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1. Introduction

Without any doubt, the Tits-buildings play a central role in the theory of
incidence geometry. The building bricks of these structures are the buildings
of rank 2, which are either trees without vertices of valency 1, or so-called
generalized polygons. Therefore, generalized polygons play a prominent role in
the theory of rank 2 incidence geometry, and also in finite geometry. One of
the aspects of the importance of generalized polygons is the connection with
finite groups: the Chevalley groups of rank 2 act naturally on generalized poly-
gons. Moreover, the twisted groups involving the Frobenius endomorphism (the
Suzuki and the Ree groups) have geometric interpretations using generalized
polygons and their substructures. Hence it is not surprising that generalized
polygons are well studied, and have important applications. The monograph
[44] provides a survey on generalized polygons, stressing the general and unify-
ing theory. In the present paper, we will review the more recent developments,
also with the emphasis on the general results, rather than highlighting the
progress in specific sub-theories such as the theory of finite generalized quad-
rangles, which has ramifications in Galois geometry (flocks of cones, hyperovals,
eggs, translation planes, spreads, hyperbolic fibrations, . . . ), or the theory of
(finite) projective planes. In particular, the classification of all Moufang gen-
eralized polygons is one of the most important achievements in this context,
and we will discuss this result extensively. This classification is a common ge-
ometric characterization of all classical groups of rank 2, all algebraic groups
of relative rank 2, all groups of mixed type of relative rank 2 (including the
ones of absolute type F4 discovered by Mühlherr and the second author [16]),
and the Ree groups of type 2F4 (over perfect and non-perfect fields as defined
by Tits [40]). We also review some alternative characterizations of the Mouf-
ang condition and consider other conditions on group actions on generalized
polygons. Furthermore, we review the characterizations of isomorphisms as
distance-preserving maps due to Govaert and the second author [12, 13], we
mention an alternative definition of generalized polygons altgeneral results in
thy of embeddings. This survey is by no means complete, and we refer the
reader to the bibliography of the references given in the present paper to dis-
cover many more recent results in the theory of generalized polygons. The
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ones we discuss here are, to our taste, major, and fall in the mainstream of the
connection between groups and geometries. We start with some definitions.

2. Definitions

2.1. Rank 2 Geometries

A geometry (of rank 2) is a triple Γ = (P,L, I) where P and L are two
disjoint sets, called points and lines, and where I ⊆ P ×L, called the incidence

relation. The dual geometry of Γ, denoted by ΓD, is the geometry (L,P, I′),
where LI′p if and only if pIL. We usually consider I as a symmetric relation,
and we will not distinguish between I and I′. We can associate in a very natu-
ral way a graph to each geometry Γ, called the incidence graph of Γ, which we
define as follows. Let V (Γ) := P ∪ L, and let E(Γ) denote the set of incident
point-line pairs of Γ. Then the graph with vertex set V (Γ) and edge set E(Γ)
is the incidence graph of Γ; it is always bipartite. Moreover, every bipartite
graph is the incidence graph of some geometry Γ. Henceforth, we will denote
the incidence graph of Γ by Γ itself. The set of all vertices which are adjacent
to some fixed vertex x (thus excluding the element x itself), is called the neigh-

borhood of x and will be denoted by Γx. A graph Γ (and also the corresponding
geometry) is called thick if and only if |Γx| ≥ 3 for all x ∈ V (Γ) (and in this
case x is often called a thick element). An edge of the graph Γ is often called
a flag of the corresponding geometry. The distance between two elements of a
geometry Γ is defined as the distance between the corresponding vertices in the
incidence graph. In particular, the distance between two elements of the same
type (i.e., two points or two lines), if finite, will always be even. A geometry
Γ will be called connected if and only if its incidence graph is connected. For
an element x of Γ, and an integer i, we denote by Γi(x) the set of elements at
distance i from x. The union of all these sets for 0 ≤ i ≤ k, for some positive
integer k, is denoted Γ≤k(x). Two points x, y incident with a common line are
called collinear; this is denoted by x ⊥ y (this includes the case x = y). Let
Γ be a geometry, and let G be an arbitrary subgroup of Aut(Γ). Then we will
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denote the pointwise stabilizer of the set Γ≤i(x) by G[i]
x . Moreover, we define

G[i]
x1,x2,...,xk

:= G[i]
x1
∩G[i]

x2
∩ · · · ∩G[i]

xk
.

If i = 0, then we will simply write Gx1,x2,...,xk . Note that G[1]
x is the kernel of

the action of Gx on Γx.

2.2. Generalized Polygons

A generalized n-gon is a connected bipartite graph with diameter n and girth
2n, where n ≥ 2. If we do not want to specify the value of n, then we call this
a generalized polygon. We will also use the terminology generalized triangle,
generalized quadrangle, generalized hexagon, and so on, instead of generalized
3-gon, 4-gon, 6-gon, respectively. This definition has been introduced in 1959
by Jacques Tits in the appendix of [35]. One of the main recent references
on generalized polygons is [44]. As explained in section 2.1, every bipartite
graph can be considered as a geometry. From the geometric point of view, a
generalized polygon is a geometry Γ = (P,L, I) satisfying the following two
axioms. See, for example, [44, 1.3.1, 1.3.5 and 1.3.6] for the equivalence of
these definitions.

GP1. If x, y ∈ P ∪ L and dist(x, y) = k < n, then there exists a unique k-path
from x to y.

GP2. For every x ∈ P ∪ L, we have that sup{dist(x, y) | y ∈ P ∪ L} = n.

Here is another equivalent definition, which explains the terminology.

GP1′. Γ does not contain ordinary k-gons (as a subgeometry), for every
k ∈ {2, . . . , n− 1}.

GP2′. Every two elements x, y ∈ P ∪L are contained in an ordinary n-gon of Γ.

Every ordinary n-gon in a generalized n-gon Γ is called an apartment of Γ. The
subgraph spanned by the vertices of an n-path in Γ is called a half-apartment or
a root of Γ. We will now briefly explain the geometric structure of a generalized
n-gon for the smallest values of n.
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n = 2. A generalized 2-gon is a geometry in which every point is incident with
every line, that is, I = P × L.

n = 3. A generalized triangle is exactly the same thing as a (possibly degenerate)
projective plane. Every two points are incident with exactly one line, and
every two lines are incident with exactly one point. Projective planes have
been extensively studied, see for example [20] and [8].

n = 4. A generalized quadrangle is a geometry Γ = (P,L, I) satisfying the fol-
lowing two axioms.

GQ1. For every non-incident point-line pair (p, L), there is a unique point
q and a unique line M such that pIMIqIL.

GQ2. Every point is incident with at least 2, but not with all, lines; every
line is incident with at least 2, but not with all, points.

One of the most important contributions to the theory of finite generalized
quadrangles is [18].

It is possible to give similar descriptions for other values of n as well, but we
will omit this. Instead, we mention the following remarkable characterization
of generalized polygons.

Theorem 2.1. Let Γ be a bipartite graph of diameter n. Then Γ is a gener-

alized n-gon if and only if for every ordered pair (x, y) of vertices at distance

n− 1, there is a unique vertex z adjacent to y and at distance n− 2 from x.

Proof – See [1].

Note that generalized n-gons do exist for all n ≥ 2; a free construction starting
from a so-called partial n-gon has been obtained by J. Tits [37]. However, we
have the following famous theorem of Feit and Higman.

Theorem 2.2. Finite thick generalized n-gons exist for n ∈ {2, 3, 4, 6, 8} only.

Proof – See [5].

We will now mention some basic properties about generalized n-gons.
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Theorem 2.3. Let Γ be a thick generalized n-gon and let G ≤ Aut(Γ). Then

(i) Every (n + 1)-path is contained in a unique apartment ;

(ii) G[1]
x0 ∩Gx0,...,xn = Gx0,...,xn ∩G[1]

xn for every n-path (x0, . . . , xn) ;

(iii) G[1]
x0,x1 ∩Gx0,...,xn = 1 for every n-path (x0, . . . , xn) ;

(iv) G[1]
x0,...,xk = 1 for every k-path (x0, . . . , xk) with k ≥ n− 1 .

Proof – See [42, (3.2), (3.5), (3.7) and (3.8)].

3. Moufang Polygons

Let Γ be a thick generalized n-gon with n ≥ 3, and let γ be an (n− 2)-path
of Γ. An automorphism g of Γ is called a root elation, a γ-elation or simply an
elation if and only if g fixes all elements of Γ which are incident with at least
one element of γ. Now consider a root α = (x0, x1, . . . , xn−1, xn), and let γ

denote the sub-(n−2)-path (x1, . . . , xn−1). Then the group Uα of all γ-elations
(called a root group) acts semi-regularly on the set of vertices incident with x0

but different from x1. If Uα acts transitively on this set (and hence regularly),
then we say that α is a Moufang root. It turns out that this definition is
independent of the choice of x0 and xn, and independent of the choice of the
direction of the n-path α. Moreover, it turns out that α is a Moufang root if
and only if Uα acts regularly on the set of apartments through α. A Moufang

n-gon is a generalized n-gon for which every root is Moufang. We then also say
that Γ satisfies the Moufang condition. The group generated by all the root
groups is sometimes called the little projective group of Γ.

Some historical notes. The Moufang condition finds its roots in two mutually related

facts. Firstly, it is a weaker form of the so-called “Steinberg relations” which follow from the

theory of semi-simple algebraic groups. Secondly, Jacques Tits believed in the sixties that the

classification of Moufang polygons could shorten considerably his proof of the classification of

all spherical buildings of rank at least 3. This is true, and such an approach is included in [42].

These were the main motivations to study Moufang polygons in full generality. Moreover, in

the finite case, Moufang polygons turn up in combinatorial and incidence-geometric problems

and in these situations, one wants to recognize the polygons in question. Hence the need to
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have different characterizations of the class of Moufang polygons, especially in the finite case

(in this case, the classification of Moufang polygons follows from work of Fong and Seitz [6, 7],

as noted by Tits in [38]). With regard to the classification of Moufang polygons, Jacques Tits

already classified the Moufang hexagons in the sixties, but did not publish it. The Moufang

octagons were classified in the seventies (and published later in 1983 [40]). The Moufang

quadrangles remained in conjectural state and were unclassified until 1997, when Richard

Weiss discovered the final (but new!) class of examples, which proved that Tits’ explicit list

of [38] was incomplete (see below). However, it was proved in [16] that the new examples also

arise — in the broad sense — from algebraic groups via the mixed groups of type F4. Hence

the general conjecture that all Moufang polygons arise from forms of algebraic, classical or

mixed groups, or from the Ree groups, was right after all!

Let us assume from now on that Γ is a thick Moufang n-gon for some n ≥ 3,
and let us fix an apartment Σ which we will label by the integers modulo 2n

in a natural way, that is, such that i + 1 ∈ Γi and i + 2 *= i for all integers i.
For every root αi := (i, i + 1, . . . , i + n) in Σ, we define Ui := Uαi . Note that
all root groups of Γ are non-trivial since Γ is thick and satisfies the Moufang
condition. Furthermore, we define

U[i,j] :=





〈Ui, Ui+1, . . . , Uj〉 if i ≤ j < i + n ;

1 otherwise .

Theorem 3.1. The groups Ui satisfy the following properties.

(i) [Ui, Uj ] ≤ U[i+1,j−1] for all j ∈ {i + 1, . . . , i + n− 1} ;

(ii) For every integer i, the product map from Ui × Ui+1 × · · · × Ui+n−1 to

U[i,i+n−1] is bijective .

Proof – See [42, (5.5) and (5.6)].

Thanks to this theorem, we can use the following notation. Let ai ∈ Ui and
aj ∈ Uj , with j ∈ {i + 2, . . . , i + n− 1}. For each k such that i < k < j, we set

[ai, aj ]k = ak ,

where ak is the unique element of Uk appearing in the factorization of [ai, aj ] ∈
U[i+1,j−1]. The following property will allow us to identify root elations with
automorphisms of certain subgroups of Aut(Γ).
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Lemma 3.1. Ui acts faithfully on U[i+1,i+n−1] and on U[i−n+1,i−1] for all i.

Proof – See [42, (6.5)].

We will now concentrate on the groups U1, . . . , Un. Let U+ := U[1,n] =
〈U1, . . . , Un〉. Let φ denote the map from V (Σ) = {1, . . . , 2n} to the set of
subgroups of U+ given by

φ(i) :=





U[1,i] if 1 ≤ i ≤ n ;

U[i−n,n] if n + 1 ≤ i ≤ 2n .

We can now define a graph Ξ as follows. Let

V (Ξ) := {(i,φ(i)g) | i ∈ V (Σ), g ∈ U+} ,

where φ(i)g is the right coset of the subgroup φ(i) containing g. Let

E(Ξ) := {{(i, R), (j, T )} | |i− j| = 1, R ∩ T *= ∅} ,

where the expression |i − j| = 1 is to be evaluated modulo 2n. Then Ξ :=
(V (Ξ), E(Ξ)) is a graph which is completely determined by the (n + 1)-tuple

(U+, U1, U2, . . . , Un) .

Observe that there is a natural action of U+ on Ξ, given by (i, R)g = (i, Rg)
for all (i, R) ∈ V (Ξ) and all g ∈ U+. The following theorem is fundamental for
the classification of the Moufang polygons.

Theorem 3.2. Ξ ∼= Γ. In particular, the Moufang n-gon Γ is completely

determined by the (n + 1)-tuple

(U+, U1, U2, . . . , Un) .

Proof – See [42, Chapter 7].

It is clear that not every (n + 1)-tuple (U+, U1, U2, . . . , Un) will give rise to a
Moufang n-gon. In particular, such an (n + 1)-tuple will have to satisfy the
statements of Theorem 3.1:
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M1. [Ui, Uj ] ≤ U[i+1,j−1] for 1 ≤ i < j ≤ n.

M2. The product map from U1 × · · ·× Un to U+ is bijective.

By Theorem 3.2, the graph Ξ above only depends on the (n + 1)-tuple
(U+, U1, U2, . . . , Un), and not on the full automorphism group Aut(Γ) in which
U+ is contained. So let us now assume that we start with a certain group U+

which is generated by certain non-trivial subgroups U1, . . . , Un, such that the
conditions (M1) and (M2) hold; but we do not assume that U+ is contained
in a specific larger group. Furthermore, let us assume that Σ is a circuit of
length 2n labeled by the integers modulo 2n, but we do not assume that Σ
is a subgraph of some specific larger graph. Then we can still construct a
graph Ξ as above. We would like to know under which conditions this graph
Ξ is a Moufang n-gon. We first introduce another notation. It follows from
(M1) that the group Un normalizes the group U[1,n−1]. Let Ũn denote the
subgroup of Aut(U[1,n−1]) induced by Un. We will denote the unique element
of Ũn corresponding to an element an ∈ Un by ãn. Similarly, U1 normalizes
U[2,n], and we let Ũ1 denote the subgroup of Aut(U[2,n]) induced by U1. Again,
we will denote the unique element of Ũ1 corresponding to an element a1 ∈ U1

by ã1. Note that, by Lemma 3.1, Ũn
∼= Un and Ũ1

∼= U1 if the (n + 1)-tuple
(U+, U1, U2, . . . , Un) arises from a Moufang polygon.

