On Ferri's characterization of the finite quadric Veronesean \mathcal{V}_{2}^{4}

J. A. Thas
H. Van Maldeghem

Abstract

We generalize and complete Ferri's characterization of the finite quadric Veronesean \mathcal{V}_{2}^{4} by showing that Ferri's assumptions also characterize the quadric Veroneseans in spaces of even characteristic.

Mathematics Subject Classification 1991: 51E20, 51B99, 51E25.
Key words and phrases: Veronesean cap, Quadric Veronesean

1 Introduction

Let q be a fixed prime power. For any integer k, denote by $\operatorname{PG}(k, q)$ the k-dimensional projective space over the finite (Galois) field $\mathbf{G F}(q)$ of q elements. We choose coordinates in $\mathbf{P G}(2, q)$ and in $\mathbf{P G}(5, q)$. The Veronesean map maps a point of $\mathbf{P G}(2, q)$ with coordinates $\left(x_{0}, x_{1}, x_{2}\right)$ onto the point of $\mathbf{P G}(5, q)$ with coordinates

$$
\left(x_{0}^{2}, x_{1}^{2}, x_{2}^{2}, x_{0} x_{1}, x_{0} x_{2}, x_{1} x_{2}\right)
$$

The quadric Veronesean \mathcal{V}_{2}^{4}, is the image of the Veronesean map. The set \mathcal{V}_{2}^{4} is a cap of $\mathbf{P G}(5, q)$ and has a lot of other nice geometric and combinatorial properties, summarized in [2]. We also refer to [2] for characterizations of this cap, sometimes called a Veronesean cap. In particular, there exists a characterization of \mathcal{V}_{2}^{4} in terms of the intersection numbers of a hyperplane which is valid for q odd. It was first considered and proved by Ferri [1]; the proof in [2] is much shorter because Hirschfeld and Thas make use of the other characterizations. Also, the proof of Ferri did not work for $q=3$; see [1]. Recently, the authors proved a new characterization of the finite quadric Veroneseans, and they will use it here to generalize Ferri's result to all q.
We now prepare the statement of our Main Result.

2 Main Result

Recall from [2] that the quadric Veronesean \mathcal{V}_{2}^{4} is a cap \mathcal{K} in $\operatorname{PG}(5, q)$ satisfying the following two properties.
(VC1) For every hyperplane π of $\mathbf{P G}(5, q)$, we have $|\pi \cap \mathcal{K}|=1, q+1$ or $2 q+1$, and there exists some hyperplane π such that $|\pi \cap \mathcal{K}|=2 q+1$.
(VC2) Any plane of $\operatorname{PG}(5, q)$ with four points in \mathcal{K} has at least $q+1$ points in \mathcal{K}.

It is also proved in [2] that these two properties characterize \mathcal{V}_{2}^{4} for all odd q; Ferri [1] had proved this for all odd $q \neq 3$. In the present paper we will prove this for all q. In fact, we will be able to copy the proof in [2] for the general case (now relying on the Main Results of [4]) except for $q=4$, for which we produce a separate argument.
So we obtain the following general characterization.

Theorem 2.1 Let \mathcal{K} be a set of points of $\mathbf{P G}(5, q), q>2$, satisfying (VC1) and (VC2). Then \mathcal{K} is projectively equivalent with the quadric Veronesean \mathcal{V}_{2}^{4} in $\mathbf{P G}(5, q)$. For $q=2$, a set of points in $\mathbf{P G}(5,2)$ satisfying $(\mathrm{VC1})$ and (VC2) is either a quadric Veronesean or an elliptic quadric in some subspace $\mathbf{P G}(3,2)$.

3 Proof of the Main Result

We now prove Theorem 2.1.
Let \mathcal{K} be a set of points of $\mathbf{P G}(5, q), q>2$, satisfying (VC1) and (VC2) (see above). We first prove that \mathcal{K} is a $\left(q^{2}+q+1\right)$-cap. This follows from the results in $[2]$ if $q \neq 4$. So we first deal with the case $q=4$.
In the next three lemmas, we assume that $q=4$ and that \mathcal{K} satisfies (VC1) and (VC2). We adopt the terminology of [2]: a solid is a 3 -dimensional subspace of $\operatorname{PG}(5,4)$, while a prime is a 4 -dimensional subspace of $\mathbf{P G}(5,4)$.

