
Transitive Bislim Geometries of Gonality 3,

Part I: The Geometrically Homogeneous

Cases

Hendrik Van Maldeghem Valerie Ver Gucht

July 13, 2005

Abstract

We consider point-line geometries having three points on every line, having three
lines through every point (bislim geometries), and containing triangles. We classify
such geometries under the hypothesis of the existence of a collineation group acting
transitively on the point set. In the first part of this work, we introduce the local
space at a point and consider the cases where this local space already determines
the geometry.

1 Introduction

Bislim geometries are also known as n3 configurations. These have been studied since a
long time, see the survey papers [2, 4], and the beautiful paper of Coxeter [1]. Two aspects
have been extensively studied in particular, and these are enumeration and realization.
Results in both topics usually heavily depend on the help of a computer. In [3], the
first author started a comprehensive theory about realizations, but also more general
embeddings of bislim geometries. In [5], we presented a classification of all flag transitive
linear bislim geometries with triangles. This roughly characterizes the examples described
by Coxeter in [1] arising from a hexagonal tiling of the Euclidean plane by factoring
out a group. Only two examples do not arise in this way, and can hence be seen as
sporadic cases, and these are Desargues’ configuration (on 10 points) and the Möbius-
Kantor geometry (on 8 points). The latter is in fact included in an infinite class of point
transitive bislim geometries containing triangles and constructed as follows: the point set
is the set of integers modulo n; the lines are all translates of the 3-set {0, 1, 3}. This simple
construction leads us to try to classify all point transitive bislim geometries containing
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triangles. It turns out that many other infinite classes arise containing some special
geometries that were noticed by people before, but never in such a general systematic
context.

There are several corollaries of our result. First of all, one can translate the conditions
to a classification of a class of transitive trivalent graphs. The classification of symmetric
trivalent graphs is an intriguing problem that attracts many graph and group theorists,
since the beautiful observation of Tutte [?] on the order of the vertex stabilizer in such a
graph, see e.g. [?]. Our result shows that the graphs that contain no 4-circuits, but do
contain 6-circuits, are manageable, even if only vertex transitivity (in the non-bipartite
case) or transitivity on one bipartition class (in the bipartite case) are required.

Also, one can remark that most classes of examples contain a “universal” one from which
the others can be deduced as quotients. But not all classes are like that. What is here
the deeper reason? More insight could be illuminating for lifting the hypothesis on the
triangles; we comment on this later on.

The method that we use is completely different from the flag transitive case. In fact, we
sometimes explicitly assume that the geometries under consideration are not flag tran-
sitive. But with a little more effort, our proof would imply an alternative one for the
flag transitive case. What we do is subdividing the problem into cases depending on
some local structure of the given geometry, with which we mean the geometry induced
on the points collinear to a given point. This seems to be the right way to approach
these geometries. If a collineation group acts transitively on the point set, then all the
local structures are isomorphic (the geometry is geometrically homogeneous). In this first
part, we consider the geometrically homogeneous case. Although there are in principle
77 possibilities for the local structure, only a few survive the geometrical homogeneity
assumption. Once this noted, the classification of the point transitive ones boils down to
ad hoc methods to get control over the various cases. Some of these methods only need
to use the geometrical homogeneity condition, and it are precisely these cases that we
treat in the present paper. In Part II, we treat the remaining cases (and show that the
geometrical homogeneity condition is not strong enough to allow for the method of this
Part I). All this requires in our opinion some beautiful geometric and permutation group
theoretic reasonings.

We also note that some classes are not explicitly classified, but reduced to a class of
graphs, or of (factor) groups (of a given “universal” group). It will be clear that a further
specification is out of reach.

The paper is organized as follows. In the next section we introduce notation. In Section 3
we describe all geometries involved in our Main Result I, and then we can state this
theorem. The proof will be given in Section 5. In the Part II, we introduce some more
examples, state our Main result II (the point transitive case) and complete the proof.
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2 Preliminaries

A point-line geometry Γ = (P ,L, I) consists of two disjoint sets P (the point set) and
L (the line set), together with a symmetric incidence relation I between P and L. The
graph with vertex set P ∪ L, where two vertices are adjacent if they represent an inci-
dent point-line pair, is called the incidence graph of Γ, and is also denoted by Γ (since
this graph unambiguously determines the geometry and vice versa), and we use graph-
theoretic notation. For instance, if n is any natural number, then Γn(x) denotes the set
of vertices at distance n from the vertex x. The incidence graph is a bipartite graph.
Every automorphism of that graph fixing the two bipartition classes is a collineation of
the geometry. Also, if the graph is connected, then we say that the geometry is connected.
A connected geometry where every line carries exactly three points is called slim. If also
every point is incident with three lines, then the geometry is called bislim. The dual of a
geometry is obtained by interchanging the point and line set; the incidence graph remains
unchanged. A duality is an automorphism of the incidence graph interchanging the two
bipartition classes.

The gonality of a geometry is half of the girth of its incidence graph. In this paper, we
are only concerned with geometries having gonality distinct from 2 (the so-called partial
linear spaces, because two points determine at most one line); in fact we will assume
gonality 3 all the time (this means that the geometry has triangles). If a geometry Γ
admits a collineation group G acting transitive on the point set, then we say that the
pair (Γ, G) is point transitive, or that G acts point transitively on Γ. A flag is an incident
point-line pair, or, equivalently, an edge of the incidence graph. The pair (Γ, G) is flag
transitive if G acts transitively on the set of flags of Γ.

We will also use some obvious notation from incidence geometry like ab is the line incident
with the points a and b, if it exists and is unique. We extend this notation to abc to denote
the unique line incident with the points a, b, c.

Let Γ = (P ,L, I) be a bislim geometry of gonality 3. Let x be any point of Γ and L any
line incident with x. Let x1, x2 be the two other points incident with L, and let L1, L2

be the two other lines incident with x. The points on Li, i = 1, 2, different from x will
be denoted by yi and zi. The local structure at the point x is the subgeometry Γx of Γ
with point set x∪ Γ2(x) and line set the elements of Γ1(x)∪ Γ3(x) incident with 2 or 3 of
these points. Remark that this subgeometry is not necessarily bislim (in fact, it is only
bislim if it coincides with Γ itself!). Denote the lines of Γx not through x by Γl

x. If Γx

is isomorphic to some geometry Γ′, for all points x, then we say that Γ is geometrically
point homogeneous and point-locally Γ′. Similarly for geometrically line homogeneity and
line-local geometries. If a geometry is point-locally Γ′ and line-locally also Γ′, then we say
that Γ is locally Γ′, or Γ has local structure Γ′, and Γ is geometrically homogeneous.