Theorem 3.3. Suppose that U+ is a group generated by non-trivial subgroups

U1, . . . , Un , such that the following axioms hold.

M1. [Ui, Uj ] ≤ U[i+1,j−1] for 1 ≤ i < j ≤ n.

M2. The product map from U1 × · · ·× Un to U+ is bijective.

M3. There exists a subgroup Ũ0 of Aut(U[1,n−1]) such that for each an ∈ U∗
n

there exists an element µ(an) ∈ Ũ∗
0 ãnŨ∗

0 such that Uµ(an)
j = Un−j for

1 ≤ j ≤ n−1 and, for some en ∈ U∗
n, Ũµ(en)

j = Ũn−j for j = 0 and j = n.

M4. There exists a subgroup Ũn+1 of Aut(U[2,n]) such that for each a1 ∈ U∗
1

there exists an element µ(a1) ∈ Ũ∗
n+1ã1Ũ∗

n+1 such that Uµ(a1)
j = Un+2−j

for 2 ≤ j ≤ n and, for some e1 ∈ U∗
1 , Ũµ(e1)

j = Ũn+2−j for j = 1 and

j = n + 1.
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Then the graph Ξ is a Moufang n-gon. Moreover, the automorphism groups Ũ0

and Ũn+1 and the maps µ from U∗
n to Ũ∗

0 Ũ∗
nŨ∗

0 and from U∗
1 to Ũ∗

n+1Ũ
∗
1 Ũ∗

n+1

are uniquely determined.

Proof – See [42, (8.11) and (8.12)].

Definition 3.1. Let U+ be a group generated by non-trivial subgroups U1, . . . , Un.

Then the (n+1)-tuple (U+, U1, U2, . . . , Un) will be called a root group sequence
if and only if (M1) – (M4) hold.

Remark 3.1 - If Θ = (U+, U1, U2, . . . , Un) is a root group sequence, then
(U+, Un, Un−1, . . . , U1) is a root group sequence as well; it is called the op-

posite of Θ, and is denoted by Θop.

We finally take one step further back. Suppose that some non-trivial groups
U1, . . . , Un are given (for some n ≥ 3), but not the larger group U+. Let
W := U1 × · · ·× Un. For i, j ∈ {1, . . . , n}, let

U[i,j] := {(a1, . . . , an) ∈ W | ak = 1 if k < i or k > j} .

For each i ∈ {1, . . . , n}, we will identify Ui with the subset U[i,i] of W . Suppose
that for each i, j ∈ {1, . . . , n} we have a map ξij from Ui × Uj to U[i+1,j−1].
Let R be the set consisting of the relations

[ai, aj ] = ξij(ai, aj)

for all i, j ∈ {1, . . . , n} and all ai ∈ Ui and aj ∈ Uj . We would like to know
under which conditions we can define a multiplication on W extending the
multiplication on the individual Ui so that W becomes a group fulfilling condi-
tions (M1) and (M2) in which the relations R hold. If such a group structure
exists, then products can be calculated using only the structure of the indi-
vidual Ui and the relations R. This implies that the group structure, if it
exists, is unique. To show that such a group structure exists, we try to define
a group structure on U[i,j] for all i, j ∈ {1, . . . , n} with j − i = k, starting with
k = 1, and proceeding inductively. For k = 1, we can simply make U[i,j] into
the direct product Ui × Uj since U[i+1,j−1] is trivial. We now suppose that
k ∈ {2, . . . , n− 1} and impose the following conditions inductively:
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Ak. For all i, j ∈ {1, . . . , n} with j − i = k and for all ai, bi ∈ Ui and aj ∈ Uj ,
the equation

ξij(aibi, aj) = ξij(ai, aj)biξij(bi, aj)

holds in the group U[i,j−1].

Bk. For all i, j ∈ {1, . . . , n} with j − i = k and for all ai ∈ Ui and aj , bj ∈ Uj ,
the equation

ξij(ai, ajbj) = ξij(ai, bj)ξij(ai, aj)bj

holds in the group U[i+1,j].

Ck. For all i, j ∈ {1, . . . , n} with j − i = k and for all ai ∈ Ui, aj ∈ Uj and
c ∈ U[i+1,j−1], the equation

cξij(ai,aj) = ca−1
i a−1

j aiaj

holds, where the right hand side is evaluated by using the action of Ui

and Uj on U[i+1,j−1] obtained from the group structure on U[i,j−1] and
U[i+1,j] which is known by the induction hypothesis.

Theorem 3.4. Suppose that some non-trivial groups U1, . . . , Un are given (for

some n ≥ 3), together with the relations R as above, and suppose that the

conditions (Ak), (Bk) and (Ck) hold for all k ∈ {2, . . . , n− 1}. Then there is a

unique group structure on W = U1 × · · · × Un such that the relations R hold

and such that the embeddings Ui ↪→ W for i ∈ {1, . . . , n} are homomorphisms.

This group and its subgroups U1, . . . , Un fulfill conditions (M1) and (M2).

Proof – See [42, (8.13)].

We end this section by introducing certain maps κ, λ, and µ, which we define
by the following theorem.

Theorem 3.5. For each i, there exist unique functions κi,λi : U∗
i → U∗

i+n,

such that (i − 1)aiλi(ai) = i + 1 and (i + 1)κi(ai)ai = i − 1, for all ai ∈ U∗
i .

The product µi(ai) := κi(ai)aiλi(ai) fixes i and i + n and reflects Σ, and

Uµi(ai)
j = U2i+n−j for each ai ∈ U∗

i and each j.

Proof – See [42, (6.1)].
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Since we will apply these functions only when it is clear in which U∗
i the ar-

gument lies, we will write κ, λ and µ in place of κi, λi and µi. Note that it
follows from the last statement of this theorem that Ui and Uj are conjugate
(and hence isomorphic) whenever i and j have the same parity.

Lemma 3.2. For all ai ∈ U∗
i , we have :

(i) µ(a−1
i ) = µ(ai)−1 ;

(ii) λ(a−1
i ) = κ(ai)−1 ;

(iii) µ(ag
i ) = µ(ai)g for every element g ∈ Aut(Γ) mapping Σ to itself .

Proof – See [42, (6.2)].

The following “Shift Lemma” is essential.

Theorem 3.6. Suppose, for some i, that [ai, a
−1
i+n−1] = ai+1 · · · ai+n−2, with

ak ∈ Uk for each k, and with ai and ai+n−1 non-trivial. Then we have:

(i) ai = aµ(ai+n−1)
i+n−2 and ai+1 = aµ(ai)

i+n−1 ;

(ii) [κ(ai+n−1), a−1
i+n−2] = ai · · · ai+n−3 ;

(iii) [ai+1,λ(ai)−1] = ai+2 · · · ai+n−1 .

Proof – See [42, (6.4)].

4. The Classification of Moufang Polygons

Recently, the classification of Moufang polygons has been completed By
J. Tits and R. Weiss in their book “Moufang Polygons” [42]. The classification
has come a long way, and we try to give a detailed explanation.

4.1. Restriction on n

In fact, there are only very few values of n for which a Moufang n-gon
exists:

Theorem 4.1. Moufang n-gons exist for n ∈ {3, 4, 6, 8} only.
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This was first shown by J. Tits; see [36, 39]. However, a more elegant proof
of a more general statement was found by R. Weiss [51]:

Theorem 4.2. Let n ∈ N, n ≥ 2. Let Γ = (V,E) be an undirected connected

graph (not necessarily bipartite!) with |Γx| ≥ 3 for every x ∈ V , and let G be

a subgroup of Aut(Γ) such that for each n-path (x0, . . . , xn)

(i) G[1]
x1,...,xn−1 acts transitively on Γxn \ {xn−1} and

(ii) G[1]
x0,x1 ∩Gx0,...,xn = 1.

Then n ∈ {2, 3, 4, 6, 8}. If GV is transitive, then n *= 8.

We will now consider each of the different possibilities of n separately. In
each case, we will follow the method which we have described in Theorem
3.4: we will describe the groups U1, . . . , Un in terms of a certain algebraic
structure, and we will write down the commutator relations between any two
of these groups.

4.2. Moufang triangles

The case of the Moufang triangles has the oldest roots; remember that
a generalized triangle is the same as a projective plane. Ruth Moufang was
the first one who studied projective planes satisfying the property which we
now call the Moufang condition; in particular, she was the first to reveal a
connection between certain geometric properties and the fact that the plane in
question can be parametrized by a certain algebraic structure. She did not use
the notion of the Moufang property as we have given here; instead, she worked
in terms of configurations such as the “little Desargues configuration” and the
“complete quadrilateral”. Her proof was not flawless, however; see the long
footnote on page 176 of [42] for the full story.

Definition 4.1. An alternative division ring is a ring (A,+, ·) with identity

1 ∈ A such that, for every non-zero element a ∈ A, there exists an element

b ∈ A (called the inverse of a) such that b · ac = c = ca · b for all c ∈ A. This

notion was introduced by M. Zorn in 1930 [52].

Note that A is not commutative nor associative in general. On the other
hand, it is clear that an alternative division ring is associative if and only if it
is a field or a skew-field.
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Definition 4.2. Let (A,+, ·) be an alternative division ring. Let U1, U2 and U3

be three groups isomorphic to the additive group (A,+). For each i ∈ {1, 2, 3},
we will denote the corresponding isomorphism by

xi : A → Ui : a 0→ xi(a) ;

we say that U1, U2 and U3 are parametrized by (A,+). We now implicitly

define the group U+ = U[1,3] by the following commutator relations.

[U1, U2] = [U2, U3] = 1 ,

[x1(s), x3(t)] = x2(s · t) ,

for all s, t ∈ A. Note that s · t denotes the multiplication of s and t in the

alternative division ring (A,+, ·). We will denote the corresponding graph Ξ
as constructed on page 9 by T (A).

Theorem 4.3. (i) For every alternative division ring (A,+, ·), the graph

T (A) is a Moufang triangle.

(ii) For every Moufang triangle T , there exists an alternative division ring

(A,+, ·) such that T ∼= T (A).

Proof – We will give a very rough outline of the proof. For more details,
we refer to [42, (16.1), (32.5) and Chapter 19]. To show (i), we first have to
show that properties (M1) and (M2) hold; but this follows from Theorem 3.4,
since it is straightforward to check that the conditions (A2), (B2) and (C2) hold.
Now let U0 be another group parametrized by (A,+). We define an action of
U0 on U[1,2] by setting

[x0(s), x2(t)] = x1(t · s)

for all s, t ∈ A and let

µ(x3(t)) := x0(t−1)x3(t)x0(t−1)

for all t ∈ A∗. Then one can check that property (M3) holds. A similar
argument shows that (M4) holds. It now follows from Theorem 3.3 that T (A)
is a Moufang triangle.



16 De Medts and Van Maldeghem

Now assume that T is an arbitrary Moufang triangle. Let Σ and the groups
Ui be as in section 3. Using Theorem 3.6(i) and Lemma 3.2(i), one can show
that aµ(a3)

2

1 = a−1
1 for all a1 ∈ U1 and all a3 ∈ U∗

3 . It follows that the map
x 0→ x−1 is an automorphism of U1, and hence U1 is abelian. Therefore we can
parametrize U1 by an additive group (A,+), and we denote the isomorphism
from A to U1 by x1. We now choose arbitrary elements e1 ∈ U∗

1 and e3 ∈ U∗
3 ,

and we let 1 ∈ A∗ be the preimage of e1 under the isomorphism x1, that
is, x1(1) = e1. Moreover, we define an isomorphism x2 from A to U2 and
an isomorphism x3 from A to U3 by setting x2(t) := x1(t)µ(e3) and x3(t) :=
x2(t)µ(e1) for all t ∈ A. We finally define a multiplication on A as follows. We
know by (M1) that [U1, U3] = U2, and hence for every s, t ∈ A, there is a
unique element v ∈ A such that [x1(s), x3(t)] = x2(v). We define s · t to be this
element v. It is not very hard now to check that (A,+, ·) is a ring with unit
1. Showing that A is an alternative division ring now essentially amounts to
applying the Shift Lemma 3.6(ii and iii).

Now that we know that every Moufang triangle can be parametrized by an
alternative division ring, we would like to go one step further, and classify the
alternative division rings. We start by describing a class of non-associative
alternative division rings, the so-called Cayley-Dickson division algebras or
octonion division algebras.

Definition 4.3. Let Q be a quaternion division algebra over a commutative

field K, with standard involution x 0→ x and with norm N . Choose an element

γ ∈ K∗ \N(Q), and let A = (Q, γ) be the set of 2 × 2 matrices
(

u γv
v u

)
for all

u, v ∈ Q. We make A into a ring with ordinary addition and with multiplication

given by the formula
(

x γy

y x

)
·
(

u γv

v u

)
=

(
xu + γvy γ(vx + y u)
xv + uy u x + γyv

)

for all x, y, u, v ∈ Q. Then one can check that A is a non-associative alternative

division ring, which is an 8-dimensional algebra over its center K. A Cayley-
Dickson division algebra or octonion division algebra is any algebra isomorphic

to A = (Q, γ) for some quaternion division algebra Q with center K and some

γ ∈ K∗ \N(Q).
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Remark 4.1 - In a similar way, one can also define Cayley-Dickson algebras
(or octonion algebras) which are no division algebras. We will not need this,
however.

In fact, these 8-dimensional division algebras are the only non-associative al-
ternative division rings, as was shown by Bruck and Kleinfeld in 1951 [4, 9].

Theorem 4.4. Let (A,+, ·) be an alternative division ring. Then either

(i) A is associative, i.e. A is a field or a skew-field.

(ii) A is a Cayley-Dickson division algebra.

We will, of course, not give the full proof of this theorem, but it is interesting
to examine the structure of the proof, and to observe the remarkable similarities
with the classification of the hexagonal systems in section 4.4; see in particular
Theorem 4.27. One starts by showing a strong structural property of non-
associative alternative division rings:

Theorem 4.5. Let A be a non-associative alternative division ring with center

K. Then A is quadratic over K, that is, there exist functions T and N from A

to K such that a2 − T (a)a + N(a) = 0 for all a ∈ A.

In order to classify the alternative division rings which are quadratic over
their center, one can gradually increase the dimension, but at each step, the
structure becomes looser, until it is not possible anymore to increase the di-
mension without violating the laws of an alternative division ring:

Theorem 4.6. Let A be an alternative division ring which is quadratic over

its center K.

(i) If A *= K, then there exists a subring E of A such that E/K is a separable

quadratic extension.

(ii) Let E be a subring of A such that E/K is a separable quadratic exten-

sion. If A *= E, then there exists a subring Q of A such that Q/K is a

quaternion division algebra. In particular, A is not commutative.

(iii) Let Q be a subring of A such that Q/K is a quaternion division algebra.

If A *= Q, then there exists a subring D of A such that D/K is a Cayley-

Dickson division algebra. In particular, A is not associative.
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(iv) Let D be a subring of A such that D/K is a Cayley-Dickson division

algebra. Then A = D.

For more details, we refer the reader to [42, Chapter 20]. Moufang projective
planes that are parametrized by fields will be called Pappian in the sequel.
They arise from 3-dimensional vector spaces over fields by taking the 1-spaces
and 2-spaces as vertices; adjacency is symmetrized inclusion.

