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Characterizations of quadric and Hermitian Veroneseans
over finite fields

Joseph A. Thas and Hendrik Van Maldeghem

Abstract. In Hirschfeld and Thas [5] the most important characterizations of quadric Veroneseans are surveyed.
However a few difficult cases were still open, in particular the even case. In [10, 11] Thas and Van Maldeghem
not only solve all open cases, but they also generalize most of these characterizations in several ways: they do
not restrict themselves to the quadric Veronesean of the plane PG(2, q), they allow ovals instead of conics, and
they also characterize projections of quadric Veroneseans. Further, Cooperstein, Thas and Van Maldeghem [1]
contains some properties of Hermitian Veroneseans over finite fields and also these varieties and some of their
projections are characterized. All these results on Veroneseans will be surveyed here.

1. Introduction to quadric Veroneseans

1.1. Quadric Veroneseans

A good reference is Chapter 25 of Hirschfeld and Thas [5]. The Veronese variety of all
quadrics of PG(n, K), n ≥ 1, and K any commutative field, is the variety

V = {(x2
0 , x2

1 , . . . , x2
n, x0x1, x0x2, . . . , x0xn, x1x2, . . . , x1xn, . . . , xn−1xn) ‖

(x0, x1, . . . , xn) is a point of PG (n, K)}
of PG(Nn, K) with Nn = n(n+3)/2. Clearly V is a variety of dimension n. It is also called
the Veronesean of quadrics of PG (n, K), or simply the quadric Veronesean of PG (n, K).
It can be shown that the quadric Veronesean is absolutely irreducible and non-singular. Let
PG(Nn, K) consist of all points

(y00, y11, . . . , ynn, y01, y02, . . . , y0n, y12, . . . , y1n, . . . , yn−1,n).

For yij we also write yji. Then V belongs to the intersection of the quadrics Fij = 0 and
Fabc = 0, with i $= j and i, j ∈ {0, 1, . . . , n}, a $= b $= c $= a and a, b, c ∈ {0, 1, . . . , n},
where

Fij = Y 2
ij − YiiYjj, Fabc = YaaYbc − YabYac.

THEOREM 1.1. The quadric Veronesean V of PG(n, K) consists of all points
(y00, y11, . . . , yn−1,n) of PG(Nn, K) for which rank [yij] = 1. Let ζ : PG (n, K) → PG
(Nn, K), with Nn = n(n+3)/2 and n ≥ 1, be defined by (x0, x1, . . . , xn) '→ (y00, y11, . . . ,

yn−1,n), with yij = xixj . It is an easy exercise to show that ζ is a bijection of PG (n, K)

onto the quadric Veronesean V of PG(n, K). It then follows that the variety V is rational.
208
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THEOREM 1.2. The quadrics of PG(n, K) are mapped by ζ onto all hyperplane sections
of V .

Theorem 1.2 explains why V is called the Veronesean of quadrics of PG(n, K).

COROLLARY 1.3. No hyperplane of PG(Nn, K) contains the quadric Veronesean V .

THEOREM 1.4. The Veronese variety V of all quadrics of PG(n, K), n ≥ 1, has order 2n.

From now on the quadric Veronesean of PG(n, K) will be denoted by V2n

n or simply Vn.
For n = 1, the Veronesean V2

1 is a conic of PG(2, K). For n = 2, the Veronesean is a
surface V4

2 of order 4 in PG(5, K). For n = 3, the Veronesean is a variety V8
3 of dimension

3 and order 8 of PG(9, K).

THEOREM 1.5. Let"s be any s-dimensional subspace of PG(n, K). Then"ζ
s is a quadric

Veronesean Vs , which is the complete intersection of Vn and the space PG(s(s + 3)/2, K)

containing Vs . Conversely, for K $= GF(2), any quadric Veronesean Vs contained in Vn is
of the form "

ζ
s , with "s some s-dimensional subspace of PG(n, K).

COROLLARY 1.6. For K $= GF(2) any two points of Vn are contained in a unique conic
of Vn.

