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Abstract

Let G be a group with an irreducible spherical BN-pair of rank 2 satisfying the
additional condition (∗): There exists a normal nilpotent subgroup U of B with
B = TU , where T = B ∩N and |W | #= 16 for the Weyl group W = N/B ∩N . We
show that G corresponds to a Moufang polygon and hence is essentially known.

1 Introduction

A celebrated result of Fong and Seitz [3] states that every finite group with an irreducible
BN-pair of rank 2 satisfying (∗) is (an extension of) a rank 2 adjoint Chevalley group.
A geometric consequence of this result is a classification of all finite Moufang generalized
polygons. Recently, all Moufang generalized polygons have been classified independently
from the Fong and Seitz result, and not restricted to the finite case, by Tits and Weiss
(manuscript in preparation [14]), showing in particular that also in the infinite case Mou-
fang generalized polygons give rise to irreducible BN-pairs of rank 2 satisfying (∗).
So the question arises naturally whether an analogue of the result by Fong and Seitz
holds without the finiteness assumption, thus showing that the notions of a so-called split
BN-pair of rank 2 and a Moufang generalized polygon are essentially equivalent. This is
the aim of the present paper. The proof in [3] heavily relies on two facts:

• It was proved by Feit and Higman [2] that for a finite group with an irreducible
BN-pair of rank 2, the Weyl group W = N/B ∩N has order 2n with n = 3, 4, 6 or
8. As examples by Tits [12] and Tent [7] show, for infinite groups all orders 2n are
possible for the corresponding Weyl group.

• Finite 2-transitive permutation groups satisfying a condition corresponding to (∗)
have been classified by Hering, Kantor and Seitz [4],[5], and there is no analogue
known in the infinite case.

∗The first author is supported by the Bayerischer Habilitationsförderpreis
†The second author is a Research Director of the Fund for Scientific Research – Flanders (Belgium)

1



Thus the general situation certainly requires new tools. First steps in the direction of the
theorem cited in the abstract were achieved in [10] where it was shown that for a BN-pair
of rank 2 acting faithfully on the associated polygon and satisfying the somewhat weaker
condition B = UT with T = B ∩ N and Z(U) #= 1, we do get restrictions on the order
of the Weyl group similar to the Feit and Higman restrictions. Assuming (∗) we there
obtained the result stated in the abstract if the order of the Weyl group is 6.

It is worthwhile to note that our arguments are geometric in nature and that they are
completely elementary. The style of the arguments resembles that used by Weiss [17] to
show the non-existence of Moufang 12-gons. In fact, we were very much inspired by that
paper.

The result of Fong and Seitz was used in the first generation proof of the classification of
finite simple groups; it is not clear to us whether it will play the same important role in
the revision of that proof. However, the proof we present here together with those parts
of the proof of the classification of Moufang polygons by Tits and Weiss that apply to the
finite situation yield a completely independent and quite elementary proof of their result,
apart from the case n = 8.

Let us end this introduction with the statement of our main result.

Theorem. If G is a group with an irreducible BN-pair satisfying

(*) there exists a normal nilpotent subgroup U of B such that B = UT , for T = B ∩N ,

and with Weyl group W of order 2n #= 16, then the associated generalized n-gon Γ is a
Moufang n-gon and G/R contains its little projective group, where R denotes the kernel
of the action of G on Γ.

Note that using the classification of the Moufang polygons by Tits and Weiss [14], this
implies that essentially G/R is (an extension of) a simple algebraic group of relative rank
2, a classical group of rank 2, or a group of mixed type B2 or G2.

We now give precise definitions and notation.