4.3. Moufang quadrangles

The case of the Moufang quadrangles is the most complicated one. Not only
is the algebraic structure describing all Moufang quadrangles the most recent
one (and not contained in [42]; it was discovered by the first author [3]), this
case is also the only case where the original conjecture about the classification
was not correct. In fact, a new class of Moufang quadrangles was discovered
in 1997 by R. Weiss during the classification process, the so-called Moufang
quadrangles of type F4.

Definition 4.4. We start by giving the definition of a quadrangular system
which was introduced in [3]. Consider an abelian group (V,+) and a (possibly

non-abelian) group (W,!). The inverse of an element w ∈ W will be denoted

by "w, and by w1 " w2, we mean w1 ! ("w2). Suppose that there is a map

τV from V ×W to V and a map τW from W × V to W , both of which will

be denoted by · or simply by juxtaposition, i.e. τV (v, w) = vw = v · w and

τW (w, v) = wv = w · v for all v ∈ V and all w ∈ W . Consider a map F from

V × V to W and a map H from W ×W to V , both of which are “bi-additive”

in the sense that

F (v1 + v2, v) = F (v1, v) ! F (v2, v) ;

F (v, v1 + v2) = F (v, v1) ! F (v, v2) ;

H(w1 ! w2, w) = H(w1, w) + H(w2, w) ;

H(w,w1 ! w2) = H(w,w1) + H(w,w2) ;

for all v, v1, v2 ∈ V and all w,w1, w2 ∈ W . Suppose furthermore that there

exists a fixed element ε ∈ V ∗ and a fixed element δ ∈ W ∗, and suppose that,
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for each v ∈ V ∗, there exists an element v−1 ∈ V ∗, and for each w ∈ W ∗,

there exists an element κ(w) ∈ W ∗, such that, for all w,w1, w2 ∈ W and all

v, v1, v2 ∈ V , the following axioms are satisfied. We define

v := εF (ε, v)− v

Rad(F ) := {v ∈ V | F (v, V ) = 0}

Rad(H) := {w ∈ W | H(w,W ) = 0}

Im(F ) := F (V, V )

Im(H) := H(W,W )

(Q1) wε = w.

(Q2) vδ = v.

(Q3) (w1 ! w2)v = w1v ! w2v.

(Q4) (v1 + v2)w = v1w + v2w.

(Q5) w(−ε) · v = w(−v).

(Q6) v · w(−ε) = vw.

(Q7) Im(F ) ⊆ Rad(H).

(Q8) [w1, w2v]! = F (H(w2, w1), v).

(Q9) δ ∈ Rad(H).

(Q10) If Rad(F ) *= 0, then ε ∈ Rad(F ).

(Q11) w(v1 + v2) = wv1 ! wv2 ! F (v2w, v1).

(Q12) v(w1 ! w2) = vw1 + vw2 + H(w2, w1v).

(Q13) (v−1)−1 = v (if v *= 0).

(Q14) κ("κ("w)) = w(−ε) (if w *= 0).

(Q15) wv · v−1 = w (if v *= 0).

(Q16) v−1 · wv = −v("w) (if v *= 0).

(Q17) F (v−1
1 , v2)v1 = F (v1, v2) (if v1 *= 0).

(Q18) vκ(w) · ("w) = −v (if w *= 0).

(Q19) w · vκ(w) = κ(w)v (if w *= 0).
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(Q20) H(κ(w1), w2)w1 = H(w1, w2) (if w1 *= 0).

Then we call the system (V,W, τV , τW , ε, δ) a quadrangular system.

Note that we omit the maps F and H in our notation, as well as the maps
v 0→ v−1 and w 0→ κ(w). The reason is that they are uniquely determined by
V , W , τV , τW , ε and δ.

Remark 4.2 - We will sometimes think about the maps τV from V × W to
V and τW from W × V to W as “actions”, since it turns out that, for every
w ∈ W ∗, the map from V to itself which maps v to vw for every v ∈ V is
an automorphism of V ; similarly, for every v ∈ V ∗, the map from W to itself
which maps w to wv for every w ∈ W is an automorphism of W . Note, however,
that these maps are no group actions in the proper sense of the word, since
v(w1 ! w2) *= vw1 · w2 and w(v1 + v2) *= wv1 · v2 in general.

Remark 4.3 - In writing down these axioms, we used the convention that the
maps which are denoted by juxtaposition preceed those which are denoted by
“·”. Note, however, that there is no danger of confusion, since we have not
defined a multiplication on V or on W . Hence we will often write wvv−1

instead of wv · v−1, for example.

One can show that the following two identities are satisfied for every quadran-
gular system, for all v1, v2 ∈ V and all w1, w2 ∈ W .

(Q21) F (v1, v2) = F (v2, v1).

(Q22) H(w1, w2) = −H(w2, w1).

Remark 4.4 - These two identities show that, in some sense, F is a symmetric
form and H is a skew-hermitian form. Note, however, that V and W are not

vector spaces in general.

A notion which turns out to be quite important in the study of quadrangular
systems, is the notion of a reflection, which is a direct generalization of the
classical notion of a reflection in a quadratic space.

πv(c) := c− vF (v−1, c) (if v *= 0)

Πw(z) := z ! w(−H(κ(w), z)) (if w *= 0) .
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Then the following four identities, involving these reflections, are satisfied for
every quadrangular system, for all v, c ∈ V and all w, z ∈ W .

(Q23) v ·Πw(z) = −v("w)zκ(w) (if w *= 0).

(Q24) w · πv(ε)−1 · πv(c) = wvcv−1 (if v *= 0).

(Q25) πv(c · δv)w = πv(c · wv) (if v *= 0).

(Q26) Π"z(w · εz)v = Π"z(w · vz) (if w *= 0).

Definition 4.5. Let Ω = (V,W, τV , τW , ε, δ) be a quadrangular system. Let U1

and U3 be two groups isomorphic to the group (W,!), and let U2 and U4 be two

groups isomorphic to the group (V,+). As in the case of the triangles, we will

denote the corresponding isomorphisms by xi for all i ∈ {1, 2, 3, 4}; we say that

U1 and U3 are parametrized by W and that U2 and U4 are parametrized by V .

We now implicitly define the group U+ = U[1,4] by the following commutator

relations.

[U1, U2] = [U2, U3] = [U3, U4] = 1 ,

[x1(w), x3(z)−1] = x2(H(w, z)) ,

[x2(u), x4(v)−1] = x3(F (u, v)) ,

[x1(w), x4(v)−1] = x3(wv) · x4(vw) = x3(τW (w, v)) · x4(τV (v, w)) ,

for all u, v ∈ V and all w, z ∈ W . We will denote the corresponding graph Ξ
by Q(Ω) = Q(V,W, τV , τW , ε, δ).

Theorem 4.7. (i) For every quadrangular system Ω = (V,W, τV , τW , ε, δ),
the graph Q(Ω) is a Moufang quadrangle.

(ii) For every Moufang quadrangle Q, there exists a quadrangular system

Ω = (V,W, τV , τW , ε, δ) such that Q ∼= Q(Ω).

Proof – The proof of this theorem is quite long and technical, although
not too hard once one has derived some properties about the root groups of a
Moufang quadrangle — again, the Shift Lemma 3.6(ii and iii) plays a crucial
role. We refer the reader to [3] for a detailed proof.
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The axiom system for quadrangular systems looks rather wild and complicated,
so it is a natural question to ask for examples. We will describe six different
classes of quadrangular systems, which correspond to the six different types
of Moufang quadrangles as described in [42]. In each case, we will describe a
parametrization for the groups V and W , that is, we will describe V and W

as groups which are isomorphic to certain other groups Ṽ and W̃ , respectively;
we will denote the isomorphisms from Ṽ to V and from W̃ to W by square
brackets: a ∈ Ṽ 0→ [a] ∈ V and b ∈ W̃ 0→ [b] ∈ W .

4.3.1. Quadrangular Systems of Quadratic Form Type

Consider a non-trivial anisotropic quadratic space (K, V0, q) with base point ε,
i.e. K is a commutative field, V0 is a vector space over K and q is an anisotropic
quadratic form from V0 to K such that q(ε) = 1 for some fixed ε ∈ V0. Let V

be parametrized by (V0,+), and let W be parametrized by the additive group
of K. We define a map τV from V ×W to V and a map τW from W × V to
W as follows:

τV ([v], [t]) := [v][t] := [tv] ,

τW ([t], [v]) := [t][v] := [tq(v)] ,

for all v ∈ V0 and all t ∈ K. Then (V,W, τV , τW , [ε], [1]) is a quadrangular
system. One can check that

F ([u], [v]) = [f(u, v)] ,

H([s], [t]) = [0] ,

for all u, v ∈ V0 and all s, t ∈ K, and that

[v]−1 = [q(v)−1v] ,

κ([t]) = [t−1] ,

for all v ∈ V ∗
0 and all t ∈ K∗. Note that

[v] = εF (ε, [v])− [v] = [ε][f(ε, v)]− [v] = [v]

for all v ∈ V , where v := f(ε, v)ε−v denotes conjugation in the quadratic space
with base point ε. These are the quadrangular systems of quadratic form type.
They will be denoted by ΩQ(K, V0, q).
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4.3.2. Quadrangular Systems of Involutory Type

Definition 4.6. As in [42], we define an involutory set as a triple (K, K0,σ),
where K is a field or a skew-field, σ is an involution of K, and K0 is an additive

subgroup of K containing 1 such that

Kσ ⊆ K0 ⊆ FixK(σ) and

aσK0a ⊆ K0 for all a ∈ K ,

where Kσ := {a + aσ | a ∈ K}.

Remark 4.5 - If char(K) *= 2, then Kσ = FixK(σ), and hence K0 = Kσ as
well, so the second condition is superfluous in this case. On the other hand,
if char(K) = 2, then the quotient FixK(σ)/Kσ is a right vector space over K

with scalar multiplication given by

(x + Kσ) · a = aσxa + Kσ

for all x ∈ FixK(σ) and all a ∈ K, so the second condition is equivalent to the
assertion that K0/Kσ is a subspace of FixK(σ)/Kσ.

Consider an involutory set (K, K0,σ). Let V be parametrized by the additive
group of K, and let W be parametrized by K0. We define a map τV from
V ×W to V and a map τW from W × V to W as follows:

τV ([a], [t]) := [a][t] := [ta] ,

τW ([t], [a]) := [t][a] := [aσta] ,

for all a ∈ K and all t ∈ K0. Then (V,W, τV , τW , [1], [1]) is a quadrangular
system. One can check that

F ([a], [b]) = [aσb + bσa] ,

H([s], [t]) = [0] ,

for all a, b ∈ K and all s, t ∈ K0, and that

[a]−1 = [a−1] ,

κ([t]) = [t−1] ,
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for all a ∈ K∗ and all t ∈ K∗
0 . Note that

[a] = εF (ε, [a])− [a] = [1][a + aσ]− [a] = [aσ]

for all a ∈ K. These are the quadrangular systems of involutory type. They
will be denoted by ΩI(K, K0,σ).

4.3.3. Quadrangular Systems of Indifferent Type

Definition 4.7. Following [42], we define an indifferent set as a triple (K, K0, L0),
where K is a commutative field of characteristic 2 and K0 and L0 are additive

subgroups of K both containing 1, such that

K2
0L0 ⊆ L0 ,

L0K0 ⊆ K0 ,

K0 generates K as a ring.

We will just mention a few properties of indifferent sets.

Lemma 4.1. Let (K, K0, L0) be an arbitrary indifferent set, and let L be the

subring of K generated by L0. Then

(i) K2K0 ⊆ LK0 ⊆ K0 ;

(ii) K2L0 ⊆ L0 ;

(iii) L2
0 ⊆ K2

0 ⊆ L0 ⊆ K0 ;

(iv) K∗
0 and L∗0 are closed under inverses ;

(v) L is a subfield of K ;

(vi) (L,L0,K2
0 ) is an indifferent set, called the opposite of (K, K0, L0) .

Consider an indifferent set (K, K0, L0). Let V be parametrized by L0, and
let W be parametrized by K0. We define a map τV from V ×W to V and a
map τW from W × V to W as follows:

τV ([a], [t]) := [a][t] := [t2a] ,

τW ([t], [a]) := [t][a] := [ta] ,
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for all a ∈ L0 and all t ∈ K0. Then (V,W, τV , τW , [1], [1]) is a quadrangular
system. One can check that

F ([a], [b]) = [0] ,

H([s], [t]) = [0] ,

for all a, b ∈ L0 and all s, t ∈ K0, and that

[a]−1 = [a−1] ,

κ([t]) = [t−1] ,

for all a ∈ K∗ and all t ∈ K∗
0 . Note that [a] = [a] for all a ∈ K. These

are the quadrangular systems of indifferent type. They will be denoted by
ΩD(K, K0, L0).

4.3.4. Quadrangular Systems of Pseudo-quadratic Form Type

Definition 4.8. Let K be an arbitrary field or skew-field, let σ be an involution

of K (which may be trivial), and let V0 be a right vector space over K. A map

h from V0×V0 to K is called a sesquilinear form (with respect to σ) if and only

if h is additive in both variables, and h(at, bs) = tσh(a, b)s, for all a, b ∈ V0

and all t, s ∈ K. A form h : V0 × V0 → K is called hermitian, respectively

skew-hermitian, (with respect to σ) if and only if h is sesquilinear with respect

to σ and h(a, b)σ = h(b, a), respectively h(a, b)σ = −h(b, a), for all a, b ∈ V0.

Definition 4.9. Let (K, K0,σ) be an involutory set, let V0 be a right vector

space over K and let p be a map from V0 to K. Then p is a pseudo-quadratic
form on V (with respect to K0 and σ) if there is a form h on V0 which is

skew-hermitian with respect to σ such that

p(a + b) ≡ p(a) + p(b) + h(a, b) (mod K0) ,

p(at) ≡ tσp(a)t (mod K0) ,

for all a, b ∈ V0 and all t ∈ K. Again following [42], we define a pseudo-
quadratic space as a quintuple (K, K0,σ, V0, p) such that (K, K0,σ) is an invo-

lutory set, V0 is a right vector space over K and p is a pseudo-quadratic form

on V0 with respect to K0 and σ. A pseudo-quadratic space (K, K0,σ, V0, p) is

called anisotropic if p(a) ∈ K0 only for a = 0.
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Definition 4.10. Let (K, K0,σ, V0, p) be an arbitrary anisotropic pseudo-

quadratic space with corresponding skew-hermitian form h. We define a group

(T,!) as

T :=
{
(a, t) ∈ V0 ×K | p(a)− t ∈ K0

}
,

where the group action is given by

(a, t) ! (b, s) :=
(
a + b, t + s + h(b, a)

)
,

for all (a, t), (b, s) ∈ T . One can check that T is indeed a group with neutral

element (0, 0), and with the inverse given by "(a, t) = (−a,−t + h(a, a)), for

all (a, t) ∈ T .