A 1-cover of a bislim geometry Γ = (P ,L, I) is a bislim geometry Γ̃ = (P̃ , L̃, Ĩ) together
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with a (necessarily surjective) incidence preserving mapping θ : P̃ → P; L̃ → L such that
the three points on any line L̃ of Γ̃ are mapped onto the three points of L̃θ, and dually for
the three lines through any point x̃ of Γ̃. Clearly, the local structure of Γ̃ at a point x̃ can
abstractly be viewed as a subgeometry of the local structure of Γ at the point x̃θ. Now, if
for all points and lines Ã of Γ̃, the local structure at Ã is mapped under θ bijectively onto
the local structure of Γ at Ãθ, then we say that Γ̃ is a 11

2-cover with covering epimorphism
θ. Finally we say that Γ is 11

2-connected if for every 11
2 -cover the covering epimorphism

is an isomorphism.

3 Examples of geometrically point homogeneous bis-

lim geometries with gonality 3

For a list of local structures, we refer to Appendix A. The local structure with number n
of that list will be referred to as LS(n). Later on, we will prove that this list is complete,
see Lemma 5.1 below.

3.1 A family associated with trivalent graphs of girth at least 4

Let there be given an arbitrary (finite or infinite) connected 3-regular (or trivalent, or
cubic) graph G(V,E). We define a geometry Γ := ΓG in the following way. To every
ordered edge (v, w) of G we attach a point P(v,w) and a line L(v,w). If v ∈ V is adjacent
to w, w1 and w2, then the point P(v,w) and the line L(v,w) are incident with the lines
L(v,w1), L(v,w2), L(w,v), and with the points P(v,w1), P(v,w2), P(w,v), respectively. It is easily
seen that the geometry Γ is bislim and has gonality 3. Indeed, with above notation,
{P(v,w), P(v,w1), P(v,w2)} is a triangle of Γ with sides L(v,w), L(v,w1) and L(v,w2). Also, if
G(V,E) does not contain triangles, then ΓG is locally LS(1). If, on the other hand,
G(V,E) contains a triangle {a, b, c}, then the local structure in P(a,b) is isomorphic either
to LS(5) (if the edge {a, b} of G is contained in a unique triangle) or to LS(13) (otherwise).
Indeed, the triangle {a, b, c} of G induced the extra triangle {P(a,b), P(b,c), P(c,a)} in ΓG. If
G(V,E) contains at least one triangle, then it is easy to see that ΓG is geometrically point-
homogeneous if and only if G(V,E) is the complete graph on 4 vertices. In the latter case,
ΓG is isomorphic to the Coxeter geometry, introduced by Coxeter [?] and named after him
in [5]. This geometry is flag transitive and has local structure LS(13).

3.2 A wild example

Let D be the dual of the geometry defined by the vertices and edges of a complete graph
K4 on 4 vertices. Let F be a countable collection of geometries isomorphic to D and let
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B be a set of triples of points of distinct members of F that partitions the union U of the
point sets of all the members of F such that the graph (F , E), with E the set of pairs
of F that contain points contained in a common member of B, is connected. Define the
geometry ΓF ,B as follows. The point set is U , and the line set is the union of the line sets
of all members of F , together with all members of B. It is clear that the local structure in
each point is isomorphic to LS(4). However, the local structure of a line in some member
of F is isomorphic to LS(10), while the local structure of an element of B is isomorphic
to LS(0).

3.3 Quotients of the honeycomb geometry

Let E be the real Euclidean plane, and consider the tiling T of E in regular hexagons (a
honeycomb). The skeleton of this honeycomb is in fact a bipartite graph which divides
the vertices into two classes that we will designate as black and white. We define the
honeycomb geometry S∞ as the geometry with points the black vertices and lines the
white vertices, and where incidence is adjacency.

Let W (Ã2) be the full collineation group of S∞, or equivalently, the group of isometries
of E preserving the honeycomb tiling T and stabilizing the set of black vertices (which is
the Weyl group of type Ã2, whence the notation).

Let G be a subgroup of W (Ã2) such that for every vertex v of T , the graph theoretic
distance between two distinct vertices of the orbit vG is at least 8. Then the quotient
geometry S∞/G defined in the obvious way by identifying the elements in the same orbit,
is a geometry with local structure LS(13).

Very explicitly, we can define the following geometries.

(HC1) Let r, s be two integers with 0 ≤ s ≤ r and r2 + rs + s2 ≥ 12. We define a
geometry S(r,s) as follows. The points are the equivalence classes of ordered pairs
(i, j), with i, j integers and with respect to the equivalence relation ∼ defined as
(i, j) ∼ (i′, j′) if (i− i′, j − j′) = (kr, ks), for some integer k. We denote by (i, j)/ ∼
the equivalence class containing (i, j). The lines of the geometry are the 3-sets
{(i, j)/ ∼, (i + 1, j)/ ∼, (i, j + 1)/ ∼}, for all integers i, j.

(HC2) Let a, c and d be integers with a, d > 0, 0 ≤ c < a and for every integer linear
combination of (a, 0) and (c, d), say (r, s), r2 + rs + s2 ≥ 12. Moreover, we assume
that either d > gcd(a, c) and d > gcd(a, c + d) and then the unique (c, d) − k(a, 0)
(k ∈ N0) with a > −c + ka − d ≥ 0 has −c + ka − d at least c. Or either
d = gcd(a, c) = gcd(a, c + d) and then the unique (c, d) − k(a, 0) (k ∈ N0) with
a > −c + ka − d ≥ 0 has −c + ka − d at least c, the unique k(c, d) + l(a, 0) (k and
l ∈ Z) with kc + la − d = 0 and a > kd ≥ 0 has second coordinate bigger than
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or equal to c, the unique k(c, d) + l(a, 0) (k and l ∈ Z) with kc + la + kd + d = 0
and a > kd ≥ 0 has second coordinate bigger than or equal to c, the unique
k(c, d) + l(a, 0) (k and l ∈ Z) with kc + la − d = 0 and −a < kd + d ≤ 0 has
second coordinate at most −c − d and the unique k(c, d) + l(a, 0) (k and l ∈ Z)
with kc + la + kd + d = 0 and −a < kd + d ≤ 0 has second coordinate at most
−c−d. The points of the geometry M(a,0),(c,d) are the equivalence classes of ordered
pairs (i, j), with i, j integers, with respect to the equivalence relation ≈, defined
as (i, j) ≈ (i′, j′) if (i − i′, j − j′) = (ka + lc, ld), for some integers k and l. With
similar notation as in the previous example, the lines of the geometry are the 3-sets
{(i, j)/ ≈, (i + 1, j)/ ≈, (i, j + 1)/ ≈}, for all integers i, j.

