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1. Introduction

Preliminary note. In this paper, we try to tell a coherent story without
interruptions due to formal definitions. If not mentioned in the text, these
will be placed in separate boxes usually near the places where they are first
used. Concerning references, we have included some precise ones to refer to
the original results in the literature. For the general notions on geometries a
good reference is [4]. The information on eigenvalues of adjacency matrices of
graphs in Section 5 is obtained from [3]. Also, the paper of Gropp [7] was used
for information about some history of configurations.

Incidence Geometry is essentially a study of sets with an additional struc-
ture either made obvious by a selection of certain subsets, possibly carrying a
type, and possibly with a multiplicity, or given by an incidence relation (which
gives the set the structure of a labelled graph). Moreover, these geometries

satisfy axioms that arise from certain settings. One of the most prominent
classes of examples is the class of buildings that naturally arise in the theory
of simple groups of Lie type as the structures describing the configuration of
parabolic subgroups. Other classes entail various kinds of designs (for instance
Steiner systems). The theory of diagrams initiated by Buekenhout provides a
method to make a systematic subdivision. A first parameter is the rank of the
geometry. This is essentially the number of different kinds of objects we are
dealing with; we can also call it the dimension. Since a diagram of a geometry is
obtained by looking at subgeometries of rank 2, the latter serve as the building
bricks of all incidence geometries (of arbitrary rank). A lot of classes of rank
2 geometries are studied in the literature. They arise from different situations.
For instance, partial geometries arise from studying strongly regular graph, as
likewise the semipartial geometries, in contrast to for instance near polygons,
which arise from studying polar spaces. Roughly speaking, one has three kinds
of rank 2 geometries. There is the class of designs, where usually two different
points define more than one block (but always a constant number). The class
of semilinear spaces is defined as the class of rank 2 geometries where every
pair of points define at most one line (but we will call these geometries linear

below). The third class contains the geometries which do not belong to either
of these two classes: sometimes two points define more than one block, but
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sometimes at most one. Good examples are the Hjelmslev geometries.
A triple Γ = (P,L, I) is a geometry if P and L are disjoint sets, and I

is a binary symmetric relation between P and L symbolizing the incidence
between the points P and the lines L of Γ. If x ∈ P, L ∈ L and xIL, then
we say that x is incident with L, or x lies on L, or L goes through x, etc. In
this case, the pair {x, L} is called a flag. The Levi graph or incidence graph

G(Γ) of a geometry Γ has as set of vertices P ∪ L, two vertices being joint
by an edge if they form a flag. The distance δ(x, y) between two elements
x, y of Γ is by definition their graph theoretical distance in G(Γ). Then we
can define Γi(x) = {y ∈ P ∪ L | δ(x, y) = i}. If Γ1(x) is constant for x ∈ P,
and Γ1(L) is constant for L ∈ L, then we say that Γ has order (s, t), where
1 + s = |Γ1(L)|, L ∈ L, and 1 + t = |Γ1(x)|, x ∈ P.

In every class of rank 2 geometries, the examples with small s, t (where (s, t)
is the order of the geometry) play a special and important role. They are usu-
ally small in number of elements, and hence easier to understand. They often
have special properties because they can belong to different infinite classes of
geometries (sporadic isomorphisms of small geometries). Also, they are often
determined by the axioms and the order, which makes them very homogeneous.
Special properties reflect sporadic properties of small groups. Geometries with
s = t = 1 are easily seen to be unions of polygons and bi-infinite cycles. Ge-
ometries with s = 1 correspond with graphs, while for t = 1 one can consider
the dual geometry and obtain a graph. Hence the first interesting case is the
case s = t = 2. This is the case we will review in the present paper. These are
the bislim geometries.
Let Γ = (P,L, I) be a geometry. Then the dual Γ∗ of Γ is the geometry
Γ∗ = (L,P, I). Two points of Γ are collinear if they are incident with a
common line. Dually one defines concurrent or confluent lines. The Menger

graph or collinearity graph G⊥(Γ) of Γ is the graph with point set P, where
two vertices are adjacent if they represent collinear points. If Γ has an order
(s, t), then Γ is called thin if s = 1, thick if s, t ≥ 2 and slim (respectively
bislim) if s = 2 (respectively s = t = 2).

Let us remark that the incidence graph of a geometry determines the geom-
etry up to duality. Usually one considers geometries in dual pairs, choosing
the point set in such a way to make arguments easier to understand (often for
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psychological, heuristic or traditional reasons). The collinearity graph, on the
contrary, does not always determine the geometry uniquely. An extreme ex-
ample is any projective plane; there the collinearity graph is a complete graph.
Hence any two non-isomorphic projective planes of the same order have isomor-
phic Menger graphs. Other geometries are determined by their Menger graph.
Good examples are the generalized n-gons with n > 3.
Let Γ be a geometry and n a positive integer not smaller than 2. Then we
say that Γ is a weak generalized n-gon if the Levi graph G(Γ) has diameter n

and girth 2n (the girth of a graph being the length of a minimal cycle). If a
weak generalized n-gon has an order, say (s, t), then it is called an ordinary

n-gon if s = t = 1, and a generalized n-gon if s, t ≥ 2 (and any thick weak
generalized n-gon has an order). If we do not want to emphasize n, we talk
about polygons rather than n-gons. A generalized 3-gon is a projective plane.
Note that, by definition, generalized polygons are connected geometries (a
geometry is connected if its incidence graph is a connected graph).

2. Configurations and trivalent graphs

Finite geometries of order (s, t) with v points and b lines which are semilin-
ear spaces are also known as (v1+t, b1+s) configurations. Especially for small
values of s, t, v, b, they have been given quite a lot of attention in the literature.
If v = b, or equivalently, if s = t, then one talks about symmetric configurations
denoted v1+s. In our case, s = t = 2 and hence we are concerned about v3

configurations. For instance, the Desargues configuration (see below) is a 103.
The projective plane of order (2, 2) is the unique 73. Connected with this point
of view is the question of realisability of the geometry Γ in real space, i.e., can
we find a set of points and lines in real space such that the geometry induced by
this set is isomorphic to Γ? We will review some results in that direction. We
will connect this to the rank of an incidence matrix, hence turning to algebra
in a completely other way than is usually done (by assigning coordinates and
putting things on a computer).
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An incidence matrix of a geometry Γ is a matrix whose rows are indexed by
the point set of Γ, whose columns are indexed by the line set of Γ and whose
entry (x, L) is equal to 1 if x is incident with L in Γ; otherwise the entry is
0.

