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Abstract

In this paper, we characterize isomorphisms of generalized polygons (in partic-
ular automorphisms) by maps on points and/or lines which preserve a certain fixed
distance. In Part I, we considered maps on flags. Exceptions give rise to interesting
properties, which on their turn have some nice applications.
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1 Introduction

For an extensive introduction to the problem, we refer to Part I of this paper. Let us
briefly describe the situation we are dealing with.

For the purpose of this paper, a generalized n-gon, n ≥ 3, is a thick geometry such that
every two elements are contained in some ordinary n-gon, and no ordinary k-gons exist
for k < n.

Given two generalized n-gons, and a map from either the point set or the point set and the
line set of the first polygon to the point set, or the point set and the line set, respectively,
of the second polygon, preserving the set of pairs of elements at a certain fixed distance
i ≤ n, we investigate when this map can be extended to an isomorphism (“preserving”
means that elements of the first polygon are at distance i if and only if their images in the
second polygon are at distance i). In the first part of this paper, we dealt with the same
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problem considering maps on the set of flags. More precisely, we showed (denoting the
order of a polygon by (s, t) if there are s + 1 points on every line, and t + 1 lines through
every point):

Theorem 1 Let ∆ and ∆′ be two generalized m-gons, m ≥ 2, let r be an integer satisfying
1 ≤ r ≤ m, and let α be a surjective map from the set of flags of ∆ onto the set of flags of
∆′. Furthermore, suppose that the orders of ∆ and ∆′ either both contain 2, or both do not
contain 2. If for every two flags f, g of ∆, we have δ(f, g) = r if and only if δ(fα, gα) = r,
then α extends to an (anti)isomorphism from ∆ to ∆′, except possibly when ∆ and ∆′ are
both isomorphic to the unique generalized quadrangle of order (2, 2) and r = 3.

In [7], we also gave an explicit counterexample for the quadrangle of order (2, 2).

In this part, we will show:

Theorem 2 • Let Γ and Γ′ be two generalized n-gons, n ≥ 2, let i be an even integer
satisfying 1 ≤ i ≤ n − 1, and let α be a surjective map from the point set of Γ
onto the point set of Γ′. Furthermore, suppose that the orders of Γ and Γ′ either
both contain 2, or both do not contain 2. If for every two points a, b of Γ, we have
δ(a, b) = i if and only if δ(aα, bα) = i, then α extends to an isomorphism from Γ to
Γ′.

• Let Γ and Γ′ be two generalized n-gons, n ≥ 2, let i be an odd integer satisfying
1 ≤ i ≤ n− 1, and let α be a surjective map from the point set of Γ onto the point
set of Γ′, and from the line set of Γ onto the line set of Γ′. Furthermore, suppose
that the orders of Γ and Γ′ either both contain 2, or both do not contain 2. If for
every point-line pair {a, b} of Γ, we have δ(a, b) = i if and only if δ(aα, bα) = i, then
α extends to an isomorphism from Γ to Γ′.

As already mentioned in Part I, there do exist counterexamples for the case n = i, and
we will construct some in Section 3, where we also prove two little applications. Also, the
condition i %= n can be deleted for n = 3, 4, of course, in a trivial way. For finite polygons,
the condition i %= n is only necessary if n = 6 and the order (s, t) of Γ satisfies s = t. For
Moufang polygons, the condition i %= n can be removed if Γ is not isomorphic to the split
Cayley hexagon H(K) over some field K (this is the hexagon related to the group G2(K)).
We will prove these statements in Section 3.

To close this section, we repeat the notation that we use throughout the two parts of this
paper. Let Γ be a generalized n-gon. For any point or line x, and any integer i ≤ n,
we denote by Γi(x) the set of elements of Γ at distance i from x, and we denote by
Γ"=i(x) the set of elements of Γ not at distance i from x. If κ is a set of integers, then
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Γκ(x) is the set of elements y of Γ satisfying δ(x, y) ∈ κ. If two elements are at distance
n, then we say that they are opposite. Non-opposite elements x and y have a unique
shortest chain (x = x0, x1, . . . , xk = y) of length k = δ(x, y) joining them. We denote
that chain by [x, y], and we set x1 = projxy (and hence xk−1 = projyx). When it suits us,
we consider a chain as a set so that we can take intersections of chains. For instance, if
[x, z] = (x = x0, x1, . . . , xi, x′

i+1, . . . , x
′
# = z), with no x′

j equal to any xj′ , 0 < i < j ≤ k
and i < j′ ≤ $, then [x, y] ∩ [x, z] = [x, xi]. If for two non-opposite elements x, y the
distance δ(x, y) is even, then there is a unique element z at distance δ(x, y)/2 from both
x and y; we denote z = x!"y, or, if x and y are points at distance 2 from each other, then
we also write xy := x!"y.

In the next section, we will prove Theorem 2. In Section 3, we produce some counterex-
amples and prove some applications.

2 Proof of Theorem 2

As in the proof of Theorem 1, we again see that α is necessarily bijective.

We again prove the assertion in several steps, the general idea being to show that collinear-
ity of points is preserved (then Lemma 1.3.14 of [9] gives the result).

Throughout we put Ta,b := Γi(a) ∩ Γi(b), for points a, b of Γ.

2.1 Case i < n−1
2 , with i even

This is the easy case. Put λ := {2i + 2, . . . , n} %= ∅ and κ := {0, 1, . . . , i − 2}. Then one
can easily check that for two arbitrary distinct points a, b of Γ, we have Ta,b = ∅ if and
only if δ(a, b) ∈ λ. Also, it is easily verified that, if δ(a, b) /∈ λ∪{i}, then Γi(a)∩Γλ(b) = ∅
if and only if δ(a, b) ∈ κ. Now clearly, if δ(a, b) ∈ κ, then

Γκ(a) ⊆ Γκ(b) ∪ Γi(b) ⇐⇒ δ(a, b) = 2.

Hence α preserves collinearity and the assertion follows.

2.2 Case i = n−1
2 , with i even

Here, Ta,b is never empty, for all points a, b of Γ.

First suppose s > 2. Let a, b be arbitrary points of Γ. Then clearly |Ta,b| = 1 if and only
if δ(a, b) = 2i. So we can distinguish distance 2i. Also, it is clear that Γi(a) ∩ Γ2i(b) = ∅
if and only if δ(a, b) < i. Now one proceeds as in case 2.1.
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Next suppose s = 2. Then |Ta,b| = 1 if and only if δ(a, b) ∈ {2i − 2, 2i}. Also, Γi(a) ∩
Γ{2i−2,2i}(b) = ∅ if and only if δ(a, b) < i− 2. Then similarly as before, if δ(a, b) < i− 2,
then

Γi(a) ∩ Γ<i−2(b) = ∅ ⇐⇒ δ(a, b) = 2.

So again, α preserves collinearity.

The next two cases have some overlap. In particular, if i = (n + 1)/2, then two proofs
apply.

2.3 Case i ∈ {n
2 + 1, n+1

2 }, i even and n > 6

Let S be the set of pairs of distinct points (a, b) such that δ(a, b) %= i and the set Ta,b

contains at least two points at distance i from each other. We claim that a pair (a, b)
belongs to S if and only if δ(a, b) < i. Suppose first that 0 %= δ(a, b) = k, k < i and
put m = a!"b. Consider a point c at distance i − k/2 from m such that projma %= w :=
projmc %= projmb (note that δ(c, w) = i− k/2− 1 > 0). Let v be the element of [c, w] at
distance i/2 from c (such an element exists since i/2 ≤ i− k/2− 1). Consider a point c′

at distance i/2 from v such that projvm %= projvc
′ %= projvc. The points c and c′ are both

points of Ta,b and lie at distance i from each other.

Now let δ(a, b) = k > i and suppose by way of contradiction that c, c′ ∈ Ta,b with
δ(c, c′) = i. If projac %= projac

′, then we have a path of length 2i between c and c′

containing a. This implies that δ(c, c′) ≥ 2n− 2i > i, a contradiction. Suppose now that
projac = projac

′. Define v as [a, c] ∩ [a, c′] = [a, v]. If we put δ(a, v) = j, then there is a
path of length $ = 2i− 2j ≤ n between c and c′. Now $ = i implies j = i/2. If the path
[b, c] does not contain v, there arises a circuit of length at most 3i < 2n, a contradiction
(remembering n > 6). But if v ∈ [b, c], there arises a path between a and b of length at
most i, the final contradiction. Our claim is proved.

Put κ = {1, 2, . . . , i− 2}. Then (a, b) ∈ S if and only if δ(a, b) ∈ κ.

Now two distinct points a and b are collinear if and only if δ(a, b) ∈ κ and Γκ(a) ⊆
Γκ(b) ∪ Γi(b). Indeed, let δ(a, b) = k, 2 < k < i. Then k = i− j, 0 < j < i− 2. Consider
a point c at distance j + 2 from a such that projac %= projab. Then δ(a, c) ∈ κ, but
δ(b, c) = i + 2. If δ(a, b) = 2, then the triangle inequality shows the assertion. Hence we
can distinguish distance 2 and so α preserves collinearity of points.

2.4 Case n+1
2 ≤ i < n− 2, with i odd if i = n

2 + 1

Let S be the set of pairs of points (a, b) for which there exists a point c, a %= c %= b, such
that Ta,b ⊆ Γi(c). Note that Ta,b is never empty because n/2 < i. We claim that the pair
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(a, b) with δ(a, b) = k belongs tot S if and only if 2 < k < 2(n − i). Note that there
are always even numbers k satisfying these inequalities because i < n − 2. So let a, b be
points of Γ with δ(a, b) = k and let m be an element at distance k/2 from both a and b
(m is unique if a is not opposite b).

