) triple cover ofW(2)
having no quadrangles as subgeometry (in other words, the incidence graph of which
has girth > 8). The following interesting property is easily deduced from the construc-
tion in [9] (note that every spread ofW(2) gives rise to a spread of W̃(2) by lifting all
spread elements).

Lemma 4.3. Let S be a spread of W̃(2) obtained from a spread ofW(2) by lifting. If
we remove S from W̃(2), then there remain three connected slim geometries each point
of which is incident with exactly 2 lines. Each of these geometries is isomorphic to the
dual of a Petersen graph, viewed as dually slim geometry.

It is well known (as explicitly shown in [8]) that both the generating rank and univer-
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sal embedding rank of W̃(2) is equal to 11. Moreover, [8] contains an explicit construc-
tion of the universal embedding, and all other homogeneous embeddings over GF(2)
are determined. Finally, it has been shown in [8] that W̃(2) does not admit an embed-
ding in PG(11, R). The question whether W̃(2) admits any real embedding at all has
been posed, but not answered yet to the best of my knowledge. We will answer it now.
But first we claim that Corollary 3.4 implies that W̃(2) does not admit any barycentric
embedding. Indeed, the rank of any incidence matrix of W̃(2) is equal to 40, as can
be deduced from the tables in [2]. Hence the universal barycentric embedding would
live in PG(4, R) and the points of this embedding are the components of the standard
base vectors in the kernel of the transformation corresponding to a symmetric incidence
matrix A. Let V be the 45-dimensional vector space on which A acts, and let V ′ be the
15-dimensional vector space obtained from V be identifying the base vectors in a com-
mon fiber of the covering map W̃(2) →W(2). Let α : V ′ → V be the map defined by
α(p) = p1 + p2+ p3, where p corresponds to a point of W(2) and p1, p2, p3 are the
base vectors corresponding to the points of W̃(2) in the fiber of p. Since the rank of
any symmetric incidence matrix ofW(2) is equal to 10, we see that α induces an iso-
morphism of kernels. It follows that a collineation ϕ of W̃(2) of order 3 inducing the
identity inW(2) acts trivially on KerA, and hence the base vectors of V belonging to a
common fiber have identical components in KerA. This is a contradiction, so there is
no universal barycentric embedding and the claim follows.

We now construct a real exclusive embedding of W̃(2) in PG(2, R). For the mo-
ment, it is the largest dimension we can do (without using a computer, and without
wanting to make many computations). We consider a spread S of W̃(2) (arising from
a spread ofW(2)). We remove S from W̃(2) and obtain three connected components
C1, C2, C3 each of which is isomorphic to the dual of the Petersen graph geometry. We
embed each of these geometries (which are isomorphic to the geometry obtained from
W(2) by removing the lines of a spread) in a different copy of PG(5, R). We first show
that this is possible. Indeed, let ei, i ∈ Z mod 6 be base vectors of a 6-dimensional
vector space V over R. Then the points of PG(V ) defined by the vectors ei − ei+1
(i ∈ {1, 2, 3, 4}), e5− e1, ei+ e6 (i ∈ {1, 2, 3, 4, 5}) and e j−2− e j−1+ e j− e j+1+ e j+2
( j ∈ Z mod 5) define an embedding as desired. We now consider these three 5-spaces
as mutually disjoint generating subspaces of a 17-space PG(17, R) and we obtain a
representation of W̃(2) (which we shall also denote by W̃(2)) in PG(17, R) with 30
lines and 15 “non-lines”. Consider a line L of S . The three points of W̃(2) on L define a
plane π(L) of PG(17, R) not containing any line of W̃(2). Also, since S is a spread, no
two such planes intersect. Now we set S = {L1, L2, . . . ,L15}. We consider the finite set
of all real subspaces of PG(17, R) generated by elements of W̃(2)which do not contain
L1. Clearly, we can find a point x1 in π(L1) not contained in any of these subspaces. We
project W̃(2) from x1 onto a hyperplanePG(16, R) of PG(17, R) not containing x1 and
we obtain a representation of W̃(2) (which we will also denote by W̃(2)) in PG(16, R)
with 31 lines and 14 “non-lines”. We now consider the finite set of real subspaces of
PG(16, R) generated by elements of W̃(2) and not containing the projection of the
plane π(L2). We can find a point x2 of that projection not contained in any of these
subspaces, and we project W̃(2) from x2 onto a hyperplane PG(15, R) of PG(16, R)
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not containing x2. We continue this process until we obtain a representation of W̃(2)
in PG(2, R). Clearly, this representation is injective on the point set of W̃(2) for if
two points p, q of W̃(2) were represented by the same point of PG(2, R), then some xi
(i∈ {1, 2, . . . ,15}) would lie on some line of PG(18− i, R) containing the two different
points representing p, q. We claim that it is also injective on the line set, proving that
we indeed have an embedding. Suppose, by way of contradiction, that the lines M,M ′