2 Notation and preliminary results

A thick generalized polygon Γ (or thick generalized n-gon, n ≥ 3), or briefly a polygon (or
n-gon), is a bipartite graph (the two corresponding classes are called types) of diameter n
and girth 2n (the girth of a graph is the length of a minimal circuit) containing a proper
circuit of length 2n + 2 (the latter is equivalent with saying that all vertices have valency
> 2, see [15]). The vertices are called the elements of Γ. The distance between elements is
the usual graph theoretic distance. A pair of elements {x, y} is called a flag if x and y are
adjacent. The set of neighbors of an element x is denoted by Γ1(x), and, more generally,
the set of elements at distance i from x, 0 ≤ i ≤ n, is denoted by Γi(x). The diameter
of the edge graph of Γ is also equal to n and two flags at distance n from each other are
called opposite. Also two elements of Γ at distance n from each other are called opposite.
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The set of elements of a circuit of length 2n in Γ is called an apartment. Two opposite
flags are contained in exactly one apartment. These, and many more properties, can be
found in [15]. A sequence (x0, x1, . . . , xk) of elements of Γ is called a simple path of length
k, or a (simple) k-path, if xi−1 is adjacent to xi, for all i ∈ {1, 2, . . . , k}, and if xi−1 #= xi+1,
for all i ∈ {1, 2, . . . , k − 1}.
Generalized polygons were introduced by Tits [11]. The standard examples arise from
groups with an irreducible spherical BN-pair of rank 2. For the purpose of the present
paper, the following geometric definition of such a BN-pair will do.

Let Γ be an n-gon, and let G be a group acting (not necessarily effectively) on Γ such that
each element of G acts as a type preserving graph automorphism. If G acts transitively
on the set of apartments of Γ, and if the stabilizer in G of an apartment A acts in the
natural way as the dihedral group of order 2n on A, then we say that G is a group with an
irreducible spherical BN-pair of rank 2, or briefly, with a BN-pair. If we fix an apartment
A and a flag f contained in A, then we call the stabilizer B in G of f a Borel subgroup
of G. Also, there exists a subgroup N of G stabilizing A such that B ∩N is normal in N
and the corresponding quotient W has order 2n and is isomorphic to a dihedral group.
The group W is called the Weyl group of G. The group N is not unique; in particular one
can take the full stabilizer of A in G. Groups with a BN-pair were introduced by Tits;
see e.g. [13].

Let Γ be an n-gon, and let x0 be an element of Γ. Let G be a type preserving automorphism
group of Γ, and let i be some natural number, 0 ≤ i ≤ n. We denote by G[i]

x0 the subgroup
of G fixing all elements of Γi(x0) (and then it automatically fixes all sets Γj(x0) pointwise,

for 0 ≤ j ≤ i). Further, for elements x1, . . . , xk, we set G[i]
x0,x1,...,xk = G[i]

x0 ∩G[i]
x1 ∩ . . .∩G[i]

xk .
For i = 0, we sometimes omit the superscript [0]. An elation g of Γ is a member of

G[1]
x1,...,xn−1 for some simple path (x1, x2, . . . , xn−1) of Γ, in which case g is also called an

(x1, x2, . . . , xn−1)-elation. The group G[1]
x1,...,xn−1 of elations acts freely on Γ1(x0) \ {x1},

for every element x0 ∈ Γ1(x1) \ {x2}. If this action is transitive for all such x0, then we
say that the path (x1, x2, . . . , xn−1) is a Moufang path. If all simple (n − 2)-paths are
Moufang, then we say that Γ is a Moufang polygon. If n is even, and if all simple paths
of length n− 2 starting with an element of fixed type are Moufang, then we say that Γ is
half Moufang. All Moufang polygons are classified by Tits and Weiss [14]. An elation is
called central if it fixes Γi(x) pointwise, for some element x, and for all positive i ≤ n/2
(in which case x is called a center of the elation). The little projective group of a Moufang
polygon is the group generated by all elations. It is a group with a natural BN-pair and
it always contains central elations. For the notions introduced in this paragraph, see [14]
and [15].