We first show that k < 2(n − i) if and only if every element y of Ta,b lies at distance
i − k/2 from m with projma %= projmy %= projmb. Suppose first that k ≥ 2(n − i). Since
k + 2i ≥ 2n, it is possible to find an element y of Ta,b such that projay %= projab. Clearly,
δ(y, m) %= i− k/2. Now suppose k < 2(n− i) and let y ∈ Ta,b. Let j be the length of the
path [a, b]∩ [a, y]. Then there is a path of length $ = k− 2j + i between b and y. If $ ≤ n,
then $ = i and so necessarily j = k/2. Hence y is an element as claimed. If $ > n, then
δ(b, y) ≥ 2n− $ > i, a contradiction.

From this, it is clear that all pairs (a, b) with 2 < δ(a, b) = k < 2(n − i) belong to S
(indeed, choose the point c on the line projab, at distance k from b).

We now show that

(*) every point c at distance i from every element of Ta,b has to lie at distance k/2 from
m, and projma = projmc or projmb = projmc.

Suppose c is a point at distance i from every element of Ta,b. Consider the set

T ′ = {x ∈ Ta,b | δ(x, m) = i− k/2 and projma %= projmx %= projmb}.

Then we may assume that T ′ contains at least two elements y and y′ at distance 2
from each other (this is clear either if i > n/2 + 1, or if n is odd, or if t > 2 in case
i = n/2 + 1 and i is odd; if t = 2 and i = n/2 + 1 with i odd, then we consider the
dual of Γ; finally the case i = n/2 + 1 with i even is not included in our assumptions, see
Subsection 2.3). Put w = y!"y′. Then δ(c, w) = i − 1. Put γ = [c, w]. We show that γ
contains m. Suppose by way of contradiction that this is not true. Define the element
z as [w, c] ∩ [w,m] = [w, z]. Put γ′ = [z, c]. An element y′′ of T ′ either lying on γ′ (if
δ(c, m) ≥ i− k/2) or such that the path [y′′, m] contains γ′ (otherwise), clearly does not
lie at distance i from c, a contradiction. So the point c has to lie at distance k/2 from
m. But if projma %= projmc %= projmb, then similarly we can find an element of T ′ not at
distance i from c, which shows (*).

Let k = 2 or k ≥ 2(n− i). We show that if a point c lies at distance i from every element
of Ta,b, then c ∈ {a, b}. If k = 2, then this follows immediately from (*). So suppose
k ≥ 2(n−i) and let c be such a point. We may assume that, if δ(m, c) %= n, then projma =
projmc. If δ(a, c) %= n, then we define the element z as [m, c] ∩ [m, a] = [m, z]; otherwise
we define z as [projma, c] ∩ [projma, a] = [projma, z]. Note that δ(c, z) = δ(a, z) =: $. Put
j = i − n + k/2. It is easy to check that for an element v of the path [a, projma], the
following property holds.

5



(**) There exists y ∈ Ta,b such that [a, y] ∩ [a, m] = [a, v] if and only if δ(a, v) ≤ j.

It follows from (**) that $ ≤ j (indeed, if y ∈ Ta,b is such that m /∈ [a, y], then the path
[c, y] is longer than the path [a, y]).

But similarly, if $ ≤ j, then an element y ∈ Ta,b such that projzc ∈ [a, y], does not lie at
distance i from c, a contradiction.

This shows our claim. Note that, if 2 < k < 2(n − i) and if c is a point of Γ at distance
k/2 from m with projmc ∈ {projma, projmb}, then automatically Ta,b ⊆ Γi(c).

Now define S ′ = {(a, c) |∃b ∈ P such that Ta,b ⊆ Γi(c)}. From the previous paragraph it
is clear that S ′ \ S is precisely the set of all pairs of collinear points.

Hence α preserves collinearity.

2.5 Case i = n− 2

2.5.1 Case n = 6

Let C be the set of pairs of points (a, b), δ(a, b) %= 4, such that for every point y in
Ta,b, there exists a point y′ in Ta,b, y′ %= y and δ(y, y′) %= 4, with the property that
Γ4(y)∩ Ta,b = Γ4(y′)∩ Ta,b. Clearly, C contains all pairs of collinear points. Suppose now
that (a, b) ∈ C with δ(a, b) = 6. We look for a contradiction. If x is a point of Ta,b, then
either x lies on a line at distance 3 from both a and b, or x is a point at distance 3 from
a line A through a and from a line B through b, with A opposite B. Then one can check
that for a point y of Ta,b on a line at distance 3 from both a and b, there does not exist a
point y′ %= y in Ta,b such that Γ4(y) ∩ Ta,b = Γ4(y′) ∩ Ta,b. So the set C is the set of pairs
of collinear points and the theorem follows.

2.5.2 Case n > 6

Step 1: the set Sa,b

For two points a and b, we define

Sa,b = {x ∈ P |Γn−2(x) ∩ Ta,b = ∅}.

We claim the following:

(i) If δ(a, b) = 2 and s ≥ 3, then Sa,b = (Γ2(a) ∪ Γ2(b)) \ Γ1(ab). If δ(a, b) = 2 and
s = 2, then Sa,b = (Γ2(a) ∪ Γ2(b)) \ {a, b}.
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(ii) If δ(a, b) = 4, then {a!"b} ⊆ Sa,b = {a!"b}∪ [Γ2(a!"b)∩ Γ4(a)∩ Γ4(b)]. If t ≥ 3, then
Sa,b = {a!"b}. If k := δ(a, b) %∈ {2, 4, n}, then every x ∈ Sa,b lies at distance k/2 from
a!"b =: m with projma %= projmx %= projmb. If moreover s > 2 and k ≡ 2 mod 4,
or t > 2 and k ≡ 0 mod 4, then Sa,b = ∅. Finally, if δ(a, b) = n, then let γ be an
arbitrary path of length n joining a and b, let m be the middle element of γ and
put va = projma, vb = projmb. Then

Sa,b ⊆ (Γn/2(m) ∩ Γn/2+1(va) ∩ Γn/2+1(vb))⋃
(Γn/2+1(va) ∩ Γn/2+2(m) ∩ Γn(a))

⋃
(Γn/2+1(vb) ∩ Γn/2+2(m) ∩ Γn(b)).

If moreover s > 2 and n ≡ 2 mod 4, or t > 2 and n ≡ 0 mod 4, then

Sa,b ⊆ (Γn/2+1(va) ∩ Γn/2+2(m) ∩ Γn(a))
⋃

(Γn/2+1(vb) ∩ Γn/2+2(m) ∩ Γn(b)).

We proof these claims.

(i) Suppose δ(a, b) = 2. Clearly, every point collinear with a or b, not on the line ab,
belongs to Sa,b. Also, if s = 2, then the unique point of ab different from a and
b is an element of Sa,b. Let x be an arbitrary point in Sa,b. Put j = δ(x, a). If
j = s = 2, then there is nothing to prove, so we may assume (j, s) %= (2, 2). Suppose
first there exists a j-path γ between a and x containing ab, but not the point b. Let
v be the element on γ at distance j/2 from a, and consider an element y at distance
n− 2− j/2 from v such that projva %= projvy %= projvx. Note that such an element
v exists because (j, s) %= (2, 2). Then y lies at distance n − 2 from a, b and x, a
contradiction. So we can assume that projabx = a. If j = 2, then again, there is
nothing to prove. So we may assume 2 < j < n (the case j = n is contained in the
previous case, or can be obtained from the present case by interchanging the roles
of a and b). Let v be an element at distance n − j − 1 from the line ab such that
a %= projabv %= b. Note that v and x are opposite and δ(a, v) = n − j. Consider an
element v′ incident with v, different from projva, and let v′′ be the projection of x
onto v′. Let w be the element of [x, v′′] at distance j/2− 2 from v′′. An element y
at distance j/2 − 2 from w such that projwx %= projwy %= projwv′′ lies at distance
n− 2 from a, b and x, a contradiction. Claim (i) is proved.

(ii) We proceed by induction on the distance k between a and b, the case k = 2 being
Claim (i) above. Suppose δ(a, b) = k > 2 and let m be an element at distance k/2
from both a and b. Note that, if δ(a, b) = 4, the point a !" b indeed belongs to Sa,b.
Let now x be an arbitrary element of Sa,b and put $ = δ(x, m).
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Suppose first that, if $ %= n, projma %= projmx %= projmb. Then we have the following
possibilities :

1. Suppose $ < k/2. Then δ(a, x) < k and we apply the induction hypothesis.
Since b ∈ Sa,x %= ∅ and m %= a!"x, we have δ(a, x) ∈ {2, 4}. Hence either
δ(a, b) = 4 and x = a !" b (which is a possibility mentioned in (ii)), or δ(a, b) =
6 and x lies on m, or δ(a, b) = 8 and x = m. But in these last two cases, the
“position” of b contradicts the induction hypothesis.