Lemma $3.1 \mathcal{K}$ generates $\operatorname{PG}(5,4)$.

PROOF. By (VC1) the set \mathcal{K} does not generate a line. Assume that \mathcal{K} generates a plane π_{2}. By Lemma 25.3.5 of [2] there is a line L of π_{2} with $|L \cap \mathcal{K}| \in\{2,3\}$. Let π_{4} be a prime which contains L but not π_{2}. Then $\left|\pi_{4} \cap \mathcal{K}\right| \in\{2,3\}$, contradicting (VC1). Next, assume that \mathcal{K} generates a solid π_{3}. Then $|\mathcal{K}|=9$ and each plane of π_{3} has one or five points in \mathcal{K}.

Let p and p^{\prime} be distinct points of \mathcal{K}. Suppose that the line $p p^{\prime}=L$ has $b \geq 2$ points in \mathcal{K}. Counting the points of \mathcal{K} in the planes of π_{3} through the line L, we obtain $5(5-b)+b=9$, whence $b=4$. Let $L \cap \mathcal{K}=\left\{p, p^{\prime}, p^{\prime \prime}, p^{\prime \prime \prime}\right\}$ and let $\pi_{2} \cap \mathcal{K}=\left\{p, p^{\prime}, p^{\prime \prime}, p^{\prime \prime \prime}, r\right\}$, with π_{2} some plane of π_{3} through L. Then the line $r p$ has only $2 \neq b$ points in \mathcal{K}, a contradiction. Finally, assume that \mathcal{K} generates a prime π_{4}. By (VC1) we have again $|\mathcal{K}|=9$ and each solid π_{3} of π_{4} has one or five points in \mathcal{K}. Let L be a line having at least 2 points in \mathcal{K}, and let π_{2} be a plane of π_{4} containing L. Further, let $|L \cap \mathcal{K}|=a$ and $\left|\pi_{2} \cap \mathcal{K}\right|=b$. Counting the points of \mathcal{K} in the solids of π_{4} containing π_{2}, we obtain $5(5-b)+b=9$, whence $b=4$. Counting the points of \mathcal{K} in the planes of π_{4} containing L, we obtain $21(4-a)+a=9$. Consequently $a=15 / 4$, a contradiction. The lemma is proved.

Lemma 3.2 \mathcal{K} is a cap.

PROOF. Let L be a line. By Lemma 25.3.2 of [2] we have either $L \subseteq \mathcal{K}$ or $|L \cap \mathcal{K}| \leq 3$. First assume that $L \cap \mathcal{K}=\left\{p, p^{\prime}, p^{\prime \prime}\right\}$. Choose points r_{1}, r_{2}, r_{3} on $\mathcal{K} \backslash\left\{p, p^{\prime}, p^{\prime \prime}\right\}$ so that $\left\langle L, r_{1}, r_{2}, r_{3}\right\rangle$ is a prime π_{4}. Then $\left|\pi_{4} \cap \mathcal{K}\right|=9$. Necessarily $\left\langle L, r_{i}\right\rangle$ contains five points of $\mathcal{K}, i=1,2,3$ (use (VC2)). The solid $\left\langle L, r_{1}, r_{2}\right\rangle$ contains either seven or eight points. If $\left\langle L, r_{1}, r_{2}\right\rangle$ contains eight points, then it contains the three planes $\left\langle L, r_{i}\right\rangle, i=1,2,3$, so it contains nine points, a contradiction. Hence $\left|\mathcal{K} \cap\left\langle L, r_{1}, r_{2}\right\rangle\right|=7$. Considering the primes containing $\left\langle L, r_{1}, r_{2}\right\rangle$ there arises $|\mathcal{K}|=17$. Now we project $\mathcal{K} \backslash L$ from L onto a solid π_{3} skew to L. There arises a set \mathcal{K}^{\prime} of size 7 in π_{3} which intersects each plane of π_{3} in either one or three points. By [3] such a set \mathcal{K}^{\prime} does not exist.
Next, assume that \mathcal{K} contains a line L. Choose points $r_{1}, r_{2}, r_{3} \in \mathcal{K} \backslash L$ such that $\left\langle L, r_{1}, r_{2}, r_{3}\right\rangle$ generates a prime π_{4}. Then $\left|\pi_{4} \cap \mathcal{K}\right|=9$. Let $\left(\mathcal{K} \cap \pi_{4}\right) \backslash L=\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\}$. By the preceding paragraph $r_{4} \notin\left\langle L, r_{i}\right\rangle, i=1,2,3$, as otherwise there is a line containing exactly three points of \mathcal{K}. Now we project $\mathcal{K} \backslash L$ from L onto a solid π_{3} skew to L. There arises a set \mathcal{K}^{\prime} which intersects each plane of π_{3} in either one or four points. By [3] such a set \mathcal{K}^{\prime} does not exist.
The lemma is proved.