Granted the classification of finite simple groups, all finite groups with an irreducible
spherical BN-pair of rank 2 can be classified, see [1]. The finiteness condition cannot be
dispensed with as is shown by the ‘free’ and ‘universal’ examples of Tits [12] and Tent
[7]. Hence, one must have additional hypotheses in order to classify. Hypothesis (∗) is
one such and proved very useful in the classification of finite simple groups.

Let us remark that the motivation of our work is not only to generalize the result of Fong
and Seitz to the infinite case, but also to provide an independent geometric approach.
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Also, our proof for the case n = 12 yields an alternative proof for the nonexistence of
Moufang 12-gons.

Standing Hypotheses. Throughout, let G be a group with an irreducible spherical
BN-pair of rank 2 and let Γ be the associated n-gon. Let A be some apartment in Γ and
let (x0, x1, . . . , x2n−1, x2n), with x0 = x2n, be a (closed) 2n-path containing all elements
of A. Let B be the stabilizer of {x0, x1}, and let N ≤ G be such that it stabilizes A and
such that T := B ∩N !N with W := N/T isomorphic to the dihedral group of order 2n.
Finally, let R be the kernel of the action of G on Γ. Then G/R is a group with a BN-pair
and with corresponding polygon Γ. The stabilizer of {x0, x1} in G/R is B/R. The group
N/R stabilizes A and T/R = B/R∩N/R!N/R, with W ≡ (N/R)/(T/R). If G satisfies
(*), then so does G/R. Hence, in order to show our theorem, we may assume that R is
trivial and hence that G acts faithfully on Γ. We assume throughout that U is a normal
nilpotent subgroup of B satisfying B = UT .

We will use the following results from [10] on groups satisfying our standing hypotheses.

2.1 Lemma (Cp. 2.1 of [10]) The group U acts transitively on the set of flags opposite
{x0, x1}. "

2.2 Lemma (Cp. Lemma 2.3 of [10]) We have Z(U) ≤ G[k]
x0,x1, for all k < n/2. "

2.3 Proposition (Cp. Theorem 1 and Prop. 3.1 of [10]) The Weyl group W has order 2n
with n = 3, 4, 6, 8 or 12. Also, if n ∈ {8, 12}, then, up to duality (i.e., up to interchanging

x0 and x1), Z(U) ≤ G[n/2]
x0 . Moreover, we have the following two facts.

(i) If n = 6, then either Z(U) consists of central elations (all having the same center),

or, for any two elements x, y of Γ at distance 2 from each other, the group G[2]
x,y is

nontrivial.

(ii) If n = 12, then [G[6]
x0 , G

[6]
x8 ] ≤ G[4]

x2,x6.

"

2.4 Proposition (Cp. Prop. 4.1 of [10]) Up to duality, one has that for all x ∈ Γ1(x1) \
{x0}, and for all k, 0 < k < n/2, the group U [1]

x0,x1 ≤ U acts transitively on the set
Γk(x) ∩ Γk+1(x1). Also, for all y ∈ Γ1(x0) \ {x1}, and for all k, 0 < k < n/2, the group

U [1]
x0 acts transitively on Γk(y) ∩Dk+1(x0). "

Note that Proposition 2.4 implies our main result for the case n = 3 and |W | = 6. Thus,
in light of Proposition 2.3, in order to proof our main result, we just have to deal with
the cases n = 4, 6 and 12.

Notation. Regarding commutators and conjugation, we use the notation [g, h] = g−1h−1gh
and gh = h−1gh; then g−h = (g−1)h = hgh−1. Also, automorphisms act on the right, so
we use exponential notation.

4



3 Proof of the theorem for n = 4

3.1 Hypotheses. We use our standing hypotheses. Since G acts transitively on the
set of apartments, we may apply results that we proved for the appartment A to any
other apartment. Also, we may shift indices by 2 (modulo 8), or, for any j ∈ {0, . . . , 7},
replace the index i by j − i (modulo 8) for all i ∈ {0, . . . , 7}. We will do so freely. By

Proposition 2.4 we may assume that the indices in A are chosen in such a way that G[1]
x0,x1

acts transitively on Γ1(x) \ {x1} for any x ∈ Γ1(x1) \ {x0}. Then G[1]
x0 acts transitively on

Γ1(x′) \ {x0} for any x′ ∈ Γ1(x0) \ {x1}. In particular, it follows that G[1]
x0 acts transitively

on Γ2(x1) ∩D3(x0).