Let (K, K0,σ, V0, p) be an arbitrary anisotropic pseudo-quadratic space with
corresponding skew-hermitian form h, and let the group (T,!) be as above.
Let V be parametrized by the additive group of K, and let W be parametrized
by T . We define a map τV from V ×W to V and a map τW from W × V to
W as follows:

τV ([v], [a, t]) := [v][a, t] := [tv] ,

τW ([a, t], [v]) := [a, t][v] := [av, vσtv] ,

for all v ∈ K and all (a, t) ∈ T . Then (V,W, τV , τW , [1], [0, 1]) is a quadrangular
system. One can check that

F ([u], [v]) = [0, uσv + vσu] ,

H([a, t], [b, s]) = [h(a, b)] ,

for all u, v ∈ K and all (a, t), (b, s) ∈ T , and that

[v]−1 = [v−1] ,

κ([a, t]) = [at−σ, t−σ] ,

for all v ∈ K∗ and all (a, t) ∈ T ∗. Note that

[v] = [1]F ([1], [v])− [v] = [1][0, v + vσ]− [v] = [vσ]

for all v ∈ K. These are the quadrangular systems of pseudo-quadratic form

type. They will be denoted by ΩP (K, K0,σ, V0, p).
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4.3.5. Quadrangular Systems of Type E6, E7 and E8

Definition 4.11. We now introduce the notion of a norm splitting of a quadratic

form, which is first seen in [42, (12.9)]. First of all, observe that, if E/K is a sep-

arable quadratic extension with norm N , then N is a 2-dimensional anisotropic

regular quadratic form from E (as a vector space over K) to K. We say that a

2d-dimensional regular quadratic form q : V → K has a norm splitting, if and

only if there exist constants s1, s2, . . . , sd ∈ K∗ such that

q 2 s1N ⊥ s2N ⊥ · · · ⊥ sdN .

The constants s1, s2, . . . , sd are called the constants of the norm splitting.

Remark 4.6 - This is equivalent to the assumption that q has an orthogonal
decomposition q 2 q1 ⊥ q2 ⊥ · · · ⊥ qd, where each qi is a 2-dimensional
regular quadratic form with the same non-trivial discriminant. Note that a
2d-dimensional regular quadratic form q is hyperbolic if and only if q has a
decomposition q 2 q1 ⊥ q2 ⊥ · · · ⊥ qd, where each qi is a 2-dimensional regular
quadratic form with trivial discriminant.

Remark 4.7 - Every even dimensional regular quadratic form q has an orthog-
onal decomposition q 2 q1 ⊥ q2 ⊥ · · · ⊥ qd, where each qi is a 2-dimensional
regular quadratic form. If char(K) *= 2, this follows from the fact that q has a
diagonal form; if char(K) = 2, this follows from the fact that q has a normal
form, see, for example, [21, 9.4].

Definition 4.12. Let (K, V, q) be an arbitrary anisotropic quadratic space

with corresponding bilinear map f . An automorphism T of V is called a norm
splitting map of q if and only if there exist constants α, β ∈ K with α = 0 if

char(K) *= 2 and α *= 0 if char(K) = 2, and with β *= 0 in all characteristics,

such that

q(T (v)) = βq(v) ,

f(v, T (v)) = αq(v) ,

T (T (v)) + αT (v) + βv = 0 ,
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for all v ∈ V . For each norm splitting map T , we can define a corresponding

norm splitting map T , defined by the relation T (v) := αv− T (v) for all v ∈ V .

It is straightforward to check that T is a norm splitting map with the same

parameters α and β as the original norm splitting map T .

Definition 4.13. Let K be an arbitrary commutative field, let V0 be a vector

space over K, and let q be an anisotropic quadratic form from V0 to K. Then

• q is a quadratic form of type E6 if and only if dimKV0 = 6 and q has a

norm splitting q 2 s1N ⊥ s2N ⊥ s3N .

• q is a quadratic form of type E7 if and only if dimKV0 = 8 and q has a

norm splitting q 2 s1N ⊥ · · · ⊥ s4N such that s1s2s3s4 *∈ N(E).

• q is a quadratic form of type E8 if and only if dimKV0 = 12 and q has a

norm splitting q 2 s1N ⊥ · · · ⊥ s6N such that −s1s2s3s4s5s6 ∈ N(E).

An anisotropic quadratic space (K, V0, q) is called of type E6, E7 or E8 if and

only if q is a quadratic form of type E6, E7 or E8, respectively.

Theorem 4.8. Let (K, V0, q) be a quadratic space of type Ek with k ∈ {6, 7, 8},
with base point ε. Let T be a norm splitting map of q, and let X0 be a vector

space over K of dimension 2k−3. Then there exists a unique map (a, v) 0→ av

from X0 × V0 to X0 and an element ξ ∈ X∗
0 such that

at = a(tε) ,

(av)v = aq(v) ,

ξT (v) = (ξT (ε))v ,

for all a ∈ X0, t ∈ K and v ∈ V0.

Proof – See [42, (12.56) and (13.11)].

From now on, we let T be a fixed arbitrary norm splitting map of q, and we
let X0 be a fixed vector space over K of dimension 2k−3. We apply Theorem
4.8 with these choices of T and X0. Note that ξ is not uniquely determined;
see [42, (13.12)].
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Remark 4.8 - The first two identities of Theorem 4.8 say that X0 is a C(q, ε)-
module, where C(q, ε) is the Clifford algebra of q with base point ε. In fact,
it turns out that the structure of C(q, ε), which is the same as the structure
of the even Clifford algebra C0(q), plays a crucial role in the understanding of
the exceptional Moufang quadrangles of type E6, E7, and E8. In particular,
quadratic forms of type E6, E7, and E8 are completely characterized by the
structure of their even Clifford algebra only; see [2].

Theorem 4.9. We can choose the norm splitting (E, {v1, . . . , vd}) in such a

way that v1 = ε (and hence s1 = 1). Furthermore, if k = 8, then we can choose

it in such a way that ξv2v3v4v5v6 = ξ as well.

Proof – This follows from [42, (27.20) and (27.13)].

So assume that the norm splitting satisfies the conditions of this Theorem.
Then we can now define a subspace M0 of X0 as follows. If k = 6, then we set

M0 := {ξtv2v3 | t ∈ E} ;

If k = 7, then we set

M0 := {ξt1v2v3 + ξt2v1v3 + ξt3v1v2 + ξtv1v2v3 | t1, t2, t3, t ∈ E} ;

If k = 8, then we set

M0 :=
{ ∑

i,j∈{2,...,6}
i<j

ξtijvivj | tij ∈ E

}
.

Theorem 4.10. X0 = ξV0 ⊕M0.

Proof – See [42, (13.14)].

Theorem 4.11. There is a unique map h from X0×X0 to V0 which is bilinear

over K, such that

(i) h(ξ, ξv) = T (v)− T (v) , for all v ∈ V0 ;

(ii) h(ξ, a) = 0 , for all a ∈ M0 ;

(iii) h(a, b) = −h(b, a) , for all a, b ∈ X0 ;
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(iv) h(a, bv) = h(b, av) + f(h(a, b), ε)v , for all a, b ∈ X0 and all v ∈ V0 .

Proof – See [42, (13.15), (13.18), (13.19) and (13.21)].

We now define an element ζ ∈ V0 as follows. Note that, if char(K) = 2, then
f(ε, T (ε)) = α *= 0 by the definition of T .

ζ :=





ε/2 if char(K) *= 2

T (ε)/f(ε, T (ε)) if char(K) = 2
.

Next, let g be the bilinear form from X0 ×X0 to K given by

g(a, b) := f(h(b, a), ζ)

for all a, b ∈ X0.
Set

v∗ :=





0 if char(K) *= 2

f(v, ζ)ε + f(v, ε)ζ + v if char(K) = 2
,

for all v ∈ V0.

Theorem 4.12. There is a unique map θ from X0 × V0 to V0 satisfying the

following conditions, for all a, b ∈ X0 and all u, v ∈ V0:

(i) θ(ξ, v) = T (v) ;

(ii) θ(a + b, v) = θ(a, v) + θ(b, v) + h(b, av)− g(a, b)v ;

(iii) θ(av, w) = θ(a, w̄)q(v)− θ(a, v)f(w, v̄) +
f(θ(a, v), w̄)v̄ + f(θ(a, v∗), v)w .

Proof – See [42, (13.30), (13.31), (13.36) and (13.37)].

Let ϕ be the map from X0 × V0 to K defined as

ϕ(a, v) := f(θ(a, v∗), v) ,

for all a ∈ X0 and all v ∈ V0. Finally, we define a group (S, !) as S := X0×K

where the group action is given by

(a, t) ! (b, s) := (a + b, t + s + g(a, b)) ,
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for all (a, t), (b, s) ∈ S. One can check that S is indeed a group with neutral
element (0, 0), and with the inverse given by "(a, t) = (−a,−t + g(a, a)), for
all (a, t) ∈ S. Let V be parametrized by (V0,+), and let W be parametrized
by S. We define a map τV from V ×W to V and a map τW from W × V to
W as follows:

τV ([v], [a, t]) := [v][a, t] := [θ(a, v) + tv] ,

τW ([a, t], [v]) := [a, t][v] := [av, tq(v) + ϕ(a, v)] ,

for all v ∈ V and all (a, t) ∈ S. Then (V,W, τV , τW , [ε], [0, 1]) is a quadrangular
system. One can check that

F ([u], [v]) = [0, f(u, v)] ,

H([a, t], [b, s]) = [h(a, b)] ,

for all u, v ∈ V and all (a, t), (b, s) ∈ S, and that

[v]−1 = [q(v)−1v] ,

κ([a, t]) =
[

aθ(a, ε) + ta

q(θ(a, ε) + tε)
,

t

q(θ(a, ε) + tε)

]
,

for all v ∈ K∗ and all (a, t) ∈ S∗.

Remark 4.9 - It is not obvious at all to verify that this is a quadrangular
system. Quite a lot of identities involving these functions h, g, θ and ϕ are
needed; see [42, Chapter 13 and (32.2)] for more details.

These are the quadrangular systems of type E6, E7 and E8. They will be
denoted by ΩE(K, V0, q).

4.3.6. Quadrangular Systems of Type F4

Consider an anisotropic quadratic space (K, V0, q). Assume that char(K) = 2
and that the quadratic form has non-trivial radical

R := Rad(f) = {v ∈ V0 | f(v, V0) = 0} *= 0,
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and assume that the quadratic space has a base point ε ∈ R. Then this
quadratic space is said to be of type F4 if and only if L := q(R) is a sub-
field of K, and there is a complement S of R in V0 such that the restriction of q

to the subspace S has a norm splitting (E, {v1, v2}) with constants s1, s2 ∈ K∗

such that s1s2 ∈ L∗. From now on, we will assume that (K, V0, q) is of type
F4. Since t2 = q(tε) ∈ q(R) = L for all t ∈ K, we have that K2 ⊆ L ⊆ K.
Denote the restriction of q to S by q1. Denote the norm of the extension E/K

by N , and denote the non-trivial element of Gal(E/K) by u 0→ u (not to be
confused with the map v 0→ v in the definition of a quadrangular system). Set
B0 := E ⊕ E. Then B0 is a 4-dimensional vector space over K which can be
identified with S by the relation

(u, v) ∈ B0 ←→ uv1 + vv2 ∈ S .

In particular, we will write q1(u, v) = s1N(u) + s2N(v) for all (u, v) ∈ B0.
Next, we define a commutative field D := E2L = {u2s | u ∈ E, s ∈ L}. Then
E2 ⊆ D ⊆ E, D/L is a separable quadratic extension, and D ∩K = L. The
non-trivial element of Gal(D/L) is precisely the restriction of the map u 0→ u

to D; hence we will also denote it by x 0→ x. Also, the norm of D is precisely
the restriction of N to D, and so we will denote it by N as well. Now set
A0 := D ⊕ D; then A0 is a 4-dimensional vector space over L. Observe that
both s−1

1 s2 and s−3
1 s2 are elements of L. We now define a quadratic form q2

on A0 given by
q2(x, y) := s−1

1 s2N(x) + s−3
1 s2N(y)

for all (x, y) ∈ A0. If we set α := s−1
1 s2 ∈ L and β := s−1

1 ∈ K, then we have

q1(u, v) = β−1 · (N(u) + αN(v)) for all (u, v) ∈ B0 .

q2(x, y) = α · (N(x) + β2N(y)) for all (x, y) ∈ A0 .

We will denote the bilinear forms corresponding to q1 and q2 by f1 and f2,
respectively.

Theorem 4.13. For all (u, v) ∈ B0 and all (x, y) ∈ A0 we have:

(i) q1(u, v) ∈ L ⇐⇒ (u, v) = (0, 0) ;

(ii) q2(x, y) ∈ K2 ⇐⇒ (x, y) = (0, 0) ;



Moufang Generalized Polygons 33

(iii) α ∈ L \K2 ;

(iv) β ∈ K \ L .

Proof – See [42, (14.8)].

Note that it follows from (iii) and (iv) of this Theorem that K2 ⊂ L ⊂ K. In
particular, K is not perfect. Since L ⊆ K, we can consider K as a (left) vector
space over L by the trivial scalar multiplication s · t := st for all s ∈ L and all
t ∈ K. Since K2 ⊆ L and char(K) = 2, we can also consider L as a (left) vector
space over K by the scalar multiplication t∗s := t2s for all t ∈ K and all s ∈ L.
One can check that in this sense, q is a vector space isomorphism from R to
L = q(R). From now on, we will identify R with L via q, and we still identify
S with B0 = E ⊕ E. Combining those two identifications, we have actually
identified V0 with B0 ⊕ L. Then ε = (0, 1), and we have q(b, s) = q1(b) + s, for
all (b, s) ∈ V0. Now set W0 := A0 ⊕K. Then W0 is a vector space over L, and
we can define a quadratic form q̂ from W0 to f given by q̂(a, t) = q2(a) + t2 for
all (a, t) ∈ W0. It follows from Theorem 4.13(ii) that q̂ is anisotropic as well.
One can actually check that (L,W0, q̂) is again a quadratic form of type F4.
Finally, we define a map Θ from A0⊕B0 to B0, a map Υ from A0⊕B0 to A0,
a map ν from A0 ⊕B0 to K, and a map ψ from A0 ⊕B0 to L as follows.

Θ((x, y), (u, v)) := (α · (x̄v + βyv̄), xu + βyū) ,

Υ((x, y), (u, v)) := (yū2 + αȳv2,β−2 · (xu2 + αx̄v2)) ,

ν((x, y), (u, v)) := α · (β−1 · (xuv̄ + x̄ūv) + yūv̄ + ȳuv) ,

ψ((x, y), (u, v)) := α · (xȳu2 + x̄yū2 + α · (xyv̄2 + x̄ȳv2)) ,

for all (x, y) ∈ A0 = D⊕D and all (u, v) ∈ B0 = E⊕E. Let V be parametrized
by (V0,+), and let W be parametrized by (W0,+). We define a map τV from
V ×W to V and a map τW from W × V to W as follows:

τV ([b, s], [a, t]) := [b, s][a, t] := [Θ(a, b) + tb, q̂(a, t)s + ψ(a, b)] ,

τW ([a, t], [b, s]) := [a, t][b, s] := [Υ(a, b) + sa, q(b, s)t + ν(a, b)] ,
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for all (b, s) ∈ V0 and all (a, t) ∈ W0. Then (V,W, τV , τW , [0, 1], [0, 1]) is a
quadrangular system. One can check that

F ([b, s], [b′, s′]) = [0, f1(b, b′)] ,

H([a, t], [a′, t′]) = [0, f2(a, a′)] ,

for all (b, s), (b′, s′) ∈ V0 and all (a, t), (a′, t′) ∈ W0, and that

[b, s]−1 = [q(b, s)−1b, q(b, s)−2s] ,

κ([a, t]) = [q̂(a, t)−1a, q̂(a, t)−1t] ,

for all (b, s) ∈ V ∗
0 and all (a, t) ∈ W ∗

0 .