Lemma 3.3 The cap \mathcal{K} contains exactly 21 points.
PROOF. Put $|\mathcal{K}|=k$. Let $\pi_{4}^{1}, \pi_{4}^{2}, \ldots$ be the primes of $\operatorname{PG}(5,4)$, and let s_{i} be the number of points of \mathcal{K} in π_{4}^{i}. Counting in two ways the number of ordered pairs $\left(p, \pi_{4}^{i}\right)$, with $p \in \mathcal{K} \cap \pi_{4}^{i}$, we obtain

$$
\sum_{i=1}^{1365} s_{i}=341 k
$$

Counting in two ways the number of ordered triples ($p, p^{\prime}, \pi_{4}^{i}$), with $p, p^{\prime} \in \mathcal{K} \cap \pi_{4}^{i}$, and $p \neq p^{\prime}$, we obtain

$$
\sum_{i=1}^{1365} s_{i}\left(s_{i}-1\right)=85 k(k-1)
$$

The set \mathcal{K} is a cap; so counting in two ways the number of ordered 4 -tuples $\left(p, p^{\prime}, p^{\prime \prime}, \pi_{4}^{i}\right)$, with $p, p^{\prime}, p^{\prime \prime} \in \mathcal{K} \cap \pi_{4}^{i}$, and $p \neq p^{\prime} \neq p^{\prime \prime} \neq p$, we obtain

$$
\sum_{i=1}^{1365} s_{i}\left(s_{i}-1\right)\left(s_{i}-2\right)=21 k(k-1)(k-2)
$$

Since $s_{i} \in\{1,5,9\}$ for all i, we have

$$
\sum_{i=1}^{1365}\left(s_{i}-1\right)\left(s_{i}-5\right)\left(s_{i}-9\right)=0
$$

Hence

$$
\sum_{i=1}^{1365} s_{i}\left(s_{i}-1\right)\left(s_{i}-2\right)-12 \sum_{i=1}^{1365} s_{i}\left(s_{i}-1\right)+45 \sum_{i=1}^{1365} s_{i}-61425=0 .
$$

