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Abstract

We show that the automorphism group of a geometry defined by the generalized
Suzuki groups is contained in the automorphism group of the corresponding Suzuki
group. This shows that the study of these groups is equivalent with the study of
those geometries. This completes, for the Suzuki groups as split BN-pairs of rank
1, a programme set up by Jacques Tits some years ago. We also provide a similar
result for the generalized Suzuki-Tits inversive planes related to these groups.

1 Introduction

Technically, a building of rank one is just a set, endowed with all pairs of elements (which
form the set of apartments). However, the buildings of rank one arising from higher
rank (spherical or Moufang) buildings have a richer structure, induced by the larger rank
building they are sitting in. Indeed, the Moufang condition satisfied by the larger building
induces a particularly nice permutation group in these rank 1 buildings. As a standard
example we mention the projective line over a field k, where every ordered quadruple gives
a unique field elements (the cross-ratio), uniquely determined by the action of the group
PGL2(k) on the line. The presence and action of the unipotent subgroups allows one to
speak here about a Moufang line. More generally, we will define a Moufang line related
to any split BN-pair of rank one. Every algebraic group of relative rank one gives rise to
a Moufang line, but those with root groups of nilpotency class two also give rise to an
additional geometric structure on that Moufang line, according to Tits [5], and we will
call the resulting geometry a Moufang building of rank one. Tits then asked whether this
additional structure is rich enough to recover the algebraic group. More precisely, is the
automorphism group of this geometric structure contained in the automorphism group of
the corresponding algebraic group? Tits himself answered positively to that question for
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some classes of algebraic groups (2A2, E8). In the present paper we introduce a slightly
more general notion of Moufang building of rank one, and we answer Tits’ question in
the case of (generalized) Suzuki groups.

The Suzuki groups were discovered by Suzuki [3]. In [4], Tits gave a geometric construc-
tion of these groups, with an extension to the infinite case, where the ground field (of
characteristic 2) does not even have to be perfect (but it only has to admit a Tits endo-
morphism, see below). This construction uses certain Moufang generalized quadrangles
of mixed type (called Suzuki quadrangles in [6]) defined over fields of characteristic 2.
The Suzuki groups arise as (simple subgroups of the) centralizers of polarities in these
quadrangles. In the non-perfect case, such quadrangles can have self-polar subquadran-
gles defined over certain vector spaces. This also gives rise to simple groups, which are
natural generalizations of Suzuki groups. We call these generalized Suzuki groups. The
results of the present paper are valid for generalized Suzuki groups.

The Moufang buildings of rank one corresponding to the Suzuki groups over perfect
fields that we will define are in fact inversive planes, i.e., point-block geometries with the
property that for every point x, the points distinct from x and the blocks through x (the
so-called derivation at x) form an affine plane (and consequently every triplet of points
is contained in a unique block). The Moufang buildings of rank one corresponding to the
Suzuki groups over non-perfect fields and to generalized Suzuki groups are not inversive
planes; they constitute point-block geometries with the property that the derivation at
each point is a net, i.e., a point-line geometry with the property that there is at most
one line incident with two points, and that every point is incident with exactly one line
parallel to (i.e., disjoint from or equal to) any given line. Our First Main Result is in
fact the Fundamental Theorem of these geometries: we prove that every automorphism
of such a geometry is an automorphism of the corresponding (generalized) Suzuki group.

However, the point sets of the above geometries are subsets of the point sets of some
3-dimensional projective spaces PG(3, k), for a field k. These point sets have the prop-
erty that no line intersects them in three or more points. Hence every triplet of points
determines a unique plane — and a unique plane intersection, which we call a block. This
way, we obtain a second point-block geometry related to any generalized Suzuki group.
For perfect fields, this second geometry coincides with the above Moufang building of
rank one; for imperfect fields and generalized Suzuku groups over imperfect fields, this
second geometry has additional blocks compared to the Moufang building of rank one.
Our Second Main Result yields a Fundamental Theorem for these second geometries.

One remark about our proofs. Our First Main Result for Suzuki groups (and not gener-
alized Suzuki groups) follows more or less directly from a result by Tits [4] for the perfect
case, generalized by the author for imperfect field in [6], stating that every collineation of
the corresponding Suzuki generalized quadrangle that preserves the point set of a Suzuki-
Tits ovoid over a field k with |k| > 2, belongs to the corresponding Suzuki group. Hence,
one possible strategy would be to first generalize this result to the case of generalized
Suzuki groups, and then the First Main Result would follow. However, this strategy does
not work for the Second Main Result. So the most economical way seemed to us to avoid
the above mentioned results by Tits and the author, and to provide a direct proof, large
parts of which also can be used in the proof of the Second Main Result. The more that
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we get the generalization of the results of Tits and the author to the generalized Suzuki
groups for free as a corollary.