of W̃(2) are represented by different lines R, R′, respectively, in PG(n, R), but by the
same line in PG(n− 1, R). Put i = 18− n. Hence the plane 〈R, R′〉 of PG(n, R) con-
tains the point xi. By the choice of xi, the three points of the line Li are contained in the
plane 〈R, R′〉. Denote by R1, R′1, L1i the lines of PG(n+ 1, R) representing M,M′, Li,
respectively. By the choice of xi−1, the three points of the line Li−1 are contained in the
subspace 〈R1, R′1, L1i 〉, which has at most dimension 3. Continuing like this, we even-
tually obtain a subspace of PG(17, R) of dimension at most i+1 containing all points
of the lines L1, L2, . . . ,Li. This easily implies that the points of L1, . . . ,Li in some con-
nected componentC! (!∈ {1, 2, 3}) generate a subspace of dimension at most (i−1)/3.
For i= 2, 3, this contradicts the fact that 2 points of W̃(2) are represented by different
points in PG(17, R). For i = 4, 5, 6, we have similarly that 4 points of C! are never
contained in a line of PG(5, R). For i = 7, 8, 9, we remark that no plane of PG(5, R)
contains at least 7 points of C!. Similarly, no 3-space or 4-space of PG(5, R) contains at
least 10 or 13 points, respectively, of C!, as is easily seen from the explicit construction
of C! above. This proves our claim, and consequently, we indeed have an embedding
of W̃(2) in PG(2, R). A completely similar argument now shows that this embedding
is exclusive. Hence we have shown:

Proposition 4.4. There exists an exclusive embedding of W̃(2) in PG(2, R).

4.5. The Biggs-Smith graph

The self-polar bislim point-line geometry BS arising from the Biggs-Smith graph on
102 vertices has not yet been considered in the literature. Yet it has some beautiful
properties. We begin by presenting a new construction of the graph. Remark that the
original construction used 17 copies of an “H”-graph and tells one very explicitly how
to join vertices of each of these copies; the construction in [2] is an application of the
general way of reconstructing a geometry from its flag transitive group of automor-
phisms and the stabilizers of a point and a line (where the graph is seen as a point-line
geometry with two points on each line and three lines through each point). We now
give a third construction which is more geometric in nature, and which resembles the
second construction ofW(2) above. It will turn out that this construction is responsible
for BS sharing many properties withW(2).

Consider the projective line PG(1, 17) over the fieldGF(17). Given a pair of points
{a, b} and a third point c of PG(1, 17), it is easy to verify that there exist a unique point
d and a unique pair of points {e, f} of PG(1, 17) such that |{a, b, c, d, e, f}| = 6 and
such that we have the following equality of cross ratios: (a, b; c, d) = (a, b; e, f ) =
(c, d; e, f ) = −1. We call the triple {{a, b}, {c, d}, {e, f}} a harmonic triplet. The
stabilizer inside PGL2(17) of a harmonic triplet is easily seen to be a group of order
24 and it is entirely contained in PSL2(17). This implies that there are in total 18 ·
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17 · 16/24= 204 harmonic triplets and that PSL2(17) defines two orbits of harmonic
triplets. We fix one of these orbits (and we can choose coordinates in such a way that
this orbit contains the harmonic triplet {∞, 0}, {1,−1}, {4, −4}}). It is the vertex set
of the Biggs-Smith graph. Two vertices are adjacent if the harmonic triplets share a pair
of points, e.g. {{∞, 0}, {1, −1}, {4,−4}} is adjacent to {{∞, 0}, {2,−2}, {8, −8}}.
It follows that the lines of BS can be identified with the partitions of the point set of
PG(1, 17) into the points correspondingwith three harmonic triplets of our chosen orbit
(in fact, a tedious computation reveals that two points are collinear if and only if the
corresponding harmonic triplets do not share any element of PG(1, 17)). Consequently,
the set of harmonic triplets in the orbit containing a fixed point of PG(1, 17) is an ovoid
of BS, because it contains 34 pairwise non-collinear points of BS. So we obtain a set of
18 ovoids on which the group PSL2(17) acts doubly transitively, which implies that any
two such ovoids meet in a constant number of points. Counting the triples (O, O ′, x),
with O and O ′ two distinct ovoids of BS and x ∈ O ∩O ′ in two ways, we obtain |O ∩
O ′|= 102 ·6 ·5/18 ·17= 10. We can now look at real barycentric embeddings. First note
that BS is primitive and self-polar, and that PSL2(17) is a flag transitive collineation
group. According to the tables in [2], the adjacency matrix of the Biggs-Smith graph
has eigenvalue 0 with multiplicity 17, hence the real embedding rank is equal to 17.
An explicit construction of the universal barycentric embedding goes as follows. Let
the entries of the coordinates of points of PG(17, R) be indexed by the above set of
ovoids of BS (or, alternatively, by the points of PG(1, 17), since these sets are in natural
bijective correspondence with each other). Define for each point x of BS a coordinate
tuple using the rule: an entry corresponding with an ovoid containing x is equal to −2;
otherwise it is equal to 1. As above withW(2), this gives a barycentric embedding of
BS in the hyperplane of PG(17, R) with equation ∑Xi = 0, where the sum is taken over
the previous set of ovoids.

