On Ferri's characterization of the finite quadric Veronesean V_2^4

J. A. Thas H. Van Maldeghem

Abstract

We generalize and complete Ferri's characterization of the finite quadric Veronesean \mathcal{V}_2^4 by showing that Ferri's assumptions also characterize the quadric Veroneseans in spaces of even characteristic.

Mathematics Subject Classification 1991: 51E20, 51B99, 51E25. Key words and phrases: Veronesean cap, Quadric Veronesean

1 Introduction

Let q be a fixed prime power. For any integer k, denote by $\mathbf{PG}(k,q)$ the k-dimensional projective space over the finite (Galois) field $\mathbf{GF}(q)$ of q elements. We choose coordinates in $\mathbf{PG}(2,q)$ and in $\mathbf{PG}(5,q)$. The *Veronesean map* maps a point of $\mathbf{PG}(2,q)$ with coordinates (x_0, x_1, x_2) onto the point of $\mathbf{PG}(5,q)$ with coordinates

$$(x_0^2, x_1^2, x_2^2, x_0x_1, x_0x_2, x_1x_2).$$

The quadric Veronesean \mathcal{V}_2^4 , is the image of the Veronesean map. The set \mathcal{V}_2^4 is a cap of $\mathbf{PG}(5,q)$ and has a lot of other nice geometric and combinatorial properties, summarized in [2]. We also refer to [2] for characterizations of this cap, sometimes called a Veronesean cap. In particular, there exists a characterization of \mathcal{V}_2^4 in terms of the intersection numbers of a hyperplane which is valid for q odd. It was first considered and proved by Ferri [1]; the proof in [2] is much shorter because Hirschfeld and Thas make use of the other characterizations. Also, the proof of Ferri did not work for q = 3; see [1]. Recently, the authors proved a new characterization of the finite quadric Veroneseans, and they will use it here to generalize Ferri's result to all q.

We now prepare the statement of our Main Result.

2 Main Result

Recall from [2] that the quadric Veronesean \mathcal{V}_2^4 is a cap \mathcal{K} in $\mathbf{PG}(5,q)$ satisfying the following two properties.

- (VC1) For every hyperplane π of $\mathbf{PG}(5,q)$, we have $|\pi \cap \mathcal{K}| = 1, q+1$ or 2q+1, and there exists some hyperplane π such that $|\pi \cap \mathcal{K}| = 2q+1$.
- (VC2) Any plane of $\mathbf{PG}(5,q)$ with four points in \mathcal{K} has at least q+1 points in \mathcal{K} .

It is also proved in [2] that these two properties characterize \mathcal{V}_2^4 for all odd q; Ferri [1] had proved this for all odd $q \neq 3$. In the present paper we will prove this for all q. In fact, we will be able to copy the proof in [2] for the general case (now relying on the Main Results of [4]) except for q = 4, for which we produce a separate argument.

So we obtain the following general characterization.

Theorem 2.1 Let K be a set of points of $\mathbf{PG}(5,q)$, q > 2, satisfying (VC1) and (VC2). Then K is projectively equivalent with the quadric Veronesean \mathcal{V}_2^4 in $\mathbf{PG}(5,q)$. For q=2, a set of points in $\mathbf{PG}(5,2)$ satisfying (VC1) and (VC2) is either a quadric Veronesean or an elliptic quadric in some subspace $\mathbf{PG}(3,2)$.

3 Proof of the Main Result

We now prove Theorem 2.1.

Let \mathcal{K} be a set of points of $\mathbf{PG}(5,q)$, q > 2, satisfying (VC1) and (VC2) (see above). We first prove that \mathcal{K} is a $(q^2 + q + 1)$ -cap. This follows from the results in [2] if $q \neq 4$. So we first deal with the case q = 4.

In the next three lemmas, we assume that q = 4 and that K satisfies (VC1) and (VC2). We adopt the terminology of [2]: a *solid* is a 3-dimensional subspace of $\mathbf{PG}(5,4)$, while a *prime* is a 4-dimensional subspace of $\mathbf{PG}(5,4)$.

Lemma 3.1 \mathcal{K} generates PG(5,4).

PROOF. By (VC1) the set \mathcal{K} does not generate a line. Assume that \mathcal{K} generates a plane π_2 . By Lemma 25.3.5 of [2] there is a line L of π_2 with $|L \cap \mathcal{K}| \in \{2,3\}$. Let π_4 be a prime which contains L but not π_2 . Then $|\pi_4 \cap \mathcal{K}| \in \{2,3\}$, contradicting (VC1). Next, assume that \mathcal{K} generates a solid π_3 . Then $|\mathcal{K}| = 9$ and each plane of π_3 has one or five points in \mathcal{K} .