Let us now get down to precise definitions and results.

2 Preliminaries and Statement of the Main Results

2.1 Moufang sets and Rank 1 buildings

Let X be a set, and let, for each x ∈ X, Ux be a group acting on X, fixing x. Then we
say that (X, (Ux)x∈X) is a Moufang line (for terminology, see Buekenhout [1]), if

(ML1) for every x ∈ X, Ux acts sharply transitively on X \ {x}, and

(ML2) the set {Ux | x ∈ X} is normalized by the group G† := 〈Ux | x ∈ X〉.

The group G† is usually referred to as the little projective group. If G† is sharply 2-
transitive, then we say that the Moufang line is improper ; otherwise it is proper.

Now, for some x ∈ X, let Vx %= Ux be a nontrivial subgroup of Ux such that Vx is a normal
subgroup of G†

x. We can then define Vy, y ∈ X as the conjugate of Vx by an arbitrary
element g ∈ G† with xg = y. Since Vx ! G†

x, this is well defined. The Moufang building
of rank one defined on X by (Ux)x∈X relative to (Vx)x∈X is the geometry (X, Λ), where Λ
is a distinguished set of subsets of X obtained as follows: for each pair x, y ∈ X, the set
{x} ∪ {yv | v ∈ Vx} belongs to Λ.

We are especially interested in Moufang buildings of rank one defined on proper Moufang
lines. Defining an automorphism of (X, Λ) as a permutation of X inducing a permutation
of Λ, a fundamental question now is

(") Is Aut(X, Λ) ≤ Aut(G†) ?

A positive answer means that the study of the rank one Moufang building is essentially
equivalent with the study of the corresponding group in that Aut(X, Λ) is then equal
to the subgroup of Aut(G†) that preserves the set {Ux | x ∈ X}. This subgroup is
referred to as the automorphism group of the corresponding Moufang set and denoted
Aut(X, (Ux)x∈X).

2.2 Suzuki-Tits buildings of rank one and the First Main Result

The following description is based on Section 7.6 of [6]. Let k be a field with characteristic
2, and suppose that k admits a Tits endomorphism θ : x (→ xθ; hence (xθ)θ = x2 (but we
do not necessarily have that θ is surjective). Let kθ denote the image of k under θ. Let L
be a vector space over kθ contained in k and such that kθ ⊆ L (note that this implies that
L \ {0} is closed under taking multiplicative inverses as "−1 = ("−2)" and "−2 ∈ k2 ⊆ kθ).

3



We also assume that L generates k as a ring. We now define the Suzuki-Tits Moufang
line as follows.

Let X be the following set of points of PG(3, k), given with coordinates with respect to
some given basis:

X = {k(1, 0, 0, 0)} ∪ {k(a2+θ + aa′ + a′θ, 1, a′, a) | a, a′ ∈ L},
= {k(0, 1, 0, 0)} ∪ {k(1, a2+θ + aa′ + a′θ, a, a′) | a, a′ ∈ L}.

We set ∞ = k(1, 0, 0, 0) and O = k(0, 1, 0, 0). Let (x, x′)∞ be the collineation of PG(3, k)
determined by

k(x0 x1 x2 x3) (→ k(x0 x1 x2 x3)





1 0 0 0
x2+θ + xx′ + x′θ 1 x′ x

x 0 1 0
x1+θ + x′ 0 xθ 1



 ,

and let (x, x′)O be the collineation of PG(3, k) determined by

k(x0 x1 x2 x3) (→ k(x0 x1 x2 x3)





1 x2+θ + xx′ + x′θ x x′

0 1 0 0
0 x1+θ + x′ 1 xθ

0 x 0 1



 .

Define the groups

U∞ = {(x, x′)∞ | x, x′ ∈ L} and UO = {(x, x′)O | x, x′ ∈ L}.

Both groups U∞ and UO act on X, as an easy computation shows (for UO use the second
description of X above), and they act sharply transitively on X \ {k(1, 0, 0, 0)} and X \
{k(0, 1, 0, 0)}, respectively. Moreover, one can check that (UO)(x,x′)∞ = (U∞)(y,y′)O , with

y =
x′

x2+θ + xx′ + x′θ
and y′ =

x

x2+θ + xx′ + x′θ
.