Remark 4.10 - It would be a very tedious job to check that this is indeed a
quadrangular system by only using the definitions of the different functions
involved. However, it is not very hard to prove the following list of twelve iden-
tities, after which the verification of the axioms for the quadrangular systems
is straightforward.

Theorem 4.14. For all a, a′ ∈ A0 and all b, b′ ∈ B0, we have that

(i) ν(a, b + b′) = ν(a, b) + ν(a, b′) + f1(Θ(a, b), b′) ;

(ii) ψ(a + a′, b) = ψ(a, b) + ψ(a′, b) + f2(Υ(a, b), a′) ;

(iii) Υ(Υ(a, b), b) = q1(b)2a ;

(iv) Θ(a,Θ(a, b)) = q2(a)b ;

(v) Θ(Υ(a, b), b) + bν(a, b) = q1(b)Θ(a, b) ;

(vi) Υ(a,Θ(a, b)) + aψ(a, b) = q2(a)Υ(a, b) ;

(vii) ν(Υ(a, b), b) = q1(b)ν(a, b) ;

(viii) ψ(a,Θ(a, b)) = q2(a)ψ(a, b) ;

(ix) ψ(Υ(a, b), b) = q1(b)2ψ(a, b) ;

(x) ν(a,Θ(a, b)) = q2(a)ν(a, b) ;

(xi) q1(Θ(a, b)) = q1(b)q2(a) + ψ(a, b) ;

(xii) q2(Υ(a, b)) = q1(b)2q2(a) + ν(a, b)2 .
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These are the quadrangular systems of type F4. They will be denoted by
ΩF (K, V0, q). This finishes our list of examples of quadrangular systems. In
fact, it turns out that this list is complete. In order to describe this more
precisely, we introduce some more definitions.

Definition 4.14. A quadrangular system Ω = (V,W, τV , τW , ε, δ) is called

indifferent if F ≡ 0 and H ≡ 0, reduced if F *≡ 0 and H ≡ 0 and wide if F *≡ 0
and H *≡ 0.

Remark 4.11 - If Ω = (V,W, τV , τW , ε, δ) is a quadrangular system with F ≡ 0
and H *≡ 0, then Ω∗ := (W,V, τW , τV , δ, ε) is a reduced quadrangular system.

Definition 4.15. Let Ω = (V,W, τV , τW , ε, δ) be a wide quadrangular system,

and let Y := Rad(H). The restriction of τV to V × Y and the restriction of

τW to Y × V will also be denoted by τV and τW , respectively. Then Γ :=
(V, Y, τV , τW , ε, δ) is a reduced quadrangular system; we then say that Ω is an

extension of Γ.

Definition 4.16. Let Ω = (V,W, τV , τW , ε, δ) be a reduced quadrangular sys-

tem. Then Ω is said to be normal if and only if for all w1, w2, . . . , wi ∈ W ,

there exists a w ∈ W such that εw1w2 . . . wi = εw.

Let Ω = (V,W, τV , τW , ε, δ) be an arbitrary quadrangular system. The classifi-
cation result can be summarized by the following five theorems.

Theorem 4.15. If Ω is reduced but not normal, then Ω ∼= ΩI(K, K0,σ) for

some involutory set (K, K0,σ) such that σ *= 1 and K is generated by K0 as a

ring.

Theorem 4.16. If Ω is reduced and normal, then Ω ∼= ΩQ(K, V0, q) for some

anisotropic quadratic space (K, V0, q).

Theorem 4.17. If Ω is indifferent, then Ω ∼= ΩD(K, K0, L0) for some indiffer-

ent set (K, K0, L0).

Theorem 4.18. If Ω is an extension of the reduced quadrangular system Γ =
ΩI(K, K0,σ) for some involutory set (K, K0,σ) such that σ *= 1 and K is

generated by K0 as a ring, then Ω ∼= ΩP (K, K0,σ, V0, p) for some anisotropic

pseudo-quadratic space (K, K0,σ, V0, p).
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Theorem 4.19. If Ω is an extension of the reduced quadrangular system Γ =
ΩQ(K, V0, q) for some anisotropic quadratic space (K, V0, q), then

(a) either Rad(F ) *= 0, in which case (K, V0, q) is a quadratic space of type

F4, and Ω ∼= ΩF (K, V0, q).

(b) or Rad(F ) = 0, in which case d := dimK V0 ∈ {2, 4, 6, 8, 12}.

• If d = 2 or 4, then there exists

- a multiplication on V0 making the vector space V0 into an alge-

bra over K such that either V0 is a field and V0/K is a separable

quadratic extension with norm q (if d = 2) or V0 is a quaternion

division algebra over K with norm q (if d = 4) ,

- an involution σ of V0 (which is the unique non-trivial element

of Gal(V0/K) if d = 2 and which is the standard involution of

V0 if d = 4) ,

- a non-trivial right vector space X over V0 ,

- a pseudo-quadratic form π on X ,

such that (V0,K,σ, X,π) is an anisotropic pseudo-quadratic space,

Γ ∼= ΩI(V0,K,σ) and Ω ∼= ΩP (V0,K,σ, X,π).

• If d = 6, 8 or 12, then (K, V0, q) is a quadratic space of type E6, E7,

or E8, respectively, and Ω ∼= ΩE(K, V0, q).

Remark 4.12 - The six families of quadrangular systems are not disjoint. We
briefly describe the list of quadrangles which are (up to isomorphism) of at least
two different types, and we refer the reader to [42, Chapter 38] for a detailed
description and for a proof that this list is complete.

• Let Ω = ΩI(K, K0,σ) be a quadrangular system of involutory type such
that Kσ = 0. Then σ = 1, K is commutative and char(K) = 2, and Ω is
also of indifferent type and of quadratic form type.

• Let Ω = ΩI(K, K0,σ) be a quadrangular system of involutory type such
that 〈K0〉 *= K but Kσ *= 0.

Then K0 = Kσ, K0 is a subfield lying in the center of K and either
K/K0 is a separable quadratic extension and σ is the non-trivial element
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in Gal(K/K0) or K is a quaternion division algebra over K0 and σ is its
standard involution; then Ω is also of quadratic form type.

• Let Ω = ΩI(K, K0,σ) be a quadrangular system of involutory type such
that σ = 1 but Kσ *= 0, so char(K) *= 2. Then K is commutative, and Ω
is also of quadratic form type.

• Let Ω = ΩD(K, K0, L0) be a quadrangular system of indifferent type, and
let L = 〈L0〉. Suppose that either L = L0 or K = K0; then Ω is also of
quadratic form type. Vice versa, if we start with a quadrangular system
of quadratic form type Ω = ΩQ(K, V0, q) such that the corresponding
bilinear form f is identically zero, then Ω is also of indifferent type.

• Let Ω = ΩP (K, K0,σ, V0, p) be a quadrangular system of pseudo-quadratic
form type, and let h denote the skew-hermitian form associated with q. If
h is identically zero (in particular, if L0 = 0) then Ω is also of involutory
type, and if L0 *= 0 but σ = 1, then Ω is also of quadratic form type.

This finishes our description of the Moufang quadrangles. For more details, see
[3] and [42].

4.4. Moufang hexagons

As before mentioned, the Moufang hexagons were already classified by Tits
in the sixties. The reason is that Tits proved quite early a Steinberg type of
commutation relations for the root groups, and hence one could see a subsys-
tem of root groups corresponding to Moufang plane. Using the classification
of Moufang planes, Tits observed that this Moufang plane must be coordina-
tized by a (commutative) field (see below), and hence the classification process
had started. We also mention that the classification of Moufang hexagons moti-
vated Tits to discover two constructions of exceptional Jordan division algebras
(and these constructions carry his name). The complete classification of these
algebras was then done by other people (see below for more details).

Definition 4.17. An hexagonal system (or an anisotropic cubic norm struc-
ture) is a triple (J, F, 3), where F is a commutative field, J is a vector space

over F and 3 is a map from J to itself, called the adjoint map, such that there
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exist a map N from J to F , called the norm, a map T from J × J to F , called

the trace, a map × from J×J to J (which is sometimes called the Freudenthal
×-product) and a distinguished element 1 ∈ J∗, such that the following axioms

hold, for all t ∈ F and all a, b, c ∈ J .

(H1) (ta)' = t2a'.

(H2) N(ta) = t3N(a).

(H3) T (a× b, c) = T (a, b× c).

(H4) (a + b)' = a' + a× b + b'.

(H5) N(a + b) = N(a) + T (a', b) + T (a, b') + N(b).

(H6) T (a, a') = 3N(a).

(H7) a'' = N(a)a.

(H8) a' × (a× b) = N(a)b + T (a', b)a.

(H9) a' × b' + (a× b)' = T (a', b)b + T (a, b')a.

(H10) 1' = 1.

(H11) b = T (b, 1) · 1− 1× b.

(H12) N(a) = 0 ⇔ a = 0.

Remark 4.13 - Observe that the maps N , T and × and the element 1 do not
occur in our notation of a hexagonal system Ψ = (J, F, 3). The reason is that
they are uniquely determined by J , F and 3.

Remark 4.14 - A cubic norm structure is defined as above, but without the last
axiom (H12). Such a structure is also known as a unital quadratic Jordan alge-

bra of degree three; if the cubic norm structure is anisotropic, i.e. if condition
(H12) holds for all a ∈ J , then this Jordan algebra is a division algebra.

Remark 4.15 - In the literature, a cubic norm structure is often defined in the
following equivalent way. According to [11] and [19], a cubic norm structure

over a field k is a quadruple (V,N, 3, 1), where V is a vector space over k,
N : V → k is a cubic form, called the norm, 3 : V → V : x 0→ x' is a quadratic
form, called the adjoint, and 1 ∈ V is a distinguished element, called the base
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point, such that the following relations hold under all scalar extensions. We
first define the trace T : V × V → k as T := −(D2 log N)(1), and we set
T (y) = T (1, y) for all y ∈ V ; moreover, we define x× y := (x + y)'− x'− y' to
be the bilinearization of the adjoint. Then we require that

x'' = N(x)x , (the adjoint identity)

N(1) = 1 ,

T (x', y) = (DN)(x)y ,

1' = 1 ,

1× y = T (y)1− y ,

for all x, y ∈ V . Then the U -operator Uxy := T (x, y)x − x' × y and the base
point 1 give V the structure of a unital quadratic Jordan algebra denoted by
J = J(V,N, 3, 1). We then know that x ∈ J is invertible if and only if N(x) *= 0,
in which case x−1 = N(x)−1x'.

Definition 4.18. Let Ψ = (J, F, 3) be a hexagonal system. Let U1, U3 and U5

be three groups isomorphic to the additive group (J,+), and let U2, U4 and

U6 be three groups isomorphic to the additive group of the field F . As before,

we will denote the corresponding isomorphisms by xi for each i ∈ {1, 2, . . . , 6};
we say that U1, U3 and U5 are parametrized by J and that U2, U4 and U6 are

parametrized by F . We now implicitly define the group U+ = U[1,6] by the

following commutator relations.

[U1, U2] = [U2, U3] = [U3, U4] = [U4, U5] = [U5, U6] = 1 ,

[U2, U4] = [U4, U6] = 1 ,

[U1, U4] = [U2, U5] = [U3, U6] = 1 ,

[x1(a), x3(b)] = x2(T (a, b)) ,

[x3(a), x5(b)] = x4(T (a, b)) ,

[x1(a), x5(b)] = x2(−T (a', b)) · x3(a× b) · x4(T (a, b')) ,

[x2(t), x6(u)] = x4(tu) ,

[x1(a), x6(t)] = x2(−tN(a)) · x3(ta') · x4(t2N(a)) · x5(−ta) ,
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for all a, b ∈ J and all t, u ∈ F . We will denote the corresponding graph Ξ by

H(Ψ) = H(J, F, 3).

Theorem 4.20. (i) For every hexagonal system Ψ = (J, F, 3), the graph

H(Ψ) is a Moufang hexagon.

(ii) For every Moufang hexagon H, there exists a hexagonal system Ψ =
(J, F, 3) such that H ∼= H(Ψ).

Proof – Again, the proof of (i) is quite long, but does not impose any
serious difficulties. As far as (ii) is concerned, one starts by showing that all
root groups are abelian. The next step in the proof is to show that, up to
a relabeling of the root groups, the groups U2, U4 and U6 define a Moufang
triangle. It is then shown that the alternative division ring which parametrizes
this Moufang triangle is in fact a commutative field F . Now let J be an additive
group isomorphic to U1. After making a suitable choice for the parametrization
of all root groups U1, . . . , U6 and for a distinguished element 1 ∈ J , one defines
a map (t, a) 0→ ta from F × J to J , and functions N : J → F , M : J → F ,
3 : J → J , T : J × J → F and × : J × J → J by setting

[x1(a), x6(t)−1]5 = x5(ta) ,

[x1(a), x6(1)−1] = x2(N(a)) · x3(−a') · x4(M(a)) · x5(a) ,

[x1(a), x5(b)]3 = x3(a× b) ,

[x1(a), x3(b)] = x2(T (a, b)) ,

for all a, b ∈ J and all t ∈ F . It is then shown that the functions M and N are
identical, and that (J, F,N, 3, T,×, 1) is a hexagonal system as defined above.
Needless to say that the Shift Lemma 3.6 plays in important role again. See
[42, Chapter 29] for a detailed proof.

We will now describe six different examples of hexagonal systems.

4.4.1. Hexagonal Systems (E/F )◦ of Type 1/F

Let E/F be a field extension such that E3 ⊆ F . Thus either E = F , or
char(F ) = 3 and the extension E/F is purely inseparable. For all a ∈ E,
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let a' := a2. Then it is straightforward to check that (E,F, 3) is a hexagonal
system, with

N(a) = a3 , a× b = 2ab , T (a, b) = 3ab ,

for all a, b ∈ E. Such a hexagonal system will be denoted by (E/F )◦. These
are, up to isomorphism, the hexagonal systems of type 1/F .

Remark 4.16 - If char(F ) = 3, then T = 0, and F is a vector space over
E3. It is easy to show that (F,E3, 3), with t' := t2 for all t ∈ F , is again
a hexagonal system of type 1/F ; it is called the opposite of (E,F, 3). Such
hexagonal systems are called indifferent. Compare this with the notion of an
indifferent quadrangular system, which has similar properties; see Lemma 4.1.