We obtain, substituting the previous equalities,

$$
21 k(k-1)(k-2)-1020 k(k-1)+15345 k-61425=0 .
$$

Hence $7 k^{3}-361 k^{2}+5469 k-20475=0$. It follows that $k=21$ or $k=25$.
Assume that $k=25$. If π_{3} is a solid which contains $a \geq 6$ points of \mathcal{K}, then $|\mathcal{K}|=25=$ $a+5(9-a)$, so $a=5$, a contradiction. If π_{2} is a plane which contains at least four points of \mathcal{K}, then π_{2} contains at least five points of \mathcal{K} (by (VC2)), so there exists a solid which contains at least six points of \mathcal{K}, a contradiction. Hence any four points of \mathcal{K} are linearly independent.
Let p be a fixed point of \mathcal{K}. Let c_{i} be the number of primes of $\operatorname{PG}(5,4)$ which contain p and intersect \mathcal{K} in i points, $i=1,5,9$. Counting pairs $\left\{p^{\prime}, \pi_{4}\right\}$ with $p^{\prime} \in \mathcal{K}, p \neq p^{\prime}$, with π_{4} a prime and $p, p^{\prime} \in \pi_{4}$, we obtain $4 c_{5}+8 c_{9}=2040$. Counting triples $\left\{p^{\prime}, p^{\prime \prime}, \pi_{4}\right\}$ with $p^{\prime}, p^{\prime \prime} \in \mathcal{K}, p \neq p^{\prime} \neq p^{\prime \prime} \neq p$, with π_{4} a prime and $p, p^{\prime}, p^{\prime \prime} \in \pi_{4}$, we obtain $6 c_{5}+28 c_{9}=5796$. Counting quadruples $\left\{p^{\prime}, p^{\prime \prime}, p^{\prime \prime \prime}, \pi_{4}\right\}$ with $p^{\prime}, p^{\prime \prime}, p^{\prime \prime \prime} \in \mathcal{K}, p, p^{\prime}, p^{\prime \prime}, p^{\prime \prime \prime}$ distinct, π_{4} a prime and $p, p^{\prime}, p^{\prime \prime}, p^{\prime \prime \prime} \in \pi_{4}$, we obtain $4 c_{5}+56 c_{9}=10120$, clearly contradicting the previous equalities.
So we conclude that $k=21$ and the lemma is proved.
Now it is clear that Lemma 25.3 .10 to Lemma 25.3.13 of [2] hold for all $q \geq 3$. In particular, this means that there are exactly $q^{2}+q+1$ planes of $\mathbf{P G}(5, q)$ meeting \mathcal{K} in
an oval (which is a $q+1$-arc), and every pair of points of \mathcal{K} is contained in exactly one such plane. Also, two such planes meet in exactly one point, which belongs to \mathcal{K}. Let \mathcal{K} be as in Theorem 2.1 and suppose $q>2$. By the proof of Theorem 25.3.14 of [2], we now also have that every three planes of $\operatorname{PG}(5, q)$ that intersect \mathcal{K} in an oval generate $\mathbf{P G}(5, q)$. By Theorem 1.3 of [4], \mathcal{K} either is the quadric Veronesean \mathcal{V}_{2}^{4} or $q=4$ and \mathcal{K} is the unique 2-dimensional dual hyperoval of $\operatorname{PG}(5,4)$. As in the latter case (VC2) is not satisfied, we proved Theorem 2.1 for all $q>2$.

Finally suppose $q=2$. We use similar terminology as before. Let π_{4} be a prime of $\mathbf{P G}(5,2)$ containing 5 points of \mathcal{K}. If these five points generate π_{4}, then, considering the three primes through a solid contained in π_{4} and itself containing four points of \mathcal{K}, it is easily seen that $|\mathcal{K}|=7$ and every six points of \mathcal{K} generate $\mathbf{P G}(5,2)$. In this case \mathcal{K} is a skeleton and hence isomorphic to the quadric Veronesean \mathcal{V}_{2}^{4}. So we may assume that these five points do not generate π_{4}. Clearly this implies $|\mathcal{K}|=5$. It is now an easy exercise to see that \mathcal{K} generates a solid and is an elliptic quadric in that solid (because every plane of that solid contains either one or three points of \mathcal{K}).
The proof of Theorem 2.1 is complete.

References

[1] O. Ferri, Su di una caratterizzazione grafica della superficie di Veronese di un $\mathcal{S}_{5, q}$, Atti Accad. Naz. Lincei Rend. 61 (1976), 603 - 610.
[2] J. W. P. Hirschfeld and J. A. Thas, General Galois Geometries, Oxford University Press, 1991.
[3] J. A. Thas, A combinatorial problem, Geom. Dedicata 1 (1973), 236 - 240.
[4] J. A. Thas and H. Van Maldeghem, Characterizations of the finite quadric Veroneseans $\mathcal{V}_{n}^{2^{n}}$, to appear in Quart. J. Math. Oxford Ser. (2).