Considering the incidence graph of a bislim geometry, we see that the study
of bislim geometries is essentially equivalent to the study of bipartite trivalent
graphs (graphs where every vertex has valency 3). What about arbitrary triva-
lent graphs? One can consider the neighborhood geometry of such a graph as
defined in [8].
Let G be a trivalent graph. Let P and L be two copies of the vertex set (if x

is a vertex, then we define the object xp and put it in P; the object x! is put
in L), and let a point x ∈ P be incident with a line L ∈ L, xIL, if, viewed
as vertices in G, they are adjacent. The resulting geometry (P,L, I) is called
the neighborhood geometry of G.

If G is not bipartite, this produces a connected bislim geometry Γ and we call G
a polarized graph of Γ; if G is bipartite, and hence isomorphic to G(Γ) for some
geometry Γ, this produces two disjoint copies of Γ. The Levi graph is uniquely
determined by the geometry. Is the same true for a polarized graph? When
does a geometry admit a polarized graph? The answer is in the following easy
proposition.
A polarity of a geometry is a bijection β : P −→ L with the property that
xIL if and only if Lβ−1

Ixβ . An absolute point of a polarity β is a point
x ∈ P such that xIxβ . An absolute line is defined similarly.

Proposition 2.1. Let Γ be a (rank 2) geometry. Then every polarized graph

of Γ gives rise to a unique polarity without absolute points. Conversely, every

polarity without absolute points produces a unique polarized graph.

PROOF. If G is a polarized graph of Γ, then the bijection assigning the
line x! to the point xp, for every vertex x of G is a polarity without absolute
points. Conversely, if β is a polarity of Γ, then the graph with set of vertices
{(x, xβ) |x ∈ P} and adjacency defined by the rule “(x, xβ) is adjacent to
(y, yβ) if yIxβ” (which is equivalent with xIyβ by the definition of polarity)
is a polarized graph of Γ (the absence of absolute points guarantees that this
graph has no loops). ! A polarized
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graph of a geometry is half as small as the Levi graph and hence provides a
more condensed object to look at. We give examples below. Hence the theory
of trivalent graphs is completely equivalent to the theory of bislim geometries.
In the next three sections we consider constructions (Section 3), classification
results (Section 4) and embeddings in real spaces and in projective spaces over
the field of two elements (Section 5).

3. Constructions

It is easy to construct a v3 out of a (v − 1)3. In fact, it is easy to find a
construction that, in principal, yields all v3 given all (v − 1)3. For instance,
consider the following construction. Let Γ = (P,L, I) be a bislim geometry
and select two lines L1, L2 ∈ L. Also, select two (different) points xiILi,
i = 1, 2. Let x and L be symbols not contained in P and L, respectively. De-
fine Γ′ = (P ′,L′, I′) as follows. Set P ′ = P ∪ {x}, L′ = L ∪ {L}. Also, if pIM

with p, M ∈ P ∪ L, but {p, M} &⊂ {x1, x2, L1, L2}, then pI′M . By definition,
xI{L1, L2}, {x1, x2}IM and xIL. It is readily checked that Γ′ is a bislim geom-
etry. This procedure obviously has an inverse, as the reader can check. Hence
one can start with the trivial geometry (a generalized 2-gon or digon of order
(2, 2)) ({x1, x2, x3}, {L1, L2, L3}, I), where xiILj , for every i, j ∈ {1, 2, 3}, and
apply the above construction a few consecutive times to obtain all possible
bislim geometries. For further reference, we call Γ′ the integrated geometry

of Γ with respect to {x1, L1} and {x2, L2}. Such an idea has been used by
Martinetti [9] in 1887 to construct all geometries 113 out of all geometries 103.
A geometry Γ is linear if no two distinct points are incident with two distinct
lines. The gonality of a geometry is half the girth of its incidence graph.
Hence a geometry is linear if and only if its gonality is at least equal to 3.

One problem with the integrated geometries is that, although starting with a
linear geometry, one could end up with a nonlinear one. It could also happen
that one starts with a nonlinear geometry and obtains a linear integrated one.
Also, no control over the automorphism group of the integrated geometry is
obtained. But in principal, it is a universal construction. The reason why we
are more interested in linear geometries rather than in nonlinear ones is be-
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cause a nonlinear geometry can never be represented in any projective space by
points and lines of that space for the point-line geometry of a projective space
is itself linear. We come back to this matter in Section 5. We now present some
constructions of particular bislim geometries. They all have a large group of
collineations.
A collineation or automorphism θ of a geometry Γ = (P,L, I) is a permu-
tation of P ∪ L inducing permutations of P and L separately and such that
xIL if and only if xθILθ, for all x ∈ P and all L ∈ L. A duality σ of Γ is a
permutation of P ∪L inducing bijections from P to L and from L to P such
that xIL if and only if xσILσ, for all x ∈ P and all L ∈ L. A correlation

is a collineation or a duality. The full collineation group of Γ is the group
of all collineations of Γ; similarly one defines the full correlation group. Any
subgroup of the full collineation group (full correlation group) will be called
a collineation group (respectively a correlation group). A geometry which
admits a duality is called self dual; one that admits a polarity is called self

polar.
The Fano geometry is the projective plane of order (2, 2). One has the clas-
sical (and general) description as nonzero vectors (points) and vector planes
(lines) of a 3-dimensional vector space over the field GF(2) of 2 elements (with
natural incidence relation), but there is also an alternative construction using
difference sets: take as point set the integers modulo 7, and the lines are the
translates of the 3-set {0, 1, 3}. The full collineation group is PGL3(2). It
contains subgroups acting sharply transitively on the set of flags. The Fano
geometry is self polar.

The Möbius-Kantor geometry has as point set the 8 nonzero vectors of a
2-dimensional vector space over the field GF(3) of 3 elements; the lines are
the 8 proper translates of the vector lines (so the vector lines themselves are
excluded). A construction using difference sets runs as follows: take as point
set the set of integers modulo 8, and the lines are the translates of the 3-set
{0, 1, 3}. The full collineation group is GL2(3) acting flag transitively. The
Möbius-Kantor geometry is self polar. The Fano geometry and the Möbius-
Kantor geometry are the unique linear bislim geometries with 7 and 8 points,
respectively.

The Pappus geometry has as point set the 9 vectors of a 2-dimensional
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vector space over the field GF(3); the lines are the non vertical vector lines
and their translates (the vertical vector line is just an arbitrarily chosen vector
line as the Y -axis). The full collineation group is the stabilizer of a point at
infinity of the affine group AGL2(3) and acts flag transitively.