4.4.2. Hexagonal Systems (E/F )+ of Type 3/F

Let E/F be a separable cubic field extension, and let L/F be the normal closure
of E/F . Let σ ∈ Gal(L/F ) be of order 3. Then the norm N and the trace T

of the extension E/F are given by

N(a) = aaσaσ2
, T (a) = a + aσ + aσ2

,

for all a ∈ E. Let a' := aσaσ2
, for all a ∈ E. Since a' = N(a)a−1 for all

a ∈ E∗, we do indeed have that a' ∈ E for all a ∈ E (note that aσ need not
lie in E for a ∈ E). It is not very hard to show that (E,F, 3) is a hexagonal
system, where N is precisely the norm of the extension E/F , and where

T (a, b) = T (ab) , a× b = (a + b)' − a' − b' = aσbσ2
+ aσ2

bσ ,

for all a, b ∈ E. Such a hexagonal system will be denoted by (E/F )+. These
are, up to isomorphism, the hexagonal systems of type 3/F .

4.4.3. Hexagonal Systems D+ of Type 9/F

Let E/F be a normal separable cubic field extension, let σ ∈ Gal(E/F ) be of
order 3, and let γ ∈ F ∗. Then we define D := (E,σ, γ) to be the subring of
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Mat3(E) consisting of the matrices of the form



a b c

γcσ aσ bσ

γbσ2
γcσ2

aσ2





for all a, b, c ∈ E. We identify E with its image under the map

a 0→




a 0 0
0 aσ 0
0 0 aσ2



 .

Then we have Z(D) = F , and D is a 9-dimensional algebra over F . If we set

y :=




0 1 0
0 0 1
γ 0 0



 ,

then every element in D can be written in a unique way in the form a+by+cy2

with a, b, c ∈ E; the multiplication in D is then completely determined by the
rules

y3 = γ ,

y · a = aσ · y ,

for all a ∈ E. Any algebra isomorphic to (E,σ, γ) for some E, σ and γ as above
is called a cyclic algebra of degree 3 over F .

Remark 4.17 - In a completely similar way, one can also define cyclic algebras
of any degree m ≥ 2, starting from a Galois extension E/F of degree m such
that the Galois group Gal(E/F ) is cyclic. Note that the cyclic algebras of
degree 2 over F are precisely the quaternion algebras over F .

Theorem 4.21. (E,σ, γ) is a division algebra if and only if γ *∈ N(E).

Proof – See, for example, [42, (15.8) and (15.28)].

Remark 4.18 - Every division algebra of degree three is cyclic; see [50].
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Now let N , T and 3 denote the determinant, the trace map and the adjoint
map, respectively, of Mat3(E), restricted to the subring D. We will also use
the notation T for the bilinear form given by T (u, v) := T (uv) for all u, v ∈ D.
Then we can express N , T and 3 in terms of the maps N , T and 3 which we
defined in paragraph 4.4.2 above, as follows.

(a + by + cy2)' = (a' − γbσcσ2
) + (γcσ' − aσ2

b) · y + (bσ2' − aσc) · y2 ,

N(a + by + cy2) = N(a) + γN(b) + γ2N(c)− γT (abσcσ2
) ,

T (a + by + cy2, d + ey + fy2) = T (a, d) + γT (bσ, fσ2
) + γT (cσ2

, eσ) ,

for all a, b, c, d, e, f ∈ E. In particular, we see that N(D) ⊆ F , T (D) ⊆ F and
D' ⊆ D.

Theorem 4.22. If γ *∈ N(E), then (D,F, 3) is a hexagonal system with norm

N and trace T as above; we will denote it by D+.

Proof – See [42, (15.27)].

These are, up to isomorphism, the hexagonal systems of type 9/F . We mention
one more fact which we will need below.

Theorem 4.23. Let D be a cyclic division algebra of degree three, and let

N , T and 3 denote the norm, trace and adjoint of D, respectively. Let α be

an automorphism or anti-automorphism of D, which might or might not act

trivially on the center Z(D). Then α commutes with N , T and 3.

Proof – See [42, (15.11)].

4.4.4. Hexagonal Systems J(D,F, γ) of Type 27/F

We will now describe a procedure to produce new hexagonal systems by gluing
together three copies of a known hexagonal system in an appropriate way. This
procedure is known as “the first Tits construction”.

Theorem 4.24. Let F be a field, and let A be either a field E such that E/F

is a separable cubic extension or a cyclic division algebra D of degree three

with center F . Let N , T and 3 be the norm, trace and adjoint associated with
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the pair (A,F ). Let γ be an element of F ∗ and let 3 denote the map from

A⊕A⊕A to itself given by

(a, b, c)' := (a' − bc, γ−1c' − ab, γb' − ca)

for all a, b, c ∈ A. If γ ∈ F \ N(A), then (A ⊕ A ⊕ A,F, 3) is an hexagonal

system with

1 = (1, 0, 0) ,

N(a, b, c) = N(a) + γN(b) + γ−1N(c)− T (abc) ,

T ((a, b, c), (d, e, f)) = T (a, d) + T (b, f) + T (c, e) ,

for all a, b, c, d, e, f ∈ A. We will denote this hexagonal system by J(A,F, γ).

Proof – See [42, (15.23)].

Now let D be a cyclic division algebra of degree 3 with center F and norm N ,
and let γ be an element of F \N(D). Then by Theorem 4.24, J(D,F, γ) will
be a hexagonal system of dimension 27 over F . These are, up to isomorphism,
the hexagonal systems of type 27/F .

Remark 4.19 - If we apply Theorem 4.24 in the case where A is a field E

such that E/F is a separable cubic extension, then we get back the hexagonal
systems of type 9/F in a different shape. The explicit isomorphism f from
E ⊕ E ⊕ E to D = (E,σ, γ) which induces an isomorphism from J(E,F, γ) to
D+ is given by

f(a, b, c) = a + bσ2
y + γ−1cσy2

for all a, b, c ∈ E.

4.4.5. Hexagonal Systems H(D+, τ) of Type 9K/F

We will now explain how to construct new hexagonal systems out of existing
ones, by considering the fixed point sets under certain involutions. These new
hexagonal systems will have the same dimension as the original ones.
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Definition 4.19. Let K be a commutative field, and let σ ∈ Aut(K) be

such that σ2 = 1. Let V be a vector space over K. A σ-involution of V is

an automorphism τ of V (as a vector space over F ) such that τ2 = 1 and

(av)τ = aσvτ for all a ∈ K and all v ∈ V .

Theorem 4.25. Let Ψ = (J, F, 3) be a hexagonal system, let σ ∈ Aut(K)
be of order 2, and let τ be a σ-involution of J . Let Fσ := FixF (σ) and let

Jτ := FixJ(τ), and suppose that τ commutes with 3. Then (Jτ , Fσ, 3) is a

hexagonal system, and dimFσ Jτ = dimF J . We will denote this hexagonal

system by H(Ψ, τ).

Proof – See [42, (15.30)].

Now let D be a cyclic division algebra of degree three over a commutative field
K, and let D+ = (J,K, 3) be the associated hexagonal system as defined in
paragraph 4.4.3. Let τ be an involution of D of the second kind, i.e. τ does
not act trivially on the center Z(D) = K; let F := FixK(τ). If we denote the
restriction of τ to K by σ, then it is clear that τ is a σ-involution of D (as
a vector space over K). By Theorem 4.23, τ and 3 commute, and hence we
can apply Theorem 4.25 to find a new hexagonal system H(D+, τ) = (Jτ , F, 3).
These are, up to isomorphism, the hexagonal systems of type 9∗/F . If we want
to emphasize the role of K = Z(D) in the construction, then we say that this
hexagonal system is of type 9K/F .

4.4.6. Hexagonal Systems H(J(D,K, γ), τ) of Type 27K/F

The hexagonal systems which we will now describe are sometimes constructed
by the so-called “second Tits construction”. We will use the approach of
Tits and Weiss in [42], however, which combines the methods of the previous
two paragraphs. Let F be a commutative field, and let K/F be a separable
quadratic extension. Let H(D+, τ) be a hexagonal system of type 9K/F . Thus
D is a cyclic division algebra of degree three over K, and τ is an involution of
D with FixK(τ) = F . Denote the norm map from D to K by N . Now suppose
that u is an element of FixD(τ) and that γ is an element of K \N(D) such that
N(u) = γγτ . Consider the hexagonal system Ψ = J(D,K, γ) as constructed in



46 De Medts and Van Maldeghem

Theorem 4.24. Then we can extend τ to D ⊕D ⊕D by setting

(a, b, c)τ := (aτ , cτu−1, ubτ )

for all a, b, c ∈ D. It is not very hard to show that τ and 3 commute; it then
follows from Theorem 4.25 that we get a hexagonal system H(J(D,K, γ), τ).
We then have that H(J(D,K, γ), τ) = (J, F, 3), where

J = FixD⊕D⊕D(τ) = {(a, b, ubτ ) | a ∈ FixD(τ), b ∈ D} .

These are, up to isomorphism, the hexagonal systems of type 27∗/F . If we want
to emphasize the role of K in the construction, then we say that this hexagonal
system is of type 27K/F . Our list of examples turns out to be complete:

Theorem 4.26. Let Ψ = (J, F, 3) be an arbitrary hexagonal system, and let

d := dimF J . Then one of the following holds.

(i) Ψ is indifferent, of type 1/F .

(ii) d = 1, and Ψ is of type 1/F .

(iii) d = 3, and Ψ is of type 3/F .

(iv) d = 9, and Ψ is of type 9/F or of type 9∗/F , but not both.

(v) d = 27, and Ψ is of type 27/F or of type 27∗/F .

Remark 4.20 - In case (v), there exist examples which are of type 27/F but
not of type 27∗/F , other examples which are of type 27∗/F but not of type
27/F , and yet others which are of type 27/F and of type 27∗/F .

Remark 4.21 - The cases 9/F and 27/F are often referred to as first Tits con-

structions, and the cases 9∗/F and 27∗/F as second Tits constructions, even if
they are not explicitly constructed in this way. A hexagonal system which is of
type 27/F but not of type 27∗/F is also called a pure first Tits construction,
and a hexagonal system which is of type 27∗/F but not of type 27/F is called
a pure second Tits construction.

Again, we will only give an outline of the proof of this classification result.
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Definition 4.20. Let Ψ = (J, F, 3) be a hexagonal system. A substructure of

Ψ is a subspace of J containing 1 which is closed under 3.

Theorem 4.27. Let Ψ = (J, F, 3) be an arbitrary hexagonal system.

(i) If J *= F , then either T = 0, in which case Ψ is an indifferent hexagonal

system of type 1/F , or Ψ contains a substructure (E,F, 3) of type 3/F .

(ii) Let E be a substructure of Ψ such that (E,F, 3) is of type 3/F . If J *= E,

then there exists a substructure B of Ψ such that (B,F, 3) is of type 9/F

or of type 9K/F for some separable quadratic extension K/F .

(iii) Let B be a substructure of Ψ such that (B,F, 3) is of type 9/F . If

J *= B, then there exists a substructure A of Ψ such that (A,F, 3) is of

type 27/F .

(iv) Let B be a substructure of Ψ such that (B,F, 3) is of type 9K/F for

some separable quadratic extension K/F . If J *= B, then there exists a

substructure A of Ψ such that (A,F, 3) is of type 27K/F .

(v) Let A be a substructure of Ψ such that (A,F, 3) is of type 27/F or of

type 27K/F for some separable quadratic extension K/F . Then J = A

and Ψ = (A,F, 3).

Remark 4.22 - Observe the striking similarities with Theorem 4.6. We also
mention that every cubic norm structure (J, F, 3) is “cubic over F” in the
following way. Set x2 := T (x, 1)x− x' × 1 and x3 := T (x, x)x− x' × x for all
x ∈ J . Then any element x ∈ J satisfies the cubic equation

P (x) = x3 − T (x)x2 + T (x')x−N(x)1 = 0 .

There are very natural reasons to define x2 and x3 in this way, but we cannot
go into detail here. See, for example, [10, §38] for more details.

For more details about Moufang hexagons and about hexagonal systems, we
refer the reader to [42, Chapters 15, 29 and 30].

4.5. Moufang octagons

Moufang octagons were classified by Tits in the seventies and published in
1983, see [40]. A similar phenomenon as for hexagons occurs here; there is a
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subsystem of the root group system of a Moufang octagon that parametrizes a
Moufang quadrangle (of indifferent type). This motivated Tits in 1974 to write
a preprint (which never got published) about the classification of Moufang
quadrangles of indifferent type (related to groups of mixed type).

Definition 4.21. An octagonal set is a pair (K, σ), where K is a commutative

field of characteristic 2 and where σ is an endomorphism of K such that σ2

is the Frobenius map x 0→ x2. Such an endomorphism σ is called a Tits
endomorphism.

Definition 4.22. For each octagonal set (K, σ), we define a group K(2)
σ with

underlying set K ×K, and with group operation given by

(s, u) · (t, v) := (s + t + uσv, u + v) ,

for all t, u, s, v ∈ K, and with neutral element (0, 0). It is straightforward to

check that this is indeed a group; the inverse is given by (t, u)−1 = (t+u1+σ, u)
for all t, u ∈ K. The group K(2)

σ is not abelian unless |K| = 2, in which case

K(2)
σ is the cyclic group of order 4.

Remark 4.23 - If (K, σ) is an octagonal set, then (K, K,Kσ) is an indifferent
set, since K2 = (Kσ)σ.

Definition 4.23. Let ∆ = (K, σ) be an octagonal set. Let U1, U3, U5 and

U7 be four groups isomorphic to the additive group of the field K, and let U2,

U4, U6 and U8 be four groups isomorphic to K(2)
σ . Again, we will denote the

corresponding isomorphisms by xi for each i ∈ {1, 2, . . . , 8}; we say that U1, U3,

U5 and U7 are parametrized by K and that U2, U4, U6 and U8 are parametrized

by K(2)
σ . For each i ∈ {2, 4, 6, 8}, we set

xi(t) := xi(t, 0) ,

yi(u) := xi(0, u) ,

for all t, u ∈ K, and we set

Vi := {xi(t) | t ∈ K} ;
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observe that Vi = Z(Ui) if |K| > 2. We now implicitly define the group

U+ = U[1,8] as follows. Let S be the set consisting of the following relations:

[U1, U2] = 1, [U1, V4] = 1, [V2, U4] = 1,

[U1, U3] = 1, [U1, U5] = 1, [U2, U6] = 1,

[x1(t), y4(u)] = x2(tu) ,

[x1(t), x6(u)] = x4(tu) ,

[x1(t), y6(u)−1] = x2(tσu) · x3(tuσ) · x4(tuσ+1) ,

[x1(t), x7(u)] = x3(tσu) · x5(tuσ) ,

[x1(t), x8(u)] = x2(tσ+1u) · x3(tσ+1uσ) · y4(tσu) · x5(tσ+1u2)

· y6(tu)−1 · x7(tuσ) ,

[x1(t), y8(u)−1] = y2(tu) · x3(tσ+1uσ+2) · y4(tσuσ+1)−1 · x5(tσ+1u2σ+2)

· x6(tσ+1u2σ+3) · x7(tuσ+2) ,

[y2(t), y4(u)] = x3(tu) ,

[x2(t), x8(u)] = x4(tσu) · x5(tu) · x6(tuσ) ,

[x2(t), y8(u)−1] = x3(tu) · x4(tσuσ+1) · x6(tuσ+2) ,

[y2(t)−1, y8(u)−1] = x3(tσ+1u) · y4(tσu)−1 · y6(tuσ) · x7(tuσ+1) ,

for all t, u ∈ K. Let J := {1, . . . , 16}. Let τ1 be the permutation of J which

maps each x ∈ J to the unique element y ∈ J satisfying y ≡ x + 2 (mod 16);
let τ2 be the permutation of J which maps each x ∈ J to the unique element

y ∈ J satisfying y ≡ −x (mod 16). Let N := 〈τ1, τ2〉. For each relation r ∈ S
and each permutation ρ ∈ N , we define rρ to be the relation we get by replacing

every index i occurring in r by iρ. We thus get a set of relations

S0 := {rρ | r ∈ S, ρ ∈ N, and rp has all its indices in {1, . . . , 8}} .

