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Abstract

We prove the longstanding conjecture that the 3-Moufang condition for gener-
alized quadrangles is equivalent to the Moufang condition. We mention some other
characterizations of Moufang quadrangles that follow from this result. We also pro-
vide a short proof of Tent’s recent result that every half Moufang quadrangle is
necessarily a Moufang quadrangle.

Keywords: Moufang condition, generalized quadrangle, root groups.

Mathematics Subject Classification (2000): 51E12

1 Introduction

Generalized quadrangles were introduced by Tits [12] as the natural incidence geometries
related to the classical, algebraic and mixed groups of relative type B2. If we call these
the natural examples, then Tits [13] conjectured that the only generalized quadrangles
satisfying the so-called Moufang condition (see below for precise definitions) are the nat-
ural examples. In the finite case, this conjecture was known to be true by group-theoretic
work of Fong & Seitz [5, 6]. A lot of alternative conditions have been established in the
finite case to characterize the natural examples. Almost all of them were proved by re-
ducing the conditions to the Moufang condition. This was done by applying some typical
finiteness arguments (for instance, counting and finite group theory).

In the general case, the classification of all Moufang quadrangles was technically only
finished in 1997, when a new and final class was discovered. The classification and its proof
recently appeared in the monograph [16] by Tits & Weiss. Hence people want to know
whether the characterization theorems of the finite case can be extended to the general
case. There are four main global characterizations of all finite Moufang quadrangles that
can be considered here. We quickly review the conditions.
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1. The automorphism group of the generalized quadrangle acts flag-transitively, the
stabilizer B of a flag F acts transitively on the ordinary quadrangles containing F ,
and it contains a transitive normal nilpotent subgroup U .

Such groups are usually called groups with a split BN-pair of type B2. In the finite
case, they were classified by Fong & Seitz [5, 6]. In the general case, Tent &
Van Maldeghem [8] show that this condition implies the Moufang condition. The
converse was already known to be true, see Tits [15].

2. The half Moufang condition.

In the finite case, Thas, Payne & Van Maldeghem [10] showed that this condition
implies the Moufang condition. In the general case, Tent constructed a proof of this
fact using a certain lemma. This lemma turned out to be wrong when Weiss found
a counterexample (private communication; we will refer to that lemma below as the
“wrong lemma”). However, the second author could repair Tent’s proof using an
alternative argument (and this is contained in [7]). In fact, all that is needed to
prove the general case is that argument and one observation by Tent. We show how
this can be done at the end of the paper.

3. The k-Moufang condition, k ∈ {2, 3}.
In the finite case, Van Maldeghem, Thas & Payne [18] showed that 3-Moufang im-
plies Moufang (for generalized quadrangles). Later on, the second author of the
present paper [17] showed that the 2-Moufang condition is equivalent with the 3-
Moufang condition for all generalized quadrangles. In the present paper, we will
show that the 3-Moufang condition implies the Moufang condition for (not neces-
sarily finite) generalized quadrangles.

For k = 2, there is also the notion of a half 2-Moufang condition. In the finite
case, it has recently been proved by Thas & Van Maldeghem [11] that finite half
2-Moufang quadrangles are automatically Moufang. In the infinite case, this is still
open. The proof in the finite case again heavily relies on finiteness techniques.

4. The automorphism group of the generalized quadrangle acts distance-transitively on
the point set of the quadrangle.

In the finite case, this condition implies the Moufang condition, as has been showed
by Buekenhout & Van Maldeghem [2] using the classification of finite simple groups,
in particular the classification of primitive rank 3 groups. This result implies all
previous characterizations in the finite case. There is no hope for a prove in the
general case as there are free constructions of quadrangles with an automorphism
group acting transitively on ordered ordinary quadrangles starting with a point, see
[14] (cp. also 4.7.1 of [17]). In fact, the proof in the finite case does not give any
information or insight.
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As mentioned above, in this paper we will show that the 3-Moufang condition implies the
Moufang condition for an arbitrary generalized quadrangle. This problem was open since
1992. We will also mention some corollaries, and give a short proof of the implication half
Moufang to Moufang.