2. Suppose $ ≥ k/2. Let γ′′ be an $-path between m and x containing neither
projma nor projmb. Put γ′ = [a, m] ∪ γ′′. Let w be the element on γ′ at
distance ($ + k/2)/2 from both x and a. If $ = k/2 (and hence w = m) and
either k ≡ 2 mod 4 and s = 2, or k ≡ 0 mod 4 and t = 2, then there is nothing
to prove. Otherwise, there exists an element y of Γ at distance n−2−(k/2+$)/2
from w such that projwa %= projwy %= projwx and projwb %= projwy. Now y lies
at distance n− 2 from a, b and x, a contradiction.

Let now x be a point of Sa,b at distance $ from m, 0 < $ < n, for which projmx =
projma. Let [a, m] ∩ [x, m] = [v, m], and put i′ = δ(v, a). We have the following
possibilities :

1. Suppose $ ≤ k/2 or $ = k/2+2 and i′ < k/2−1. Again δ(a, x) < k and applying
the induction hypothesis, we obtain a contradiction as in Case 1 above.

2. Suppose n > $ > k/2+2. Let h be an element at distance n−2 from x such that
projma %= projmh %= projmb and δ(m, h) = n−$+2. Let j = n−2−δ(h,m)−k/2.
Let h′ be the element on the (n−2)-path between x and h at distance j/2 from
h. An element y at distance j/2 from h′ such that projh′x %= projh′y %= projh′h
lies at distance n− 2 from a, b and x, a contradiction.

3. Suppose $ = k/2+2, i′ = k/2−1 and k < n−1. Then δ(b, x) = k+2 and v lies at
distance k/2+1 from both b and x. Let Σ be an apartment containing x, b and
v, and let v′ be the element in Σ opposite v. Let w = projva, w′ = projv′w and
d the length of the path [w, a]∩ [w,w′]. Note that d ≤ k/2− 2. For an element
y not opposite w′, let w′′

y be the element such that [w,w′] ∩ [y, w′] = [w′′
y , w

′].
Consider now an element y such that δ(w′′

y , w
′) = k/2−d−2 and δ(w′′

y , y) = d.
Then y lies at distance n− 2 from a, b and x, a contradiction.

4. If $ = k/2 + 2, i′ = n/2− 1 and k = n, there is nothing to prove.

5. Suppose finally $ = k/2+2, i′ = k/2−1 and k = n−1. Then δ(b, x) = n−1. Let
b′ and x′ be the elements of the path [b, x] at distance (n− 1)/2− 1 from b and
x, respectively. Since a ∈ Sb,x, either δ(a, b′) = (n+1)/2 or δ(a, x′) = (n+1)/2
(this is what we proved up to now for the “position” of a point of Sb,x). But
since we obtain a path between a and b′ (x′) of length d = (3n− 5)/2 (passing
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through projma), the triangle inequality implies δ(a, b′), δ(a, x′) ≥ 2n − d >
(n + 1)/2, a contradiction.

This completes the proof of our claims.

Step 2: the sets O and O.
If s ≥ 3 and t ≥ 3, let O be the set of pairs of distinct points (a, b) such that |Sa,b| > 1.
Then O contains only pairs of collinear points and pairs of opposite points, and all pairs
of collinear points are included in O. Note that, if n is odd, there are no pairs of opposite
points, which concludes the proof in this case.

Let now s = 2 or t = 2 (so n is even). For a point c ∈ Sa,b, we define the set

Ca,b;c = {c′ ∈ Sa,b|Sc,c′ ∩ {a, b} %= ∅}.

Now let O be the set of pairs of points (a, b), δ(a, b) %= n − 2 for which |Sa,b| > 1 and
|Ca,b;c| > 1, ∀c ∈ Sa,b. Note that if a and b are collinear, the pair (a, b) always belongs to
O. Clearly, no pair of points at mutual distance 4 belongs to O. Now consider two points
a and b at distance k, 4 < k < n− 2. We show that such a pair (a, b) does not belong to
O. Put m = a!"b and let x be a fixed point of Sa,b. Let x′ be an element of Sa,b different
from x. Since s = 2 or t = 2, we have projmx = projmx′, so δ(x, x′) ≤ k − 2. But now
δ(a, x!"x′) = δ(b, x!"x′) ≥ k/2 + 1 > δ(x, x′)/2, so neither a nor b belongs to Sx,x′ . This
shows that O contains only pairs of collinear or opposite points, and all pairs of collinear
points are included in O.

Let O be the set of pairs of points (a, b) satisfying δ(a, b) %= n − 2, (a, b) %∈ O and such
that there exist a point c ∈ Sa,b for which (a, c) and (b, c) both belong to O. Then
clearly, O contains all pairs (a, b) of points at mutual distance 4 (indeed, consider the
point c = a !" b), and also some pairs of opposite points (possibly none, or all).

Step 3 : the set O′

Suppose first s ≥ 3.

Let O′ be the subset of O of pairs (a, b) for which there exist points c and c′ such that
the following conditions hold :

(i) Ta,b ⊆ Γn−2(c) ∪ Γn−2(c′), Tc,c′ ⊆ Γn−2(a) ∪ Γn−2(b);

(ii) (c, c′), (a, c), (a, c′), (b, c), (b, c′) ∈ O;

(iii) (c, y), (c′, y) %∈ O, ∀y ∈ Ta,b.
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We claim that O′ is the set of pairs of collinear points. A pair (a, b) of collinear points
always belongs to O′. Indeed, here, we can choose c and c′ on the line ab, different from
a and b (Condition (iii) is satisfied because n %= 6). So let δ(a, b) = n and suppose by
way of contradiction that we have two points c and c′ with the above properties. Let
m ∈ Γn/2(a)∩Γn/2(b). For an element x at distance j from m, 0 ≤ j ≤ n/2− 3, such that
projma %= projmx %= projmb, define the following set:

Tx = {y ∈ Ta,b|δ(x, y) = n/2− 2− j, projxa %= projxy %= projxb}.

Note that Tx ⊆ Ta,b. We first proof that for any set Tx,

(♦) there does not exist a point v ∈ {c, c′} such that Tx ⊆ Γn−2(v).

Put M = Γn/2(a) ∩ Γn/2(b). Suppose Tm ⊆ Γn−2(v), with v ∈ {c, c′}. It is easy to see
(see for instance Step 4 of Subsection 3.4 of [7]) that δ(v, m) = n/2 and projma = projmv
or projmb = projmv. Suppose projma = projmv. But then δ(a, v) ≤ n− 2, so δ(a, v) = 2
(since (a, v) ∈ O) and v is a point at distance n/2 from m lying on the line L = projam.
This implies that for an arbitrary point m′ of M, m′ %= m, Tm′ ∩ Γn−2(v) = ∅ (note that
Tm ∩ Tm′ = ∅), so Tm′ ⊆ Γn−2(v′), with {v, v′} = {c, c′}. We obtain a contradiction by
considering a third element of M.

Let x be an element at distance j = 1 from m such that projma %= x %= projmb. Suppose
Tx ⊆ Γn−2(v), with v ∈ {c, c′}. Then again it is easy to show that δ(v, x) = δ(x, a) = n/2+
1 and projxv = projxa = m. If projma = projmv or projmb = projmv, then we are back
in the previous case, which led to a contradiction, so suppose projma %= projmv %= projmb.
Consider the n-path between a and v that contains m. Then we can find a point y of Ta,b

on this path that is collinear with v, in contradiction with condition (iii). Note that thus
no element of {c, c′} lies at distance n/2 from m.

We now proceed by induction on the distance j between x and m. Let j > 1. Consider an
element x at distance j from m such that projma %= projmx %= projmb. Suppose by way of
contradiction that Tx ⊆ Γn−2(v), with v ∈ {c, c′}. Let x′ = projxm. Then it is again easy
to show that δ(v, x) = δ(a, x) = n/2 + j and projxv = x′. Remark that projx′a %= projx′v,
since otherwise Tx′ ⊆ Γn−2(v) (since δ(v, x′) = n/2 + j − 1 and δ(v, w) = n/2 − j − 1,
with w ∈ Tx′), in contradiction with the induction hypothesis. Suppose first that in the
case j = 2, t ≥ 3 or n ≡ 2 mod 4. Consider now an element z incident with the element
w = projx′a, but different from projwa, from projwb and from x′ (such an element exists,
because of the restrictions above). But then we have δ(v, w′) = n, for every element w′ of
Tz, so Tz ⊆ Γn−2(v′), with {c, c′} = {v, v′}, a contradiction with the induction hypothesis.

Now let j = 2, t = 2 and n ≡ 0 mod 4. Let L be the line mx and put w = projLv. Then
Tw ⊆ Γn−2(v′), with {v, v′} = {c, c′}, so v′ is a point at distance n/2 + 2 from m with
δ(m, v′) %= n/2, and projLv′ %= w. Now consider the point on [m, b] at distance n/2 − 4
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from m. This is a point of Tc,c′ , but it does not lie at distance n− 2 from a, nor from b,
in contradiction with condition (i).

This completes the proof of (♦).

Consider now a line L at distance j = n/2 − 3 from m, such that projma %= projmL %=
projmb. The points on L different from the projection of m onto L are points of TL. By
(♦), we know that TL %⊆ Γn−2(v), for v ∈ {c, c′}. Since s ≥ 3, TL contains at least 3
points, so we may suppose that at least two points of them are contained in Γn−2(v), with
v ∈ {c, c′}. This implies that v is at distance n − 3 from L, so at distance n − 4 from a
unique point x of L. If x = projLa, then TL ⊆ Γn−2(v), a contradiction, so we can assume
that x %= projLa. Let first n %= 8 or t ≥ 3. Then consider a line L′ incident with projLa,
L′ %= L, at distance n − 3 from both a and b (such a line always exists because of our
assumptions). Now TL′ ∩ Γn−2(v) = ∅ (because all points of TL′ lie opposite v), so TL′ is
contained in Γn−2(v′), with {v, v′} = {c, c′}, the final contradiction.