3.2 Proposition G contains a nontrivial (x7, x0, x1)-elation.

Proof. First we prove that this is true if Z(U) contains some nontrivial elation, in which
case we clearly may assume that Z(U) contains a nontrivial central elation α with center

x1. Let h be some nontrivial element of G[1]
x3,x4 not fixing x1 (this exists by 3.1 above).

Then, again by 3.1, there is some u ∈ G[1]
x1 with xhu

1 = x3. We now have

(1) both [α, h] and αhu belong to G[1]
x2,x3 ,

(2) [α, h] agrees with αhu on Γ1(x1), hence [α, h]−1αhu ∈ G[1]
x1 ,

(3) [α, h] acts nontrivially on Γ1(x4) (indeed, α−1 maps x5 onto some element of Γ2(x7),
while this cannot be the case for α−h) and αhu acts trivially on Γ1(x4).

Now (1), (2) and (3) imply that [α, h]−1αhu is a nontrivial (x1, x2, x3)-elation. By a shift
of the indices, we obtain a nontrivial (x7, x0, x1)-elation.

So we may assume that Z(U) does not contain elations. We remark that, in particular,
this implies, together with Lemma 2.1, that Z(U) does not fix any element of Γ1(x2)\{x1}.
Next we show that the proposition holds if there is a nontrivial (x0, x1, x2)-elation α.
Let v be any element of G fixing x1 and mapping x0 to x2; we denote U∗ := U v. By
our previous remark, there exists u1 ∈ Z(U∗) with x′

7 := xu1
7 #= x7. By 3.1, there exists

u2 ∈ G[1]
x′7

with xu2
1 = x7. After adjusting A if necessary, we may also assume that xu2

2 = x6.

Put x′
6 := xu1

6 .

Now consider the product of three elations β := αα−u2αu2u1 and set x′
0 = xα−u2

2 . An

elementary verification shows that β ∈ G[1]
x′7,x0,x1

. Moreover, if β were trivial, then u1

would belong to G[1]
x′0,x1,x2

, contradicting our hypothesis that Z(U∗) does not contain any
elation.

Thus we may now assume that G[1]
x0,x1 does not contain any elation. Our aim is to obtain

a contradiction. Our assumption in fact means that G[1]
x0,x1 must act faithfully on both

Γ1(x7) and Γ1(x2).

We claim that G[1]
x0,x1 = Z(U). Let U∗ be as above, and let α and β be two arbitrary

nontrivial elements of G[1]
x7,x0 and Z(U∗) ≤ G[1]

x1,x2 (see Lemma 2.2), respectively, with the
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only restriction that α does not fix x2. Clearly, [α, β] ∈ G[1]
x0,x1 . Our hypotheses 3.1 imply

the existence of some u ∈ G[1]
x7 mapping xβ

7 (which is different from x7 since otherwise β
would be an elation inside Z(U∗)) to x1. It is easy to see that [α, β] and αβu induce the

same action on Γ1(x7). But since they both belong to G[1]
x0,x1 , and since the latter acts

faithfully on Γ1(x7), we conclude that [α, β] = αβv. On the other hand, our assumption
that α does not fix x2 permits to interchange the roles of α and β in the above argument,
and so [α, β] is conjugate to both α and β. Hence α ∈ G[1]

x7,x0 \ G[0]
x2 and β ∈ Z(U∗)

are mutually conjugate. Since G[1]
x7,x0 acts transitively and faithfully on Γ1(x1) \ {x0},

one easily sees that G[1]
x7,x0 and Z(U∗) are conjugate subgroups. We now conclude that

G[1]
x0,x1 = Z(U), showing our claim.