So, with the previous examples in mind, we expect that the generating rank and the
universal embedding rank of BS will be equal to 17. But this is not true. An explicit
calculation shows that the universal embedding rank is equal to 19. It is not known
what the generating rank of BS is, but, again by some explicit calculation, it is one of
19 or 20 (see below for more explanation).

Hence we have here an example of a slim geometry with nonzero universal em-
bedding rank and nonzero real embedding rank and for which these two ranks are not
the same. This might be explained by the fact that the complement in BS of an above
ovoid is not connected, while this is true for ovoids in W(2). To illustrate this a bit
better, we now give a description of the universal embedding of BS (the proof is an
uninterested tedious calculation exercise). Let O1, O2, . . . ,O18 be the set of ovoids of
BS obtained as above. First we note that the graph obtained from the point set of BS
by removing all points of an Oi, i ∈ {1, 2, . . . ,18}, and by proclaiming two vertices ad-
jacent whenever they represent collinear points of BS, has two connected components
(each isomorphic to a graph {17}+{17/4}, as the reader can check for his own). We
denote the point sets of these components by P2i−1 and P2i. We now let each point
x of BS correspond to the point of PG(35, 2) with coordinates (r1, r2, . . . ,r36), where
r j = 1 if x belongs to P j, and r j = 0 otherwise (in other words, r j is the characteris-
tic function of P j), j ∈ {1, 2, . . . ,36}. It can be shown that these points generate an
18-dimensional subspace of PG(35, 2). Since this construction does not work over the
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real numbers, we conclude that the fact of BS having two connected components when
an ovoid is removed is responsible for the higher universal embedding rank. A similar
phenomenon happens with W̃(2). In this case, the construction using only the ovoids
(and not the connected components of the complements) produces an embedding of
W(2) in PG(4, K), for any field K; while the construction with the connected com-
ponents of the complements of the ovoids produce the universal embedding of W̃(2)
in PG(10, 2). But this construction does not work over the real numbers, and so the
fact that an ovoid in W̃(2) has disconnected complement is responsible for the (big)
difference in universal and real embedding rank.

Finally, we give some explicit information about our construction of the Biggs-
Smith graph (showing that our definition indeed produces this graph!). We start with
listing all vertices explicitly. The following are all harmonic triplets of one orbit under
PSL2(17):

T1 := {{{∞, x}, {x+1, x−1}, {x+4, x−4}}|x ∈GF(17)},

T2 := {{{∞, x}, {x+2, x−2}, {x+8, x−8}}|x ∈GF(17)},

T3 := {{{x−4, x+4}, {x−5, x+7}, {x−7, x+5}}|x∈GF(17)},

T4 := {{{x−2, x+2}, {x−5, x+6}, {x−6, x+5}}|x∈GF(17)},

T5 := {{{x−8, x+8}, {x−3, x+7}, {x−7, x+3}}|x∈GF(17)},

T6 := {{{x−1, x+1}, {x−6, x−3}, {x+6, x+3}}|x∈GF(17)}.

The set T1 ∪ T2 is an ovoid; one component of its complement in BS has vertex set
T3∪T6. The subgraphs induced by T3 and T6 are ordinary 17-gons (and one can now
easily see that the component is isomorphic to {17}+ {17/4}). Also, one calculates
that B := T3 ∪ {{{−2, 2}, {−5, 6}, {−6, 5}}, {{0, 4}, {−3, 8}, {−4, 7}}} defines a
basis for the universal embedding. Finally, B ∪ {{{−1, 3}, {−4, 7}, {−5, 6}}} is a
generating set for BS and so the generating rank is either 19 or 20, as claimed above.
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