(HC3a) Let r be an integer with r ≥ 2. The points of the geometry S∗
(r) are the equivalence

classes of ordered integer pairs (i, j) with respect to the equivalence relation
∗∼

defined as (i, j)
∗∼ (i′, j′) if either (i− i′, j− j′) = (−2kr, 4kr), for some integer k, or

(i + i′ + r + j, j′ − j − 2r) = (−2kr, 4kr), for some integer k. One checks that this is
indeed an equivalence relation (in particular, it is symmetric!). The lines are again,
with similar notation as before, the 3-sets {(i, j)/ ∗∼, (i + 1, j)/

∗∼, (i, j + 1)/
∗∼}, for

all integers i, j.

(HC3b) Let r be an integer with r ≥ 2. The points of the geometry S∗∗
(r) are the equivalence

classes of ordered integer pairs (i, j) with respect to the equivalence relation
∗∗∼

defined as (i, j)
∗∗∼ (i′, j′) if either (i − i′, j − j′) = (−k(2r + 1), 2k(2r + 1)), for

some integer k, or (i + i′ + r + j, j′ − j − 2r − 1) = (−k(2r + 1), 2k(2r + 1)), for
some integer k. One checks that this is indeed an equivalence relation (in particular,
it is symmetric!). The lines are again, with similar notation as before, the 3-sets
{(i, j)/ ∗∗∼, (i + 1, j)/

∗∗∼, (i, j + 1)/
∗∗∼}, for all integers i, j.

(HC4a) Let r, s be two integers with r ≥ 2 and s ≥ 4. The points of the geometry M∗
(r),(s,0)

are the equivalence classes of ordered integer pairs (i, j) with respect to the equiva-

lence relation
∗≈ defined as (i, j)

∗≈ (i′, j′) if either (i−i′, j−j′) = (−2kr+"s, 4kr), for
some integers k, ", or (i+i′+r+j, j′−j−2r) = (−2kr+"s, 4kr), for some integers k, ".
One again checks that this is indeed an equivalence relation. The lines are, again,

with similar notation as before, the 3-sets {(i, j)/ ∗≈, (i + 1, j)/
∗≈, (i, j + 1)/

∗≈}, for
all integers i, j.

(HC4b) Let r, s be two integers with r ≥ 2 and s ≥ 4. The points of the geometry
M∗∗

(r),(s,0) are the equivalence classes of ordered integer pairs (i, j) with respect

to the equivalence relation
∗∗≈ defined as (i, j)

∗∗≈ (i′, j′) if either (i − i′, j − j′) =
(−k(2r+1)+"s, 2k(2r+1)), for some integers k, ", or (i+ i′+r+j, j′−j−2r−1) =
(−k(2r + 1) + "s, 2k(2r + 1)), for some integers k, ". One checks that this is indeed
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an equivalence relation. The lines are again, with similar notation as before, the

3-sets {(i, j)/ ∗∗≈, (i + 1, j)/
∗∗≈, (i, j + 1)/

∗∗≈}, for all integers i, j.

One easily checks that all these geometries are bislim with gonality 3 and they are all
locally LS(13). The geometries in (HC1) and (HC3a), (HC3b) are infinite, while the others
are finite.

But the above examples also exist for smaller parameters. More exactly, . . . , LS(n) occurs,
for n ∈ {24, 35, 51, 58, 73, 77}.

4 Statement of Main Result 1.

In the present paper we will prove:

Main Result 1. If Γ is a geometrically point-homogeneous bislim geometry of gonality
3 which is point locally LS(n), 1 ≤ n ≤ 77, then n ∈ {1, 4, 5, 13, 24, 34, 35, 51, 58, 73, 77}.
In particular, we have the following characterizations.

(i) If n = 1, and if Γ has the property that, whenever {x1, x2, x3} and {y1, y2, y3} are
two triangles with x1Iy2y3, then y1Ix2x3, then Γ ∼= ΓG, with G a cubic graph of girth
≥ 4.

(ii) If n = 4, then Γ is isomorphic to ΓF ,B, where F is a countable collection of ge-
ometries isomorphic to the dual of K4 and B is a set of triples of points of distinct
members of F that partitions the union of the point sets of all the members of F
such that the graph (F , E), with E the set of pairs of F that contain points contained
in a common member of B, is connected.

(iii) If n = 13, then Γ is isomorphic to a quotient of the honeycomb geometry, which
is a 11

2-cover of Γ. In particular, Γ is isomorphic either to S(r,s), with 0 ≤ s ≤ r
and r2 + rs + s2 ≥ 12, or to M(a,0),(c,d), with a, d > 0, 0 ≤ c < a, for every
integer linear combination of (a, 0) and (c, d), say (r, s), r2 +rs+s2 ≥ 12 and either
d > gcd(a, c) and d > gcd(a, c+d) and then the unique (c, d)−k(a, 0) (k ∈ N0) with
a > −c+ka−d ≥ 0 has −c+ka−d at least c, or either d = gcd(a, c) = gcd(a, c+d)
and then the unique (c, d)−k(a, 0) (k ∈ N0) with a > −c+ka−d ≥ 0 has −c+ka−d
at least c, the unique k(c, d)+l(a, 0) (k and l ∈ Z) with kc+la−d = 0 and a > kd ≥ 0
has second coordinate bigger than or equal to c, the unique k(c, d) + l(a, 0) (k and l
∈ Z) with kc + la + kd + d = 0 and a > kd ≥ 0 has second coordinate bigger than
or equal to c, the unique k(c, d) + l(a, 0) (k and l ∈ Z) with kc + la − d = 0 and
−a < kd+d ≤ 0 has second coordinate at most −c−d and the unique k(c, d)+l(a, 0)
(k and l ∈ Z) with kc + la + kd + d = 0 and −a < kd + d ≤ 0 has second coordinate
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at most −c − d, or to S∗
(r) or S∗∗

(r), with r ≥ 2, or to M∗
(r),(s,0) or M∗∗

(r),(s,0), with
r ≥ 2, s ≥ 4.

(iv) If n = 24, then Γ is isomorphic to a quotient of the honeycomb geometry. In par-
ticular, Γ is isomorphic either to S(3,0), or to M(3,0),(−d,2d+1), Γ ∼= M(3,0),(1−d,2d+1),
Γ ∼= M(3,0),(−d,2d), or M(3,0),(1−d,2d), with d ≥ 2, or to M∗

(r),(3,0) or M∗∗
(r),(3,0), with

r ≥ 2. The geometry S(3,0) is a 11
2-cover of Γ.