REMARK. As any three distinct points of the quadric Veronesean Vn of PG(n, 2) form a
conic, the second part of Theorem 1.5 and Corollary 1.6 do not hold for K =GF(2).

From now on it is assumed that K = GF(q), although many of the results will also hold
in the case of a general field.

THEOREM 1.7. The quadric Veronesean Vn of PG(n, q) is a θq(n)-cap of PG(Nn, q),
with θq(n) = (qn+1 − 1)/(q − 1).

1.2. The quadric Veronesean V4
2

Apart from the conic, the quadric Veronesean which is most studied and characterized is the
surface V4

2 of PG(5, q). Over C we have the following beautiful theorem due to Kronecker
and Castelnuovo (see [8] p. 130). Any surface of PG(m, C) which contains ∞2 conics is
the Veronesean V4

2 or one of its projections; any surface of PG(3, C) having ∞2 reducible
plane sections is either the projection of a Veronesean V4

2 or a scroll. So let us consider the
quadric Veronesean V4

2 . By Theorem 1.5, for K $= GF(2) the variety V4
2 contains q2 +q +1

conics, and, by Corollary 1.6, for K $= GF(2) any two points of V4
2 are contained in a unique
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one of these conics. Since the conics of V4
2 correspond to the lines of PG(2, q), q $= 2, any

two of these conics have a unique point in common. To the conics of PG(2, q) correspond
all hyperplane sections of V4

2 . The hyperplane is uniquely determined by the conic if and
only if the latter is not a single point. If the conic C of PG(2, q) is a repeated line, then the
corresponding hyperplane "4 of PG(5, q) meets V4

2 in a conic; if C is two distinct lines,
then "4 meets V4

2 in two conics with exactly one point in common; if C is a non-singular
conic, then "4 meets V4

2 in a rational quartic curve. The planes of PG(5, q) which meet V4
2

in a conic are called the conic planes of V4
2 .

THEOREM 1.8. Any two conic planes π and π ′ of V4
2 have exactly one point in common,

and this common point belongs to V4
2 . Any three conic planes of V4

2 generate PG(5, q).

The tangent lines of the conics of V4
2 are called the tangents or tangent lines of V4

2 . Since
no point of the surface V4

2 is singular, all tangent lines of V4
2 at the point p of V4

2 are
contained in a plane π(p). This plane π(p) is called the tangent plane of V4

2 at p. Since p

is contained in exactly q + 1 conics of V4
2 and since no two conic planes through p have a

line in common, the tangent plane π(p) is the union of the q +1 tangent lines of V4
2 through

p. Also π(p) ∩ V4
2 = {p}.

THEOREM 1.9. For any two distinct points p1 and p2 of V4
2 , the tangent planes π(p1)

and π(p2) have exactly one point in common.

From Theorem 1.8 easily follows the next result.

THEOREM 1.10. Suppose that C is a conic on V4
2 , that π is the plane of C and that

p ∈ V4
2 − C. Then π(p) ∩ π = φ.

For q odd, conic planes and tangent planes play similar roles as shown by the following
theorem.

THEOREM 1.11. For q odd PG(5, q) admits a polarity which maps the set of all conic
planes of V4

2 onto the set of all tangent planes of V4
2 . It follows that when q is odd, for any

three points p1, p2, p3 of V4
2 , the intersection π(p1)∩π(p2)∩π(p3) of the tangent planes

is empty.

1.3. The nucleus subspace of a quadric Veronesean

A good reference for this section is Thas and Van Maldeghem [11]. Consider the quadric
Veronesean Vn of PG(n, q), with q even. Let Gn be the set of PG(Nn, q) consisting of all
nuclei of the conics on Vn which are images of lines of PG(n, q); for q $= 2, these conics
are all the conics on Vn.
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THEOREM 1.12. The set Gn is the Grassmannian of the lines of PG(n, q), hence generates
a subspace of dimension (n − 1)(n + 2)/2 of PG(Nn, q). This subspace & is called the
nucleus subspace of Vn.

THEOREM 1.13. The nucleus subspace & of Vn is the intersection of all hyperplanes of
PG(Nn, q) which contain a unique quadric Veronesean Vn−1 = "

ζ
n−1, with "n−1 any

hyperplane of PG(n, q).