It now follows that Z(U) acts transitively on Γ1(x2) and thus every element in U fixing
some element of Γ1(x2)\{x1} must fix every element of Γ1(x2). In particular, the stabilizer

of x0 in the group G[1]
x2 ∩U acts transitively on Γ2(x0)∩Γ4(x2). Since 3.1 implies that G[1]

x2

also acts transitively on Γ1(x1) \ {x2}, we conclude, together with the dual arguments,

that for all elements x, the group G[1]
x acts transitively on Γ4(x). It now follows from

Theorem 2.1 of [16] that the stabilizer of x6 in G[1]
x0,x1 acts transitively on Γ1(x2) \ {x1},

contradicting our assumptions on Z(U).

The proposition is proved. "

3.3 Proposition Γ is a half Moufang quadrangle. More exactly, the group G[1]
x7,x0,x1 acts

transitively on Γ1(x2) \ {x1}.

Proof. In the first part of the proof, we show that there are fixed elements x′
2 ∈ Γ1(x1) \

{x0} and x′
7 ∈ Γ1(x0) \ {x1} such that for each h ∈ G[1]

x0,x1 , there exists an elation α of

G[1]
x0,x1,x′2

inducing the same action as h on Γ1(x′
7).

We choose some nontrivial element β in G[1]
x5,x6,x7 (this exists by Proposition 3.2), we put

x′
7 = xβ−1

1 , and we let u ∈ G[1]
x1 be such that xβu

0 = x7. Define x′
2 ∈ Γ1(x1) as x′

2
βu = x6.

It is easily seen that [h, β]u
−1β−1

and h induce the same action on Γ1(x′
7). There are two

possibilities

(1). If h fixes x6, then [h, β] is clearly a nontrivial (x6, x7, x0)-elation, hence [h, β]u
−1β−1

is the desired element α.

(2). Suppose now that h does not fix x6. By 3.1, there is some v ∈ G[1]
x6 mapping xh

5 onto

x1. Clearly, [h, β] and β−hv induce the same action on Γ1(x6), hence [h, β]βhv ∈ G[1]
x6 . Since

β−hv belongs to G[1]
x1 , it immediately follows that γ = [h, β]βhv is an (x6, x7, x0)-elation

inducing the same action on Γ1(x1) as [h, β], and hence also as hβu. Consequently the
conjugate α = γu−1β−1

is the required elation, concluding the first part of the proof.

In order to complete the proof of the proposition, it suffices by 3.1 to show that for every
element h ∈ G[1]

x0,x1 , there exists an (x′
7, x0, x1)-elation θ inducing the same action on

Γ1(x2). So let again h ∈ G[1]
x0,x1 be arbitrary. Let α be the (x0, x1, x2)-elation inducing the
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same action on x′
7 as h and guaranteed by the first part of the proof. Then hα−1 is the

desired (x′
7, x0, x1)-elation θ and the proof of the proposition is complete. "

We can now finish the proof of our theorem in the case n = 4. By Proposition 3.6 in [9],

we just have to show that the action of the root group G[1]
x7,x0,x1 on Γ1(x2) does not depend

on x7 and x0. But this follows from the fact that, given any simple 4-path (x′
7, x

′
0, x1, x2),

using 3.1 and the Proposition 3.3 there exists v ∈ G[1]
x2 with v(x7) = x′

7. Conjugation of

G[1]
x′7,x0,x1

with v gives us G[1]
x′1,x′0,x1

fixing the action on Γ1(x2), and the theorem is proved.

4 Proof of the theorem for n = 6

The cases n = 6 and 12 are similar to their counterparts in [8]. The proof has two
main steps: first we show that there are central elations (Proposition 4.6 below); secondly
we show that the group of central elations with given center acts transitively on the
appropriate set. We then use Corollary 3.8 of [6] to conclude the proof.