Finally, to conclude this introduction, we mention that all notions can be put in the general
framework of generalized polygons. The situation there is, however, not so satisfying
as in the case of quadrangles, although in the finite case, most characterizations can be
generalized from quadrangles to polygons. In the infinite case there are only some sporadic
and partial results.

2 Definitions, Notation and Results

A generalized quadrangle of order (s, t), s, t ∈ N ∪ {∞} is an incidence structure S =
(P ,L,I) in which P and B are disjoint (non-empty) sets of objects called points and lines
respectively, and for which I is a symmetric point-line incidence relation satisfying the
following properties:

(i) Each point is incident with t + 1 lines (t ≥ 1) and two distinct points are incident
with at most one line.

(ii) Each line is incident with s + 1 points (s ≥ 1) and two distinct lines are incident
with at most one point.

(iii) If (x, L) is a non-incident point-line pair then there is a unique point-line pair (y, M)
for which xIMIyIL.

If s, t ≥ 2 we call our geometry thick. Non-thick generalized quadrangles are rather trivial
geometries, called grids and dual grids. From now on, we only consider thick generalized
quadrangles.

We first remark that for generalized quadrangles we have the principle of duality. That
means that, if we interchange the roles of the point set and the line set in a theorem, we
obtain another theorem (which may or may not be different from the original theorem).

We will use the following terminology and notation. Let S = (P ,L,I) be a thick general-
ized quadrangle. In Condition (iii) the point y and the line M are called the projection of
x onto L and of L onto x, respectively, and denoted by projLx and projxL, respectively.
Two points x, y incident with a common line are collinear, and two lines L, M incident
with a common point are concurrent. We denote x ⊥ y and L ⊥ M . If x &= y, then the
line incident with them is unique and denoted by xy; similarly if L &= M , then L ∩ M
is the unique point incident with both. Two points or two lines which are not collinear
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or concurrent, respectively, are called opposite. If S is a set of points or lines, then S⊥

denotes the set of points or lines collinear or concurrent with every point or line of S,
respectively. A k-path, k ≥ 0, is a sequence (x0, x1, . . . , xk) of points and lines of S such
that xi−1Ixi, 1 ≤ i ≤ k, and such that xi−1 &= xi+1, 1 ≤ i < k. An incident point-line pair
is a flag. A subquadrangle S ′ of S consists of a point set P ′ ⊆ P and a line set L′ ⊆ L
such that, if we denote by I′ the restriction of I to P ′ ∪L′, the structure S ′ = (P ′,L′, I′)
is a generalized quadrangle. The subquadrangle S ′ is called full (ideal) if for every line
L′ ∈ L′ (point x′ ∈ P ′) all points (lines) of S incident with L′ (x′) belong to S ′. An
apartment is a set of 4 points and 4 lines which form a subquadrangle of order (1, 1).

A collineation of S is a permutation of P ∪ L inducing permutations of P and L, and
preserving incidence and non-incidence. We denote by G a collineation group of S. With
regard to permutation groups, we always use right action and exponential notation (so the
image of an element x under the collineation u is written as xu). The commutator [u, v]
of two collineations is u−1v−1uv and acts on x as x[u,v] = (((xu−1

)v−1
)u)v. The conjugate

uv is equal to v−1uv. We will always denote the identity by id, and for a group H, we
denote H× = H \ {id}.
Consider a (k−2)-path C = (x1, . . . , xk−1), with 2 ≤ k ≤ n, in the generalized quadrangle
S and let x0, xk ∈ P ∪ L be such that C̄ = (x0, x1, . . . , xk−1, xk) is a k-path. If the
group G[x1,...,xk−1] of collineations fixing every element incident with an element of C acts
transitively on the set of apartments containing the k-path C̄, then C is called a Moufang
path (with respect to G). It easily checked that this is independent of the choice of x0 and
xk. If every (k − 2)-path is a Moufang path, then S is called a k-Moufang quadrangle
(with respect to G). Note that it is well known that, for k ∈ {3, 4}, the group G[x1,...,xk−1]

generally acts semi-regularly on the set of apartments containing C̄ (see for instance 4.4.2
of [17]). A 4-Moufang quadrangle is also called a Moufang quadrangle.