The Desargues geometry is the neighborhood geometry of the Petersen
graph (the unique graph on 10 vertices having girth 5). We derive the follow-
ing direct combinatorial construction. The points are the pairs of the 5-set
{1, 2, 3, 4, 5}; the lines are the triples of that 5-set and incidence is natural. Al-
ternatively, consider a non degenerate conic in the projective plane PG(2, 5).
Then the points of the Desargues geometry are the 10 internal points of the
conic (i.e., the points not incident with any tangent line to the conic) and the
lines are the 10 external lines (i.e., the lines not meeting the conic), while inci-
dence is natural. From these constructions it is clear that PGL2(5) ∼= S5 is a
collineation group, and that the Desargues geometry admits a polarity without
absolute points. In fact this group is the full collineation group and acts flag
transitively.

The Coxeter geometry was first discovered by Coxeter [5]. We present the
two constructions taken from [17]. First, consider the 2-dimensional vector
space over GF(4) and choose arbitrarily a vertical Y -axis. The points of the
Coxeter geometry are the 12 non vertical vectors; the lines are the proper
translates of the non vertical vector lines; incidence is natural. Secondly, the
Coxeter geometry can also be defined as the neighborhood geometry of a(n
at each point) truncated tetrahedron. From the first construction one can de-
rive that the full collineation group is isomorphic to the semilinear group of
permutations of the 2-dimensional vector space over GF(4) with a lower trian-
gular matrix. This group acts flag transitively and contains 72 elements. From
the second construction we see that the Coxeter geometry admits a polarity
without absolute points. An interesting observation is that we have here an ex-
ample of geometry admitting more than one polarity without absolute points,
hence the automorphism group of the polarized graph is strictly smaller than
the collineation group of the geometry. Note that the Coxeter geometry also
admits a polarity with absolute points (see [17])!

The honeycomb geometry is the only infinite example we will define. Its
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incidence graph is the (bipartite) graph obtained from the tiling of the real
Euclidean plane into regular hexagons. A more explicit description runs as
follows. The points are the ordered pairs (i, j) of integers i, j. The lines are the
triples {(i, j), (i, j + 1), (i + 1, j)}, with i, j any integers. The full collineation
group is the Coxeter group of type Ã2 and acts flag transitively.

Now we consider the neighborhood geometry of a series of very regular and
homogeneous graphs, namely of the trivalent distance regular graphs. There
are thirteen such graphs. They were classified by Biggs, Boshier and Shawe-
Taylor [1] in 1986 after the classification of trivalent distance transitive graphs
by Biggs and Smith [2] in 1971 (I would like to thank Nele Haelvoet for pointing
this out to me).
A graph G is distance regular if for all positive integers i, j, k, and all vertices
v, w of G at distance k from each other, the number of vertices at distance i

from v and at the same time at distance j from w does not depend on the
choice of v, w, but only on i, j, k.

1. First, there is the complete bipartite graph K3,3 with six vertices and
two bipartion classes of three elements. It is the incidence graph of the
generalized digon of order (2, 2). Clearly, this is a nonlinear geometry.
It does not admit a polarity without absolute points, obviously (but it
admits many polarities!). Hence there is no polarized graph.

2. The smallest trivalent graph is the complete graph on four vertices. The
neighborhood geometry has four points and every 3-subset is a line. It
is the integrated geometry of the slim generalized digon. We will call it
the tetrahedron geometry for further reference. It has a unique polarity
without absolute points. Hence the complete graph on four vertices is
the unique polarized graph of the tetrahedron geometry.

3. The cube graph (the vertices and edges of the cube, without paying notice
to the faces) is the incidence graph of the tetrahedron geometry.

4. The neighborhood geometry of the Petersen graph is the Desargues ge-
ometry, as already mentioned above. A rather strange property is that
the Menger graph of the Desargues configuration is the complement of —
again — the Petersen graph (i.e., the graph obtained from the Petersen
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graph by taking the same set of vertices but interchanging the edges with
non-edges). The complement of the Petersen graph is the Menger graph
of other geometries. For instance of the bislim geometry with 10 points
which can not be realized in the real affine plane (see below).

5. The incidence graph of the Desargues geometry is a distance regular graph
and defines of course the Desargues geometry again.

6. The dodecahedron graph (the vertices and edges of the dodecahedron
disregarding the faces) is not bipartite, hence its neighborhood geometry
—which we will call the dodecahedron geometry — has 20 points and 20
lines. It is the unique double cover of the Desargues geometry without
triangles. A peculiar feature here is the fact that the full collineation
group of this geometry is twice as big as the collineation group induced by
the automorphism group of the dodecahedron as a graph. This translates
into the corollary that there are several polarities without absolute points.

7. The incidence graph of the Pappus geometry is a distance regular graph
and defines the Pappus geometry again.

8. The Heawood graph is the incidence graph of the slim projective plane
(the Fano plane).

9. The Coxeter graph is not bipartite and hence the neighborhood geometry
has 28 points and 28 lines. We will call this geometry the triangle ge-

ometry because of the following construction. The points of the triangle
geometry are the point-line pairs of the Fano plane which do not form a
flag (we say that they form an antiflag). The lines are the triangles of the
Fano plane and incidence is natural (i.e., when both the point and the
line of the antiflag are contained in the triangle). One can define such a
slim geometry using any projective plane, but only with the Fano plane
we obtain a bislim geometry, which is also self polar (and has a polarity
without absolute points). One polarity without absolute points can be
described geometrically as follows: it maps a point to the unique line at
(maximal) distance 7. This time the full collineation group is induced by
the automorphism group of the Coxeter graph.



12 Van Maldeghem

10. Tutte’s 12-cage is the incidence graph of a pair of non-isomorphic slim
generalized hexagons. It is the only trivalent distance regular graph which
does not admit a transitive group. There are several constructions of
these generalized hexagons. Let us present one that we will use later on
to describe a real embedding. Let P0 and L0 be the point and line set,
respectively, of the Fano plane, completed with the symbol 0. We define
an addition on P0 × L0 componentwise by (1) A + 0 = A = 0 + A and
A + A = 0, for all elements A ∈ P0 ∪ L0, (2) if x, y, z are three distinct
points incident with a common line, then x + y = z, and (3) dually, if
L,M,N are three distinct lines through a common point, then L + M =
N . The points of the generalized hexagon H(2) are the elements of P0 ×
L0 \ {(0, 0}. The lines are the triples {(x, 0), (0, L), (x, L)}, with {x, L} a
flag of the Fano plane, together with the triples {(x, L), (x1, L1), (x2, L2)},
with {x, L} a flag of the Fano plane, x1, x2 ∈ P, L1, L2 ∈ L and with
(x1, L1) + (x2, L2) = (x, L). For other constructions of this generalized
hexagon or its dual, see [12].