So our first aim is to show that there are central elations.

From now on until Proposition 4.6 we assume, besides our standard hypotheses, that
Z(U) contains elements that are not central elations.

Our first lemma slightly improves Proposition 2.3(i).

4.1 Lemma The groups G[2]
x0,x1,x2 and G[2]

x1,x2,x3 are nontrivial.

Proof. We show that G[2]
x1,x2,x3 is nontrivial. The non-triviality of G[2]

x0,x1,x2 is proved
completely similarly.

Choose any v ∈ G mapping the flag {x0, x1} to the flag {x3, x4}, and denote U∗ := U v.
Note that U∗ only depends on the flag {x3, x4}, in particular, by Proposition 2.4 we can

choose v in G[1]
x , for any x ∈ Γ1(x2) \ {x1, x3}. Consequently we see that Z(U) and Z(U∗)

induce the same abelian group action on Γ2(x2) ∩ Γ3(x1) ∩ Γ3(x3). Hence, if α ∈ Z(U)
and β ∈ Z(U∗), and α and β are not elations, one easily verifies that [α, β] belongs to

G[2]
x1,x2,x3 . If [α, β] were trivial, then α would fix Γ2(x

β−1

0 ), and hence, using Lemma 2.1, α
would be central with center x1, a contradiction. The lemma is proved. "
To simplify notation, we will denote by Ux,y the conjugate U v of U , for any v ∈ G mapping
the flag {x0, x1} to the flag {x, y}.

4.2 Lemma For every α ∈ Z(U), there exists some g ∈ G[2]
x0,x1,x2 inducing the same

action on Γ1(x10).
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Proof. Choose α ∈ Z(U) and β ∈ Z(Ux2,x3) not central elations, and let u be in G[1]
x10

mapping x1 onto xβ
11 (note that x11 = xβ

11 would imply that β is a central elation with
center x2, a contradiction); u exists by Proposition 2.4. The commutator g = [αuβ−1

, β]

is a nontrivial element of G[2]
x0,x1,x2 (by the proof of the previous lemma), and one easily

verifies that g = α−uβ−1
αu. Hence, since α−1 fixes Γ1(x

βu−1

10 ), we see that g and α induce
the same action on Γ1(x10). "

4.3 Hypothesis. By Proposition 2.4, we may assume that the group G[2]
x0,x1 acts transi-

tively on Γ2(x2) ∩ Γ3(x1).

4.4 Lemma All nontrivial (x1, x2, x3, x4, x5)-elations inside G[2]
x2 are conjugate. In par-

ticular, every such elation belongs to G[2]
x2,x3,x4.

Proof. Let α ∈ G[1]
x1,x2,x3,x4,x5 ∩ G[2]

x2 and β ∈ G[1]
x9,x10,x11,x0,x1 ∩ G[2]

x0 both be nontrivial.
Let u ∈ G[1]

x4 be such that xβu
4 = x0. Then αβu belongs to G[1]

xβu
5 ,x0,x1,x2,x3

. But clearly

[α, β] ∈ G[2]
x0,x2 ≤ G[1]

xβu
5 ,x0,x1,x2,x3

and the action of [α, β] and αβu on Γ1(x4) are the same.

Hence [α, β] = αβu. But similarly, [β, α] = [α, β]−1 is a conjugate of β. Hence α and β−1

are mutually conjugate and the first part of the lemma is proved.

The second statement follows from Lemma 4.1. "
Up to now, we constructed elations in G. It will be important to know that these belong
to appropriate conjugates of U .