(v) If n = 34, then Γ is isomorphic to the Desargues configuration.

(vi) If n = 35, then Γ ∼= M(3,0),(0,3) is the Pappus configuration.

(vii) If n = 51, then either Γ ∼= S(2,1), or Γ ∼= M(n,0),(2,1), with n ≥ 10. In any case, S(2,1)

is a 11
2-cover of Γ.

(viii) If n = 58, then Γ ∼= M(3,0),(1,3).

(ix) If n = 73, then Γ ∼= M(4,0),(1,2) is the Möbius-Kantor configuration.

(x) If n = 77, then Γ ∼= M(7,0),(2,1) is the Fano plane.

5 Proof of Main Result 1.

The proof of the Main Result has three main parts. First, we classify all possible local
structures of bislim geometries of gonality 3 in general. Then we eliminate those structures
that can not arise as local structure of a geometrically point-homogeneous bislim geometry.
Finally, we consider each remaining local structure separately in detail.

5.1 Enumeration of all possible local structures

Lemma 5.1 If Γ is an arbitrary bislim geometry of gonality 3, and x is any point or line
of Γ, then the local structure Γx is isomorphic to one of the 77 configurations listed in
Appendix A.

Let x be any point of some bislim geometry Γ and L be any line incident with x. Let x1, x2

be the two other points incident with L, and let L1, L2 be the two other lines incident
with x. The points on Li, i = 1, 2, different from x will be denoted by yi and zi. We now
enumerate all the possibilities for Γx. We abbreviate local structure by LS.

We first count the number of possible LS with zero, one, two, three and four transversals,
respectively (a transversal in the local structure Γx is a line of Γ3(x) incident with three
points of Γ2(x)).
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No transversals. Consider the point x1. Let a be the number of lines in Γx through
x1. Then a is equal to either zero lines (1 possibility), or one (4 possibilities) or two (6
possibilities). So 11 possibilities in total. Similarly for the number b of lines through
the point x2. Let c be the number of lines of Γx incident with (exactly) two points
out of {y1, y2, z1, z2}. There are (11 × 11) − 1 = 120 local structures with c = 0 (note
a = b = c = 0 is impossible). If c = 1, then the two points of the line of Γx not meeting
L are incident with at most one line meeting L. So, for a given line not meeting L, there
is 1 case with a = b = 0, there are 4 + 4 cases with a + b = 1, there are 6 + 6 cases with
a + b = 2, a *= b, there are (4 × 4) − 2 cases with a = b = 1, there are 2(4 + (4 × 3) + 2)
cases with a + b = 3, and there are 6 + (4 × 3) + 1 cases with a = b = 2. Hence there
are in total 360 possibilities with c = 1. Similarly there are 254 possibilities with c = 2,
36 possibilities with c = 3 and 1 possibility with c = 4. Details of these counting are
summarized in Table 1. Among this total of 771 LS we determine the non-isomorphic
ones. We leave the details of the counting to the reader. The results are shown in Table 2
and 3 and in the appendix.

One transversal. Next we consider the case where there is one transversal in Γx. There
are eight possibilities for this line. In table 1 we count the number of LS for which x1y1y2

is a line. Let a and b be the number of lines of size 2 of Γx through x1 and x2, respectively,
and c the number of other lines of size 2. In total there are 115 × 8 = 920 different LS
with one transversal. Since we are looking for non-isomorphic LS we focus on the 115
LS for which x1y1y2 is the transversal and determine the non-isomorphic such ones. The
results can be found in Table 2 and Table 3 and in the appendix.

Two transversals. The third case is the case where there are two transversals. There
are 16 possibilities for those two lines. We count the number of LS for which x1y1y2 and
x2z1z2 are the unique transversals and the number of LS for which x1y1y2 and x1z1z2

are the unique transversals (see Table 1, where a, b, c are as before). In total there are
(4 × 18) + (12 × 20) = 312 different LS with two transversals. Since we are looking
for non-isomorphic LS we focus on the 18 LS for which x1y1y2 and x2z1z2 are the unique
transversals and on the 20 LS for which x1y1y2 and x1z1z2 are the unique transversals. The
non-isomorphic LS amongst these can be found in table 2 and table 3 and in Appendix A
(using similar notation as before).

Three transversals. Next we consider the case where there are three transversals. There
are (8× 3× 2)/6 = 8 different ways for choosing those three lines, and all these ways are
equivalent to each other. It is easily seen that this case gives rise to two non-isomorphic
LS (see Table 1, Table 2 and Table 3 and Appendix A). (In total there are (4 × 8) = 32
different LS with three lines of three points on Γ2(x)).

Four transversals. Finally, there is only one LS for which there are four transversals,
and this is the Fano geometry.
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no transversals

(a, b)/c (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2) total
0 - 4 6 4 16 24 6 24 36 120
1 4 16 24 16 56 72 24 72 76 360
2 6 20 24 20 52 44 24 44 20 254
3 4 8 4 8 8 0 4 0 0 36
4 1 0 0 0 0 0 0 0 0 1

x1y1y2 the only transversal

(a, b)/c (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2) total
0 1 4 6 2 8 12 - - - 33
1 3 10 12 6 16 14 - - - 61
2 3 6 3 4 4 0 - - - 20
3 1 0 0 0 0 0 - - - 1

x1y1y2 and x2z1z2 only transversals

(a, b)/c (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2) total
0 1 2 - 2 4 - - - - 9
1 2 2 - 2 2 - - - - 8
2 1 0 - 0 0 - - - - 1

x1y1y2 and x1z1z2 only transversals

(a, b)/c (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2) total
0 1 4 6 - - - - - - 11
1 2 4 2 - - - - - - 8
2 1 0 0 - - - - - - 1

x1y1y2, x1z1z2 and x2y1z2 only transversals

(a, b)/c (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2) total
0 1 2 - - - - - - - 3
1 1 0 - - - - - - - 1

Table 1: Counting of local structures
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no transversals

a + b + c Number of LS Number of non-isom. LS Reference Number in Appendix A
1 12 1 1
2 66 4 2 − 5
3 196 8 6 − 13
4 297 12 14 − 25
5 180 7 26 − 32
6 20 3 33 − 35

x1y1y2 only transversal

a + b + c Number of LS Number of non-isom. LS Reference Number in Appendix A
0 1 1 36
1 9 2 37 − 38
2 33 7 39 − 45
3 51 11 46 − 56
4 21 4 57 − 60

x1y1y2 and x2z1z2 only transversals

a + b + c Number of LS Number of non-isom. LS Reference Number in Appendix A
0 1 1 61
1 6 1 63
2 9 2 66 − 67
3 2 1 73

x1y1y2 and x1z1z2 only transversals

a + b + c Number of LS Number of non-isom. LS Reference Number in Appendix A
0 1 1 62
1 6 2 64 − 65
2 11 5 68 − 72
3 2 1 74

x1y1y2, x1z1z2 and x2y1z2 only transversals

a + b + c Number of LS Number of non-isom. LS Reference Number in Appendix A
0 1 1 75
1 3 1 76