11. Tutte’s 8-cage is the incidence graph of the unique bislim generalized
quadrangle W(2). We now give one explicit construction of Tutte’s 8-
cage, and one of the bislim generalized quadrangle. Consider a conic C in
the projective plane PG(2, 9). Define a graph with vertex set the polar
triangles with respect to C (i.e., the triples of distinct points such that the
polar line with respect to C of each of these points is spanned by the two
other points) which consist entirely of exterior points (i.e., points incident
with exactly two tangent lines to C). Declare two vertices adjacent if the
corresponding polar triangles intersect non trivially. This graph is Tutte’s
8-cage, see [12]. Now define the following bislim geometry. The points are
the pairs of elements of the set {1, 2, 3, 4, 5, 6}, the lines are the triples of
pairs that partition {1, 2, 3, 4, 5, 6} (and incidence is the natural one). We
obtain W(2). Note that W(2) is self polar, but all polarities are conjugate
and each of them has absolute points. Hence there is no polarized graph.

12. The Foster graph is the incidence graph of the so-called tilde geometry

W̃(2). The latter is the unique triple cover of W(2) having no quadrangles.
For many geometric properties and constructions of the tilde geometry
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we refer to [10]. Here, we content ourselves with mentioning that all
polarities are conjugate and each of them has exactly five absolute points.
So again, there is no polarized graph. We will give an explicit construction
of the tilde geometry in Section 5.

13. The Biggs-Smith graph is not bipartite and gives rise to a bislim (Biggs-
Smith) geometry that has not been studied yet in the literature, as far
as I know (apart from its introduction in [16]). I have given an alter-
native definition in [16], which I repeat here. Consider the projective
line PG(1, 17) over the field GF(17). Given a pair of points {a, b}
and a third point c of PG(1, 17), it is easy to verify that there exist a
unique point d and a unique pair of points {e, f} of PG(1, 17) such that
|{a, b, c, d, e, f}| = 6 and such that we have the following equality of cross
ratios: (a, b; c, d) = (a, b; e, f) = (c, d; e, f) = −1. Indeed, we may choose,
by the triply transitivity of PGL2(17) on the point set of PG(1, 17),
(a, b, c) = (∞, 0, 1) and then (d, e, f) = (−1, 4,−4) (or (−1,−4, 4)). We
call the triple {{a, b}, {c, d}, {e, f}} a harmonic triplet. Three mutually
disjoint harmonic triples will be called a trisection. The stabilizer inside
PGL2(17) of a harmonic triplet is easily seen to be a group of order 24
and it is entirely contained in PSL2(17). This implies that there are in
total 18.17.16/24 = 204 harmonic triplets and that PSL2(17) defines two
orbits of harmonic triplets. We fix one of these orbits (and we can choose
coordinates in such a way that this orbit contains the harmonic triplet
{∞, 0}, {1,−1}, {4,−4}}). It is the point set P of the Biggs-Smith geom-
etry. The lines are the trisections of triplets in P. For the Biggs-Smith
graph, the vertex set is P and two vertices are adjacent if the harmonic
triplets share a pair of points, e.g. {{∞, 0}, {1,−1}, {4,−4}} is adjacent
to {{∞, 0}, {2,−2}, {8,−8}}. In the Biggs-Smith geometry, two points
are collinear if and only if the corresponding harmonic triplets do not
share any element of PG(1, 17).
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Let Γ = (P,L, I) be a geometry and n a positive integer. Then an n-fold

cover of Γ is a geometry Γ′ = (P ′,L′, I′) together with surjective maps
ϕ1 : P ′ −→ P and ϕ2 : L′ −→ L such that xI′L, x ∈ P ′, L ∈ L′, implies
that xϕ1ILϕ2 , such that ϕ1 (respectively ϕ2) induces a bijection from Γ′

1(L)
to Γ1(Lϕ2) (respectively from Γ′

1(x) to Γ1(xϕ1)) for all L ∈ L′ (respectively
for all x ∈ P ′), and such that for all points p and lines R of Γ the sizes of
the fibers |pϕ−1

1 | and |Rϕ−1
2 | are equal to n. For n = 2, we speak of a double

cover, for n = 3, we speak of a triple cover. The geometry Γ′ is called the
covering geometry. If the fibers are equivalence classes in P ′ and in L′ with
respect to the relation “is at maximal distance of”, then we say that Γ′ is an
n-fold cover of Γ, without mentioning the maps ϕ1 and ϕ2.

This completes the description of twelve rather remarkable examples of bislim
geometries. Of course, there are many more examples, but we have given the
most symmetric ones, with emphasis on low gonality, as we will see in the next
section.

4. Classification results

Viewed as v3 configurations, linear bislim geometries with a small number
of points have been classified and enumerated. We summarize the results in
the next theorem.

Theorem 4.1. There are no linear bislim geometries with 6 points or less.

There is precisely 1 linear bislim geometry with 7 points.

There is precisely 1 linear bislim geometry with 8 points.

There are precisely 3 linear bislim geometries with 9 points.

There are precisely 10 linear bislim geometries with 10 points.

There are precisely 31 linear bislim geometries with 11 points.

There are precisely 229 linear bislim geometries with 12 points.

There are precisely 2036 linear bislim geometries with 13 points.

There are precisely 21399 linear bislim geometries with 14 points.

These numbers can be found in [7]. Of course, from computational point of
view, this may be interesting, but from geometrical points of view, the precise
numbers do not matter so much. We already know that there are a lot, that we
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can construct them all — in principal — and that they may have very different
collineation groups. Nevertheless, an interesting conclusion will be drawn in
the next section!
A geometry Γ = (P,L, I) is called distance transitive if it is connected and
if for each positive integer i, its full collineation group acts transitively on
the set of ordered pairs (x, A) ∈ P × (P ∪ L) with δ(x, A) = i, and also on
the set of ordered pairs (L,B) ∈ L× (P ∪ L) with δ(L,B) = i.

An easy corollary of the classification of trivalent distance regular graphs is the
following.