It follows easily that X is a Moufang line, which we call a Suzuki-Tits Moufang line and
denote by M(Sz(k, L, θ)). The group Sz(k, L, θ) is the (simple) Suzuki group generated
by U∞ and UO. Note that (x, x′)∞(y, y′)∞ = (x + y, x′ + y′ + xyθ). Also, we may identify
the point k(x2+θ + xx′ + x′θ, 1, x′, x) with the pair (x, x′), and (1, 0, 0, 0) with the symbol
(∞). This way, the action of (a, a′)∞ on X is given by

(a, a′)∞ : (∞) (→ (∞),

(x, x′) (→ (x + a, x′ + a′ + xaθ).

Now define V∞ = {(0, x′)∞ | x′ ∈ L}, then V∞ = [U∞, U∞] = Z(U∞). Hence V∞ is normal
in Sz(k, L, θ)(∞) and, following the procedure explained before, we obtain a Moufang
building (X, Λ) of rank one, which we call a Suzuki-Tits Moufang building of rank one.
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In the finite case k = L, |k| = 22e+1, and (X, Λ) is the inversive plane corresponding to
the Suzuki group Sz(22e+1).

First Main Result. Let k be a field with characteristic 2 admitting a Tits endomorphism
θ. Let L be a vector space over kθ contained in k and such that kθ ⊆ L. We also assume
that L generates k as a ring. Let (X, Λ) be the Suzuki-Tits Moufang building of rank one
corresponding to Sz(k, L, θ), with |k| > 2. Then Aut(X, Λ) is generated by Sz(k, L, θ)
and by the permutations m",σ, where " ∈ L and σ ∈ Aut(k) with σθ = θσ and with the
property that "L = Lσ, with

m",σ : X → X : k(x0, x1, x2, x3) (→ k("2+θxσ
0 , x

σ
1 , "

1+θxσ
2 , "x

σ
3 ).

In particular we have Aut(X, Λ) = Aut(M(Sz(k, L, θ))).

Remark. It is clear that the permutation m",σ does not belong to Sz(k, L, θ) if σ %= id.
Also, if σ = 1, then m",id does not belong to Sz(k, L, θ) whenever " /∈ kθ. Indeed, one can
show that the stabilizer of (∞) and (0, 0) in Sz(k, L, θ) is generated by the permutations
m",id with " = (x2+θ + xx′ + x′θ)θ, for some x, x′ ∈ L (this is proved in [4] for L = k; for
L %= k, one can use [2]. But since we do not need this result, we do not prove it). In
particular, if L = k, then for every " ∈ L, the permutation m",id belongs to Aut(X, Λ),
but only if " ∈ kθ it could belong to Sz(k, L, θ).

Example. We now show with an example that there exist such permutations m",σ (and
note that m",σ = m1,σm",id) with the property that neither m",id nor m1,σ belongs to
Aut(X, Λ) = Aut(M(Sz(k, L, θ))).

Let k be the field F2(X,Y, Z, U) of rational functions in 4 variables over the field F2 of
two elements. Then the endomorphism θ : k → k : f(X, Y, Z, U) (→ f(Y 2, X, U2, Z) is
a Tits endomorphism. Moreover the field automorphism σ : k → k : f(X, Y, Z, U) (→
f(Z,U, X, Y ) commutes with θ. Put L = kθ + Y · kθ + Y U · kθ. Then one easily checks
that L %= Lθ = Y U · L, and L generates k as a ring.

2.3 Generalized Suzuki-Tits inversive planes and the Second
Main Result

In our description of the geometry (X, Λ) above, it is easy to verify that each member
of Λ is the intersection with X of a plane in PG(3, k) (remember that X is defined as a
set of points in PG(3, k)!). Also, on the one hand, one checks easily that, if k is perfect,
then all nontrivial plane intersections occur in Λ (A plane intersection is nontrivial if it
contains at least two points). On the other hand, if k is not perfect, then for fixed " ∈ L,
the set {(∞)}∪{(x, "x) : x, "x ∈ L} is a nontrivial plane intersection but does not belong
to Λ if " ∈ L \ kθ. This motivates us the define the geometry (X, Ω), where Ω is the set
of all nontrivial plane intersections of X in PG(3, k). If we call the elements of Ω circles,
then every triplet of points defines a unique circle, and so we obtain a kind of a circle
geometry. If k = L, then (X, Ω) is an inversive plane; if k %= L, then the derivation at a
point is just a linear space, and we call (X, Ω) a generalized Suzuki-Tits inversive plane.
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Second Main Result. Let k be a field with characteristic 2 admitting a Tits endomor-
phism θ. Let L be a vector space over kθ contained in k and such that kθ ⊆ L. We also
assume that L generates k as a ring. Let (X, Ω) be the generalized Suzuki-Tits inver-
sive plane corresponding to Sz(k, L, θ), with |k| > 2. Then Aut(X, Ω) = Aut(X, Λ) =
Aut(M(Sz(k, L, θ))).