For k ∈ {2, 4}, there are 2 kinds of (k−2)-paths: those containing fewer lines than points,
and those containing fewer points than lines. If all (k− 2)-paths of one type are Moufang
paths, then we call S half k-Moufang. A half 4-Moufang quadrangle is also called a half
Moufang quadrangle.

We can now state our main result.

Main Result. Every 3-Moufang generalized quadrangle with respect to some collineation
group G is a Moufang generalized quadrangle with respect to G.

We mention a few consequences.

Corollary 1 Every 2-Moufang generalized quadrangle with respect to some collineation
group G is a Moufang generalized quadrangle with respect to G.

An elation point x of a generalized quadrangle S is a point such that G[x] contains some
subgroup H acting regularly on the set of points opposite x, where this time, G is the full
collineation group. Dually, one defines an elation line.
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Corollary 2 A generalized quadrangle is a Moufang quadrangle if and only if it has at
least two opposite elation points and two opposite elation lines.

Let x, y be two opposite points of the generalized quadrangle S. Then we say that S is
{x, y}-transitive if, for some (and hence for every) line L incident with x the collineation
group G[x] ∩ G[y] (where again G is the full collineation group) acts transitively on the
set of points incident with L, but distinct from x and projLy. It is easy to see that this
definition is symmetric in x and y. Dually, one defines {L, M}-transitivity, for opposite
lines L, M .

Corollary 3 If a generalized quadrangle is {x, y}-transitive, for all pairs of opposite
points x, y, and {L, M}-transitive, for all pairs of opposite lines L, M , then it is a Moufang
quadrangle.

We remark that not every Moufang quadrangle contains opposite points or lines a, b such
that it is {a, b}-transitive. But it is not so hard to deduce from the classification of
Moufang quadrangles and the information on their collineation groups provided in [16]
that exactly the ones of which the “root groups” are all parametrized by skew fields
satisfy the hypotheses of the above corollary (the “root groups” are the groups G[x1,x2,x3],
for 2-paths (x1, x2, x3)).

In the finite case, Thas [9] showed that {x, y}-transitivity for all pairs of opposite points
x, y implies the Moufang condition (and, up to duality, every finite Moufang quadrangle
is {x, y}-transitive, for all pairs of opposite points x, y). The above corollary is not yet
as strong as this finite analogue, but it is the first in its kind valid for infinite generalized
polygons.

In the next Section we prove our main result by showing that every 3-Moufang quadrangle
is a half Moufang quadrangle. In Section 4 we prove the corollaries, and in Section 5, we
provide a short proof of the fact that half Moufang quadrangles are Moufang quadrangles.

3 Proof of the Main result

In this section, we denote by S = (P ,L, I) a thick generalized quadrangle satisfying the 3-
Moufang condition. We choose an arbitrary apartment Σ and put Σ = {x0, X1, x2, . . . , x6, X7},
where we read the subscripts modulo 8, with x2iIx2i±1, for all i ∈ Z mod 8. As the nota-
tion suggests, we view the x2i as points and the X2i+1 as lines.

Lemma 1 The group G acts transitively on each type of 2-paths in S.

Proof. Since the 3-Moufang condition is self-dual, we may restrict to 2-paths containing
two points and one line. Let x′6 be an arbitrary point collinear with x0. Since S is thick,
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we may assume without loss of generality that x′6 is not incident with X1. Hence, there is
a unique apartment Σ′ containing the points x′6, x0, x2 and projX3

x′6. By the 3-Moufang
condition, there is a collineation u ∈ G[x1,x2] mapping Σ to Σ′, and hence x6 to x′6. First of
all, this implies that G is transitive on the point set P of S; secondly, this shows that the
stabilizer of the point x0 acts transitively on the 2-paths containing x0 and some further
point.

The lemma is proved. !

In fact, it is not hard to see that G acts transitively on each type of 4-paths of S. This
implies that everything we prove or assume for one 2- or 4-path automatically holds for
every 2- or 4-path of the same type. For instance, if G[x2,X3]

X5
is abelian, then G[x2i,X2i+1]

X2i+3
is

abelian for all i modulo 8. We will use things like that freely in the sequel.