Theorem 4.2. The only distance transitive bislim geometries are the tetra-

hedron geometry, the Desargues geometry, the Pappus geometry, the tilde ge-

ometry, and the five bislim generalized n-gons, n = 2, 3, 4, 6 (there are two of

them for n = 6).

Note that finite generalized n-gons exist only for n = 2, 3, 4, 6, 8, and for
n = 8, their order (s, t) satisfies the condition that 2st is a square, so there is
no bislim generalized octagon, see [6]. The reason why for instance the Biggs-
Smith geometry is not distance transitive is that its incidence graph is not a
distance transitive graph, since it is not even distance regular.

A hypothesis considerably weaker than distance transitivity is flag transi-
tivity. But there are a lot of flag transitive bislim geometries. Nevertheless,
the ones of gonality 3 can be classified. Here is the result.

Theorem 4.3. Let Γ be a flag transitive bislim geometry with gonality 3.

Then either Γ is infinite and isomorphic to the honeycomb geometry, or Γ is an

explicitly defined quotient of the honeycomb (this means that the honeycomb

geometry covers the geometry) considered already by Coxeter in [5], depending

on two integral parameters n, m with 0 ≤ n ≤ m and n + m ≥ 3, and with

n2 + nm + m2 points, or Γ is the Desargues geometry or the Möbius-Kantor

geometry.

To illustrate the quotients of the honeycomb geometry, we mention that for
n = 0 and m = 3, this is the Pappus geometry and for n = 1 and m = 2,
it is the Fano plane. Also some other quotients with small parameters n, m

have alternative constructions, see [17]. We remark that all the flag transitive
bislim geometries with gonality 3 are self polar. This just comes out of the
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classification and I am not aware of a direct proof of this fact. Also, except
for the Desargues geometry, all polarities have absolute points (hence no new
polarized graphs turn up).

5. Embeddings

In this section we will review mainly two kinds of embeddings: over the
reals and over the field of two elements. The first can be called realizations;
the second full projective embeddings. Occasionally we will mention other pro-
jective embeddings. Note that, since we will only consider finite geometries,
every realization is an affine (real) embedding.
Let Γ = (P,L, I) and Γ′ = (P ′,L′, I′) be two geometries. An embedding of Γ
in Γ′ is a pair of injective mapping ϕ1 : P −→ P ′ and ϕ2 : L −→ L′ preserving
incidence, i.e., if xIL in Γ, then xϕ1I′Lϕ2 . Often the embedding is identified
with the image of Γ in Γ′. If Γ′ is the geometry arising from the points and
lines of a projective (or affine) space, then we talk about a projective (or
affine) embedding. In these cases we shall also assume that the image of P
spans linearly the whole projective or affine space, and then the dimension
of Γ′ as a projective or affine space is the dimension of the embedding. A
2-dimensional embedding is called planar. Some particular cases: if the
projective space is over the real numbers, then we have a realization; if for
each line L ∈ L every point x′I′Lϕ2 has an inverse image under ϕ1, then we
call the embedding full, if the projective space is over the rational numbers,
then we have a rational embedding.

A subtle point in the definition of embedding is the fact that we (here) allow for
a non incident point line pair (x, L) of Γ the images to be incident. If this is not
allowed, then we call the embedding exclusive. A geometry is determined by
any of its exclusive embeddings, but not necessarily by a non-exclusive one. We
will first review some general known results on projective embeddings of bislim
geometries and afterwards give some examples. We start with full projective
embeddings.
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5.1. Full projective embeddings of slim geometries

Concerning full projective embeddings, the situation for slim geometries is
rather exceptional. Indeed, in general there is no way to construct full embed-
dings, far from enumerating all full embeddings. For slim geometries, however,
there is a universal embedding and every embedding is obtained from that uni-
versal one by projection. Let us be more precise in the following theorem, due
to Ronan [13].
Let (ϕ̃1, ϕ̃2) be a full projective embedding of a geometry Γ = (P,L, I) in
the space PG(V ), for some vector space V . Then we say that (ϕ̃1, ϕ̃2) is
universal if for any other full embedding (ϕ1,ϕ2) in some projective space
PG(W ), there exists a semilinear mapping ψ : V −→ W such that the
corresponding projective mapping ψ is well defined on P ϕ̃1 and such that
xϕ̃1ψ = xϕ1 , for all x ∈ P.

Theorem 5.1. If a slim geometry Γ admits a full embedding in some projective

space, then it has a universal full embedding.

The universal embedding of a slim geometry Γ = (P,L, I) is obtained as
follows. Consider the vector space V ′ over GF(2) (the “Galois field” of 2
elements) freely generated by all elements of P. Then there is an obvious
natural embedding of Γ in the projective space PG(V ), where V is obtained
from V ′ by factoring out the subspace generated by the vectors x1 + x2 +
x3, where xi ∈ P, i = 1, 2, 3, such that there exists L ∈ L with Γ1(L) =
{x1, x2, x3}. This may seem like a simple trick, but in general it is not easy
to even determine the dimension of V . An upper bound for the dimension of
V is given by the generating rank of Γ, i.e., the minimal number of points of
P needed to generate Γ (“to generate” means to successively add to the set
the third point on every line for which already two distinct points are in the
set). Consequently, if one has a finite set of size ' which generates Γ, and if
one constructs a full embedding of Γ in PG(V ), with dim V = ', then this
embedding is automatically universal.

5.2. Realizations of (bi)slim geometries

Realizations of configurations have been considered by several authors. For
instance, one is interested in determining which configurations n3, 7 ≤ n ≤ 14,
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classified by Theorem 4.1, have (planar) realizations. This has been done for
7 ≤ n ≤ 12. We summarize the result in the next theorem.

Theorem 5.2. All bislim linear geometries with n points, 7 ≤ n ≤ 12, admit

a planar exclusive realization except for

(i) the Fano plane (n = 7), which only admits projective embeddings in

planes over fields of characteristic 2 (the generating rank is 3);

(ii) the Möbius-Kantor geometry (n = 8), which admits a planar embedding

in a plane over the field K if and only if the polynomial x2 − x + 1 is

reducible over K (the generating rank is 3);

(iii) a unique bislim geometry with 10 points whose Menger graph is isomor-

phic to the complement of the Petersen graph, but which is not isomorphic

to the Desargues geometry.