2.4 Two consequences

Let k, L, θ and X be as above. We define the following incidence geometry W(k, L, θ) =
(P ,L, I), where we call the members of P points, the ones of L lines, and where I is the
incidence relation.

P = {(∞)} ∪ {(a) : a ∈ L} ∪ {(m, b) : m, b ∈ L} ∪ {(a, l, a′) : a, a′, l ∈ L},

L = {[∞]} ∪ {[m] : m ∈ L} ∪ {[a, l] : a, l ∈ L} ∪ {[m, b, m′] : m,m′, b ∈ L},

and incidence is given by

[∞] I (∞) I [m] I (m, b) I [m, b, aθm + l] I (a, l, mθa + b) I [a, l] I (a) I [∞],

for all a, b, m, l ∈ L. Then W(k, L, θ) is a generalized quadrangle, i.e., a point-line incidence
geometry whose incidence graph has diameter 4 and girth 8.

The involution ρ that interchanges round parentheses with square brackets is a duality
of the geometry; the set of points incident with their images is given by X∗ = {(∞)} ∪
{(a, a′+aaθ, a′) : a, a′ ∈ L}. This is a so-called ovoid of the quadrangle. By Chapters 3 and
7 of [6], one can represent W(k, L, θ) in PG(3, k) in such a way that X∗ = X (and in that
representation the point (∞) corresponds to k(1, 0, 0, 0), and the point (a, a1+θ + a′, a′)
corresponds to k(a2+θ + aa′ + a′θ, 1, a′, a)). The group Sz(k, L, θ) centralizes ρ. It is
straightforward to check that a generic element of Λ is the set of points of W(k, L, θ)
collinear to an arbitrary point of W(k, L, θ) not in X. Also, remember that Ω is the set
of plane intersections of X.

Our main results now imply:

Corollary 1 Every collineation of W(k, L, θ) that preserves X∗ = X centralizes ρ, hence
belongs to Aut(M(Sz(k, L, θ))). Consequently, every collineation of W(k, L, θ) that pre-
serves X also preserves Xρ.

This corollary, in the form of the last assertion, was proved by Tits in [4] for the case k
perfect (and hence automatically equal to L), and for the case k = L (but not necessarily
perfect) in Theorem 7.6.10 of [6].

Corollary 2 Every collineation of PG(3, k) that preserves X belongs to Aut(M(Sz(k, L, θ))).

For perfect k, this corollary follows from the previous one; for all other cases, this is a
new result.
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3 Proof of the First Main Result

In this section, we let ∆ := (X, Λ) be the Suzuki-Tits Moufang building of rank one
corresponding to Sz(k, L, θ), with k, L and θ as in Section 2, and with |k| > 2.

We first show that each permutation m",σ, " ∈ L and σ ∈ Aut(k) with σθ = θσ and Lσ =
"L, as defined above, belongs to Aut(X, Λ). For this, it suffices to prove that it belongs
to Aut(M(Sz(k, L, θ))). This, in turn, is equivalent with proving that it normalizes the
groups U∞ and UO.

First note that "xσ ∈ L, for all x ∈ L. Now, it is an easy exercise to calculate that, for
all a, a′ ∈ L, one has (a, a′)

m!,σ
∞ = ("aσ, "1+θa′σ)∞, which belongs to U∞ again. Likewise,

a simple calculation reveals (a, a′)
m!,σ

O = ("−1aσ, "−1−θa′σ)O ∈ UO.

We now turn to the converse. We let ϕ be an arbitrary permutation of X that induces
a permutation of Λ. We first investigate the geometric structure of (X, Λ). As above,
we view X as the set of pairs (x, x′) ∈ L× L together with the symbol (∞). Remember
that a general block B ∈ Λ is defined as an orbit of Z(U(x,x′)) together with (x, x′) itself,
for (x, x′) ∈ L × L, or as an orbit of Z(U∞) union {(∞)}. In these cases, the points
(x, x′) and (∞), respectively, are called the gnarls of the blocks. It follows easily that
there is a unique block with a given gnarl and containing a given point (distinct from
the gnarl). Moreover, since the unique block with gnarl (∞) containing (0, 0) is given by
{(0, x′) | x′ ∈ L}∪ {(∞)}, and the unique block with gnarl (0, 0) containing (∞) is given
by {(x, 0) | x ∈ L} ∪ {(∞)}, and since these are clearly distinct, we conclude that the
gnarl of a block is unique (use also the doubly transitivity of Sz(k, L, θ) on (X, Λ) to see
this).