Lemma 2 Let u ∈ G[x2,X3]
X5

and suppose that u fixes some line X ′
5 concurrent with X3,

but not incident with x2 or with x4. Then u ∈ G[x4]. Hence, by symmetry, if x′4 = X ′
5∩X3,

then also u ∈ G[x′4].

Proof. Let w ∈ G[x4,X5] be such that it maps X1 to X ′
5 (and so it maps x2 to x′4). Then

[u−1, w] belongs to G[X3,x4,X5] and fixes additionally X1. Hence [u−1, w] = id. So u = uw.
But uw ∈ (G[x2,X3])w = G[xw

2 ,Xw
3 ] = G[x′4,X3], hence u fixes all lines through x′4. Similarly, u

also fixes all lines through x4.

The lemma is proved. !

Lemma 3 Suppose that U3 := G[x2,X3]
X5

is nonabelian. Then there exists a nontrivial

element u ∈ G[x2,X3]
X5

fixing all lines concurrent with X3.

Proof. Let u3, u′3 ∈ U3 be arbitrary but such that u = [u3, u′3] is nontrivial. This
is possible by our assumption. Choose an arbitrary point x′2 &= x4 incident with X3.
Let w ∈ G[x4,X5] be such that it maps x2 to x′2. Then uw

3 has the same action on the
set of points incident with X5 as u3. Hence [uw

3 , u′3] has the same action on the set of

points incident with X5 as [u3, u′3]. Moreover, [uw
3 , u′3] ∈ G[x2,X3]

x5 ∩ G
[x′2,X3]
X5

. So, using the
semi-regularity of the action of G[x2,X3] on the set of apartments containing X1 and x4,
we deduce that u = [uw

3 , u′3] ∈ G[x′2]. We conclude that, since x′2 was arbitrary, u fixes
all lines concurrent with X3, except possibly those incident with x4. But Lemma 2 now
guarantees that also all these lines are fixed.

The lemma is proved. !

Lemma 4 If {X3, X7}⊥⊥ contains at least three elements, then S is half Moufang.
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Proof. Recall that {X3, X7}⊥⊥ is the set of all lines concurrent with every line that is
concurrent with both X3 and X7. Since by assumption there are at least three such lines,
we may choose one, say X ′

7, which is different from both X3 and X7. Let u ∈ G[x0,X1]
X3

be
arbitrary. Since u fixes X3 and X7, it stabilizes {X3, X7}⊥⊥ setwise. But X ′

7 is the unique
element of {X3, X7}⊥⊥ incident with the point X ′

7 ∩ X1, which is fixed by u. Hence u
fixes X ′

7 and Lemma 2 implies u ∈ G[x0,X1,x2], from which we conclude that G[x0,X1,x2] acts
transitively on the set of apartments containing X7, X1 and X3.

Lemma 1 finishes the proof. !

We can now finish the case that U3 := G[x2,X3]
X5

is nonabelian. Indeed, let u ∈ G[x2,X3]
X5

be nontrivial and such that it fixes all lines concurrent with X3 (see Lemma 3). Then
X ′

7 := Xu
7 is concurrent with every line that meets both X3 and X7, and hence belongs to

{X3, X7}⊥⊥. Lemma 4 implies that S is half Moufang, and hence a Moufang quadrangle
by [7] (see also Section 5).

From now on we may assume that the groups G[x2,X3]
X5

and G[X1,x2]
x4 are abelian. Note that

these groups act sharply transitively on the elements of S incident with X5 and x4, re-
spectively, distinct from x4 and X3, respectively. Also, it is clear that [G[x2,X3]

X5
, G[x4,X3]

X1
] ≤

G[x2,X3]
X5

∩G[x4,X3]
X1

, hence G[x2,X3]
X5

and G[x4,X3]
X1

normalize each other. About regular abelian
groups normalizing each other, there is the following result (which is weak version of the
“wrong lemma” mentioned in the introduction). The proof is an easy exercise, but we
provide one for completeness’ sake.