An explicit construction of the example (say Γ) in (iii) runs as follows. We
know that the collinearity graph G⊥(Γ) is the complement of the Petersen
graph, hence the point set can be identified with all (unordered) pairs of the
set {1, 2, 3, 4, 5}. In G⊥(Γ), two vertices are adjacent if the corresponding pairs
are non disjoint. The Desargues geometry arises by taking as lines those triples
of points that correspond with all pairs of a 3-set of {1, 2, 3, 4, 5}. For the un-
realizable 103 we retain the lines arising from all the triples which contain 5;
the other four lines arise as the complements in the set of pairs of {1, 2, 3, 4}
of the sets of triples of pairs of 3-sets of {1, 2, 3, 4} (so these lines contain the
points {', i}, {', j}, {', k}, for {1, 2, 3, 4} = {', i, j, k}). Remark that the latter
four lines form a unique complete quadrangle in Γ (i.e., a set of four lines which
are pairwise confluent), from which we easily deduce that the symmetric group
S4 is the full collineation group of Γ (there is also an obvious polarity map-
ping a point {i, j}, i, j ∈ {1, 2, 3, 4}, to the line containing all triples of {i, j, 5},
i &= j, and mapping the point {i, 5}, i ∈ {1, 2, 3, 4}, to the line incident with the
triples of {1, 2, 3, 4} containing i; this polarity has absolute lines — the lines
of the complete quadrangle — and non absolute points — the points of the
complete quadrangle). Further, it has been proved that Γ does not admit an
embedding in a projective plane over any (commutative) field — but there are
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embeddings in non commutative skew field projective planes such as the real
quaternion plane (as is easy to calculate). In view of the previous theorem, one
would get the impression that realizability is a rather weak property, as there
are only 3 exceptions amongst the 275 smallest bislim geometries. This seems
to be true in general, but to really exhibit a realization for a given (rather big)
bislim geometry can be hard work. A good example of this is the tilde geom-
etry. This bislim geometry escapes from the conditions of the next theorems,
and so an independent personal proof had to be found to show that the tilde
geometry admits a(n exclusive) real planar embedding, see [16]. Moreover, this
proof is not completely constructive and more work should be done to actually
construct the embedding (although with the aid of a computer this should not
be difficult). A general result that again points in the direction of the fact that
bislim geometries easily embed in real projective plane (or spaces) was found by
Steinitz [14] in 1894. He proved that every bislim geometry admits some repre-
sentation in the real plane, where all points are represented by different points,
and all lines by lines — except possibly for one line! For instance, the Fano
plane can be drawn in the real plane using six straight lines and one “circle”.
But be aware of the fact that it concerns here realizations which are not neces-
sarily exclusive! For exclusive realizations, there is a construction of Grünbaum
(see Gropp [7]) that shows that for every n ≥ 16, there exists a configuration
n3 which cannot be exclusively realized. It is made of two configurations: the
Pappus geometry and an arbitrary configuration (n− 9)3. Let (x, L) be a flag
of the Pappus geometry, and let (x′, L′) be a flag of the configuration (n− 9)3.
Then the geometry obtained from the disjoint union of these geometries by
declaring (x, L) and (x′, L′) to be antiflags and instead (x, L′) and (x′, L) flags
(leaving the rest of the incidence relations as it is) is not exclusively realizable
since the point x is forced to lie on the line L in the real plane by the proper-
ties of the Pappus configuration. Clearly one can repeat this construction with
another flag of the original (n − 9)3 configuration and a flag of a new copy of
the Pappus configuration to obtain a bislim geometry with n + 9 points which
cannot be exclusively realized and for which two lines cannot be represented
as lines in the real plane. Going on like this, it is easy to see that examples
can be constructed for which an arbitrary number of lines cannot be drawn as
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lines if one has an exclusive representation in the real (or any other Pappian)
projective plane. Let me also remark that all bislim geometries with at most
12 points which are realizable also admit rational planar embeddings. This
is a rather peculiar phenomenon. I do not know of any example of a bislim
geometry that admits a realization, but not a rational embedding. This is in
contrast with non slim geometries. Indeed, the unique generalized quadrangle
of order (4, 2) admits a unique embedding in PG(3, R), and it is not rational
(it is described in [11]; the uniqueness is an exercise). Motivated to develop
some theory rather than to check a list of small bislim geometries on realisabil-
ity, we started in [16] to create some methods and criteria. The price we pay
for being able to say some general things is that we make assumptions on the
collineation group (flag transitivity) and correlation group (being self polar).
For the moment, in joint work with Valerie Ver Gucht, we are trying to weaken
these hypotheses. So let us review what can be said for now.
Let V be a vector space over any field K, and let ρ be the natural projection
map from the set V \ {O} of nonzero vectors to the point set of PG(V )
mapping a vector v to the projective point corresponding with the vector line
vK. If Γ = (P,L, I) is a slim geometry, then we call an embedding (ϕ1,ϕ2)
of Γ in PG(V ) barycentric if there is a map ψ : P −→ V \{O} with ψρ = ϕ1

such that whenever three distinct points p1, p2, p3 of Γ are on a common line
of Γ then pψ

1 + pψ
2 + pψ

3 = O. An embedding is semi-barycentric provided a
map ψ as above can be found with ψρ = ϕ1 such that whenever three distinct
points p1, p2, p3 of Γ are on a common line of Γ then either the sum of their
images under ψ is equal to the zero vector, or the sum of two of these images
equals the third image. An embedding is projectively G-homogeneous, for
G ≤ AutΓ, if every collineation of Γ belonging to G is induced by the semi-
linear projective group PΓL(V ). An AutΓ-homogeneous embedding is also
simply called projectively homogeneous. If moreover G lifts to a subgroup of
GL(V ), then we say that the embedding is vector G-homogeneous; similarly
one introduces the notion of vector homogeneous. For projective embeddings
over GF(2), the notions of vector and projectively homogeneity coincide and
we talk simply about homogeneous embeddings.

First of all, we remark that the role of the universal embedding for full embed-
dings can be taken over for real embeddings by a certain universal barycentric
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embedding. Hence this is a good reason to study barycentric embeddings. The
following result is easy to prove.

Proposition 5.1. Suppose the slim geometry Γ with n points and m lines has

some barycentric embedding in PG(V ), for some vector space V of dimension

d over R. Then the rank of any incidence matrix of Γ is at most n− d.

The next result says that for bislim geometries with large collineation groups
the notions of vector G-homogeneous real embedding and barycentric real em-
bedding are more or less equivalent. A analogous statement holds for semi-
barycentric real embeddings.