1.4. Characterizations of quadric Veroneseans

In this paper four types of characterizations will be considered. Let X be a set of points in
"=PG(M, q), M > 2, spanning", and let P be a collection of planes of" such that for any
π ∈ P , the intersection X∩" is an oval in π . Then we determined under which conditions
X is a quadric Veronesean V2n

n or one of its projections. Part of this problem was solved by
Mazzocca and Melone [7], but only under the extra conditions that the intersections X ∩ π

are non-singular conics, q is odd and M = n(n + 3)/2. In Hirschfeld and Thas [5] the
case q even and M = n(n + 3)/2 is handled. In [10] we solved the problem in its most
general setting. Let the quadric Veronesean V2n

n in PG(n(n + 3)/2, q) be the image of the
projective space PG(n, q). Then the image of an arbitrary hyperplane of PG(n, q) under
the Veronesean map is a quadric Veronesean V2n−1

n−1 and the subspace generated by it has

dimension (n−1)(n+2)/2. Such a subspace will be called a V2n−1

n−1 -subspace, or, for short,
a Vn−1-subspace, of V2n

n or of PG(n(n + 3)/2, q). In PG(n(n + 3)/2, q) we now consider
a set S of subspaces of dimension (n − 1)(n + 2)/2, and then the goal is to determine
under which conditions S is the set of all Vn−1-subspaces of a quadric Veronesean Vn in
PG(n(n + 3)/2, q). For n = 2, with q odd, the problem was solved by Tallini [9]. In
[11] we solved the problem for any n, any q, and extended the problem to a larger class
of objects. Here the 2-dimensional dual hyperovals defined by Huybrechts and Pasini [6]
turn up. For q even, the nucleus subspace of Vn plays a crucial role. We emphasize that
the even case is far the most difficult case. A third kind of characterization of V4

2 is by its
number of common points with the planes and hyperplanes of PG(5, q). This was done
by Ferri [4] for q odd and q $= 3, and by Hirschfeld and Thas [5] for q = 3. In [11]
Thas and Van Maldeghem also handle q ∈ {2, 4}, and then relying on the results of Ferri
[4], Hirschfeld and Thas [5] and on the characterizations of the second type, Thas and
Van Maldeghem obtain the characterization for all q. Finally, let X be a set of points in
PG(m, q), m ≥ n(n+3)/2, n ≥ 2, q > 2, spanning PG(m, q), let O be a set of ovals on X,
and assume that (X, O) is the design of points and lines of a projective space. Then Thas
and Van Maldeghem [11] show that X is a quadric Veronesean V2n

n in PG(m, q). In this way
all open problems related to the existing characterizations of quadric Veroneseans have been
solved, and moreover new characterizations, characterizations with weaker hypotheses, and
characterizations of larger classes of objects were obtained.
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2. Characterization of the first kind

Mazzocca and Melone [7] formulate three geometric properties ((Q1), (Q2) and (Q3) below,
but they assume conics instead of ovals) that should characterize Vn (they call the objects
satisfying these three axioms Veronesean caps), and they erroneously thought they indeed
did; in fact they thought they proved that every Veronesean cap was a quadric Veronesean.
Hirschfeld and Thas [5] pointed out some counterexamples and added a fourth axiom
to make the characterization work; it should also be noted that Hirschfeld and Thas [5]
modified the proof of Mazzocca and Melone [7] so as to hold also in the even case. That
extra fourth axiom is just a bound on the dimension of the ambient projective space. In Thas
and Van Maldeghem [10] this fourth condition is deleted again, one of the other conditions
is weakened, and it is shown that the resulting geometric object is projectively equivalent
either to a quadric Veronesean, or to a proper projection of some quadric Veronesean. This
in particular solves the original problem of Mazzocca and Melone completely in the finite
case. The proof of the characterization of the quadric Veronesean using the axioms (Q1),
(Q2), (Q3) and the bound on the dimension was rather long, see Hirschfeld and Thas [5],
and so Thas and Van Maldeghem [10] included a much shorter proof in their paper.