Lemma 5 Let (H, Ω) be a permutation representation and let Hi ≤ H, i = 1, 2, be two
abelian subgroups acting regularly on Ω. Suppose [H1, H2] ≤ H1 ∩ H2 (in other words,
H1 and H2 normalize each other). Let x ∈ Ω be arbitrary, and suppose that h1 ∈ H1 and
h2 ∈ H2 are such that xh1h2 = x. Then |xH1∩H2| > 1 and yh1h2 = y, for all y ∈ xH1∩H2 .

Proof. It is well known that, if [H1, H2] is trivial, then H1 = H2 (as permutation
groups acting on X), see for instance [4]. In this case, clearly yh1h2 = y, for all y ∈ Ω,
since h1 = h−1

2 . Hence we may assume that [H1, H2] is nontrivial, and hence H1 ∩H2 is
nontrivial.

Pick y ∈ xH1∩H2 arbitrary, and let h1 and h2 be as in the statement of the lemma. Let
h ∈ H1 ∩ H2 be such that xh = y. Then yh1h2 = xhh1h2 = xh1h2h = xh = y (since h
centralizes both H1 and H2).

The lemma is proved. !

We now finish the proof of our main result.

We may assume that S is not a half Moufang generalized quadrangle, hence, without loss
of generality, there exists a nontrivial element u ∈ G[x2,X3]

X5
\G[x4,X3]

X1
. Let Ω be the set of all
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apartments containing X1, X3 and X5. Note that Σ ∈ Ω. By the foregoing lemma there
are an element u′ ∈ G[x4,X3]

X1
\ G[x2,X3]

X5
, and a subset Ω′ ⊆ Ω containing Σ, with |Ω′| > 1,

such that u−1u′ fixes all elements of Ω′.

If Ω′ &= Ω, then u−1u′ fixes {X3, X7}⊥ and at least three, but not all elements of {X5, X1}⊥.
We claim that all lines of {X5, X1}⊥ that are fixed under u−1u′ belong to {X3, X7}⊥⊥.
Indeed, if not, then let us consider a line L ∈ {X5, X1}⊥ fixed under u−1u′, but not
belonging to {X3, X7}⊥⊥. Put L ∩X1 = x′0. Hence there is a line Q in {X3, X7}⊥ which
is not concurrent with L. Thus L and Q are opposite, so x′0 is not incident with Q. Since
u−1u′ fixes all elements of {X3, X7}⊥, it fixes Q. Therefore u−1u′ fixes the unique 3-path
from x′0 to Q. Consequently, u−1u′ fixes at least three lines incident with x′0. This implies
that it fixes a thick full subquadrangle, implying (by Proposition 1.8.1 of [17]) that all
points incident with X1 are fixed. This contradicts our assumption Ω′ &= Ω. The claim is
proved. But now Lemma 4 shows that S is a half Moufang quadrangle.

Hence we may assume that u−1u′ fixes all lines X1, X3, X5, X7 pointwise, but does not
act trivially on the set of lines incident with x2. It is more convenient to argue with the
dual situation. Dually, we have a collineation w fixing all lines incident with the points
x0, x2, x4, x6, but not fixing all points of the line X1. In fact, we may re-name the points
incident with X1 in such a way that w maps x0 onto x2, and w fixes all lines incident with
some points x′2 and x′0, with x′2IX1Ix′0. We now take an arbitrary element v ∈ G[x0,X1]

X3
.

Since we assume that S is not half Moufang, we can choose v such that it does not fix
all lines incident with x2. Now consider the commutator [v, w]. It certainly fixes all lines
incident with x′2 and those incident with x′0, and it fixes all points incident with X1. Now,
v−1 does not fix all lines incident with x2. Also, w−1 maps the lines incident with x2 onto
the lines incident with x0. Finally, v fixes all these lines. So we see that [v, w] does not fix
all lines incident with x2. Lemma 2 implies that [v, w] cannot fix any line incident with

x2. But this contradicts X [v,w]
3 = Xw−1vw

3 = ((Xw−1

3 )v)w = Xw−1w
3 = X3.

The proof of the Main Result is complete.