Table 2: Non-isomorphic local structures
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LSa Numb. of isom. LS LS Numb. of isom. LS LS Numb. of isom. LS LS Numb. of isom. LS
1 12 36 1 61 1 75 1
2 12 37 6 62 1 76 3
3 24 38 3 63 6
4 6 9 64 4
5 24 39 6 65 2

66 40 3 6
6 12 41 6 66 3
7 48 42 3 67 6
8 48 43 3 9
9 24 44 6 68 2
10 8 45 6 69 2
11 24 33 70 2
12 24 46 3 71 4
13 8 47 6 72 1

196 48 6 11
14 3 49 6 73 2
15 48 50 6 74 2
16 6 51 6
17 12 52 6
18 24 53 6
19 12 54 2
20 24 55 3
21 24 56 1
22 48 51
23 24 57 6
24 24 58 6
25 48 59 6

297 60 3
26 24 21
27 24
28 24
29 24
30 24
31 48
32 12

180
33 12
34 4
35 4

20

aLS in Appendix A

Table 3: Number of local structures isomorphic to a given local structure
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x1

x2

y1
z1

y2

z2

L

L1

L2

Figure 1: Nomination of points and lines

5.2 Elimination of some local structures

Let Γ be a bislim geometry of gonality 3 with a homogeneous local structure on its points.
Let x be some point of Γ. Then Γx is one of the local structures of Appendix A. We
now introduce the following notation for the elements in the local structure LS(1) up to
LS(77). The most left point is x. The top, middle and bottom line through x is called
L, L1 and L2, respectively. Going from left to right the points on L, L1 and L2 different
from x are called x1 and x2, y1 and z1, y2 and z2, respectively (see figure 1).

We will prove:

Lemma 5.2 If Γ is a geometrically point-homogeneous bislim geometry of gonality 3,
then for every point x of Γ, the local structure Γx is isomorphic to LS(n), with n ∈
{1, 4, 5, 13, 24, 34, 35, 51, 58, 73, 77}.

Proof. We will look at all possible local structures and derive contradictions in the
appropriate cases. Concerning terminology, we will talk about “third points” on a line M
and “third lines” through a point u, and they refer to the unique elements of the geometry
Γ on M and through u, respectively, but not contained in the local structure in question.
Also, we say that two lines u1u2 and u3u4 in Γl

x (which are not transversals) are parallel
if u1, u2, u3 and u4 are four different points on two lines through x.

We first look at the local structures without transversals, i.e., local structures LS(1) up
to LS(35). But LS(n), with n ∈ {2, 6, 7, 9, 14, 15, 16, 17, 18, 22, 25, 26, 27, 28, 31, 32, 33},
contains a point u ∈ {x1, x2, y1, y2, z1, z2} such that Γu does contain a transversal. This
contradicts the geometric point-homogeneity of Γ.
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Local structure LS(3) has two lines x1y1 and x1z2 in Γl
x. To obtain local structure LS(3)

in the point y1, the “third line” through this point has to intersect the line x1z2 in its
“third point”. But then Γx1

cannot be isomorphic to LS(3).

Local structure LS(8) has three lines x1y1, x2y2 and x2z1 in Γl
x. To obtain local structure

LS(8) in the point x2 we need that x1 is collinear with either the “third point” a on x2z1 or
either the “third point” b on x2y2. In both cases this line can be the line x1y1 or the “third
line” through x1. So we consider four different cases. First we look at the case where
x1y1a is a line. The line xx2 is the only line through x belonging to Γl

y2
. This is also the

case for the point x2 since if not then y2 should be collinear with a, but then Γx2
*∼= LS(8).

It follows that z2 is collinear with the “third point” b on the line x2y2. Considering Γz2

it is easily seen that no line through x belongs to Γl
z2

. Hence b is collinear with a point,
say c, on the line through z2 different from L2 and z2b. In Γy2

we already have that xx2

and z2b are lines of Γl
y2

. But then either the line z2c and the “third line” through y2

intersect or either the line bc intersects the “third line” through y2. Considering the local
structure in z2 the first case can not occur since there would be two lines through y2 in
Γl

z2
. But in the second case we get a contradiction considering Γb. Hence this case can

not occur. Secondly we look at the case where x1y1b is a line. The line xx2 is the only
line through x belonging to Γl

y2
. This is also the case for the point x2 since if not then y2

should be collinear with a, leading to Γx2
*∼= LS(8). It follows that z2 is collinear with the

“third point” b on the line x2y2. Considering Γz2
it is easily seen that no line through x

belongs to Γl
z2

. Hence b is collinear with a point, say c, on the line through z2 different
from L2 and z2b. But then c should be equal to the point x1 or y1, which is impossible.
So, also this case can not occur. Next we consider the case where x1b is a line different
from the line x1y1. Since xy1 is the only line through x belonging to Γl

x1
, since x2b is a

line belonging to Γl
x1

and since xy1 and x2b are non-parallel lines in Γl
x1

, there are two
lines through x2 belonging to Γl

x1
. It is easy to see that this is impossible. Hence also

this case can not occur. Finally we consider the case where x1a is a line different from
the line x1y1. To obtain local structure LS(8) in the point x1 we need two lines through
x2 belonging to Γl

x1
(analogously as in the previous case). This is impossible and hence

also this case can not occur.

If Γx2

∼= LS(10) in LS(10), then x2a, x2b and ab are lines, with a and b the “third point”
on x1y1 and x1y2, respectively. This now contradicts Γx1

∼= LS(10).

For LS(11) we consider Γx2
. No line through x belongs to Γl

x2
and it follows that the two

lines through x1 different from L should belong to Γl
x2

. So x2a and x2b are two different
lines with a the “third point” on the line x1y1 and b the “third point” on the line x1z2.
This contradicts Γx1

∼= LS(11).

In LS(12) we consider Γx2
. No line through x belongs to Γl

x2
and it follows that the two

lines through x1 different from L should belong to Γl
x2

. So x2a and x2b are two different
lines with a the “third point” on the line x1y1 and b the “third point” on the line x1y2.

14



But then Γx1
*∼= LS(12).