Let now n = 8 and t = 2. Then δ(v′, x) = 6, with {v, v′} = {c, c′}, TL %⊆ Γ6(v′) and
δ(v, v′) ∈ {2, 8}. Now for each potential v′, it is possible to construct a point of Tv,v′ not
at distance n − 2 from a nor from b, a contradiction with condition (i). For example,
let us do in detail the case δ(v, v′) = 2. Since v does not lie at distance 6 from a or b,
we know that δ(a, vv′) = δ(b, vv′) = 7, v′ %= projvv′a %= v and v′ %= projvv′b %= v. Also
projvv′a %= projvv′b, since otherwise we would obtain a point of Ta,b not at distance 6 from
v nor from v′. Now let N be the line at distance 3 from b and at distance 4 from vv′.
Then the points of N different from projNv are points of Tv,v′ \ Γ6(b), but not all these
points lie at distance 6 from a, a contradiction.

So in the case δ(a, b) = n, points c and c′ with the above properties cannot exist, and the
proof is finished for s ≥ 3.

Suppose now s = 2.

Let first n = 8. Note that t ≥ 4. Let O′ be the subset of O of pairs of points (a, b)
for which there exist a point c ∈ Sa,b and points c′, c′′ belonging to Ca,b;c such that
Sc,c′ ∩{a, b} = Sc,c′′ ∩{a, b} = Sc′,c′′ ∩{a, b} = {a}. We claim that O′ is the set of all pairs
of collinear points. Let δ(a, b) = 2. Then considering three points c, c′ and c′′ on three
different lines through a, different from ab, shows that (a, b) ∈ O′. Now let δ(a, b) = 8,
and suppose (a, b) ∈ O′. Let m be any point at distance 4 from both a and b. Put
a′ = projma and b′ = projmb. Suppose that the point c mentioned in the property above
lies at distance 5 from the line a′ (which is allowed by Step 1 above). Then it is easy to see
that c′ and c′′ both have to lie at distance 5 from b′, which contradicts Sc′,c′′∩{a, b} = {a}.
Similarly if c lies at distance 5 from b′.

Suppose from now on n > 8.

Let O′ be the subset of O of pairs (a, b) for which
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(i) ∃!x1 ∈ Sa,b : ∀x′ ∈ Sa,b, |Sx1,x′ ∩ {a, b}| = 1,

(ii) there exist points c and c′ such that Ta,b ⊆ Γn−2(c) ∪ Γn−2(c′),

(iii) (x1, v) ∈ O, with v an element of the set {a, b, c, c′},

(iv) (a, c), (a, c′), (b, c), (b, c′), (c, c′) ∈ O,

(v) (c, y), (c′, y), (x1, y) %∈ O, ∀y ∈ Ta,b,

(vi) x1 = Sa,c ∩ Sa,c′ ∩ Sb,c ∩ Sb,c′ ∩ Sc,c′ .

We claim that O′ is the set of pairs of points at distance 2.

The claim is clear for two collinear points a and b. Indeed, let x1 be the unique point on
ab, different from a and b, and c and c′ points on two different lines (different from ab)
through the point x1 (Condition (v) in the definition of O′ does not hold if n = 8, which
is the reason we treated the octagons before).

So let δ(a, b) = n and suppose by way of contradiction that we have two points c and c′

with the above properties. Let γ be a fixed n-path between a and b, and define m, a′ and
b′ as above in the case n = 8.

For an element x at distance j from m, 0 ≤ j ≤ n/2 − 3, such that projma %= projmx %=
projmb, we define the sets Tx in the same way as for the case s ≥ 3. We again first proof
that Tx %⊆ Γn−2(c), for all sets Tx. Now, everything can be copied from the case s ≥ 3,
except when j = 0 or j = 2.

(j = 0) Suppose Tm ⊆ Γn−2(v), with v ∈ {c, c′}. Then we know that δ(v, m) = n/2 and
we may assume projmv = projma. This implies that δ(a, v) ≤ n− 2, so δ(a, v) = 4
(see Condition (iv)). Then x1 is the point of the path γ collinear with a (since Sa,v

contains only the element a !" v in this case), so δ(b, x1) = n− 2, which contradicts
the fact that (x1, b) ∈ O.

(j = 2) Note that this case is a problem only when n ≡ 2 mod 4, so we may assume that m
is a line. Suppose TL ⊆ Γn−2(v), for a line L concurrent with m, at distance n/2+2
from a and b, and for a point v ∈ {c, c′}. Then δ(v, L) = δ(a, L) = n/2 + 2 and
projLa = projLv. We may again assume that v does not lie at distance n/2 from
m. By Step 1, there are essentially two possibilities for x1.

First, suppose the point x1 lies at distance n/2 + 2 from m and at distance n/2 + 1
from a′. Then there arises an n-path γ′ between a and x1 sharing the path [a, a′]
with γ. Let a′′ be the projection of x1 onto a′. Since a′′ is a line at distance n/2 from
both a and x1, and v ∈ Sx1,a, either the distance between v and a′′ is n/2 (which is
not true), or the distance between v and a′′ is n/2 + 2, which is again impossible.
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Secondly, x1 cannot lie at distance n/2 from m, since this would contradict condition
(v) (x1 would be collinear with a point of Ta,b).

Hence (♦) is proved in this case.

Now we have to find an alternative argument for the last paragraph of the general case,
since we relied there on the fact that a line contains at least 4 points. We keep the
same notation of that paragraph. Now the only possibility (to rule out) that we have not
considered yet (because it does not occur in the general case) is the case that c and c′

both lie at distance n − 2 from different points u and u′ on L, δ(c, L) = δ(c′, L) = n− 1
and u and u′ different from the projection w of a onto L.

Suppose first n > 10 (otherwise some of the notations introduced below don’t make sense).
Put L′ = projwa and l′ = projL′a. Suppose the unique point z on L′ at distance n−2 from
c is not l′. Then consider a line K through z, different from L′ and from projzc. Because
c is at distance n from all the points of K, different from z (which are elements of Ta,b)
we can conclude that TK ⊆ Γn−2(c′), a contradiction to (♦). So [c, L′] contains l′. Define
the element p as [l′, m] ∩ [l′, c] = [l′, p]. Suppose p %= m and let j = δ(l′, p). Consider the
element z′ on [c, p] at distance j + 3 from p. Note that z′ is a line at distance n− 3 from
both a and b. Since c is not at distance n− 2 from any of the points of Tz′ , we conclude
that Tz′ ⊆ Γn−2(c′), a contradiction to (♦). If p = m, but if a′ %= projmc %= b′, we obtain
a contradiction considering the line z′ at distance n/2− 3 from m on [c, m] that does not
contain a′ or b′). So the path [c, l′] contains a′ or b′ (hence δ(c, m) = n/2 + 4). Suppose
[c, l′] contains a′. Consider now the element q defined by [m, c]∩ [m, a] = [m, q]. Then we
first show that q coincides either with a′ (Case 2 below), or with the element a′′ = proja′a
(Case 1 below). Indeed, if not, then δ(a, c) < n, which implies that δ(a, c) = 4 (by
Condition (iv)) and x1 = a !" c. Since (b, x1) ∈ O, δ(b, x1) is then equal to n. So it would
be possible to find an element of Ta,b for which the projection onto ax1 is different from
a and from x1, a contradiction (such a point would be at distance n − 2 from x1, which
would imply that x1 %∈ Sa,b). One checks that in the case n = 10, we end up with the
same possibilities.

Case 1 Consider the element m′ ∈ [a′′, c] that is at distance 2 from a′′. A point of Sa,c lies
at distance n/2 or n/2 + 2 from m′. Because of the conditions, x1 ∈ Sa,c. If x1 lies
at distance n/2 + 1 from a′, then δ(x1, m′) = n/2 + 4, a contradiction. If x1 lies at
distance n/2 + 1 from b′, there arises a path of length n/2 + 6 between x1 and m′,
which is again a contradiction, since n > 8. Note that x1 cannot lie at distance n/2
from m because (x1, y) %∈ O for y ∈ Ta,b.

Case 2 Suppose x1 lies at distance n/2 + 1 from b′. Let b0 be the projection of x1 onto
b′. Then a point of Sx1,b lies at distance n/2 or n/2 + 2 from b0. Because of the
conditions, c ∈ Sx1,b. But we have a path of length n/2 + 6 between c and b0
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(containing [c, a′]), a contradiction since n %= 8. Note that again, δ(x1, m) %= n/2.
So we know that x1 lies at distance n/2 + 1 from a′. Suppose the projections of c
and x1 onto a′ are not equal (which only occurs if n ≡ 2 mod 4, since s = 2). Let
a0 = proja′x1. Since c ∈ Sx1,a, the distance between c and a0 is either n/2 or n/2+2,
a contradiction (δ(c, a0) = n/2 + 4). So the projection of c onto a′ is the element
a0. Suppose proja0

c %= proja0
x1. Since the distance between c and a0 is n/2+2, and

c ∈ Sa,x1 , the point c has to lie at distance n/2 + 1 from either a′ or proja0
x1, which

is not true. So proja0
c = proja0

x1 := h. Note that the projections of c and x1 onto
h are certainly different, since we know that the distance between c and x1 is either
n or 2, and the last choice would contradict the fact that a ∈ Sx1,c. Now consider
the projection m′ of c onto h. This is an element at distance n/2 from both c and
x1. Now δ(b, m′) = n/2 + 4, which contradicts the fact that b ∈ Sc,x1 .