4 Proof of the corollaries

Corollary 1 follows directly from the fact that 2-Moufang quadrangles are automatically 3-
Moufang quadrangles (see [17]). Concerning Corollary 2, we first remark that any elation
point x defines a Moufang 0-path (x). If x, y are two opposite elation points, then all
points that are opposite x or y are elation points (by transitivity). It is now easy to see
that every point is an elation point. Similarly every line is an elation line. Consequently
every 0-path is a Moufang 0-path and the quadrangle is 2-Moufang.

Now suppose S satisfies the assumptions of Corollary 3. Let L be any line of S. Let
M and M ′ be two lines opposite L. If we show that there is a collineation u ∈ G[L]
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mapping M to M ′, then (L) is a Moufang 0-path and, together with the dual argument,
S is 2-Moufang, proving the corollary.

If M is different from, concurrent with M ′, then let x be the unique point incident with
both M and M ′. Remark that we may assume that there are at least 4 lines incident
with a given point by [9] and [3]. Hence there is some line N /∈ {M, M ′, projxL} incident
with x. The {L, N}-transitivity implies that there is some collineation in G[L] mapping
M to M ′. If M is not concurrent with M ′, then by a result of Cuypers stated in [1] (see
also 1.7.15 of [17]), there is a sequence of ! lines (M = M1, M2, . . . ,M! = M ′) such that
Mi ⊥ Mi+1, for all i ∈ {1, 2, . . . , !−1}, and all Mi are opposite L. The result is now clear.

5 Half Moufang quadrangles

In this section, we show that half Moufang quadrangles are always Moufang quadrangles.
The proof we present differs from the one in [7] in that we almost exclusively use the
argument of the second author that replaced the “wrong lemma” in [7]. We will indicate
the place where we actually borrow an argument of [7].

First, let us mention the following well known result [8]. We keep the notation of Section 3
regarding the apartment Σ and its elements.

Lemma 6 Let S be a half Moufang quadrangle and suppose all 2-paths containing two
lines satisfy the Moufang condition. Then S is a Moufang quadrangle whenever the
following condition is satisfied. Let x &= x0 be arbitrary on the line X1, and let Y &= X1

be arbitrary through x. Then the action of the collineation group G[X1,x,Y ] on the set of
lines incident with x0 does not depend on the choice of x, Y . !

Furthermore, we know from elementary group theory that, if K and K ′ are two groups
acting regularly on a set Ω, and if K and K ′ centralize each other, then, without loss of
generality, we may identify Ω with K such that the action of K on Ω = K is given by
right multiplication. Moreover, K ′ ∼= K, with the action of h′ ∈ K ′ on Ω = K given by
left multiplication with h′−1. We will denote that action of K ′ on Ω by Kopp. We will also
use this notation if both K and K ′ fix an element ω ∈ Ω and act regularly on Ω \ {ω}.
We assume that S is a half Moufang quadrangle and prove it is a Moufang quadrangle.
We use the same notation as in Section 3, en as in Lemma 6 above (as it suffices to show
that the conditions of that lemma are satisfied).

So we have to show that the action of G[X1,x,Y ] on the lines incident with x0 does not
depend on x, Y . This is clear if x = x2, because the half Moufang conditions implies the
existence of a collineation fixing all lines incident with x0 and mapping X3 to Y in this
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case. So we may assume x &= x2, and Y concurrent with X5. Put U2 := G[X1,x2,X3] and
U ′

2 := G[X1,x,Y ]. Let Ω be the set of all lines of S incident with x0. For a subgroup H of
the stabilizer of x0 in S, we denote by HΩ the permutation group induced by H on Ω. We
first show that (U2)Ω and (U ′

2)Ω normalize each other. We borrow the argument from [7].

Let u2 ∈ U2 and u′2 ∈ U ′
2 be arbitrary, and let u8 ∈ G[X7,x0,X1] be such that X

u′2u8

3 = X3.
Clearly [u′2u8, u2] ∈ U2. But the action of [u′2u8, u2] on Ω coincides clearly with the action
of [u′2, u2] on Ω, since u8 acts trivially on Ω. Similarly, the action of [u′2, u2] on Ω is the
same as that of some element of U ′

2 on Ω. Hence the actions of U2 and U ′
2 on the set Ω

normalize each other.