Proposition 5.2. Let Γ be a flag transitive (with respect to a collineation

group G) slim geometry G-homogeneously embedded in the real projective

space PG(V ), for some G ≤ Aut(Γ) ∩ PGL(V ). Then the group G lifts to a

subgroup of GL(V ) if and only if the embedding is barycentric. Also, some

nontrivial central extension 2 · G of G lifts to a subgroup of GL(V ), with

2 ·G/(2 ·G∩Sc(V )) = G, if and only if the embedding is semi-barycentric, but

not barycentric. In the latter case there is a connected double cover Γ′ of Γ.

The next theorem provides a concrete construction of some barycentric or
semi-barycentric embeddings of certain bislim geometries. Note that a geome-
try has a symmetric incidence matrix if and only if it is self polar.

Theorem 5.3. Let Γ = (P,L, I) be a connected self polar point-line geometry

with n points and let G be a flag transitive collineation group acting primitively

on P. Let A be a symmetric incidence matrix of Γ, and consider it as the matrix

of a linear endomorphism of real n-space. If detA = 0, then the projection

of the basis vectors from ImA into KerA yields a G-homogeneous barycentric

embedding of Γ. If detA &= 0, and if Γ admits a self polar double cover Γ′ with

corresponding symmetric incidence matrix A′ such that detA′ = 0 and such

that Γ′ admits a collineation group G′ which induces G in Γ, then, considering

A′ as the matrix of a linear endomorphism of real 2n-space, the projection of the

basis vectors from ImA′ into KerA′ yields a G-homogeneous semi-barycentric

(non barycentric) embedding of Γ (basis vectors corresponding to points of Γ′

in the same fiber are indeed projected onto opposite vectors).
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It can be easily shown that, if a slim geometry admits a barycentric real em-
bedding, then it admits a universal one, defined in the same way as universal
full embedding. It turns out that this universal barycentric real embedding can
be explicitly constructed using the incidence matrix for self polar bislim flag
transitive geometries. In particular, the dimension of the embedding can be
deduces easily from the rank of that matrix.

Corollary 5.1. Suppose a slim self polar flag transitive point-line geometry

Γ admits at least one real barycentric embedding. Let A be a symmetric

incidence matrix of Γ, and consider it as the matrix of a linear endomorphism

of real n-space, with n the number of points of Γ. Then detA = 0, and the

projection of the basis vectors from ImA into KerA yields the (homogeneous)

universal real barycentric embedding of Γ.

We now turn to some examples.

5.3. Examples of embeddings of bislim geometries

First we mention the classical construction of the Pappus configuration
in the real projective plane. Consider three collinear points a1, a2, a3, and three
collinear points b1, b2, b3 such that the intersection point of the corresponding
lines is not amongst a1, . . . , b3. Then the lines aibj and ajbi meet in some
point ck, with {i, j, k} = {1, 2, 3}, and c1, c2, c3 are automatically collinear.
The points and lines just mentioned form the Pappus geometry. In fact, the
Pappus configuration admits such an embedding for every choice of a1, a2, a3

and b1, b2, b3 in the projective plane over any commutative field with at least
3 elements (these planes are therefore called Pappian planes). The generating
rank of the Pappus geometry is 3; its universal full embedding rank is zero,
and its universal barycentric embedding rank is also zero. It does not admit
semi-barycentric embeddings. Its collineation group does not act primitively;
the Pappus geometry is a triple cover of the bislim generalized digon.
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The universal barycentric embedding rank of a slim geometry is d + 1 if
the universal barycentric embedding exists and lives in d-dimensional real
projective space. If the geometry does not admit any barycentric real em-
bedding, then we say that the universal barycentric embedding rank is zero.
The universal full embedding rank of a slim geometry is d + 1 if the uni-
versal full embedding exists and lives in d-dimensional projective space over
GF(2). If the geometry does not admit any full embedding, then we say that
the universal full embedding rank is zero.

Also there is the classical construction of the Desargues configuration in the
real projective plane (or real projective 3-space) with two triangles in perspec-
tive from a point, implying that the corresponding sides of the triangles meet
on a common line (and hence the triangle are also in dual perspective from
that line). The previous construction of the Desargues configuration can be
done in every projective plane over any skew field (therefore called Desargue-

sian planes) with at least 4 elements (for exclusive embeddings; in the non
exclusive case a plane over GF(3) qualifies and gives rise to the so-called lit-

tle Desargues configuration), and in every projective 3-space. If we look for
projectively homogeneous planar embeddings, then we have to restrict to fields
with characteristic 5. The generating rank of the Desargues geometry is equal
to 4; its universal embedding rank is equal to 4 and its universal barycentric
embedding rank is 0.

The dodecahedron geometry is a double cover of the Desargues geometry
and an arbitrary incidence matrix of the dodecahedron geometry (which is
an adjacency matrix of the dodecahedron graph) is singular. All conditions
of Theorem 5.3 are satisfied and so the Desargues geometry admits a semi-
barycentric embedding in projective 3-space and 2-space. Furthermore, the
dodecahedron geometry does not admit a barycentric embedding, although it
admits some real planar embedding.

The triangle geometry behaves much like the Desargues geometry. Its
generating rank is equal to 8 and its universal full embedding rank is also equal
to 8. Here is an explicit construction of the universal full embedding. All
3× 3 matrices over GF(2) form a 9-dimensional vector space V with standard
basis {Eij | i, j = 1, 2, 3}. We consider the quotient space W = V/T , where
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T is the vector line generated by the identity matrix I = E11 + E22 + E33.
Now we identify the points of PG(2, 2) with triples (x1, x2, x3) ∈ GF(2)3 and
the lines with triples [a1, a2, a3] ∈ GF(2)3 such that a point (x1, x2, x3) is
incident with a line [a1, a2, a3] if and only if a1x1 + a2x2 + a3x3 = 0. We
identify an antiflag {(x1, x2, x3), [a1, a2, a3]} with the point