Let p and p' be distinct points of K. Suppose that the line pp' = L has $b \geq 2$ points in K. Counting the points of K in the planes of π_3 through the line L, we obtain 5(5-b)+b=9, whence b=4. Let $L \cap K = \{p,p',p'',p'''\}$ and let $\pi_2 \cap K = \{p,p',p'',p''',r\}$, with π_2 some plane of π_3 through L. Then the line p has only p points in p, a contradiction. Finally, assume that p generates a prime p. By (VC1) we have again p and each solid p and p has one or five points in p. Let p be a line having at least p points in p, and let p be a plane of p containing p. Further, let p and p and p be p whence p has one or p the points of p in the solids of p containing p, we obtain p the points of p in the planes of p containing p the points of p in the planes of p containing p the points of p in the planes of p containing p the points of p in the planes of p containing p the points of p in the planes of p containing p the points of p in the planes of p containing p the points of p in the planes of p containing p the points of p in the planes of p containing p the points of p in the planes of p containing p the points of p in the planes of p containing p the planes of p the planes

Lemma 3.2 \mathcal{K} is a cap.

PROOF. Let L be a line. By Lemma 25.3.2 of [2] we have either $L \subseteq \mathcal{K}$ or $|L \cap \mathcal{K}| \leq 3$.

First assume that $L \cap \mathcal{K} = \{p, p', p''\}$. Choose points r_1, r_2, r_3 on $\mathcal{K} \setminus \{p, p', p''\}$ so that $\langle L, r_1, r_2, r_3 \rangle$ is a prime π_4 . Then $|\pi_4 \cap \mathcal{K}| = 9$. Necessarily $\langle L, r_i \rangle$ contains five points of \mathcal{K} , i = 1, 2, 3 (use (VC2)). The solid $\langle L, r_1, r_2 \rangle$ contains either seven or eight points. If $\langle L, r_1, r_2 \rangle$ contains eight points, then it contains the three planes $\langle L, r_i \rangle$, i = 1, 2, 3, so it contains nine points, a contradiction. Hence $|\mathcal{K} \cap \langle L, r_1, r_2 \rangle| = 7$. Considering the primes containing $\langle L, r_1, r_2 \rangle$ there arises $|\mathcal{K}| = 17$. Now we project $\mathcal{K} \setminus L$ from L onto a solid π_3 skew to L. There arises a set \mathcal{K}' of size 7 in π_3 which intersects each plane of π_3 in either one or three points. By [3] such a set \mathcal{K}' does not exist.

Next, assume that \mathcal{K} contains a line L. Choose points $r_1, r_2, r_3 \in \mathcal{K} \setminus L$ such that $\langle L, r_1, r_2, r_3 \rangle$ generates a prime π_4 . Then $|\pi_4 \cap \mathcal{K}| = 9$. Let $(\mathcal{K} \cap \pi_4) \setminus L = \{r_1, r_2, r_3, r_4\}$. By the preceding paragraph $r_4 \notin \langle L, r_i \rangle$, i = 1, 2, 3, as otherwise there is a line containing exactly three points of \mathcal{K} . Now we project $\mathcal{K} \setminus L$ from L onto a solid π_3 skew to L. There arises a set \mathcal{K}' which intersects each plane of π_3 in either one or four points. By [3] such a set \mathcal{K}' does not exist.

The lemma is proved. \Box

Lemma 3.3 The cap K contains exactly 21 points.

PROOF. Put $|\mathcal{K}| = k$. Let π_4^1, π_4^2, \ldots be the primes of $\mathbf{PG}(5,4)$, and let s_i be the number of points of \mathcal{K} in π_4^i . Counting in two ways the number of ordered pairs (p, π_4^i) , with $p \in \mathcal{K} \cap \pi_4^i$, we obtain

$$\sum_{i=1}^{1365} s_i = 341k.$$

Counting in two ways the number of ordered triples (p, p', π_4^i) , with $p, p' \in \mathcal{K} \cap \pi_4^i$, and $p \neq p'$, we obtain

$$\sum_{i=1}^{1365} s_i(s_i - 1) = 85k(k - 1).$$

The set K is a cap; so counting in two ways the number of ordered 4-tuples (p, p', p'', π_4^i) , with $p, p', p'' \in K \cap \pi_4^i$, and $p \neq p' \neq p'' \neq p$, we obtain

$$\sum_{i=1}^{1365} s_i(s_i - 1)(s_i - 2) = 21k(k-1)(k-2).$$

Since $s_i \in \{1, 5, 9\}$ for all i, we have

$$\sum_{i=1}^{1365} (s_i - 1)(s_i - 5)(s_i - 9) = 0.$$

Hence

$$\sum_{i=1}^{1365} s_i(s_i - 1)(s_i - 2) - 12 \sum_{i=1}^{1365} s_i(s_i - 1) + 45 \sum_{i=1}^{1365} s_i - 61425 = 0.$$

We obtain, substituting the previous equalities,

$$21k(k-1)(k-2) - 1020k(k-1) + 15345k - 61425 = 0.$$

Hence $7k^3 - 361k^2 + 5469k - 20475 = 0$. It follows that k = 21 or k = 25.