Put U6 := G[X5,x6,X7]. The group H := 〈U6, U2〉 fixes the set {x4, x0} pointwise. Clearly
U6 and U2 are conjugate in H. Also, it is clear that, given u2 ∈ U×

2 , there exists u6 ∈ U6

such that Uu2u6
6 = U2. Hence if (U2)Ω ∩ (U ′

2)Ω is nontrivial, then we may take u2 ∈ U×
2

such that its action on Ω coincides with an element u′2 of U ′
2
×. We thus obtain (U2)Ω =

(Uu2u6
6 )Ω = (U

u′2u6

6 )Ω = (U ′
2)Ω.

So we may assume that (U2)Ω and (U ′
2)Ω only share the identity (hence |Ω| > 4). This

immediately implies that (U2)Ω centralizes (U ′
2)Ω. Since both U2 and U ′

2 act regularly on
Ω \ {X1}, we obtain (U ′

2)Ω = (U2)
opp
Ω .

Consider any line X̃1 incident with x0, but different from X1 and X7, and define x̃2

and X̃3 as X̃1Ix̃2IX̃3Ix4. Put Ũ2 = GX̃1,x̃2,X̃3 . Let u6 ∈ U×
6 map X1 to X̃1. We see

that (Ũ2)Ω is conjugate to (U2)Ω in 〈(U2)Ω, (U6)Ω〉 (via the action of u6, but also via
any element of 〈(U2)Ω, (U6)Ω〉 mapping X1 onto X̃1). Similarly, (U2)Ω is the conjugate of
(U6)Ω in 〈(Ũ2)Ω, (U6)Ω〉 by each element of the latter mapping X7 onto X̃1. Now define

X̃1Ix̃′2IX̃
′
3IprojX5

x. Put Ũ ′
2 = GX̃1,x̃′2,X̃′

3 . Then, similarly as in the previous paragraph,

either (Ũ ′
2)Ω = (Ũ2)Ω, or (Ũ ′

2)Ω = (Ũ2)
opp
Ω . In the former case we see, similarly as above,

that (U2)
opp
Ω is conjugate to (U6)Ω in 〈(Ũ ′

2)Ω, (U6)Ω〉 = 〈(Ũ2)Ω, (U6)Ω〉, implying by the

observation above that (U2)Ω and (U2)
opp
Ω are conjugate by any element of 〈(Ũ2)Ω, (U6)Ω〉

fixing X1, clearly a contradiction (as we can choose the identity!). Hence (Ũ ′
2)Ω = (Ũ2)

opp
Ω .

This implies that (U6)Ω belongs to 〈(U2)
opp
Ω , (Ũ2)

opp
Ω 〉 and is in fact conjugate to (U2)

opp
Ω

by any element of 〈(U2)
opp
Ω , (Ũ2)

opp
Ω 〉 mapping X1 onto X7.

Now we know that there are at least five lines incident with x0, so we may consider a line
X7 incident with x0, not belonging to {X1, X7, X̃1}. Define X7Ix6IX5Ix4. We denote
U6 := GX7,x6,X5 . We interchange the roles of X7 and X7, and at the same time of Y and
Y := projxprojx4

X7. We obtain, as in the previous paragraph, and using the fact that

(U ′
2)Ω does not depend on Y , but only on x, that (U6)Ω belongs to 〈(U2)

opp
Ω , (Ũ2)

opp
Ω 〉 and

is in fact conjugate to (U2)
opp
Ω by any element of 〈(U2)

opp
Ω , (Ũ2)

opp
Ω 〉 mapping X1 onto X7.

It is now clear that, combining this with the conclusion of the previous paragraph, the
group 〈(U6)Ω, (U6)Ω〉 contains (U2)

opp
Ω , conjugate to (U6)Ω by any element of 〈(U6)Ω, (U6)Ω〉

10



mapping X7 to X1. But of course U2 is conjugate to U6 by a (unique) element of U6,
contradicting the fact that (U2)Ω &= (U2)

opp
Ω .

The assertion is proved.
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