Consequently, they proved the entire classification of Veronesean caps independent of the
existing literature.

THEOREM 2.1. Let X be a set of points in " = PG(M, q), M > 2, spanning ", and let
P be a collection of planes of " such that for any π ∈ P , the intersection X ∩π is an oval
in π . For π ∈ P and x ∈ X ∩ π , we denote by Tx(π) the tangent line to X ∩ π at x in π .
We assume the following three properties.

(Q1) Any two points x, y ∈ X lie in a unique member of P which we denote by [x, y];
(Q2) if π1,π2 ∈ P and π1 ∩ π2 $= ∅, then π1 ∩ π2 ⊆ X;
(Q3) if x ∈ X and π ∈ P with x /∈ π , then each of the lines Tx([x, y]), y ∈ X ∩ π , is

contained in a common plane of ", denoted by T (x,π).

Then there exists a natural number n ≥ 2, a projective space "′ = PG(n(n + 3)/2, q)

containing ", a subspace ' of "′ skew to ", and a quadric Veronesean Vn in "′, with
' ∩ Vn = ∅, such that X is the (bijective) projection of Vn from ' onto ". The subspace
' can be empty, in which case X is projectively equivalent to Vn.

Also, note that the set of planes P is uniquely determined by X if q > 2. For q = 2 there
are counterexamples.

3. Characterization of the second kind

Let the quadric Veronesean V2n

n in PG(Nn, q), with Nn = n(n + 3)/2, be the image of
the projective space PG(n, q). Then the image of an arbitrary hyperplane of PG(n, q)
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under the Veronesean map ζ is a quadric Veronesean V2n−1

n−1 and the subspace generated by

it has dimension Nn−1 = (n − 1)(n + 2)/2. Such a subspace is called a V2n−1

n−1 -subspace,
or, for short, a Vn−1-subspace, of V2n

n or of PG(Nn, q). In PG(Nn, q) we consider a set S
of subspaces of dimension Nn−1, and then the goal is to determine under which conditions
S is the set of all Vn−1-subspaces of a quadric Veronesean Vn in PG(Nn, q). For n = 2,
with q odd, the problem was solved by Tallini [9]. In [11] Thas and Van Maldeghem
solved the problem for any n and any q; in their paper they rely on the characterization
of the first kind. Let Sn be the set of all Vn−1-subspaces of the quadric Veronesean Vn in
PG(Nn, q). We note the following properties of Sn, which can easily be verified; see e.g.
Hirschfeld and Thas [5].

(VS1) Every two members of Sn generate a hyperplane of PG(Nn, q).
(VS2) Every three members of Sn generate PG(Nn, q).
(VS3) No point is contained in every member of Sn.
(VS4) The intersection of any nonempty collection of members of Sn is a subspace of

dimension Ni = i(i + 3)/2 for some i ∈ {−1, 0, 1, . . . , n − 1}.
(VS5) There exist three members S, S′, S′′ of Sn with S ∩ S′ = S′ ∩ S′′ = S′′ ∩ S.

By Tallini [9], for n = 2, with q odd, the properties (VS1), (VS2) and (VS3) characterize
the set of V1-subspaces, that is, the set of conic planes, of V4

2 . In Thas and Van Maldeghem
[11] the following generalization is obtained.

THEOREM 3.1. Let S be a collection of qn + qn−1 + · · · + q + 1 subspaces of dimension
(n−1)(n+2)

2 of the projective space PG( n(n+3)
2 , q), with n ≥ 2, satisfying (VS1) up to (VS5).

Then either S is the set of Vn−1-subspaces of a quadric Veronesean V2n

n in PG( n(n+3)
2 , q),

or q is even, there are two members S1, S2 ∈ S with the property that no other member
of S contains S1 ∩ S2, and there is a unique subspace S of dimension (n−1)(n+2)

2 such
that S ∪ {S} is the set of Vn−1-subspaces together with the nucleus subspace of a quadric
Veronesean V2n

n in PG( n(n+3)
2 , q). In particular, if n = 2, then the statement holds under

the weaker hypothesis of S satisfying (VS1), (VS2), (VS3) and (VS5). In both cases, but
with (q, n) $= (2, 2) in the latter case, V2n

n is the set of points of PG( n(n+3)
2 , q) contained

in at least qn−1 + qn−2 +· · ·+ q members of S; in the exceptional case there are 13 points
contained in at least 2 members of S, where 6 are coplanar while the others form V4

2 . For
q large enough we can reduce this set of axioms.