Assume that k = 25. If π_3 is a solid which contains $a \geq 6$ points of \mathcal{K} , then $|\mathcal{K}| = 25 = a + 5(9 - a)$, so a = 5, a contradiction. If π_2 is a plane which contains at least four points of \mathcal{K} , then π_2 contains at least five points of \mathcal{K} (by (VC2)), so there exists a solid which contains at least six points of \mathcal{K} , a contradiction. Hence any four points of \mathcal{K} are linearly independent.

Let p be a fixed point of K. Let c_i be the number of primes of $\mathbf{PG}(5,4)$ which contain p and intersect K in i points, i=1,5,9. Counting pairs $\{p',\pi_4\}$ with $p' \in K$, $p \neq p'$, with π_4 a prime and $p,p' \in \pi_4$, we obtain $4c_5 + 8c_9 = 2040$. Counting triples $\{p',p'',\pi_4\}$ with $p',p'' \in K$, $p \neq p' \neq p'' \neq p$, with π_4 a prime and $p,p',p'' \in \pi_4$, we obtain $6c_5 + 28c_9 = 5796$. Counting quadruples $\{p',p'',p''',\pi_4\}$ with $p',p'',p''' \in K$, p,p',p'',p''' distinct, π_4 a prime and $p,p',p'',p''' \in \pi_4$, we obtain $4c_5 + 56c_9 = 10120$, clearly contradicting the previous equalities.

So we conclude that k = 21 and the lemma is proved.

Now it is clear that Lemma 25.3.10 to Lemma 25.3.13 of [2] hold for all $q \geq 3$. In particular, this means that there are exactly $q^2 + q + 1$ planes of $\mathbf{PG}(5, q)$ meeting \mathcal{K} in

an oval (which is a q+1-arc), and every pair of points of \mathcal{K} is contained in exactly one such plane. Also, two such planes meet in exactly one point, which belongs to \mathcal{K} . Let \mathcal{K} be as in Theorem 2.1 and suppose q>2. By the proof of Theorem 25.3.14 of [2], we now also have that every three planes of $\mathbf{PG}(5,q)$ that intersect \mathcal{K} in an oval generate $\mathbf{PG}(5,q)$. By Theorem 1.3 of [4], \mathcal{K} either is the quadric Veronesean \mathcal{V}_2^4 or q=4 and \mathcal{K} is the unique 2-dimensional dual hyperoval of $\mathbf{PG}(5,4)$. As in the latter case (VC2) is not satisfied, we proved Theorem 2.1 for all q>2.

Finally suppose q=2. We use similar terminology as before. Let π_4 be a prime of $\mathbf{PG}(5,2)$ containing 5 points of \mathcal{K} . If these five points generate π_4 , then, considering the three primes through a solid contained in π_4 and itself containing four points of \mathcal{K} , it is easily seen that $|\mathcal{K}|=7$ and every six points of \mathcal{K} generate $\mathbf{PG}(5,2)$. In this case \mathcal{K} is a skeleton and hence isomorphic to the quadric Veronesean \mathcal{V}_2^4 . So we may assume that these five points do not generate π_4 . Clearly this implies $|\mathcal{K}|=5$. It is now an easy exercise to see that \mathcal{K} generates a solid and is an elliptic quadric in that solid (because every plane of that solid contains either one or three points of \mathcal{K}).

The proof of Theorem 2.1 is complete.

References

- [1] O. Ferri, Su di una caratterizzazione grafica della superficie di Veronese di un $S_{5,q}$, Atti Accad. Naz. Lincei Rend. **61** (1976), 603 610.
- [2] J. W. P. Hirschfeld and J. A. Thas, *General Galois Geometries*, Oxford University Press, 1991.
- [3] J. A. Thas, A combinatorial problem, Geom. Dedicata 1 (1973), 236 240.
- [4] J. A. Thas and H. Van Maldeghem, Characterizations of the finite quadric Veroneseans $\mathcal{V}_n^{2^n}$, to appear in *Quart. J. Math. Oxford Ser.* (2).