This set S0 has a unique extension to a set of commutator relations involving

[ai, aj ] for all i, j ∈ J with i < j and all ai ∈ Ui and aj ∈ Uj such that the

conditions (Ak), (Bk) and (Ck) hold, for all k ∈ {2, . . . , 7}. Let Ξ be the graph

defined by these relations. We will denote this graph Ξ by O(∆) = O(K, σ).

Theorem 4.28. (i) For every octagonal system ∆ = (K, σ), the graph

O(∆) is a Moufang octagon.
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(ii) For every Moufang octagon O, there exists an octagonal system ∆ =
(K, σ) such that O ∼= O(∆).

Proof – Again, (i) is a lengthy calculation. For (ii), one first shows that,
up to a relabeling of the root groups, the groups U1, U3, U5 and U7 define an
indifferent Moufang quadrangle. Using the fact that there is an automorphism
of order 2 which maps Ui to U8−i for each i ∈ {1, 3, 5, 7}, we can deduce that
there exists an octagonal set (K, σ) and an isomorphism t 0→ xi(t) from the
additive group of K to Ui such that

[x1(t), x7(u)] = x3(tσu) · x5(tuσ)

for all t, u ∈ K. Now one still has to do a lot of work to recover the structure
of the group K(2)

σ , and finally to deduce the commutator relations mentioned
above. Since this is rather technical, we do not want to go into detail here. We
refer to [42, Chapter 31] for the details.

There is no need for a classification of octagonal systems, since their description
is very simple. We will only mention that not every commutative field of
characteristic two admits a Tits endomorphism. For example, if K is finite,
then K has a Tits endomorphism if and only if the order of K is an odd power
of 2.

5. Split BN-pairs of rank 2

A lot of examples of generalized polygons arise from groups with a BN-pair
of rank 2 (or a Tits system of rank 2). In fact, there exist groups with a BN-
pair of rank 2 giving rise to non-Moufang generalized polygons. Examples of
these are given in [37]. In the finite case, Fong and Seitz consider a natural
group-theoretic condition (*) on a group with a BN-pair and prove that this
condition is essentially equivalent with the Moufang condition on the associated
generalized polygon (although they do not mention geometry; the translation
was first made by Tits). Results of Tits [41] imply that every group with a
BN-pair arising from a Moufang polygon satisfies condition (*). However, the
converse is much harder to see, but provides a purely group theoretic approach
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to Moufang polygons. We give precise definitions and state the main result.
Let G be a group, and let B,N be two subgroups of G. Then (B,N) is called a
BN-pair in G, and G is called a group with a BN-pair if the following properties
are satisfied.

(BN1) The group G is generated by B and N . In symbols 〈B,N〉 = G;

(BN2) The intersection H := B∩N is a normal subgroup of N , and W := N/H

is a Coxeter group with distinct generators s1, s2, . . . , sn;

(BN3) BsBwB ⊆ BwB ∪BswB whenever w ∈ W and s ∈ {s1, s2, . . . , sn};

(BN4) sBs *= B for all s ∈ {s1, s2, . . . , sn}.

The group B, respectively W , is a Borel subgroup, respectively the Weyl group,
of G. The natural number n is called the rank of the BN-pair; in our case, the
rank (which corresponds to the rank of the associated building) is always 2. In
that case, the Weyl group N/(B∩N) is a dihedral group of size 2m for some m

(possibly infinite, but we will only be interested in finite m), and the associated
building is a generalized m-gon Γ(G), which can be constructed as follows.
Suppose m > 2. It is well known that G contains exactly 2 maximal subgroups
P1, P2 containing B, which are called maximal parabolics. The generalized
polygon Γ(G), viewed as a graph, has as vertex set the set of right cosets of P1

together with the right cosets of P2. Adjacency is defined by intersecting non-
trivially. Condition (BN4) assures that Γ(G) is a thick generalized m-gon. The
automorphism group of the generalized m-gon Γ(G) acts transitively on the set
of apartments of Γ, and the stabilizer of an apartment Σ acts transitively on
the set of flags contained in Σ. Note that G does not necessarily act faithfully
on Γ(G). Conversely, let Γ be a generalized n-gon, admitting a group G acting
transitively on the set of apartments of Γ, and such that the stabilizer of an
apartment Σ acts transitively on the set of flags contained in Σ. Let F be a
flag in Σ and put B := GF and N = GΣ. Then (B,N) is a BN-pair in G

and Γ(G) is isomorphic to Γ. Hence groups with BN-pairs with finite dihedral
Weyl groups are equivalent to generalized polygons admitting automorphism
groups with the transitivity properties mentioned above (we exclude here the
rather uninteresting case of generalized digons by requiring that the dihedral
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group has order at least 6) . These transitivity properties are satisfied by the
Moufang polygons. Consequently all Moufang polygons give rise to groups
with a BN-pair of rank 2. The converse is not true, as we will also see later
on (see Section 7). However, the following purely group theoretic property
characterizes the Moufang polygons amongst the others.

(*) There is a subgroup U of B such that (1) U ! B, (2) UH = B, and (3)
U is nilpotent.

If the BN-pair (B,N) in G satisfies (*), then we say that it is a split BN-pair.
The following result is proved in [28, 29, 26].

Theorem 5.1. Let G be a group with a split BN-pair. Then Γ(G) is a Moufang

polygon and the group G/K, with K the kernel of the action of G on Γ(G),
contains all root elations.

The proof is very geometric and essentially plays around with commutators.
The nilpotency of the group U is only used at a few (but essential) places in
the proof. It is conjectured that the group U is unique (Note added in proofs:
this is now proved by F. Haot, K. Tent and the authors).

6. (Half) k-Moufang polygons

The case of Moufang quadrangles plays a special role, as already remarked.
First of all because it is by far the most complicated and rich one, but also
because it comes right after the case of projective planes from a graph-theoretic
point of view. It allows some elegant characterizations and reformulations of
the Moufang condition. We state the conditions in general, however. Let Γ be a
generalized n-gon, n ≥ 3. Let 2 ≤ k ≤ n. Let γ = (x0, x1, . . . , xk) be a k-path,
and let γ = (x1, x2, . . . , xk−1) be the (k − 2)-path obtained from γ by deleting
the extremities. We say that γ is a Moufang path if the group G[1]

x1,x2,...,xk−1

acts transitively on the set of apartments containing γ. One can check easily
that this definition is independent of γ. If all (k− 2)-paths are Moufang paths,
then we say that Γ is a k-Moufang polygon, or that Γ satisfies the k-Moufang

condition. For k = n, this amounts to the usual Moufang condition. Note that
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for k even, there are two kinds of (k − 2)-paths. One whose extremities are
points, and one whose extremities are lines. If all paths of one kind are Moufang
paths, then we say that Γ is a half k-Moufang polygon. For k = n, we simply
say that Γ is half Moufang. From a geometric and permutation group theoretic
point of view, the 3-Moufang condition is a very natural generalization of the
Moufang condition for projective planes. Indeed, it is the minimal k for which
the groups G[1]

x1,...,xk−1 act semi-regularly on the set of apartments containing
γ (with above notation). It is also easily seen that every k-Moufang n-gon is a
k′-Moufang n-gon, for 2 ≤ k′ ≤ k ≤ n. Hence the natural question whether a
k-Moufang n-gon is also a k′-Moufang n-gon, for 3 ≤ k < k′ ≤ n. In [44], it is
mentioned that, whenever k ≥ 3 and Γ is finite, then the k-Moufang condition
is equivalent with the Moufang condition. Also, in general, if n > k ≥ 4, then
k-Moufang implies (k+1)-Moufang. For generalized quadrangles and projective
planes, we have the following results.

Theorem 6.1. A projective plane is a Moufang plane if and only if it is a half

2-Moufang projective plane.

Proof – See [48].

Theorem 6.2. A generalized quadrangle is a Moufang quadrangle if and only

if it is a half Moufang quadrangle.

Proof – The finite case was first proved in 1991, see [33]. The general
case is handled in [27]. A short proof is contained in [15].

Theorem 6.3. A generalized quadrangle is a 2-Moufang quadrangle if and

only if it is a 3-Moufang quadrangle if and only if it is a 4-Moufang quadrangle

(which is the same thing as a Moufang quadrangle).

Proof – For finite generalized quadrangles, it is shown in [49] that 3-
Moufang is equivalent with 4-Moufang. In [45] it is shown that the 2-Moufang
condition is equivalent to the 3-Moufang condition. Finally, in [15] the theorem
is proved in full generality.

Theorem 6.4. A finite generalized quadrangle is a half 2-Moufang quadrangle

if and only if it is a Moufang quadrangle.
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Proof – This is the main result of [34].

Note that the previous result is proved without using the classification of finite
simple groups. Otherwise much stronger theorems are possible, see Section 5.7
in [44].

7. Transitivity and Regularity

The results referred to at the very end of the previous section contain,
among others, a complete classification of finite groups with a BN-pair of rank
2 which act faithfully on the corresponding generalized polygon. But even with-
out the aid of the classification of finite simple groups, transitivity assumptions
on finite polygons can lead to characterizations. For instance, it is well known
that a projective plane the collineation group of which acts doubly transitively
on the point set is necessarily a Pappian plane (Ostrom & Wagner [17]). Also,
a finite generalized n-gon admitting a group acting transitively on the set of
ordinary (n + 1)-gons, and such that the stabilizer of such an (n + 1)-gon acts
transitively on the flags contained in it, is necessarily a Moufang polygon (see
[30, 43]). In the general (infinite) case, these results certainly do not have a
direct analogue, as the following result — which provides BN-pairs for every
finite dihedral Weyl group! — asserts.

Theorem 7.1. For all n > 2, there exists a generalized n-gon admitting a

group acting transitively on the family of ordinary (n + 1)-gons, and such that

the stabilizer of such an (n + 1)-gon acts transitively on the flags contained in

it.

Proof – This is the main result of [25].

The examples of the above theorem have transitivity properties that even the
Moufang polygons do not have. For instance, for projective planes, the stabi-
lizer of a line acts 6-transitively on the set of points incident with that line!
This kind of transitivity is impossible in any Moufang plane. The extra con-
dition that seems to be able to tame the wild examples is regularity. If one
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hypothesizes a regular action of a collineation group on a certain set, then in-
volutions come into play, and in particular if the diameter is odd, these are
very restricted.

Lemma 7.1. Let Γ = (P,L, I) be a (thick) generalized (2m + 1)-gon, and

suppose that θ is an involutive automorphism of Γ. Let Pθ and Lθ be the set

of points and lines, respectively, fixed by θ. Denote by Iθ the restriction of I
to Pθ × Lθ. Then one of the following possibilities occurs.

(i) There is a point x ∈ P and there is a line L ∈ L with xIL such that

Pθ = Γ≤n(x) and Lθ = Γ≤n(L).

(ii) The substructure Γθ = (Pθ,Lθ, Iθ) is a thick generalized (2m + 1)-gon

with the additional property that every element of Γ is at distance at

most m from some element of Γθ.

(iii) The substructure (Pθ,Lθ, Iθ) is a non-thick weak generalized (2m + 1)-
gon with the additional property that every element of Γ is at distance

at most m from some element of Γθ. The latter implies in particular that

Γθ contains thick elements and that for every thick element x of Γθ we

have Γx = (Γθ)x.

Proof – See Theorem 3.2 of [47].

This lemma implies that no generalized (2m + 1)-gon can admit a collineation
group acting regularly on (ordered) paths of some fixed even length 2k ≤ 2m,
k > 0, starting with a point. But we can do better.

Theorem 7.2. Suppose Γ is a generalized (2m + 1)-gon and let G be a group

of collineations of Γ with the following property. The stabilizer in G of any

ordinary (2m + 2)-gon γ acts faithfully on the point set of γ, permutation

equivalent to the natural action of a dihedral group of order 4m + 4. Then

Γ is a Pappian projective plane and G is the corresponding projective general

linear group.

Proof – This is a reformulation of the main result of [48].
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The previous result in particular yields a classification of all generalized
(2m + 1)-gons admitting a collineation group acting regularly on the set of
ordered pairs (F, γ), where F is a flag and γ is an ordinary (2m + 2)-gon con-
taining F . There is an obvious gap between the previous theorem and the
assertion mentioned just before it. The next theorem takes care of that.

Theorem 7.3. Suppose Γ is a generalized (2m + 1)-gon and let G be a group

of collineations of Γ with the following property. The stabilizer in G of any

apartment Σ acts faithfully on the point set of Σ, permutation equivalent to

the natural action of a dihedral group of order 4m + 2. Then Γ is isomorphic

to the Pappian projective plane parametrized by the field of two elements and

G is the corresponding projective general linear group PGL3(2).

Proof – For m > 1, the nonexistence of such Γ was shown, under slightly
less general conditions, in [46]. The case m = 1 (the projective planes) is treated
in [14]. It is worthwhile to notice that this proof is completely different from the
other proofs. It uses group theory in a rather peculiar way. Firstly, one shows
that there is an involution interchanging two given points a, b, and that every
such involution fixes a unique point on the line ab joining a and b. Secondly,
one shows that this point is independent of the involution and we denote it by
a+ b. This defines a binary symmetric operation “+”. Thirdly, one shows that
three non-collinear points a, b, c are contained in a unique subplane containing
exactly 7 points, and the point (a+b)+c is the unique point of that subplane not
on one of the lines ab, bc, ca. This implies the associative law for non-collinear
points. A standard trick establishes associativity in general, and hence we
obtain a group by adding an identity element 0 and putting a + a = 0, for all
points a. But then we explore associativity of three collinear points to prove
that every line is incident with at most three points as follows. Let a + b = c,
with a *= b, and suppose d /∈ {a, b, c} is a point on the line ab. Let e be the
image of d under an arbitrarily chosen involution θ switching a and b. Let σ be
an involution switching a and d. Then the involution σθ switches b and e, and
(b+e)θ−1σθ = b+e, implying that (b+e)θ−1

is fixed under σ. So b+e = (a+d)θ,
by definition, and consequently a + d + b + e = (a + d) + (a + d)θ = c. We
deduce c = a + b + d + e = c + c = 0, a contradiction.
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The previous results all heavily rely on Lemma 7.1, which has no counterpart
for generalized 2m-gons. However, we have the following result.