4.5 Lemma If G does not contain any central elation, then we have G[2]
x0,x1,x2 ≤ U .

Proof. Choose an arbitrary element v ∈ Z(U) which is not a central elation. Let α ∈
G[2]

x11,x0,x1 be the elation guaranteed by Lemma 4.2 which induces the same (nontrivial)
action on Γ1(x3). Since α cannot be central by assumption, we may pick y ∈ Γ2(x0) ∩
Γ3(x11) ∩ Γ3(x1) such that α induces on Γ1(y) a nontrivial action. By Lemma 2.1, there
exists some u ∈ U fixing x4 and mapping y to x10. Since α in B and U!B, the commutator
g = [α, u] is inside U . Since the action of α on Γ1(x3) agrees with an element of Z(U), it is

easy to see that g is an (x11, x0, x1, x2, x3)-elation inside G[2]
x0,x1 . The choice of y guarantees

that g is nontrivial. By an even shift of indices in Lemma 4.4, the result follows. "

4.6 Proposition The group G contains central elations.

Proof. Suppose by way of contradiction that G does not contain central elations. Let
Z(U) = Z0 !Z1 !Z2 ! · · ·!Zk = U be the ascending central series for U . By Lemma 4.5,

we may choose the integer i minimal with respect to the property that Zi ∩ G[2]
x0,x1,x2 is

nontrivial. Note that this implies that G[2]
x0,x1,x2 ≤ Zi since by Lemma 4.4 all elations in
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G[2]
x0,x1,x2 are conjugate under B and Zi ! B. Note also that by assumption i #= 0 since

otherwise the elements of G[2]
x0,x1,x2 are central elations inside Z(U).

Let β be any nontrivial element of Z(U), and let α ∈ Zi be the unique element of G[2]
x0,x1,x2 ,

guaranteed to exist by Lemma 4.2, with the property that α and β induce the same action
on Γ1(x10). Then g = αβ−1 ∈ Zi is an (x10, x11, x0, x1, x2)-elation belonging to G[2]

x0,x1 , and
inducing on Γ1(x3) the same action as β−1 ∈ Z(U). Since by assumption g cannot be
a central elation, there is some y ∈ Γ2(x0) such that g acts nontrivially on Γ1(y). Let
u ∈ U fix x4 and map x10 to y. Since g agrees on Γ1(x3) with an element of Z(U), the

commutator [g, u] ∈ Zi−1 is a nontrivial (x11, x0, x1, x2, x3)-elation belonging to G[2]
x0,x1 ,

and hence also to G[2]
x0,x1,x2 . But this contradicts the minimality of i. The proposition is

proved. "

4.7 Lemma All central elations in G with center of given type are conjugate. Also, if
g and h are nontrivial central elations with centers x0 and x2, respectively, then there is
some central elation α with center x4 such that [α, g] = h.

Proof. The proof is almost identical to the proof of Lemma 4.4. Let there first be given
two nontrivial central elations g and β with centers x0 and x4, respectively. Let u ∈ G[1]

x5

be such that xgu
4 = x2 (u exists by Proposition 2.4). As in the proof of Lemma 4.4, we

now conclude that [β, g] = βgu. Similarly, [g, β] = [β, g]−1 is a conjugate of g, hence g
and β−1 are conjugated and the first part of the lemma follows easily. Now let h be an
arbitrary nontrivial central elation with center x2. Then we define α = hu−1h−1

and from
the previous arguments follows [α, g] = h. "
In fact, we only need the second part of the previous lemma to finish the proof of our
theorem in the case n = 6.

4.8 Proposition Up to duality, the group G[3]
x1 acts transitively on Γ1(x10) \ {x11}.

Proof. By Proposition 4.6, we may assume that there is a nontrivial element α in G[3]
x9 .

Let x′
9 be arbitrary in Γ1(x10) \ {x9, x11}. We show that there exists β ∈ G[3]

x1 mapping x9

onto x′
9.