THEOREM 3.2. Let S be a collection of qn + qn−1 + · · · + q + 1 subspaces of dimension
(n−1)(n+2)

2 of the projective space PG( n(n+3)
2 , q), with n ≥ 2, satisfying (VS1) up to (VS3).

If q ≥ n, then S also satisfies (VS4). We can also say something more in the case where S
does not satisfy (VS5).
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THEOREM 3.3. Let S be a collection of qn + qn−1 + · · · + q + 1 subspaces of dimension
(n−1)(n+2)

2 of the projective space PG( n(n+3)
2 , q), with n ≥ 2, satisfying (VS1) up to (VS4)

and not satisfying (VS5), or satisfying (VS1) up to (VS3), with q ≥ n, but not satisfying
(VS5). Then q is even and there exists a unique subspace S of dimension (n−1)(n+2)

2 such
that S ∪ {S} also satisfies (VS1) up to (VS4), and not (VS5). Moreover, if n = 2, then
q = 2 or q = 4 and S is uniquely determined in both cases, up to isomorphism.

Hence, for q odd we have a most satisfying characterization, since in this case axioms (VS1)
up to (VS4) really characterize the collection of Vn−1-subspaces of a quadric Veronesean
V2n

n , and for q ≥ n, axioms (VS1) up to (VS3) do this job. For q even we additionally
need (VS5), although for n = 2 one can classify all examples that do not satisfy (VS5).
This classification remains open for n ≥ 3. In fact, if S does not satisfy (VS5), then
Theorem 3.3 implies that it is contained in the dual of an n-dimensional dual hyperoval, as
defined by Huybrechts and Pasini [6]. Also, for n=2, every three distinct elements of the
2-dimensional dual hyperoval we have here, generate PG(5, q). These objects are classified
by Del Fra [3] and only two examples turn up, respectively for q = 4 (related to the simple
Mathieu group M22) and for q = 2. The example for q = 2 can be generalized to general n

as follows. Let AG(n, 2) be an affine space in PG(n, 2). Consider in the Grassmannian of
the lines of PG(n, 2) all subspaces corresponding to the full line pencils of lines with vertex
in AG(n, 2). Then one verifies that this gives the dual of a collection of qn+qn−1+· · ·+q+2
subspaces of dimension (n−1)(n+2)/2 of PG(n(n+3)/2, q) satisfying (VS1) up to (VS4)
and not satisfying (VS5). There are two corollaries of Theorems 3.2 and 3.3.

COROLLARY 3.4. If S∗ is a set of qn + qn−1 + · · · + q + 2 subspaces of dimension
(n−1)(n+2)

2 of PG(n(n+ 3)/2, q) such that (VS1), (VS2), (VS3) and (VS5) hold for S∗ and
either also (VS4) holds, or q ≥ n, then q is even and S∗ is the set of all Vn−1-subspaces
together with the nucleus subspace of a quadric Veronesean V2n

n in PG(Nn, q). Also, V2n

n

is the set of points of PG( n(n+3)
2 , q) contained in qn−1 + qn−2 + · · ·+ q + 1 members of S.