If Γx1

∼= LS(19) in LS(19), then either x2z1a and x2z2b are lines or either x2z1b and
x2z2a are lines, with a and b the “third point” on x1y1 and x1y2, respectively. To obtain
Γy2

∼= LS(19) in the first case, we need that y2ac is the “third line” through y2 and that
b is collinear with c. But then it is impossible that Γz2

∼= LS(19). In the second case it is
impossible that Γy2

∼= LS(19).

For LS(20) we consider Γx1
. It follows that y1y2a, x1y1b and x1a are lines, with a the

“third point” on x2z1 and b the “third point” on x2y2. But now Γx2
*∼= LS(20).

Consider LS(21). In Γx1
, the point x is collinear with only one other point — namely, y1

— in Γ2(x1), hence — as can be seen in Γx, that point must be collinear with two points
of Γ2(x1). Hence y1a is a line, with a a point on the “third line” through x1. This implies
that y1y2a is a line, leading to Γy1

*∼= LS(21).

If Γ is point-locally LS(23), then in Γx2
, we see that either x1y1a or x1y2a is a line, with a

the “third point” on the line x2z1. In the first case x1y2b and ab are lines, with b a point
on the “third line” through x2, leading to Γx1

*∼= LS(23). Similarly, in the second case,
x1y1b and ab being lines leads to Γx1

*∼= LS(23).

We rule out LS(29) in a completely similar way.

Let, in LS(30), a, b be the points on the “third line” through x1 and let c be the “third
point” on x1y1. Considering Γx1

, we see, similarly as before, that y1y2a, x2z1a, x2y2c and
bc are lines. Now looking at Γa it follows that z1z2b is a line. But now Γz1

cannot be
isomorphic to LS(30).

Now assume that Γx contains transversals.

If we consider Γx1
in LS(n), n ∈ {36, 38, 39, 42, 61, 63, 66, 68, 69, 70, 74, 75, 76}, then we

see that, from what is already induced by Γx in Γx1
, the latter cannot be isomorphic to

LS(n).

Considering likewise Γy2
, we rule out LS(n), for n ∈ {37, 41, 43, 44, 60, 64, 65, 71}, and

similarly using Γy1
we rule out LS(m), with m ∈ {40, 45, 47, 52, 53, 55, 56, 59, 62, 67}. And

considering Γx2
, we rule out LS(k), with k ∈ {46, 48, 54}.

We consider Γz2
in LS(49). No line through x belongs to Γl

z2
and it follows that the

two lines through y2 should belong to Γl
z2

one of which is a transversal. Clearly, this is
impossible.

We consider Γx2
in LS(50). The lines xz1 and xz2 are lines of Γl

x2
. The point x in Γx2

fulfills the same role as the point x2 in Γx. It follows that the two lines through x1 should
belong to Γl

x2
, one of which is a transversal. This is impossible.

We consider the point x1 in LS(72). No line through x belongs to Γl
x1

. Hence, the two
lines through x2 should be transversals in Γx1

, which is impossible.
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Finally, consider in LS(57) — which has only one transversal — Γx1
, then it is clear that

Γx1

∼= Γx implies that z1 is collinear with the “third point” a on the line x1y1; hence z1z2a
is a line. Consequently there are two transversals in Γz1

, a contradiction.

The lemma is proved. !

5.3 Analysis of bislim geometries with some specific local struc-

tures

5.3.1 Local structures LS(34), LS(35), LS(58), LS(73) and LS(77)

We first take a look at those local structures that give rise to a unique geometry.

Lemma 5.3 If Γ is a bislim geometry of gonality 3 which is point-locally one of LS(34),
LS(35), LS(58), LS(73) or LS(77), then Γ is uniquely determined.

Proof. We start with LS(34). Let a be the “third point” on x2z1 and let b be the “third
point” on x2z2. In Γx2

we deduce that either x1y1b, x1y2a and ab, or x1y1a, x1y2b and
ab are lines. In the first case we get a contradiction in Γy2

. In the second case the local
structure in y1 gives rise to the lines abc and z1z2c, with c the “third point” on the line
y1y2. We obtain the Desargues geometry.

Consider now LS(35). Looking at Γx1
, it is easily seen that y1y2a, x2z1a, x2y2b and z1z2b

are lines, with a the “third point” on the line x1z2 and b the “third point” on x1y1. We
obtain the Pappus geometry.

If Γx
∼= LS(58), then let a and b be the “third points” on the lines x1z1 and x2z1, respec-

tively. The isomorphisms Γx1

∼= Γx and Γx2

∼= Γx imply that y2a, x2z2a, and y1z2b and
aby2, respectively, are lines. We obtain a unique bislim geometry on 9 points and 9
lines, which must be isomorphic to M(9,0),(2,1).

For Γx
∼= LS(73), let a be the third point on the line x1z1. Considering Γx1

, we see that
x2y2a and y1z2a are lines. We get the Möbius-Kantor geometry.

LS(77) is itself the Fano plane.

The lemma is proved. !

This leaves us with geometric point-homogeneous bislim geometries with local structure
isomorphic to one of LS(1), LS(4), LS(5), LS(13), LS(24) and LS(51).
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5.3.2 Local structure LS(1)

Let Γ be point-locally LS(1), and suppose that Γ has the property that, whenever {x1, x2, x3}
and {y1, y2, y3} are two triangles with x1Iy2y3, then y1Ix2x3 (we call this the triangle prop-
erty). We associate a directed graph G∆ to Γ as follows. The vertices of the graph G∆ are
the triangles of Γ. A vertex v = {p1, p2, p3} is adjacent to a vertex w = {q1, q2, q3} if v *= w
and if one of the points p1, p2, p3 is incident with one of the lines q1q2, q2q3, q1q3. Note
that this is symmetric exactly because of the triangle property. Since a triangle has three
vertices, we obtain a cubic graph. It is easily seen that this graph cannot have a clique
of size 3 — hence the girth is at least 4 — and that the construction in Subsection 3.1 is
opposite to the one given here.

Hence (i) is proved.

5.3.3 Local structure LS(4)

Let x be a point of the geometry Γ with geometrically point homogeneous local structure
LS(4). According to previous notation, we let x1y1 and x2z1 be the lines of Γx in Γ3(x),
and y2, z2 are the other points in Γ2(x), with xy2z2 a line of Γ. Considering Γx1

, we see
that x2 is collinear with the “third point” u1 on the line x1y1. But if x2u1 is distinct
from x2z1, then we cannot have local structure LS(4) in x2, hence x2z1u1 is a line. The
subgeometry defined by x, x1, x2, y1, z1, u1 and the lines xx1x2, xy1z1, u1x1y1 and u1x2z1

is isomorphic to the dual of K4. Moreover, the points y2 and z2 are not contained in
a common triangle of Γ as this would imply, looking in Γz2

, that x and z2 are collinear
with a point distinct from y2. Hence we see that ΓL2

is isomorphic to LS(0), and that
every point is contained in a unique such line. Also, ΓL is easily seen to be isomorphic to
LS(10). Removing all lines with local structure LS(0) from Γ, we obtain a disjoint union
of a family F of geometries isomorphic to the dual of K4. Now (ii) is clear.