We now consider the derived block geometry ∆∞ := (X \ {(∞)}, Λ∞) consisting of the
points different from (∞) and the intersections of the blocks of Λ containing (∞) with
X \ {(∞)}. There are two different kinds of blocks in ∆∞: those coming from blocks of
∆ with gnarl (∞) — and we call these vertical blocks — and the others — non-vertical
blocks. We have the following lemma.

Lemma 3 The block space ∆∞ is a net, i.e., for each block B and each point p /∈ B there
exists a unique block B′ containing p and disjoint from B.

Proof: Denote the block {(x, 0) | x ∈ L} by B(0,0). Then, since every non-vertical block
has a unique gnarl, and since the group U∞ acts sharply transitively on X\{(∞)}, the map
U∞ → Λ∞ : u (→ Bu

(0,0) is injective and surjective onto the subset of non-vertical blocks of
∆∞. Hence we can define the block B(a,b) as the image of B(0,0) under (a, b)∞ ∈ U∞. We
have

B(a,b) = {(x + a, b + xaθ) | x ∈ L},

for all (a, b) ∈ L× L. Clearly, a general vertical block is given by Ba = {(a, x) | x ∈ L},
with a ∈ L. It is easy to see that the vertical blocks partition the set X \ {(∞)}. Also,
the block Ba meets the block B(b,c) in the point (a, c + bθ(a + b)). This proves the lemma
for B vertical. Now let B(a,b) be an arbitrary non-vertical block, (a, b) ∈ L × L. Then
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clearly the set of blocks {B(a,y) | y ∈ L}, partitions X \ {(∞)}. Also, if a %= c, then the
blocks B(a,b) and B(c,d), with (c, d) ∈ L× L, intersect in the point

(
b + d + aaθ + ccθ

aθ + cθ
,
cθb + aθd + (ac)θ(a + c)

aθ + cθ

)
.

This completes the proof of the lemma. #
As standard, we will call a set of blocks of ∆∞ partitioning the point set a parallel class
of blocks. The previous lemma implies that every block of ∆∞ is contained in a unique
such parallel class.

In the sequel, we will use the notation B(a,b) and Ba, a, b ∈ L, as introduced in the previous
proof. We note that the gnarl of the block B(a,b) is exactly (a, b) and the gnarl of Ba is
always (∞).

Note that Aut(∆)(∞) has at most two orbits on Λ∞, namely, the set of vertical blocks,
and the rest. But it is also easy to see that Aut∆∞ is transitive on Λ∞.

Our main aim is to prove that we can recognize the gnarl of each block in ∆. Therefore,
it suffices to prove that Aut(∆)(∞) has exactly two orbits on Λ∞. Notice that Z(U∞)
fixes every vertical block and acts sharply transitively on the set of points on any vertical
block. Hence the following lemma proves our main aim.

Lemma 4 No automorphism of ∆ fixes (∞) and all blocks of ∆∞ parallel to B(0,0), acts
freely on the points on any such block, and maps (0, 0) to (1, 0).

Proof: If some block of ∆∞ is mapped onto a block of a different parallel class, then
the intersection point is fixed, hence contradicting the free action. So all parallel classes
are stabilized. This implies that B0 is mapped onto B1 and hence (0, x′) is mapped onto
(1, x′), for all x′ ∈ L. Let a ∈ L be arbitrary. The block B(1,a+1) intersects B(0,0) in (a, 0),
and B0 in (0, a). The latter is mapped onto (1, a); hence B(1,a+1) is mapped onto B(1,a),
which intersects B(0,0) in (a + 1, 0). We have shown that (a, 0) is mapped onto (a + 1, 0),
and so (a, a′) is mapped onto (a + 1, a′). If we compose this mapping with (1, 1)∞, then
we obtain the automorphism ψ : (x, x′) (→ (x, x + x′).

From the description in the previous section, it is clear that the map ζ : (x, x′) (→
(x′/N, x/N), with N = x2+θ + xx′ + x′θ, and (0, 0)ζ = (∞), (∞)ζ = (0, 0), is an automor-
phism of ∆. It maps the block B1 ∪ {(∞)} ∈ Λ onto the set

B′ := {(0, 0)} ∪
{(

x

1 + x + xθ
,

1

1 + x + xθ

)
| x ∈ L

}
.