This completes the case s = 2 and hence the case i = n− 2.

2.6 Case i = n− 1

We can obviously assume n ≥ 6. If n = 6 and s = t = 2, then an easy counting argument
yields the result. If s = 2, then, since both s and t are infinite for n odd, n is even and
hence t > 2. In this case, we dualize the arguments below (this is possible since i is odd).
So we may assume throughout that s > 2.

For two points a and b with δ(a, b) %= n− 1, let Oa,b be the set of pairs of points {c, c′}, c
and c′ different from a and from b, for which

Tv,v′ ⊆ Γn−1(w) ∪ Γn−1(w
′),

whenever {a, b, c, c′} = {v, v′, w, w′}. For a pair {c, c′} ∈ Oa,b, we claim the following :

(i) If δ(a, b) = 2, then either c and c′ are different points on the line ab (distinct from
a and b), or, without loss of generality, c is a point on ab and c′ ∈ Γ3(ab) with
projabc

′ %∈ {a, b, c}. Moreover, all the pairs (c, c′) obtained in this way are elements
of Oa,b.

(ii) If δ(a, b) = 4, then either c and c′ are collinear points on the lines am or bm (where
m = a!"b) different from m, or c and c′ are points collinear with m, at distance 4
from both a and b, and at distance 4 from each other. Again, all the pairs (c, c′)
obtained in this way, are elements of Oa,b.

(iii) Let 4 < δ(a, b) = k < n− 1 and put m = a!"b. Then c and c′ are points at distance
k/2 from m, at distance k from both a and b, and at distance k from each other.
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If δ(a, b) = 2, then an element x of Ta,b is either opposite the line ab, or lies at distance n−3
from a unique point on ab, different from a and from b. If δ(a, b) = 4, then an element x of
Ta,b either lies at distance n−1 or n−3 from m = a!"b with projma %= projmx %= projmb or
lies at distance n−3 from a point x′ on am or bm, x′ %∈ {a, b, m} with am %= projx′x %= bm.
It is now easy to see that the given possibilities for c and c′ in (i) and (ii) indeed satisfy
the claim for δ(a, b) = 2 and δ(a, b) = 4, respectively.

Let δ(a, b) = k ≤ n− 2 and again put m = a!"b. Suppose {c, c′} ∈ Oa,b. For an element y
with δ(m, y) = j ≤ n − k/2 − 2 and projma %= projmy %= projmb, we define the following
set:

Ty = {x ∈ P | δ(x, y) = (n± 1)− j − k/2 and projyx %= projym if δ(x, y) %= n}.

For an element y with δ(m, y) = n − k/2 − 1 and projma %= projmy %= projmb, we define
Ty as the set of elements at distance 2 from y, not incident with projym. For an element
y with δ(m, y) = n − k/2 and projma %= projmy %= projmb, we define Ty as the set of
elements incident with y, different from projym. Note that Ty ⊆ Ta,b.

First we make the following observation. Let y be an element for which the set Ty is
defined, and for which δ(m, y) ≤ n−k/2−2. Then there exists an element v ∈ {c, c′} such
that Ty ⊆ Γn−1(v) if and only if δ(v, y) = δ(a, y) and projyv = projya or projyv = projyb.

Now we proof claims (i), (ii) and (iii) above by induction on the distance k between a
and b. Let k ≥ 2. In the sequel, we include the proof for the case k = 2 in the general
case.

Suppose first there exists an element v ∈ {c, c′} such that Tm ⊆ Γn−1(v). Then, by
the previous observation, δ(v, m) = δ(m, a) = k/2 and we may assume that projmv =
projma. This implies that δ(a, v) ≤ k − 2. Put {c, c′} = {v, v′}. If k = 2, we obtain
a = v, a contradiction. If k = 4, then v is a point on the line am, v %= m, and the
only remaining possibility, considering the induction hypothesis and the condition Ta,v ⊆
Γn−1(b) ∪ Γn−1(v′) is that v′ is also a point on am, different from m. If k > 4, the
position of b contradicts again the fact that Ta,v ⊆ Γn−1(b) ∪ Γn−1(v′) and the induction
hypothesis. Indeed, the element at distance δ(a, v)/2 from both a and v does not lie at
distance δ(a, v)/2 from b. In this way, we described all the possibilities for the points c
and c′ in case there is a point v ∈ {c, c′} for which Tm ⊆ Γn−1(c). So from now on, we
assume that there does not exist an element v ∈ {c, c′} such that Tm ⊆ Γn−1(v).

Let l be any element incident with m, different from the projection of a or b onto m.
Suppose there exists a point v ∈ {c, c′} such that Tl ⊆ Γn−1(v). Then δ(v, l) = δ(l, a) =
k/2 + 1 and we can assume that projlv = projla = m. Since Tm %⊆ Γn−1(v), we also know
that projma %= projmv =: w %= projmb. Put {v, v′} = {c, c′}.
Suppose first k = 2. Then v is a point on the line ab. We now show that the point v′ lies at
distance 2 or 4 from v such that projvv

′ = m. Indeed, suppose projvv
′ %= m or δ(v, v′) = n.
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If δ(v, v′) %= n, put γ′ = [v, v′]. If δ(v, v′) = n, let γ′ be an arbitrary n-path between v and
v′ not containing m. Let x be an element of Ta,b at distance n− 3 from v such that either
x lies on γ′, or [v, x] contains γ′. Then x is an element of Ta,b not at distance n− 1 from v
or v′, a contradiction. So we can assume that projvv

′ = m. Suppose now 4 < δ(v, v′). Let
Σ be an arbitrary apartment through v and v′. Then the unique element of Σ at distance
n− 3 from v and belonging to Ta,b, does not lie at distance n− 1 from v′, a contradiction,
so the distance between v and v′ is 2 or 4. Suppose δ(v, v′) = 4 and projabv

′ = b. Then we
obtain a contradiction (with the induction hypothesis) interchanging the roles of b and v.
So v′ is a point on ab, or v′ is a point at distance 3 from ab for which the projection onto
ab is different from a, b or v, as claimed in (i).

Suppose now k %= 2. Let w′ = projwv. Since the distance between v and any element of
Tw′ is less than or equal to n − 3, we have that Tw′ ⊆ Γn−1(v′), from which follows that
δ(v′, w′) = δ(w′, a) = k/2 + 2 and projw′v′ = projw′a = w. Since Tm %⊆ Γn−1(v′), we either
have that v′ is a point at distance k/2 from m for which the projection onto m is different
from w and projma %= projmv′ %= projmb (as required in (ii) and (iii)), or v′ is a point at
distance k/2 + 2 from m for which the projection onto m is w. In the latter case, let z be
the projection of v′ onto w (then δ(v, z) = δ(v′, z) = k/2) and consider an element x at
distance n−1−k/2−2 from z such that projzv %= projzx %= projzv

′. Then x is an element
of Ta,b at distance n− 3 from both v and v′, a contradiction. In this way, we described all
the possibilities for the points c and c′ in case there is a point v ∈ {c, c′} and an element
l as above for which Tl ⊆ Γn−1(c). So from now on, we assume that there does not exist
an element v ∈ {c, c′} such that Tl ⊆ Γn−1(v), for any l as above.

We now proof that

(♦) if y is an element for which the set Ty is defined, with δ(m, y) > 1, then there does
not exist a point v ∈ {c, c′} such that Ty ⊆ Γn−1(v).

This is done by induction on the distance j between y and m.

So let by way of contradiction l be an element at distance j from m, j > 1, for which
the set Tl is defined and such that there exists an element v ∈ {c, c′} with Tl ⊆ Γn−1(v).
Put {v, v′} = {c, c′}. Let first j < n − k/2 − 1. Then δ(v, l) = δ(l, a) = k/2 + j and
w := projlv = projla but u := projwv %= projwa. Let w′ = projuv. Note that the
distance between w′ and an element of Tw′ is (n ± 1) − k/2 − (j + 1), so an element
of Tw′ lies at distance at most n − 3 from v. We conclude that Tw′ ⊆ Γn−1(v′), from
which follows that δ(v′, w′) = δ(a, w′) = k/2 + j + 1 or δ(v′, w′) = n − 3 (the latter
is possible only if j = n − k/2 − 2), and projw′v′ = projw′a = u. Let projwa = u′.
First suppose δ(v′, w′) %= n − 3. From the assumptions, it follows that projwv′ %= u′.
Depending on whether the projection of v′ onto w is u or not, the distance between
v′ and u′ is k/2 + j + 2 or k/2 + j. Note that δ(v, u′) = k/2 + j. Now consider an
element x at distance (n− 1)− (k/2 + j) from u′ such that proju′x %= w, and such that x
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either lies on [u′, b], or [u′, x] contains [u′, b]. Then x is an element of Tv,v′ not contained
in Γn−1(a) ∪ Γn−1(b), a contradiction. If δ(v′, w′) = n − 3, then we similarly obtain a
contradiction. So Ty %⊆ Γn−1(v), for any element y at distance j from m.