5.3.4 Local structure LS(13)

It is shown in [5] that every bislim geometry with Γx
∼= LS(13), for all points x of Γ, is

covered by the honeycomb geometry S∞, the incidence graph of which is the 1-skeleton of
the tiling of the real Euclidean plane in regular hexagons. Hence Γ is a quotient geometry
of S∞ with respect to some automorphism group of S∞, which is the group of all deck
transformations.

Hence we have to classify all collineation groups G such that the quotient of S∞ with G
is a bislim geometry which is point-locally LS(13).

We introduce some notation.
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We may identify the points and lines of S∞ with the vertices of the above mentioned
honeycomb tiling of the real Euclidean plane E in regular hexagons. Let e be a vertex
corresponding to a line of S∞, and let a, d, f be the points incident with e (and hence the
vertices adjacent to e). Let b be the unique point of S∞ contained in a triangle together
with a and f (hence a, f, b are vertices of the same hexagon in the tiling) and let c be
the vertex corresponding with the line ab of S∞. Denote by h the center of the hexagon
containing a, b, f . Let W (Ã2) be the full collineation group of S∞, or equivalently, the
group of isometries of E preserving the honeycomb tiling (which is the Weyl group of type
Ã2, whence the notation).

It is easily seen that each element of W (Ã2) is conjugate to one of the following:

(T) A translation with translation vector −→ax, for some point x of S∞.

(Rf) A reflection about the line ac of E.

(Rt) A rotation of 120 degrees clockwise or counterclockwise about a, c or h.

(G) A glide reflection, i.e., the product of a reflection and a translation in the direction
of the reflection axis. Here, we have two possibilities. First, the axis is the line
ac of E, and the translation vector is in 3Z−→ac (type 1); secondly, the axis contains
the midpoints of the intervals [a, e] and [b, c], and the translation vector belongs to
(3Z + 3

2)
−→ac (type 2).

But if G contains a reflection or a rotation, then the quotient geometry is not bislim
anymore, since at least two elements incident with a common one are identified.

Suppose now that G contains a glide reflection. Then either all glide reflections in G have
the same axis, or there are two glide reflections with distinct axes. In the first case, either
the only translations in G are parallel to the axis of the glide reflection (Case (i)), or
there are translations in different directions; but then the composition of a glide reflection
with a translation in another direction produces a glide reflection with a different axis
(parallel to the given one) — a contradiction. If we have glide reflections with different
axes, then either all these axes are parallel (Case (ii)) or there are two non parallel axes;
but then the composition of the corresponding glide reflections produces a rotation — a
contradiction. If G does not contain glide reflections, then it consists either of parallel
translations (Case (iii)), or of translations in more than one direction (Case (iv)).

With the above notation, we choose a basis in E as follows: we take the point d as the
origin, the first basis vector is

−→
df ; the second one is

−→
da.

Now suppose Case (i). Without loss of generality we may assume that the axis of all glide
reflections is the line either through (0, 0) and (−1, 2) — and then the (smallest) associated
translation vector of the glide reflection is equal to (−r, 2r), for some positive integer r —
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or through (1/4, 0) and (0, 1/2) — and then the (smallest) associated translation vector
is equal to (−r − 1/2, 2r + 1), for some positive integer r. It is easy to see that in both
cases r ≥ 2, otherwise we identify points in such a way that we disturb the local structure
LS(13). Identifying the points and lines of S∞ in the same orbit, the first possibility gives
rise to example (HC3a), and the second to (HC3b).

Consider now Case (ii). If all glide reflections are of type 1, then without loss of generality
we may assume that one glide reflection g has axis the line through (0, 0) and (−1, 2) —
and then the (smallest) associated translation vector of the glide reflection is equal to
(−r, 2r), for some positive integer r. Suppose now that h is a glide reflection of the same
type with axis 2x + y = s parallel to the axis of g (2x + y = 0), s > 0 and s minimal.
The (smallest) associated translation vector of this glide reflection is then also equal to
(−r, 2r), r > 0. Composition of these two glide reflections gives a translation with vector
−→v = (s − 2r, 4r). By adding (2r,−4r) (which, viewed as a translation, belongs to G),
we have that the translation with vector (s, 0) belongs to G. We obtain now the example
M∗

(r),(s,0) of (HC4a).

If all glide reflections are of type 2, then without loss of generality we may assume that one
glide reflection g has axis the line through (1/4, 0) and (0, 1/2) — and then the (smallest)
associated translation vector of the glide reflection is equal to (−r−1/2, 2r +1), for some
positive integer r. Suppose now that h is a glide reflection of the same type with axis
2x+ y = s+1/2 parallel to the axis of g (2x+ y = 1/2), s positive integer and s minimal.
The (smallest) associated translation vector of this glide reflection is then also equal to
(−r − 1/2, 2r + 1), r > 0. Composition of these two glide reflections gives a translation
with vector −→v = (s − 2r − 1, 4r + 2). By adding (2r + 1,−4r − 2) (which, viewed as a
translation, belongs to G), we have that the translation with vector (s, 0) belongs to G.
We obtain the example M∗∗

(r),(s,0) of (HC4b).

If there are two glide reflections of different type, then the corresponding minimal vectors
have to be equal or opposite, since otherwise we can multiply the one with the biggest
vector with the (inverse) square of the other to obtain a glide reflection with shorter trans-
lation vector. But the translation vector of a glide reflection of type 1 is conjugate to an
even multiple of (−1/2, 1); for type 2 this is an odd multiple of (−1/2, 1), a contradiction.

Consider now Case (iii). It is clear that, up to conjugacy, we can choose the minimal
translation in G to have vector (r, s), with 0 ≤ s ≤ r and r2 + rs + s2 ≥ 12. The latter
condition is necessary and sufficient for points at graph-theoretic distance 6 not to get
identified, for otherwise the quotient geometry is not point-locally LS(13). It is easy to
see that we obtain S(r,s), see (HC1).