Hence the set (B′ζ)ψ is also a block containing (∞). The elements of this block different
from (∞) are
(

(1 + x + xθ)1+θ(1 + x)
1 + x + x3 + x4 + xθ + x2θ + x3θ + x1+θ + x2+θ

,
(1 + x + xθ)1+θx

1 + x + x3 + x4 + xθ + x2θ + x3θ + x1+θ + x2+θ

)
,
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for x ranging through L. This block of ∆∞ contains (1, 0) and (0, 1) (for the values
x = 0 and x = 1, respectively). So this block is equal to B(1,0). This implies that

(1 + x + xθ)1+θ(1 + x)
1 + x + x3 + x4 + xθ + x2θ + x3θ + x1+θ + x2+θ

+
(1 + x + xθ)1+θx

1 + x + x3 + x4 + xθ + x2θ + x3θ + x1+θ + x2+θ
= 1,

for all x ∈ L. After an easy computation one obtains that x2+x4 = xθ+x3θ, for all x ∈ L.
This now easily implies, taking the injectivity of θ into account, that (x + x2)θ = x + x3,
hence x(x + x2)θ = x2 + x4. Combining this with the equation in the previous sentence
we obtain, for all x /∈ {0, 1},

x =

(
x + x3

x + x2

)θ

= (1 + x)θ.

So xθ = 1 + x, implying x2 = (xθ)θ = 1 + xθ = x, clearly a contradiction, since |k| > 2.

The lemma is proved. #
Hence we have shown that ϕ must preserve the gnarls of the blocks of ∆. Since the Suzuki
group acts doubly transitively on the points of ∆, we may also assume that ϕ fixes the
points (∞) and (0, 0). Consequently, ϕ fixes the blocks B0 and B(0,0). It follows that
there are two permutations α and β of L such that (x, y)ϕ = (xα, yβ). Since ϕ preserves
gnarls, it maps the block B(a,b) onto the block B(aα,bβ). Now notice that the point (x, y) is
contained in the block B(a,b) if and only if y = b + aθx. A standard argument now shows
that, for all a, b, x ∈ L,

(b + aθx)β = bβ + (aα)θxα.

Put " = 1α, then setting b = 0 and a = 1 in the above, we see that xβ = "θxα, for all
x ∈ L. We now define the bijection σ : L → "−1L : y (→ yσ = "−1yα and note that 1σ = 1.
Plugging in these identities in the above equation yields

(b + aθx)σ = bσ + (aσ)θxσ,

for all a, b, x ∈ L. Putting 1 = a, we see that σ is additive; putting b = 0 and x = 1, we
see that σ commutes with θ. Furthermore, it follows easily that (xy)σ = xσyσ for x ∈ Lθ

and y ∈ kθ. Since L generates k as a ring, and hence Lθ generates kθ, this implies that σ
stabilizes kθ and is in fact an automorphism of kθ. We may view σ as an automorphism
of k by defining xσ = y if and only if (xθ)σ = tθ (and this is well defined and agrees on L).
Now the action of ϕ on a point (x, y) is given by (x, y)ϕ = ("xσ, ""θyσ), for all x, y ∈ L.

The proof of our First Main Result is complete. #

4 Proof of the Second Main Result

In this section, we let Γ := (X, Ω) be the generalized Suzuki-Tits inversive plane cor-
responding to Sz(k, L, θ), with |k| > 2. Using Λ ⊆ Ω, our Second Main Result will be
proved when we show that every automorphism of Γ stabilizes Λ.
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Similarly as before, one can define the derived block geometry Γ∞ = (X \ {(∞)}, Ω∞),
which is a subgeometry of ∆∞ (same point set, but one block set is contained in the
other). In fact, the set X \ {(∞)} is given by the pairs (a, b) of elements a, b ∈ L, and so
this set is a subset of the affine plane AG(2, k) over k. It is easy to see that the elements
of Ω∞ are the nontrivial intersections of lines of AG(2, k) with the point set of Γ∞ (and
we call such a nontrivial intersection a trace; “nontrivial” means that the intersection
contains at least two elements). Our main aim is to show that we can recognize pairs of
blocks of Ω∞ that are traces of two parallel lines of AG(2, k). Note that there could be
several parallel blocks through a point to a given block B; of course only one is the trace
of a line parallel in AG(2, k) to the line with trace B.

We will also consider the derived geometries in points p different from (∞); these will be
denoted by Γp.

We let k′ be the set of elements m of k such that mL = L. Clearly k′ is a subfield of
k containing kθ and being contained in L. Also, the mapping hm : (x, y) (→ (mx, my) is
an automorphism of Γ∞, if m ∈ k′. The set of all such mappings is a group G[(0,0)] of
automorphisms of Γ∞ fixing every block through (0, 0).

Lemma 5 The group G[(0,0)] is the set of all automorphisms of Γ∞ that fix all blocks
through (0, 0).