Now let j = n − k/2 − 1. Note that Tl consists of all elements at distance 2 from l,
not incident with l′ = projlm. Then δ(v, l) = n − 1 or δ(v, l) = n − 3, and in both
cases, projlv = projla. If δ(v, l) = n − 1(= δ(a, l)), we proceed as in the previous
paragraph and end up with a contradiction. So let δ(v, l) = n − 3. First suppose that
projl′v %= projl′a = w. Now consider an element w′ incident with w, l′ %= w′ %= projwa and
w′ %= projwb. Then Tw′ ⊆ Γn−1(v), a contradiction since δ(m, w′) = j − 1. So projl′v = w.
Let [u, m] = [v, m]∩ [w,m] and put u′ = projuv. Suppose first that projma %= u′ %= projmb
and v %= m (v = m can occur only if k = 4). Then Tu′ ⊆ Γn−1(v′). Indeed, if we put
i = δ(u, l), then δ(v, u′) = n− 4− i and δ(m, u′) = n− k/2− i. So the distance between
u′ and an element of Tu′ is i± 1, and the distance between v and an element of Tu′ is at
most n − 3. So Tu′ is contained in Γn−1(v′), which is a contradiction since δ(m, u′) < j
(indeed, i ≥ 2). Suppose finally u′ = projma or v = m. If k = 2, we end up with a point
v lying on ab (namely v = projml). But then, for an arbitrary point x on m, different
from a, b and v, we have that Tx ⊆ Γn−1(v), in contradiction with our assumptions.
If k = 4, we end up with v = m, but then the position of b contradicts the fact that
Ta,v ⊆ Γn−1(b) ∪ Γn−1(v′) and the (general) induction hypothesis. Finally, if k > 4, then
δ(v, a) ≤ δ(v, projma) + δ(a, projma) = k− 4. Now the position of b contradicts again the
fact that Ta,v ⊆ Γn−1(b) ∪ Γn−1(v′) and the (general) induction hypothesis.

Let finally j = n − k/2. Note that Tl consists of all elements incident with l, different
from the projection l′ of m onto l. Then δ(v, l′) = n − 1 or δ(v, l′) = n − 3. Note that,
in both cases, projl′v %= projl′a. Indeed, projl′v = projl′a would imply that Tl′ ⊆ Γn−1(v),
a contradiction with our assumptions. Suppose first δ(v, l′) = n − 3. Let l′′ = projl′v.
Since no element incident with l′′ is at distance n − 1 from v, we have Tl′′ ⊆ Γn−1(v′),
which implies that δ(v′, l′) is either n − 3 or n − 1 and projl′v

′ %= projl′a. Consider now
the element on [a, l′] at distance 2 from l′. This is an element of Tv,v′ which is at distance
n − 3 from both a and b, a contradiction. Suppose now δ(v, l′) = n − 1. Let x be the
element on [v, l′] at distance 2 from l′. Since x is the only element of Tl′ not at distance
n−1 from v, this element x lies at distance n−1 from v′. But then δ(v′, l′) is either n−1
or n− 3. If projl′v

′ = projl′a, then Tl′ ⊆ Γn−1(v′), a contradiction with our assumptions.
If projl′v

′ %= projl′a, then again the element on [a, l′] at distance 2 from l′ is an element of
Tv,v′ at distance n− 3 from both a and b, the final contradiction. This proofs (♦).

Suppose now Ty %⊆ Γn−1(v) for all v ∈ {c, c′} and for any appropriate element y. Consider
an element l at distance n− k/2 from m such that the projection of l onto m is different
from the projections of a and b onto m. Let u be the projection of a onto l. Since
Tl %⊆ Γn−1(c) and Tl %⊆ Γn−1(c′), there is an element x incident with l, different from u, at
distance n−1 from c but not from c′, and an element y incident with l, different from u, at
distance n−1 from c′ but not from c. So δ(x, c′) = n−3 = δ(y, c) and projxc

′ %= l %= projyc.
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But from this follows that, for an arbitrary element l′ incident with u, l %= l′ %= projua, we
have Tl′ ⊆ Γn−1(c), a contradiction. This proves the claims (i), (ii) and (iii).

For two points a, b, let Ca,b be the set containing a, b, and all points c for which there
exists a point c′ such that {c, c′} ∈ Oa,b. Now let S be the set of pairs of points (a, b),
δ(a, b) %= n − 1, for which there does not exist an element at distance n − 1 from all
the points of Ca,b. We claim that S contains exactly the pairs of points (a, b) for which
δ(a, b) = 2 or δ(a, b) = 4.

First assume δ(a, b) = 2. Let by way of contradiction w be an element at distance n− 1
from all points of Ca,b. Since all the points of the line ab are contained in Ca,b, w lies
opposite ab. If v is an arbitrary point on ab, different from a and from b, then the element
on [v, w] that is collinear with v, is contained in Ca,b, but lies at distance n− 3 from w, a
contradiction. Suppose now δ(a, b) = 4. Let by way of contradiction w be an element at
distance n − 1 from all points of Ca,b. Then w lies at distance n − 1 from all the points
collinear with m = a !" b, which is not possible. Finally suppose 4 < δ(a, b) = k %= n− 1.
Let a′ be the element on the path [a, b] at distance k/2− 1 from a, and x an element at
distance (n − 1) − (k/2 − 1) from w with proja′a %= proja′w %= proja′b. Then w lies at
distance n− 1 from all points of Ca,b. Our claim is proved.

Now let S ′ be the subset of S containing all the pairs (a, b) with the property that there
exist points x and x′ belonging to Ca,b such that (x, x′) %∈ S. Then S ′ contains exactly
the pairs of collinear points. Indeed, if δ(a, b) = 2, we can find points x and x′ in Ca,b at
distance 6 from each other, while if δ(a, b) = 4, then Ca,b ⊆ Γ2(m). This completes the
proof of the case i = n− 1.

2.7 Case i = n/2

Let a and b be two points at distance k, and m an element at distance k/2 from both a
and b. Then it is easy to see that, if k %= n, an arbitrary element x ∈ Ta,b lies at distance
n/2 − k/2 from m such that projma %= projmc %= projmb. Now we define the set Sa,b as
the set of points c, a %= c %= b, for which Ta,b ⊆ Γn/2(c). Suppose first i is odd, and s %= 2.
Let S be the following set:

S = {(a, b) ∈ P2 ∪ L2 : |Sa,b| ≥ 2 and ∃c, d ∈ Sa,b : Ta,b ∪ {a, b} %= Tc,d ∪ {c, d}}.

Then it is easy to see that a pair (a, b) belongs to S iff 2 < δ(a, b) < n. Indeed, if
2 %= δ(a, b) %= n, then consider two points c and d on the line L = projab, different from a
or projLb. If δ(a, b) = 2, then Sa,b = ∅. If δ(a, b) = n, then the second condition in the
definition of S cannot be satisfied. Now put κ = {3, . . . , n − 1}. If n = 6, then S is the
set of all pairs of elements of Γ at distance 4 from each other, which ends the proof in this
case (because of Paragraph 2.5.1), so suppose n %= 6. Define the following sets S ′ and S ′′:

S ′ = {(p, L) ∈ P × L|Γn/2(p) ⊆ Γκ(L)},
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S ′′ = {(a, b) ∈ P2|∃L ∈ L : (a, L), (b, L) ∈ S ′}.

It is again easy to check that (p, L) ∈ S ′ iff δ(p, L) ≤ n/2− 4 and (a, b) ∈ S ′′ iff δ(a, b) ≤
n − 8. Then S ′′ \ (S ∩ S ′′) is the set of pairs of collinear points, which concludes the
proof. Let now s = 2. Then it is easy to check that for two points a and b, δ(a, b) = 4 iff
|Sa,b| = 2 (indeed, if δ(a, b) = 4, then the points on am and bm, different from a, b or m,
are exactly the elements of Sa,b), which concludes this case (in view of Subsection 2.1 and
Paragraph 2.5.1). If i is even and s %= 2, the proof is similar (the only difference is that
for the sets S and S ′, we only consider pairs of points). Let finally i be even and s = 2.
Then for two points a and b, δ(a, b) = n− 2 if and only if |Ta,b| = 1, which again ends the
proof (see case Subsection 2.5).

2.8 Case i < n/2 and i odd

We can assume n > 6. Suppose first t %= 2. Let S be the set of pairs of points (a, b) for
which there exists a unique line at distance i from both a and b. Then S is the set of pairs
of points at distance 2i from each other, which ends the proof because of the previous
cases. Suppose now t = 2, which implies s > 2. Let S be the set of pairs of lines (A, B)
for which there exists a unique point at distance i from both A and B. Then S is the set
of pairs of lines at distance 2i from each other, which again concludes the proof because
of the dual of the previous cases.

Hence α preserves collinearity and the theorem is proved. "

3 Some exceptions and applications

Let K be a commutative field. The generalized hexagon H(K) is defined as follows.
The points of H(K) are the points of PG(6, K) on the quadric Q(6, K) with equation
X0X4 + X1X5 + X2X6 = X2

3 ; the lines are the lines of this quadric whose Grassmann
coordinates satisfy the equations

p12 = p34, p54 = p32, p20 = p35,
p65 = p30, p01 = p36, p46 = p31.