∑
i,j xiajEij + T

of PG(W ). This defines the universal full embedding in PG(W ). Any inci-
dence matrix of the triangle geometry — which is equivalent to an adjacency
matrix of the Coxeter graph — is nonsingular, hence there is no barycentric
real embedding of the triangle geometry. But the latter has a double cover
which satisfies the assumptions of Theorem 5.3. Hence the triangle geometry
has a semi-barycentric embedding (in 7-dimensional real space, as it turns out).
An ovoid of a generalized quadrangle is a set of points such that every line is
incident with exactly one element of that set. It follows that, if the order of
the generalized quadrangle is equal to (s, t), then a potential ovoid has 1+st

points.
The bislim generalized quadrangle W(2) is self polar and admits both real
barycentric and full embeddings. Its generating rank, its universal full em-
bedding rank and its universal barycentric embedding rank are all equal to 5.
The universal full embedding and the universal barycentric embedding have
the following common description. Recall that W(2) has six different ovoids.
Consider a vector space V of dimension 6 (over an arbitrary field K) with the
standard basis indexed by the six ovoids of W(2). Let the point x of W(2) cor-
respond with the vector of W determined by the property that the coordinate
corresponding to the ovoid O is equal to 1 if x /∈ O, and otherwise it is equal
to −2. Let W be the subspace of V whose elements have coordinates that
sum up to zero. Then we have just defined an embedding of W(2) in PG(W ).
If K = R, then this is the universal barycentric embedding; if K = GF(2),
then we obtain the universal full embedding. There is also a full embedding
of W(2) in PG(3, 2), the 3-dimensional projective space over GF(2) (and this
embedding arises from a symplectic polarity). One can easily show that there
are exactly 2 full embeddings of W(2) (the one in PG(3, 2) and the one in
PG(4, 2) that we have just mentioned) and they are both homogeneous.

The bislim generalized hexagon H(2) has four homogeneous full embed-
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dings. The one in the smallest dimension (in PG(5, 2)) may be described as
follows. Recall the construction of H(2) above. The point set is P0×L0\{(0, 0)}
(with the notation as before). This can be seen as the point set of PG(5, 2) by
declaring three distinct points collinear whenever they add up to (0, 0). The
lines of H(2) are then also lines of PG(5, 2) and we indeed have a full homo-
geneous embedding. The one in the biggest dimension (in PG(13, 2)) may be
described in full generality over any field (in particular over R, where it gives
the universal barycentric embedding). Set P = P0 \ {0} and L = L0 \ {0}
and denote incidence in the Fano plane with I. We label the basis vectors of a
14-dimensional vector space over any field K with the point and line set of the
Fano plane. A point (x, 0), x ∈ P, is identified with the sum of basis vectors
corresponding to the point x and all lines of the Fano plane not incident with
x. Also, the point (0, L), with L ∈ L, is identified with the sum of basis vectors
corresponding to the points of the Fano plane incident with L and the lines of
the Fano plane distinct from L. Furthermore, the point (x, L) ∈ P × L, with
xIL, is identified with the sum of the basis vectors corresponding with the
points of the Fano plane on L, but distinct from x, and the lines of the Fano
plane incident with x, but distinct from L. Finally, the point (x, L) ∈ P × L,
with x not on L in the Fano plane, is identified with the sum of the basis vector
corresponding with x and the one corresponding with L. By projection from
the origin, this defines an embedding of H(2) in a 13-dimensional projective
space over the field K.

A symmetric incidence matrix of the tilde geometry is an adjacency ma-
trix of the Foster graph. This matrix has eigenvalue 0 with multiplicity 5,
and applying the construction as given by Theorem 5.3 (ignoring the fact that
we are not dealing with a primitive automorphism group), we obtain a real
barycentric embedding of . . . W(2). In fact, it was a hard question to find a
realization of the tilde geometry, but it was proved in [16] that is has a planar
one. I do not know any realization in projective dimension ≥ 3. The full em-
beddings of the tilde geometry behave much nicer. In fact, all homogeneous full
embeddings have been classified in [10]. Let us give a description. Consider the
3-dimensional vector space V = V (3, 4) over the field GF(4). The associated
projective plane PG(2, 4) contains a hyperoval (here, it is just a conic with
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its nucleus, i.e., the intersection of all tangent lines), which corresponds to a
set of six vector lines in V . Viewing GF(4) as a 3-dimensional vector space
over GF(2), we obtain a 6-dimensional vector space W = V (6, 2) endowed
with a set of 21 vector planes (corresponding to the vector lines of V ) and
a certain subset of six vector planes (corresponding to that hyperoval). This
gives rise to a projective space PG(5, 2) with a set S of 21 lines and a subset
O of 6 lines. Any two elements L,M ∈ S span a 3-dimensional projective
subspace of PG(5, 2) containing exactly 5 elements of S. Let L be the set of
lines of PG(5, 2) obtained as follows. We take two arbitrary elements L,L′ of
O, consider the subspace generated by L,L′, and the lines M,M ′,M ′′ of S in
that subspace different from L, L′. There are exactly three lines of PG(5, 2)
meeting all of M,M ′,M ′′, and these belong by definition to L. This way L
contains 45 lines. The set of points on these lines in PG(5, 2) is by definition
P (and there are 63− 6× 3 = 45 such points). With I the incidence inherited
from PG(5, 2), the geometry (P,L, I) is the tilde geometry, given as a full em-
bedding in PG(5, 2). Now consider any full embedding of W(2) (they are all
homogeneous as mentioned above). So the points and lines of W(2) are points
and lines of PG(d, 2), with d ∈ {3, 4}. Consider PG(d, 2) and PG(5, 2) as
disjoint subspaces of PG(d + 6, 2). Let ρ be a covering map from the point set
of W̃(2) (inside PG(5, 2)) to the point set of W(2) (inside PG(d, 2)). Define
the set P ′ as the set of points of either PG(d + 6, 2) obtained by considering
the “third points” on the lines xxρ, with x ∈ P. This gives two homogeneous
embeddings of W̃(2). The one in PG(10, 2) is moreover the universal full em-
bedding. Let me also add that the embedding in PG(9, 2) can be obtained
by taking the line Grassmannian of the embedding in PG(5, 2). Remark that
there are many other full embeddings of the tilde geometry by considering pro-
jections. So unlike W(2), not all full embeddings are homogeneous. Finally,
the generating rank of the tilde geometry is equal to 11, and so is the universal
full embedding rank. The universal barycentric embedding rank is zero.

The Biggs-Smith geometry is an example of a bislim self polar geometry
with both universal embedding ranks different from zero, but with these two
ranks distinct from each other. Indeed, the adjacency matrix of the Biggs-
Smnith graph has rank 85 = 102 − 17; hence by Theorem 5.3 the universal
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barycentric embedding rank is equal to 17. On the other hand the universal
full embedding lives in PG(18, 2), hence the universal full embedding rank is
equal to 19. Until recently, it was not known what the generating rank is, but
Valerie Ver Gucht (unpublished) recently showed it is equal to 19.
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