By Proposition 2.4 there are automorphisms u ∈ G[1]
x0 and v ∈ G[1]

x8 such that xu
9 = x′

9 and
x′

9
v = x11. Clearly αuv is a central elation with center x11 and hence, by Lemma 4.7, there

exists β ∈ G[3]
x1 such that [α, β] = αuv. Also, clearly [α, u] belongs to G[1]

x9,x10,x11,x0 ∩ G[2]
x10

and acts nontrivially on Γ1(x8). Put h := [α, β][α, u]−1. One easily verifies that h is an

(x8, x9, x10, x11, x0)-elation. We show that h also belongs to G[1]

xβ
8

. If h is the identity, then

this is trivial. If h is not the identity, then the commutator [h, β−1] is a central elation
with center x1 fixing x9, hence it is the identity. This implies that βhβ−1 acts as the
identity on Γ1(x8), implying that h acts as the identity on Γ1(x

β
8 ).

Since both [α, β] and [α, u] fix xβ
8 , this now implies that the actions of [α, β] and [α, u]

agree on Γ1(x
β
8 ). Since also α fixes xβ

8 , the actions of αβ and αu agree on Γ1(x
β
8 ). But the
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former acts as the identity on Γ1(x
β
8 ), hence α must fix every element of Γ1(x

βu−1

8 ). So

xβu−1

8 must be adjacent to x9. Consequently xβ
9 = xu

9 = x′
9. The proposition is proved. "

Now the theorem for n = 6 follows from Corollary 3.8 of [6].

5 Proof of the theorem for n = 12

Next we show that the case n = 12 cannot occur: The proof is very similar to the case
n = 6. We show that the group of central elations would have to be transitive on the
appropriate set, contradicting Proposition 5.1 in [10].

We use our standing hypotheses, and first prove an analogue of Lemma 4.7.

5.1 Lemma All central elations in G with center of given type are conjugate. Also, if
g and h are nontrivial central elations with centers x0 and x4, respectively, then there is
some central elation α with center x8 such that [α, g] = h.

Proof. The proof is identical to the proof of Lemma 4.7, if one simply doubles every index
in that proof. "

We now show an analogue of Proposition 4.8. The proof runs similarly, but we need a
small additional argument at one place, hence we sketch the full proof. The idea is again
to double most indices.

5.2 Proposition Up to duality, the group G[6]
x2 acts transitively on Γ1(x20) \ {x21}.

Proof. By Proposition 2.3, we may assume that there is a nontrivial element α in G[6]
x18 .

Let x′
19 be arbitrary in Γ1(x20) \ {x19, x21}. We show that there exists β ∈ G[6]

x2 mapping
x19 onto x′

19.

By Proposition 2.4 there are automorphisms u ∈ G[1]
x0 and v ∈ G[1]

x16 such that xu
19 = x′

19

and xuv
18 = x22. Clearly αuv is a central elation with center x22 and hence, by Lemma 5.1,

there exists β ∈ G[6]
x2 such that [α, β] = αuv. Also, clearly g := [α, u] belongs to G[4]

x20 ∩G[1]
x0

and acts nontrivially on Γ1(x16). We claim that g ∈ G[2]
x0 .

Without loss of generality, we may, by way of contradiction, assume that xg
2 #= x2. Clearly

the commutator [g, β] belongs to G[5]
x1 ∩G[4]

x20 , hence it must be the identity, contradicting
the fact that it acts nontrivially on Γ1x6 (because β fixes Γ1(x6) pointwise, while βg acts
nontrivially on that set). The claim is proved.

Now put h := [α, β][α, u]−1. One easily verifies that h belongs to G[1]
x16,x17,...,x23,x0,x1 . We

show that h also belongs to G[1]

xβ
16

. If h is the identity, then this is trivial. If h is not the
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identity, then the commutator [h, β−1] is a central elation with center x2 fixing x19, hence
it is the identity. This implies that βhβ−1 acts as the identity on Γ1(x16), implying that
h acts as the identity on Γ1(x

β
16).

As in the last part of the proof of Proposition 4.8, one now easily shows that α fixes every
element of xβu−1

16 . So the latter must be at distance at most 4 from x18. But this is only
possible if xβ

19 = xu
19 = x′

19. The proposition is proved. "

Now the theorem for n = 12 follows from Proposition 5.1. in [10].
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