Incidence is the natural one. It is well known that two points of H(K) are opposite in H(K)
if and only if they are not collinear on Q(6, K). Now we may choose an automorphism
of Q(6, K) which does not preserve the line set of H(K); this is easy to do. Such an
automorphism α induces a permutation of the points of H(K) with the property that
δ(x, y) = 6 if and only if δ(xα, yα) = 6, but α does not preserve collinearity. Hence we
have produced a counterexample to Theorem 2 for i = n = 6.
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Note that the previous class of counterexamples contains finite hexagons (putting K equal
to any finite field). We now show that, for the finite case, the only counterexamples must
be hexagons of order (s, s). If there is enough transitivity around, then these are the only
counterexamples (see below for a precise statement).

Theorem 3 Let Γ and Γ′ be two finite generalized n-gons of order (s, t) and (s′, t′),
respectively, let α be a bijection between the points of Γ and Γ′, and fix an even number i,
2 < i ≤ n. If for every two points x and y of Γ, δ(x, y) = i ⇐⇒ δ(xα, yα) = i, then either
α extends to an isomorphism between Γ and Γ′, or else we have n = 6 and s = t.

Proof. For i %= n, we only have to show that 2 = s if and only if 2 = s′ and 2 = t if and
only if 2 = t′. In fact, we will show that s = s′ and t = t′. First let n = 6 and i = 4. Then
the number of points of Γ at distance 4 from a given point (respectively from two given
points at distance 4) is equal to the number of points of Γ′ at distance 4 from a given
point (respectively from two given points at mutual distance 4). We obtain (1 + t)ts2 =
(1+t′)t′s′2 and s(t2+t−1) = s′(t′2+t′−1). Substituting s = s′(t′2+t′−1)/(t2+t−1) in the
first equation gives us a quadratic equation in t2 + t, which has only one integer solution,
namely t′2 + t′. Hence t = t′ and hence s = s′. Now let n = 8 and i = 4. Similarly
as for n = 6 we get (1 + t)ts2 = (1 + t′)t′s′2 and s(t − 1) = s′(t′ − 1). Substituting
s = s′(t′ − 1)/(t− 1) in the first equation, we obtain a quadratic equation in t which has
only one integer solution, namely t = t′. Hence also s = s′. Now suppose i = 6. One
can do a similar counting as before, but the equations are more involved. We content
ourselves here by remarking that, for n = 8, there is, up to duality, only one feasible
parameter set (s, t) with 2 ∈ {s, t} and that is (2, 4) (since 2st is a perfect square and
t ≤ s2 for the order (s, t) of a generalized octagon). Every generalized octagon of order
(s′, t′) /∈ {(2, 4), (4, 2)} has more points than one with order (2, 4) or (4, 2). In conclusion,
if i %= n, then the result follows from Theorem 2.

Hence we may assume that i = n. First consider the case n = i = 6. Let a, b be
two points of Γ. If δ(a, b) = 2, then |Γ6(a) ∩ Γ6(b)| = s2t2(s − 1). If δ(a, b) = 4, then
|Γ6(a) ∩ Γ6(b)| = st(t− s + st(s− 1)). These two numbers are equal if and only if s = t.
By assumption, we may assume that s %= t. Then clearly s′ %= t′ and either two points
at distance 4 are always mapped onto collinear points, or two points at distance 4 are
always mapped onto points at distance 4. In the latter case, the theorem is proved. In
the former case, we obtain by counting the number of points collinear with a fixed point
in Γ — and this should be equal to the number of points at distance 4 from a fixed point
in Γ′ — that s(t + 1) = (t′ + 1)s′2t′ and similarly s′(t′ + 1) = (t + 1)s2t. Combining these,
we obtain the contradiction sts′t′ = 1.

Finally, suppose n = i = 8. We first prove that (s, t) = (s′, t′). Indeed, we already
have (1 + s)(1 + st)(1 + s2t2) = (1 + s′)(1 + s′t′)(1 + s′2t′2), and also, looking at the
number of points opposite a given point, s4t3 = s′4t′3. Putting X = st and X ′ = s′t′ in
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the first equation (thus eliminating t and t′) and then substituting s′ = sX3/X ′3 in the
equation obtained, we get a third degree equation in X, having only one positive solution,
namely, X = X ′. This proves st = s′t′ and hence s = s′ and t = t′. Now let a, b be two
points of Γ. If δ(a, b) = 2, then $2 := |Γ8(a) ∩ Γ8(b)| = (s − 1)s3t3. If δ(a, b) = 4, then
$4 := |Γ8(a) ∩ Γ8(b)| = s2t2(st(s − 1) + t − s). These two numbers are different because
s %= t (see [6]). Let $6 = |Γ8(a) ∩ Γ8(b)| with δ(a, b) = 6. Notice that $6 is a constant,
independent of a, b. If $6 %= $2, then clearly α must preserve collinearity. Likewise, if
$6 %= $4, then α must preserve distance 4. The result now follows from Theorem 2. "
For the proof of the next theorem, we need some preparations. A distance-j hyperbolic
line H(x, y) in a generalized n-gon Γ is the set of points not opposite all elements not
opposite two given points x, y at mutual distance 2j. In fact, as shown in [3], it is exactly
the intersection of all sets Γj(u) ∩ Γn−j(z), with, if x is not opposite y, the element
u = x!"y and z opposite u, with δ(x, z) = δ(y, z) = n − j, or, if x is opposite y, then
u, z ∈ Γn/2(x) ∩ Γn/2(y), u %= z. A distance-j hyperbolic line H(x, y) is called long if the
projection of H(x, y) onto some element of Γ at distance n− 1 from any point of H(x, y)
is surjective onto Γ1(L) whenever it is injective.

Theorem 4 Let Γ and Γ′ be two generalized n-gons, n ∈ {6, 8}, and suppose that Γ′ has
an automorphism group acting transitively on the set of pairs of points at mutual distance
n− 2 (this is in particular satisfied if Γ′ is a Moufang n-gon, or if Γ′ arises from a BN-
pair). Suppose there exists a bijection α from the point set of Γ to the point set of Γ′

such that, for any pair of points a, b of Γ, we have that a is opposite b if and only if aα is
opposite bα. If α is not an isomorphism, then Γ ∼= Γ′ ∼= H(K) and for any isomorphism
β : Γ → Γ′, the permutation of the points of Γ defined by αβ−1 arises as in the example
above.

Proof. Let first n = 6. Let x and y be two collinear points for which x′ := xα and
y′ := yα lie at distance 4 (these exist by Lemma 1.3.14 of [9]). We look for the image
of the line L := xy. Note that a point z, x %= z %= y, lies on L if and only if there is
no point of Γ opposite exactly one point of the set {x, y, z} (see for instance [1]). Since
this property is preserved by α, it is easy to check that a point z of the line L has to be
mapped onto a point of the distance-2 hyperbolic line H := H(x′, y′). Now we claim that
H is a long distance-2 hyperbolic line. Indeed, let K be a line of Γ′ at distance 5 from
all the points of H, and suppose that the projection of H onto K is not surjective. This
would imply that there is a point opposite all the points of H, so in particularly opposite
all the points of Lα. Applying α−1, we see that there would be a point opposite all the
points of L, a contradiction. Our claim follows. In fact, the very same argument shows
that Lα = H. So Γ′ contains a long hyperbolic line. The transitivity condition on the
group of automorphisms of Γ′ now easily implies that all hyperbolic lines are long. From
Theorem 1.2 in [3] then follows that Γ′ ∼= H(K), and we may actually put Γ′ = H(K).
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Moreover, since lines of Γ are mapped onto lines or distance-2 hyperbolic lines of H(K), we
obtain a representation of Γ on Q(6, K) with the property that opposition in Γ coincides
with opposition in Q(6, K) (the latter viewed as a polar space: opposite points are just
non-collinear points). Now, it is easy to see that, if x is any point of Γ (whose point
set is identified with the point set of Q(6, K)), then the set Γ2(x) is contained in a plane
πx of Q(6, K) (indeed, the space generated by Γ2(x) in PG(6, K) is a singular subspace
of Q(6, q)). If a point y of πx would be at distance 4 from x in Γ, then projyx would
meet all lines in Γ1(x), a contradiction. Hence we can apply Theorem 1.2 of [5] to obtain
Γ ∼= H(K). It is clear that, for a given isomorphism β : Γ → H(K) = Γ′, the map αβ−1 can
be seen as a permutation of the point set of Q(6, K) preserving opposition and collinearity,
hence it is an isomorphism of Q(6, K). The result follows.

Let now n = 8. Let x and y be two collinear points in Γ for which x′ = xα and y′ = yα

lie at distance 4 or 6. Completely similar as above, one shows that the image of L = xy
is the long distance-2 hyperbolic line or the long distance-3 hyperbolic line defined by x′

and y′. The transitivity condition now implies that either all distance-2 hyperbolic lines
or all distance-3 hyperbolic lines are long. This contradicts Theorem 1.3 resp. Theorem
2.6 of [3].

The theorem is proved. "
The previous theorem means in fact that, for hexagons and octagons with a fairly big
automorphism group, Theorem 2 remains true if we rephrase the conclusion as: “. . . then Γ
and Γ′ are isomorphic”, and if we do not insist on the fact that α defines that isomorphism.
Also, we have only considered the important values n = 6, 8. Using the results of [3], we
can allow for more (though all odd) values, such as n = 5, 7.