COROLLARY 3.5. Let S be a set of k ≥ qn + qn−1 + · · ·+ q + 1 subspaces of dimension
m − n − 1 of PG(m, q), with m ≥ n(n + 3)/2 and such that q ≥ n. Suppose every pair
of elements of S is contained in some hyperplane of PG(m, q), no three elements of S are
contained in a hyperplane of PG(m, q), no point is contained in all members of S and there
exist three members S, S′, S′′ of S with S ∩ S′ = S′ ∩ S′′ = S′′ ∩S. Then m = n(n+3)/2
and either k = qn + qn−1 + · · · + q + 1 and S is the set of Vn−1-subspaces of a quadric
Veronesean V2n

n , or q is even, k ∈ {qn + qn−1 + · · · + q + 1, qn + qn−1 + . . . + q + 2} and
S consists of k members of the set of Vn−1-subspaces together with the nucleus subspace of
a quadric Veronesean V2n

n . In both cases, but with (q, n) $= (2, 2) if S contains the nucleus
subspace of V2n

n , V2n

n is the set of points of PG(m, q) contained in at least qn−1 + qn−2
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+ · · · + q members of S; in the exceptional case there are 13 points contained in at least 2
members of S, where 6 are coplanar while the other 7 form V4

2 .

4. Characterization of the third kind

As an application of Section 3 one obtains a characterization of V4
2 by its number of common

points with the planes and hyperplanes of PG(5, q). Recall from Hirschfeld and Thas [5] that
the quadric Veronesean V4

2 is a cap K in PG(5, q) satisfying the following two properties.

(VC1) For every hyperplane " of PG(5, q), we have |"∩ K| = 1, q + 1 or 2q + 1, and
there exists some hyperplane " such that |" ∩ K| = 2q + 1.

(VC2) Any plane of PG(5, q) with four points in K has at least q + 1 points in K.

It is also proved in Hirschfeld and Thas [5] that these two properties characterize V4
2 for all

odd q; Ferri [4] had proved this for odd q $= 3. In [11] Thas and Van Maldeghem copy the
proof in [5], except for q ∈ {2, 4}, for which they produce a separate argument, and rely on
Section 3, in order to obtain the following general characterization.

THEOREM 4.1. Let K be a set of points of PG(5, q), q > 2, satisfying (VC1) and (VC2).
Then K is projectively equivalent with the quadric Veronesean V4

2 in PG(5, q). For q = 2,
a set of points in PG(5, 2) satisfying (VC1) and (VC2) is either a quadric Veronesean or
an elliptic quadric in some subspace PG(3, 2).

5. Characterization of the fourth kind

As a second application of Section 3 Thas and Van Maldeghem [11] obtained a characteri-
zation of the quadric Veronesean V2n

n in terms of designs. This goes as follows.

THEOREM 5.1. Let X be a set of points in PG(m, q), m ≥ n(n + 3)/2, n ≥ 2, q > 2,
spanning PG(m, q), let O be a set of ovals on X, and assume that (X, O) is the design
of points and lines of a projective space of dimension n. Then m = n(n + 3)/2, X is the
quadric Veronesean V2n

n , and O is the set of all conics on V2n

n .

6. Introduction to Hermitian Veroneseans over finite fields

This section is taken from Cooperstein, Thas and Van Maldeghem [1]; see also Cossidente
and Siciliano [2] for the case n = 2. We do not claim that we are the first to study Hermitian
Veroneseans nor that (part of) Section 6.2 cannot be found elsewhere. For n = 2, some of
the properties in 6.2 are e.g. also contained in [2]. Sections 6.1 and 6.2 are just considered
as an introduction to the quite deep, and difficult to prove, characterization in Section 7.
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6.1. Hermitian Veroneseans

Set k = GF(q) and K = GF(q2). Let γ be the generator of the Galois group of K/k so that
for a ∈ K we have aγ = aq. For convenience we will often denote the image of a under γ
by ā. Recall that an (n + 1) × (n + 1) matrix m over K is Hermitian if mT = m̄ where T

denotes the transpose map and by m̄ we mean the result of applying γ to each of the elements
of m. We shall denote the space of all (n + 1) × (n + 1) Hermitian matrices over K by
H(n+1, q2). This is a k-linear space of dimension (n+1)2. The group G = GL(n+1, q2)

acts on H(n + 1, q2) with the action given by mg = gmḡT . For 1 ≤ i ≤ n + 1 let
Hi (n+1, q2) be the collection of matrices in H(n + 1, q2) with rank i and PHi (n + 1, q2),
or simply PHi , the set of 1-spaces spanned by the matrices in Hi (n + 1, q2). Then each
PHi is an orbit for G under the induced action on PG(H(n + 1, q2)) considered as a
projective space of dimension n2 + 2n over k. We note that PH1 is canonically in one-to-
one correspondence with the projective space PG(n, K) which can be seen as follows. Let
V = Kn+1 consist of column vectors. For 〈v〉∈ PG(V ) set 〈v〉π = 〈vv̄T 〉. Clearly vv̄T is a
rank one matrix in H(n + 1, K) and so 〈v〉π is in PH1. The linear group G preserves this
action:

〈gv〉π = 〈(gv)(ḡv̄)T 〉 = 〈g(vv̄T )ḡT 〉 = (〈v〉π )g.

Since G is transitive on PH1 it follows that PG(V )π = PH1. In fact, π is one-to-one from
PG(V ) onto PH1. Next note that PH1 is a cap in PH = PG(H(n + 1, q2)), that is, no
three points are collinear. We now present an alternative explicit construction of PH1 in
PG(n2 + 2n, k). In fact, this amounts to choose an explicit k-base in H(n + 1, q2), and
then apply the previous construction, in particular, the map π . Let r ∈ K \ k be arbitrary.
Then the map π above can be given as (where xi ∈ K , for all i ∈ {0, 1, . . . , n})

〈(x0, x1, . . . , xn)〉π = 〈(yi,j )0≤i,j≤n〉,

with yi,i = xi x̄i , yi,j = xi x̄j + x̄ixj for i < j , and yi,j = rxi x̄j + r̄ x̄ixj for i > j . From
this representation, it is clear that the inverse image with respect to π of the intersection
of PH1 with a hyperplane of PG(n2 + 2n, k) is a (not necessarily non-singular) Hermitian
variety, and conversely every Hermitian variety of PG(V ) arises in this way. It follows that
PH1 is not contained in a hyperplane of PG(n2 + 2n, k). We refer to this representation
as the r-representation, r ∈ K \k. We point out that the lines of PG(V ) have a natural
interpretation in terms of the geometry of PH: the span in PH of the image Lπ , L a
line of PG(V ), is a 3-dimensional space and we shall denote by ξ(L) the subspace 〈Lπ 〉
of PH. Since Lπ is a cap of size q2 + 1 in the 3-dimensional projective space ξ(L), it
is an ovoid for q > 2, and it is easy to see that it is always an elliptic quadric, and that
ξ(L) ∩ PH1 = Lπ . Thus the lines of PG(V ) can be interpreted as certain 3-dimensional
projective subspaces of PH in which the points of PH1 form an elliptic quadric. We will
denote by

∑
the collection of all such subspaces. Further, for a point p ∈ PH1 and ξ ∈ ∑
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with p ∈ ξ , we shall denote by Tp(ξ) the tangent plane to ξ ∩ PH1 at p in ξ (it is the
union of all lines through p in ξ which intersect PH1 in precisely p). We now record some
properties of Hn,n2+2n = PH1 which we shall refer to as a Hermitian Veronesean of index
n (respectively, of PG(V )), for obvious reasons.

6.2. Properties of the Hermitian Veronesean of index n

Now we will list some important properties of the Hermitian Veroneseans.

PROPERTY 6.1. Let Hn,n2+2n be a Hermitian Veronesean of index n in PG(n2 + 2n, q).
Then each elliptic quadric in some PG(3, q) ⊆ PG(n2 + 2n, q) contained in Hn,n2+2n

corresponds to a line of PG(V ). Also, every n-dimensional subspace over GF(q) of PG(V )

corresponds to a quadric Veronesean Vn over GF(q) on Hn,n2+2n and we have 〈Vn〉 ∩
Hn,n2+2n = Vn. A 3-dimensional subspace generated by an elliptic quadric on Hn,n2+2n

will be called an elliptic space of PHn,n2+2n. By the foregoing property, every elliptic
space corresponds to a line of PG(V ) and vice versa.

PROPERTY 6.2. Let Hn,n2+2n be a Hermitian Veronesean of index n in PG(n2 + 2n, q).