Proof: Suppose g is a nontrivial automorphism of Γ∞ fixing all blocks through (0, 0).
We first claim that g does not fix any point on the block Y := {(0, y) : y ∈ L}. Indeed,
suppose by way of contradiction that g fixes some point (0, b), with b ∈ L \ {0}. Then g
preserves the set of blocks of Γ∞ that are incident with (0, b) and that do not intersect
the line X := {(x, 0) : x ∈ L}. One of these blocks is the block Xb := {(x, b) : x ∈ L};
any other block is the trace BA of a line of AG(2, k) incident with (0, b) and some point
(A, 0), with A ∈ k \ L. Let B be the block through (0, 0) intersecting Xb in (b, b). Hence
B is the trace of the line of AG(2, k) with equation x + y = 0. Let A ∈ k \ L be such
that it defines a (nontrivial) trace BA. Then BA is the trace of the line with equation
bx + Ay = Ab. If g did not fix Xb, then, for some A, the system of equations

{
x + y = 0
bx + Ay = Ab

would have a solution (x0, y0) in L× L (the image of (b, b) under g). We easily calculate
that y0 = Ab/(b + A). Since L is closed under multiplication with squares, this would
imply that Ab(b + A) ∈ L, hence b2A ∈ L, so A ∈ L, a contradiction. Consequently g
fixes Xb pointwise. A similar argument with the point (b, b), which is now fixed under g,
and the block X reveals that the block Yb := {(b, y) : y ∈ L} must be fixed under g, and
so must be fixed pointwise. Applying the mapping (x, y) (→ (x + b, y + b), we obtain an
automorphism h that fixes all points on both X and Y . Let (a, b) be an arbitrary point of
Γ∞. Then the traces of the lines with equations x + y = a + b and mx + y = ma + b, with
m an arbitrary element of k′ distinct from 0 and 1, are blocks of Γ∞ incident with (a, b).
But these traces contain the points (a + b, 0), (0, a + b), and (a + m−1b, 0), (0, ma + b),
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respectively, of Γ∞, which are all fixed under h. Hence h fixes these blocks and the unique
intersection point (a, b). This shows that h is trivial and hence so is g. Our claim is
proved.

Now we claim that g maps the point (0, 1) onto some point (0, b), with b ∈ k′. Indeed,
suppose not, then (0, 1) is mapped onto some point (0, b) with b ∈ L \ k′. First suppose
that g maps X1 onto Xb. Let b′ ∈ L be such that bb′ /∈ L (such b′ exists since b /∈ k′).
Then the image of (b′, 1) under g is the intersection of the blocks which are traces of the
lines with equations x + b′y = 0 and y = b. But these lines intersect in the point (bb′, b),
which is not a point of Γ∞. Consequently, the corresponding blocks do not meet and we
have reached a contradiction, showing that g must map X1 onto some block BA (notation
as above), with A ∈ k \ L. But then, similarly, the point (1, 1) has got no image under
g (since the lines with equations x + y = 0 and bx + Ay = Ab define parallel blocks as
shown above) and the claim is proved.

Hence g maps (0, 1) onto some point (0, m), with m ∈ k′. Now the mapping gh−1
m preserves

all lines through (0, 0) but fixes (0, 1), hence is the identity by our first claim. This shows
g = hm and the lemma is proved. #
Now we define two strongly parallel blocks as two block that can be mapped onto each
other by some automorphism fixing all blocks through some point of Γ∞.

Lemma 6 Any automorphism g of Γ∞ maps strongly parallel blocks onto strongly parallel
blocks.

Proof: Let B and B′ be strongly parallel. Without loss of generality we may assume
that, for some m ∈ k′, B′ is the image of B under hm. Then the mapping hg

m = g−1hmg
maps Bg onto B′g. Since hg

m fixes all lines through (0, 0)g, the lemma follows. #

Lemma 7 Two blocks are strongly parallel precisely when they are the traces of parallel
lines of AG(2, k).

Proof: It is clear that strongly parallel blocks are traces of parallel lines. It is the
converse that requires some proof. Suppose two blocks B and B′ are traces of parallel
lines. Pick some arbitrary points (a, b) and (c, d) on B and B′, respectively. Also, choose
arbitrarily m ∈ k′ \{0, 1} (which is always possible). Applying the translation t : (x, y) (→
(x + (m + 1)a + mc, y + (m + 1)b + md) we obtain two blocks Bt and B′t that are traces
of parallel lines. The automorphism hn, with n = 1 + m−1, maps the point (a, b)t onto
(c, d)t, and preserves parallelism in AG(2, k), hence maps Bt onto B′t. It follows that Bt

and B′t are strongly parallel, and so are B and B′ by Lemma 6.

The lemma is proved. #
The next lemma finishes the proof of the Second Main Result.