We now come to some applications. An ovoidal subspace in a generalized hexagon is a set
of points O with the property that every point of Γ not in O is collinear with exactly one
point of O. Dually, one defines a dual ovoidal subspace. These objects were introduced
by Brouns and Van Maldeghem in [4] in order to characterize the finite hexagon H(q) by
means of certain regularity conditions. It follows from [4] that a dual ovoidal subspace
of H(K) is either the set of lines at distance at most 3 from a given point (type P), or
the set of lines of an ideal non-thick subhexagon ( (i.e., a subhexagon with two points on
each line and such that all lines of H(K) through a point of the subhexagon are lines of
the subhexagon, see [9]; type H), or a distance-3-spread (i.e., a set of mutually opposite
lines such that every other line meets at least one line of the set, type S), or the set of all
lines of H(K).

We have the following lemma.

Lemma 1 Let Γ be a hexagon, and let α be a permutation of the point set of Γ preserving
the opposition relation. Then the set S of lines L of Γ such that Γ1(L)α = Γ1(M), for
some line M of Γ, is a dual ovoidal subspace in Γ.
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Proof. We have to show that every line of Γ not in S is concurrent with a unique line of
S. We first claim that

(a) if L and L′ are two lines of S at distance 4, then also the line L!"L′ belongs to S,

(b) if L and L′ are two concurrent lines of S, then all the lines concurrent with both L
and L′ belong to S.

Indeed, let first δ(L, L′) = 4, with L, L′ ∈ S. Let M and M ′ be the lines of Γ incident with
all the images (under α) of L and L′, respectively. All points of L except for projLL′ are
opposite all points of L′ except for projL′L; hence all elements of Γ1(M) \ (projLL′)α are
opposite all elements of Γ1(M ′)\(projL′L)α. Hence M and M ′ must be at distance 4 from
each other, and x := (projLL′)α must be collinear with x′ := (projL′L)α. Consequently
the points of the line L!"L′ are mapped onto the points of the line xx′. This proves (a).
A similar argument shows (b).

Now let L be a line of Γ not belonging to S. We know that, by the proof of Theorem 4,
the image under α of Γ1(L) is a certain distance-2 hyperbolic line H(x, y). Put a := x!"y.
The point a′ := aα−1

is not opposite any element of Γ1(L), hence it is collinear with a
unique point b ∈ Γ1(L). It now easily follows that the line a′b belongs to S. "
There are two applications.

Application 1. The intersection of the line sets of two generalized hexagons Γ ∼= H(K)
and Γ′ ∼= H(K) on the same quadric Q(6, K) is a dual ovoidal subspace in both these
hexagons.

Proof. Denote by S the intersection of the line set of the two hexagons Γ and Γ′ living
on the same quadric Q(6, q). By a simple change of coordinates, one easily verifies that
for both Γ and Γ′, coordinates can be chosen as in the beginning of this section. Hence
there exists an automorphism θ of the quadric Q(6, K) mapping Γ to Γ′. This also follows
directly from Tits’ classification of trialities in [8]. Now θ preserves the opposition relation
in the hexagons. Applying Lemma 1, we obtain that θ−1(S) is a dual ovoidal subspace in
Γ, so S is a dual ovoidal subspace in Γ′. Applying θ−1, we conclude that S is also a dual
ovoidal subspace in Γ. "
Remark. A similar result is true for the symplectic quadrangle W(K) over some field
K. But there, the proof is rather easy, because the intersection of the line sets of two
symplectic quadrangles naturally represented in PG(3, K) boils down (dually using the
Klein correspondence) to the intersection of a quadric Q(4, K) of maximal Witt index in
PG(4, K) with a hyperplane. Hence this intersection is always a dual geometric hyper-
plane (of classical type).

When the second author was giving a talk about the results of the present paper, and
in particular about the previous application, in Adelaide in January 1999, Tim Penttila
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remarked that it might well be possible to use these results to prove in a geometric way
that the group G2(q) is maximal in O7(q). That this is indeed the case is shown by our
second application. And we thank Tim for this interesting comment.

Application 2. The group G2(q) is maximal in O7(q).

Proof. We prove this well known result in an entirely geometric way.

Let Q(6, q) be as above. First we claim that, if Γ and Γ′ are two hexagons isomorphic to
H(q), embedded in the natural way in Q(6, q), and if the intersection of the line sets of Γ
and of Γ′ is a distance-3 spread S, then S is a so-called Hermitian spread, obtained from
Γ by intersecting Q(6, q) with a hyperplane (which intersects Q(6, q) in an elliptic quadric
Q−(5, q)) and considering the lines of that hyperplane which are also lines of Γ. Indeed,
if two lines belong to S, then clearly so do all lines of the regulus defined by those two
lines on Q(6, q). Our claim now follows from Theorem 9 of [2].

Now let H(q) be as defined earlier. Its automorphism group acts transitively on the three
types of dual ovoidal subspaces; this easily follows from counting the number of dual
ovoidal subspaces of each type, and comparing this with the quotient of |G2(q)| with the
order of the stabilizer of a dual ovoidal subspace of the considered type.

A similar counting argument shows that there are exactly q + 1 copies of Γ on Q(6, q)
containing a given dual ovoidal subspaces of type S, exactly q containing one of type P,
and exactly q − 1 containing one of type H.

Let NX be the number of dual ovoidal subspaces of type X, then we have






NP = q5 + q4 + q3 + q2 + q + 1,

NH = q3(q3+1)
2 ,

NS = q3(q3−1)
2 .

Now let g be any element of O7(q) not belonging to the automorphism group G2(q) of
H(q). Let G be the group generated by G2(q) and g. We show that G = O7(q). Clearly
it suffices to show that |G| = |O7(q)|. To that end, we look at the orbit O of H(q) under
G. This orbit contains images of H(q) the line set of which intersect H(q) in dual ovoidal
subspaces. By the transitivity of G2(q) on the three types of dual ovoidal subspaces of
H(q), there are a constant number of elements of O meeting H(q) in each of the three
types of dual ovoidal subspaces. Hence we may assume that there are exactly k elements
of O whose line set contains a given dual ovoidal subspace of type P of H(q). Similarly we
define the numbers $ and m for type H and type S, respectively. Hence in total, we have

N := 1 + k(q5 + q4 + q3 + q2 + q + 1) + $
q3(q3 + 1)

2
+ m

q3(q3 − 1)

2

elements in O, with k ≤ q − 1, with $ ≤ q − 2 and with m ≤ q. We know that N |G2(q)|
divides the order of O7(q), in particular, it divides the order of PSO7(q), which is q3(q4−
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1)|G2(q)|. Hence N divides q3(q4 − 1). Since (k, $, m) %= (0, 0, 0), we see that N > q5.
Hence q must divide N , implying q divides 1 + k. Since 0 ≤ k ≤ q − 1, this means that
k = q − 1. Hence

N = q6 + $
q3(q3 + 1)

2
+ m

q3(q3 − 1)

2

divides q3(q4 − 1). We may write N = abcd, where a divides q3, where b divides q2 + 1,
where c divides q + 1 and where d divides q − 1. If q is even, then a, b, c, d are unique,
since every two of the numbers q3, q2 + 1, q + 1 and q− 1 are relatively prime. For q odd,
there may be different possibilities, and we will make advantage of that below.

First suppose that q is even. Then both c and d are odd, and hence one can divide by 2
modulo c or d. We have 0 ≡ N mod c ≡ 1 + m mod c and 0 ≡ N mod d ≡ 1 + $ mod d.
Hence m ≥ c− 1 and $ ≥ d− 1. Since ab ≤ q3(q2 + 1), we also have

(q2 + 1)cd− c
q3 − 1

2
− d

q3 + 1

2
≥ 0.

This implies

d(c(q2 + 1)− q3 + 1

2
) ≥ c

q3 − 1

2
,

which on its turn implies that c(q2 + 1) − q3+1
2 ≥ 0. Hence c > q−1

2 . Similarly d > q−1
2 .

Since d divides q − 1, we necessarily have d = q − 1 = $ + 1. Also, c ∈ { q+1
2 , q + 1}. If

c = q+1
2 , then m ∈ { q−1

2 , q}. But clearly, m = q−1
2 leads to a contradiction (the N derived

from that value does not divide q3(q4 − 1), because it is bigger than half of that number,
and not equal to it). Hence m = q and therefore c = q + 1. We obtain N = q3(q4 + 1)
and so |G| = |O7(q)|. This completes the case q even.

Now suppose that q is odd. We essentially try to give a similar proof as for q even,
but the arguments need a little more elementary computations. Note that for q odd,
|O7(q)| = q3(q4+1)

2 |G2(q)|. Hence, we may choose c in such a way that it divides q+1
2 .

We easily compute N ≡ 1 + m mod c. Similarly, we obtain N ≡ 1 + $ mod d/i, where
i ∈ {1, 2}, depending on the fact whether d divides q−1

2 (i = 1) or not (i = 2). In any
case, estimating cd as for q even, we obtain d > q−1

2 and c > q−1
2i . For i = 1, this is

a contradiction (because d cannot exist!). Hence i = 2 and d = q − 1. Consequently
$ ∈ {q − 2, q−3

2 }. Also, c ∈ { q+1
4 , q+1

2 } and hence m ∈ { q−3
4 , q−1

2 }. Clearly $ = q − 2 leads
to an order of G which is bigger than |O7(q)|. And m = q−3

4 leads to an order of G that
is bigger than half the order of O7(q). Hence ($, m) = ( q−3

2 , q−1
2 ) and this implies that

|G| = |O7(q)|.
The application is proved. "
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