(i) Any two points p1, p2 of Hn,n2+2n lie in a unique member of
∑

which we will
denote by ξ [p1, p2].

(ii) Two subspaces in
∑

are either disjoint or else meet in a (unique) point of Hn,n2+2n.
(iii) Assume ξ ∈ ∑

, p ∈ Hn,n2+2n, p /∈ ξ and put E = ξ ∩ Hn,n2+2n. Then
∪p′∈ETp(ξ [p, p′]) is a projective subspace of dimension four.

7. A characterization of Hermitian Veroneseans

Let " ∼= PG(N, q) be a projective space. Let X be a subset of the point set of " which
spans " and for which there exists a collection

∑
of 3-dimensional (projective) subspaces

of ", called the elliptic spaces of ", such that for any ξ ∈ ∑
, the set X(ξ) = X ∩ ξ is an

ovoid (not necessarily an elliptic quadric) in ξ . When ξ ∈ ∑
, x ∈ X(ξ) we will denote by

Tx(ξ) the tangent plane to x in ξ relative to the ovoid X(ξ). We say that X is a Hermitian
set if the following properties are satisfied:

(H1) Any two points x, y ∈ X lie in a unique member of
∑

which we denote by [x, y];
(H2) If ξ1, ξ2 ∈ ∑

and ξ1 ∩ ξ2 $= ∅, then ξ1 ∩ ξ2 ⊆ X.
(H3) If x ∈ X and ξ ∈ ∑

, with x /∈ ξ , then each of the planes Tx([x, y]), with y ∈ X(ξ)

is contained in a common 4-subspace of " which we denote by T (x, ξ).

In Cooperstein, Thas and Van Maldeghem [1] it is shown that a Hermitian set is a cap
and consequently in what follows a Hermitian set is referred to as a Hermitian cap. The
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reader should compare this with the definition of a Veronesean cap in Section 2. Clearly, a
Hermitian Veronesean is a Hermitian cap. But one also obtains a Hermitian cap X from a
Hermitian Veronesean PH1 ⊆ PH by setting " = PH/&, where & is a subspace of PH
which does not intersect any elliptic space, nor any 4-space T (x, ξ) (with x ∈ PH1 and ξ

an elliptic space not containing x) and letting X be the image of PH1. Such a Hermitian
cap will be called a quotient of the Hermitian Veronesean PH1.

THEOREM 7.1. Let X be a Hermitian cap in the projective space ". If
∑

is the corre-
sponding set of elliptic spaces, then the incidence structure (X,χ), with χ = {X(ξ)‖ξ ∈∑}, is the point-line structure of a projective space over the field GF(q2) and we refer to
the dimension of this projective space as the index of the cap. If X has index r , then X is
projectively equivalent to a quotient of the Hermitian Veronesean of index r .

In order to obtain this result, one proves some particular cases and lemmas, some of which
could be of independent interest. In particular we mention the following result.

THEOREM 7.2. LetX be a Hermitian cap in the projective space" = PG(N, q)and assume
that

∑
is the corresponding set of elliptic spaces, where | ∑ | > 1. Denote χ = {X(ξ)‖ξ ∈∑}. Then the following hold

(i) If the index of X is r , then N ≤ (r + 1)2 − 1.
(ii) If N = (r + 1)2 − 1, with r the index of X, then X is projectively equivalent to the

Hermitian Veronesean of index r in PG(r2 + 2r, q).
(iii) If the index r is either 2 or 3, then X is projectively equivalent to the Hermitian

Veronesean of index r .
(iv) If X is a Hermitian cap of index r and every hyperplane Y of the r-dimensional

projective space (X,χ) has the property that X ∩ 〈Y 〉 = Y , then X is projectively
equivalent to the Hermitian Veronesean of index r .

Note that Theorem 7.1 is similar to Theorem 2.1 on Veronesean caps. Also, note that the set
of elliptic spaces of a Hermitian cap X in PG(N, q) is uniquely determined if q > 2. This
follows immediately from (H2) by considering two coplanar bisecants, with no common
point on X, of a hypothetical ovoid contained in X and not lying in an elliptic space of X.
If q = 2, this is not clear.
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