Lemma 8 Every automorphism of Γ stabilizes Λ.
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Proof: We already know that every member B of Λ has the property that a point p ∈ B
exists such that the group of automorphisms of (X, Ω) fixing all blocks through p that
are strongly parallel to B \ {p} in Γp, and such that all strong parallel classes in Γp are
preserved, acts transitively on B \ {p}. Indeed, we can take for p the gnarl of B and then
the group Z(Up) does the job. The proof of Lemma 4 tells us that p is unique. Hence
the lemma will be proved once we have shown that for a member of Ω \ Λ this property
does not hold. Equivalently, by transitivity, it suffices to show that no automorphism
of (X, Ω) fixing (∞) induces a nontrivial automorphism of Γ∞ that preserves all strong
parallel classes and fixes all lines of one particular strong parallel class corresponding to a
member B of Ω∞ \Λ∞. We will actually only assume that B is not a vertical block (with
terminology of the previous section; i.e., we assume that, if B ∈ Λ∞, then the gnarl of
B ∪ {(∞)} is not (∞).

Without loss of generality, we may assume that B contains the point (0, 0) and some point
(a, b), with a, b ∈ L and a %= 0, and that an automorphism ϕ of Γ fixes (∞), stabilizes
all strong parallel classes in Γ∞, fixes all blocks of Γ∞ strongly parallel to B, and maps
(0, 0) to (a, b). As in the first paragraph of the proof of Lemma 4 above, one calculates
easily that ϕ maps (x, x′) to (x + a, x′ + b). Hence it is straightforward to verify that
ma,id(a, b)∞ϕm−1

a,id maps (x, x′) to (x, x+x′). Now the rest of the proof of Lemma 4 applies,
leading to a contradiction. #
Now our Second Main Result follows directly from the First Main Result.

5 Proof of the consequences

First we note that any automorphism of W(k, L, θ) that fixes all points of X∗ necessarily
is the identity. Indeed, as remarked in Subsection 2.4, every point of W(k, L, θ) not in
X∗ is collinear precisely to the set of points of a block of (X, Λ) (identifying X∗ with X
again), and no two points are related to the same block, as this would mean that this
block is, as a set of PG(3, k), contained in a line of PG(3, k), a contradiction.

Another immediate consequence of that remark is that every collineation of W(k, L, θ)
preserving X∗ = X preserves the set Λ. Hence every such collineation belongs to
Aut(M(Sz(k, L, θ))).

We now claim that the mapping mt,σ induces a collineation of W(k, L, θ) centralizing ρ
(with σθ = θσ and tL = Lθ). Using the relation between the coordinates of points of X
in PG(3, k) and their representation as points of W(k, L, θ), we see that the mapping

{
(a, ", a′) (→ (taσ, t1+θ"σ, t1+θa′σ),

[m, b, m′] (→ [tmσ, t1+θbσ, t1+θm′σ]

induces mt,σ in X and defines a collineation, say ϕ, of W(k, L, θ). But since the pre-
scription of the images of the lines is formally the same as that of the points, it follows
immediately that it preserves the set (X∗)ρ (because (a, ", a′) belongs to X∗ if and only
if [a, ", a′] belongs to X∗ρ). Since it now follows easily that pϕρ = pρϕ for every point p
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of X∗, we conclude that ϕρϕ−1ρ−1 is the identity everywhere (remember a collineation of
W(k, L, θ) preserving X∗ is determined by its action on X∗ as we showed above). Similarly
all elements of U∞ and of UO induce collineations of W(k, L, θ) centralizing ρ.

Corollary 1 is proved.

For Corollary 2, we note that every collineation of PG(3, k) preserving X also preserves ∆,
and that every member of Aut(M(Sz(k, L, θ))) acts as a projective (semi-linear) transfor-
mation on X by the very definitions of U∞, UO and m",σ, see above. Hence all we have to
show is that any collineation of PG(3, k) that fixes all elements of X is the identity. This
can be shown using the theory of generalized quadrangles, but a direct proof goes as fol-
lows. The set X contains the points k(1, 0, 0, 0), k(0, 1, 0, 0), k(1, 1, 1, 1), k(1, 1, 1, 0) and
k(1, 1, 0, 1). We now view these points as vector lines in a 4-dimensional vector space over
k. It is an elementary exercise to verify that any semi-linear transformation of that vector
space preserving these five vector lines must have a scalar matrix, say with c ∈ k on the
diagonal, and with some companion field automorphism σ. Hence, for any a, a′, a′′ ∈ k,
the vector (a′′, 1, a′, a) is mapped onto (ca′′σ, c, ca′σ, caσ). For a′′ = a2+θ + aa′ + a′θ, the
latter must be proportional to the former, and we conclude that aσ = a for all a ∈ L.
Hence, since L generates k as a ring, σ must be the identity and Corollary 2 is proved.
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