Theorem 7.4. Suppose that Γ is a generalized 2m-gon, with m ∈ {2, 3} and let

G be a group of collineations of Γ with the following property. The stabilizer

in G of any ordinary (2m + 1)-gon γ acts faithfully on the point set of γ,

permutation equivalent to the natural action of a dihedral group of order 4m+2.

Suppose also that there is some duality normalizing G. Then Γ is isomorphic to

a Moufang quadrangle or hexagon of indifferent type. In particular the previous

conditions are satisfied if there is a group H of collineations and dualities with

the property that the stabilizer in H of any ordinary (2m + 1)-gon γ acts

faithfully on the set of 4m + 2 points and lines of γ, permutation equivalent to

the natural action of a dihedral group of order 8m + 4.

Proof – See [46]. An explicit list of all possibilities can be extracted
from 7.3.2 and 7.3.4 of [44]; in the case of quadrangles, the root groups are
parametrized by fields.

Clearly, these results are waiting to be improved and generalized.

8. Characterizations of isomorphisms

Recall that an isomorphism between two generalized polygons is a bijection
ϕ between the vertices of the corresponding graphs such that ϕ and ϕ−1 pre-
serve the distance between vertices. Of course, this is equivalent to requiring
that both ϕ and ϕ−1 preserve adjacency of vertices. From a geometric point of
view, it is sometimes more convenient to check whether a given bijection and
its inverse preserve collinearity of pairs of points. In general, it seems natural
to study bijections that preserve a certain fixed (even) distance between points,
or a certain fixed (odd) distance between a point and a line. In this section, we
denote by δ(x, y) the graph theoretical distance between two vertices (or two
elements — points and lines — of a generalized polygon) x, y. Also, we call a
thick generalized polygon slim if some element is incident with exactly three
elements.
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Theorem 8.1.

(i) Let Γ and Γ′ be two generalized n-gons, n ≥ 4, let i be an even integer

satisfying 1 ≤ i ≤ n − 1, and let α be a surjective map from the point

set of Γ onto the point set of Γ′. Furthermore, suppose that both Γ and

Γ′ are either slim or non-slim. If for every two points a, b of Γ, we have

δ(a, b) = i if and only if δ(aα, bα) = i, then α extends to an isomorphism

from Γ to Γ′.

(ii) Let Γ and Γ′ be two generalized n-gons, n ≥ 2, let i be an odd integer

satisfying 1 ≤ i ≤ n− 1, and let α be a surjective map from the point set

of Γ onto the point set of Γ′, and from the line set of Γ onto the line set of

Γ′. Furthermore, suppose that both Γ and Γ′ are either slim or non-slim.

If for every point-line pair {a, b} of Γ, we have δ(a, b) = i if and only if

δ(aα, bα) = i, then α extends to an isomorphism from Γ to Γ′.

Proof – This is the main result of [13].

Of course, it follows rather easily that the same conclusion holds for all i = n ∈
{3, 4}. We now discuss some counterexamples, for i = n. Let Γ be isomorphic
to a Moufang hexagon parametrized by a hexagonal systems (E/F )◦ of type
1/F , with E = F . Such a hexagon is called a split Cayley hexagon in [44], and
it has a representation on a non-singular quadric of maximal Witt index in 6-
dimensional projective space. The points of Γ are all points of the quadric, and
the lines of Γ are some lines of the quadric. This representation has the property
that any pair of points of the quadric are collinear (on the quadric) if and only
if these points, as points of the hexagons, are at distance 2 of 4 from each other.
Hence, if we consider an automorphism ϕ of the quadric that does not preserve
the set of lines of the hexagon Γ, then ϕ and its inverse preserve distance 6 of
points, but not collinearity. In fact, these are the only known counterexamples,
and hypothesizing a certain transitivity of the collineation group of a hexagon
or octagon, one can show that there are no other counterexamples.

Theorem 8.2. Let Γ and Γ′ be two generalized n-gons, n ∈ {6, 8}, and suppose

that Γ′ has an automorphism group acting transitively on the set of pairs of

points at mutual distance n−2 (this is in particular satisfied if Γ′ is a Moufang
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n-gon, or if Γ′ arises from a BN -pair). Suppose there exists a bijection α from

the point set of Γ to the point set of Γ′ such that, for any pair of points a, b

of Γ, we have δ(a, b) = n if and only if δ(aα, bα) = n. If α does not arise from

an isomorphism, then Γ ∼= Γ′ is isomorphic to some split Cayley hexagon and

for any isomorphism β : Γ → Γ′, the permutation of the points of Γ defined by

αβ−1 arises as in the example above.

Proof – See [13].

Some further applications of these results can be found in [13]. The line graph

(V ′, E′) of a given graph (V,E) is the graph with vertex set V ′ = E, and two
elements of V ′ form an edge (a member of E′) if, viewed as elements of E, they
share a vertex (in V ). It is well known that the line graph of a given graph
uniquely determines the original graph. Hence every automorphism of the line
graph of (the incidence graph of) a generalized polygon defines a collineation
of the polygon. In other words, a permutation θ of the flags of a generalized
polygon such that both θ and θ−1 map adjacent flags onto adjacent flags de-
termines a unique collineation of the generalized polygon inducing the given
permutation on the set of flags. Hence it is natural to ask whether a bijection
α between the flag sets of two generalized polygons such that α and α−1 both
preserve a certain distance, is induced by an isomorphism. The complete an-
swer is given by the following result, where this time δ is the distance map in
the line graph of the incidence graph of the appropriate generalized polygon.

Theorem 8.3. Let Γ and Γ′ be two generalized n-gons, n ≥ 2, let i be an

integer satisfying 1 ≤ i ≤ n, and let α be a surjective map from the set of flags

of Γ onto the set of flags of Γ′. Furthermore, suppose that both Γ and Γ′ are

either slim or non-slim. If for every two flags f, g of Γ, we have δ(f, g) = i if

and only if δ(fα, gα) = i, then α arises from an isomorphism or a duality from

∆ to ∆′, except possibly when ∆ and ∆′ are both isomorphic to the unique

generalized quadrangle with three points per line and three lines per point.

Proof – This is the main result of [12].

We now describe the unique exception, because it provides a rather unusual
view on the smallest Moufang quadrangle Γ with 15 points, 15 lines and 45
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flags. Let Φ be the projective line over the field GF(9) of 9 elements. So
Φ = GF(9) ∪ {∞}. Then the set of flags of Γ is the set of (unordered) pairs
of elements of Φ. Two flags are adjacent if and only if the corresponding pairs
are disjoint and harmonic (meaning that the cross ratio is equal to −1). Now
one deduces that two flags are at distance 2 if and only if the corresponding
pairs are disjoint and the cross ratio belongs to GF(9) \GF(3) and is a square
in GF(9); two flags are at distance 4 if and only if the corresponding pairs are
disjoint and the cross ratio is a non-square of GF(9). Hence two flags are at
distance 3 from each other if the corresponding pairs are not disjoint. This is
the only relation out of the four just mentioned that can be preserved by a
permutation not belonging to PΓL2(9), and that permutation cannot preserve
the other relations, establishing a counterexample.

9. Natural embeddings of Moufang polygons

9.1. Generalized quadrangles

The Moufang quadrangles of quadratic form type, of involutory type and
of pseudo-quadratic form type can all be represented in some projective space
in a natural way. Basically one adds four dimensions to the vector space V0 of
a given form to create a form of Witt index 2 in some vector space V . Then
the geometry of 1-dimensional and 2-dimensional totally isotropic subspaces
of V provides a representation of the Moufang quadrangle in question in the
projective space PG(V ) arising from V . Such a representation is generally
called an embedding. Formally, a generalized polygon Γ is laxly embedded in a
projective space PG(V ) if there is an injective mapping ρ from the point set of
Γ into the point set of PG(V ) such that the image generates PG(V ), and such
that the set of points incident with a line of Γ are mapped onto a set of points
incident with some line of PG(V ). We also require that the thus induced map
from the line set of Γ to the line set of PG(V ) is injective. The adjective “lax”
refers to the fact that no specific assumptions are required. However, without
additional assumptions, the classification of laxly embedded quadrangles seems
hopeless. We now introduce the following condition.



Moufang Generalized Polygons 61

(POL) For each point x of Γ, the set of points {yρ : y ⊥ x} does not generate
the whole space PG(V ).

A lax embedding of a generalized quadrangle satisfying (POL) will be called a
polarized embedding. All the above mentioned examples are polarized. There
are two ways to produce more examples of polarized embedded Moufang quad-
rangles. First of all, one can consider a given embedding in PG(V ), where V is
a vector space over a skew field F, and extend the skew field F to a skew field F′.
The vector space V is extended to a vector space V ′ over F′. We obtain a lax
embedding in PG(V ′). Secondly, any subquadrangle of an embedded Moufang
quadrangle is also laxly embedded, possibly in a subspace. Notice that there
are examples of lax embeddings of Moufang quadrangles that arise in this way,
but cannot be obtained in the way described in the previous paragraph (for
instance, consider a Moufang quadrangle of involutory type over a quaternion
division algebra H with center K. Then restricting one type of root groups to
a 3-dimensional subspace of H over K yields an embedding of a Moufang quad-
rangle whose dual is of quadratic form type). There is one additional example
that should be mentioned. Consider the Moufang quadrangle of quadratic form
type arising from the 1-dimensional quadratic form x 0→ x2 over an arbitrary
field K. Then Γ can also be seen as the geometry of totally isotropic subspaces
of a non-degenerate symplectic form in a 4-dimensional vector space V over
K. These subspaces define an embedding of Γ in PG(V ), which cannot be
obtained with the methods above. The quadrangle Γ is therefore also called a
symplectic quadrangle and denoted W(K). An example is the smallest gener-
alized quadrangle W(2) with 15 points and 15 lines. We present an alternative
construction below (see also the paper “Slim and bislim geometries” in the
present volume). Every Moufang quadrangle of indifferent type is a subquad-
rangle of some symplectic quadrangle, hence applying the above method, we
see that every Moufang quadrangle of indifferent type admits lax embeddings,
which are also polarized (the latter is not trivial to see). The next result says
that almost all polarized embedded generalized quadrangles are Moufang quad-
rangles embedded as described in this section. There is only one exception, and
it is related to the symplectic quadrangle W(2).

Theorem 9.1. Let Γ be any thick generalized quadrangle admitting a polar-
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ized embedding in some projective space PG(V ), where V is a vector space over

some skew field F. Then Γ is a Moufang quadrangle of quadratic form type, of

indifferent type, of involutory type, or of pseudo-quadratic form type and either

the embedding arises as described above, or Γ is isomorphic to W(2), the skew

field F has characteristic different from 2, the space V is 5-dimensional over F,

and the polarized embedding is unique up to a projective transformation. In

either case, every collineation of Γ generated by root elations is induced by a

collineation of the projective space PG(V ).

Proof – This is a combination of the main results of [22] and [23].

The polarized embedding of W(2) in a 4-dimensional projective space over a
field of characteristic different from 2 is described in detail in the paper “Slim
and bislim geometries” in this volume.

9.2. Generalized hexagons

The Moufang hexagons of type 1/F and 3/F arise from some triality, see
2.4 in [44]. These hexagons are called split Cayley, mixed and twisted triality,

of type 6D4, respectively in [44]. The triality guarantees a representation of
the hexagon Γ in some projective space of dimension 7, possibly contained in
a hyperplane. In fact, a lax embedding ρ arises with the following properties.

(POL) For each point x of Γ, the set of points {yρ : δ(x, y) < 6} does not generate
the whole space PG(V ).

(FLA) For each point x of Γ, the set of points {yρ : y ⊥ x} is contained in a
plane of PG(V ).

An embedding satisfying (POL) is a polarized embedding ; one satisfying (FLA)
is a flat embedding. The split Cayley hexagons all admit a natural polarized
flat embedding in 6-dimensional projective space (and the image under ρ of the
point set is the point set of a non-degenerate quadric of maximal Witt index);
if the characteristic of the underlying field is equal to 2, then this quadric has a
nucleus and projecting from that nucleus yields a polarized flat embedding in
projective 5-space. The Moufang hexagons of indifferent type are subhexagons
of a split Cayley hexagon in characteristic 3, hence they also admit a polarized



Moufang Generalized Polygons 63

and flat embedding in projective 6-space. Finally, all hexagons of type 3/F

admit a polarized and flat embedding in projective 7-space over their ground
field (in case of a normal extension, this embedding is explicitly described in
[44], 3.5.8; in the other case an embedding over a slightly bigger field is given
in [44], 3.5.9). For a while, it was conjectured that the above were the only
polarized flat embeddings of generalized hexagons. This turned out almost to
be true. But there are further examples, all related to the Moufang hexagons
of indifferent type (called mixed type in [44]). More exactly, one can show the
following theorem.

Theorem 9.2. Let Γ be a generalized hexagon laxly embedded in some pro-

jective space PG(V ), where V is a vector space over some skew field F. If the

embedding is both flat and polarized, then Γ is isomorphic to either a split

Cayley hexagon, a triality hexagon, or a mixed hexagon, and all root elations

are induced by (linear) automorphisms of PG(V ). If Γ is isomorphic to a split

Cayley hexagon or a triality hexagon, then the embedding arises as above from

a triality, possibly followed by a (skew) field extension as in the previous sub-

section. On the other hand, for each mixed hexagon Γ there exists a vector

space U over some field K and a projectively unique embedding of Γ in PG(U)
(called the universal embedding; it has the additional property that every point

of PG(U) on the image of every line of Γ is the image of a point of Γ) such

that for any given embedding of Γ in PG(V ), with V a vector space over some

field F as above, there is a subfield K′ of F isomorphic to K (hence we may

view U as a vector space over K′ and tensor this with F to obtain a vector

space UF over F) and a subspace W of UF such that UF/W is isomorphic to V

(as a vector space) and such that the canonical image of Γ in PG(UF/W ) is

projectively equivalent to the given embedding of Γ in PG(V ).

Proof – See [24].

In the previous theorem, the dimension of the vector space U can be very big, in
fact sometimes infinite. More precisely, if Γ corresponds to a hexagonal systems
(E/F )◦ of type 1/F , then the dimension of U is 7 more than the cardinality of a
minimal set of elements of E generating together with F the field E (as a field
itself). The situation is very satisfying with regard to flat polarized embed-



64 De Medts and Van Maldeghem

dings of hexagons. Not even the two smallest hexagons with 63 points admit
exceptional such embeddings. When the condition (FLA) is dropped, however,
then these two admit polarized embeddings in 13-dimensional projective space
over any field, see the paper “Slim and bislim geometries” in this volume. But
then we are not able anymore to classify. Notice that in the finite case, the
dual split Cayley hexagons Γ admit a unique lax embedding in a projective
13-space over the field of q elements, where Γ has valency q + 1, see [32].

9.3. Generalized octagons

Concerning generalized octagons, there does not yet exist a classification re-
sult. The Moufang octagons admit a polarized embedding in a 25-dimensional
projective space over their ground field. This embedding is obtained by consid-
ering the representation of a so-called metasymplectic space (which is basically
a point-line structure arising from a building of type F4). This embedding of
octagons has not yet been studied in the literature and very little is known.
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