Finally, consider Case (iv). Here, G defines a sublattice of the lattice Z(1, 0)+Z(0, 1). It is
easy to see that a basis can be chosen that contains a point (a, 0), with a > 0. The second
basis vector (c, d) can always be chosen such that d > 0, and by combining with (a, 0), we
may assume that 0 ≤ c < a. Now a, c, d satisfy the conditions in (HC2) remarking that
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the Euclidean distances between the identified vertices (0, 0) and (ka + lc, ld), k, l ∈ Z,
do exceed

√
12. Hence we obtain M(a,0),(c,d).

Clearly, the honeycomb geometry is a 11
2 -cover of every geometry which is point locally

LS(13).

We now show that all geometries S(r,s) for different r, s satisfying the above conditions,
are mutually non-isomorphic. Let Γ be a geometry S(r,s) with 0 ≤ s ≤ r and r2+rs+s2 ≥
12. This geometry is a quotient of the honeycomb geometry, S∞/G, with G the group
generated by the translation with vector (r, s). Remark that Γ is point and line transitive.

Let A0 be a point of Γ. We define two types of “paths” in A0. A path of type 1 in A0

is constructed as follows: Consider an incident point-line-point triple (A0, A1, A2) with
A2 *= A0. The path P 1

(A0,A1,A2) is then uniquely determined by taking as Ai, i ≥ 3, the
element incident with Ai−1, different from Ai−2 and such that each element incident with
Ai and different from Ai−1, does not belong to Γ2(Ai−3). Clearly, a path of type 1 in
A0 = (0, 0)<(r,s)> corresponds to a graph-theoretical path in I(S∞) starting in the vertex
(0, 0) and with all vertices corresponding to points in P 1

(A0,A1,A2) on one line: either the
line y = 0, either x = 0 or either y = −x.

Now we define a path in A0 given the path P 1
(A0,A1,A2): On some line A2p−1, 1 ≤ p of

the path P 1
(A0,A1,A2) we choose the point B2p different from A2p−2 and A2p. The elements

B2p+i, i ≥ 1 are then the elements of the unique path P 1
(A2p−2,A2p−1,B2p).

A path of type 2 in A0 given the path P 1
(A0,A1,A2) is then a path in A0 given P 1

(A0,A1,A2) such
that B2p+2i = A0 for some i, 0 ≤ i. We call (p − 1, i + 1) the dimension of such a path
where 2p− 2 is the length of the path (A0, . . . , A2p−2) and 2i + 2 is the length of the path
(A2p−2, A2p−1, B2p, . . . , B2p+2i = A0).

Let now l := i + 1 such that i + 1 is minimal over the set of all paths of type 2 in A0

given P 1
(A0,A1,A2) if this set is non-empty. Let then k := p − 1 such that p − 1 is minimal

over the set of all paths of type 2 in A0 given P 1
(A0,A1,A2) with l as second coordinate of

their dimension. The unique path of type 2 in A0 given P 1
(A0,A1,A2) with dimension (k, l)

is then called the minimal path of type 2 in A0 given P 1
(A0,A1,A2) with length k := p − 1

and width l := i + 1.

Given a geometry S(r,s) with s > 0 then it is easily seen that there are two minimal
paths in each point, one with length r and width s, the other with length s and width
r. If s = 0 then there are two minimal paths both with length 0 and width r. Hence
the sum of length and width of the two minimal paths equals r + s and they have s as
minimal length. Consequently, if s1 and s2 are different then S(r1,s1) and S(r2,s2) are non-
isomorphic. If s1 and s2 are equal but r1 and r2 are different then again S(r1,s1) and S(r2,s2)

are non-isomorphic. We conclude that different (r, s) give different geometries S(r,s).

We now show that all geometries M(a,0),(c,d), for different a, c, d satisfying the above con-
ditions, and also satisfying some additional assumptions, are mutually non-isomorphic.
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Let Γ be a geometry M(a,0),(c,d) with 0 ≤ c < a and d > 0. Moreover, (ka + lc)2 + (ka +
lc)ld + (ld)2 ≥ 12 for every integer k and l. Remark that Γ is point and line transitive.

Let A0 be a point of Γ. We define two types of “paths” in A0. A path of type 1 in A0

is constructed as follows: Consider an incident point-line-point triple (A0, A1, A2) with
A2 *= A0. The path P 1

(A0,A1,A2) is then uniquely determined by taking as Ai, i ≥ 3, the
element incident with Ai−1, different from Ai−2 and such that each element incident with
Ai and different from Ai−1, does not belong to Γ2(Ai−3). Clearly, a path of type 1 in
A0 = (0, 0)<(a,0),(c,d)> corresponds to a graph-theoretical path in I(S∞) starting in the
vertex (0, 0) and with all vertices corresponding to points in P 1

(A0,A1,A2) on one line: either
the line y = 0, either x = 0 or either y = −x. But now it is easily seen that, since Γ is
finite, the path P 1

(A0,A1,A2) is a path (A0, A1, A2, . . . , A2n = A0), n ≥ 4, with Ai *= Aj for

all i, j ∈ {0, . . . , 2n−1} and i *= j. We say that the path P 1
(A0,A1,A2) has length n. Now we

define a path in A0 given the path P 1
(A0,A1,A2): On some line A2p−1, 1 ≤ p ≤ n of the path

P 1
(A0,A1,A2) we choose the point B2p different from A2p−2 and A2p. The elements B2p+i, i ≥ 1

are then the elements of the unique path P 1
(A2p−2,A2p−1,B2p). The path P(A0,A1,A2)(A2p−1) can

hence be described as follows: (A0, . . . , A2p−1, B2p, . . . , B2p+2q = A2p−2), with all elements
Ai, 0 ≤ i ≤ 2p−1 mutually different and all elements B2p+i, 0 ≤ i ≤ 2q mutually different.
A path of type 2 in A0 given the path P 1

(A0,A1,A2) is then a path in A0 given P 1
(A0,A1,A2) such

that B2p+2i = A0 for some i, 0 ≤ i ≤ q. We call (p−1, i+1) the dimension of such a path
where 2p− 2 is the length of the path (A0, . . . , A2p−2) and 2i + 2 is the length of the path
(A2p−2, A2p−1, B2p, . . . , B2p+2i = A0). Let now s := i + 1 such that i + 1 is minimal over
the set of all paths of type 2 given P 1

(A0,A1,A2). It is easily seen that there is a unique path

of type 2 in A0 given P 1
(A0,A1,A2) with s as second coordinate of its dimension. This path

is then called the minimal path of type 2 in A0 given P 1
(A0,A1,A2) with length r := p − 1

and width s := i + 1.

Given a geometry M(a,0),(c,d), then it is easily seen that the translation with vector
(0, ad/gcd(a, c)) is minimal in the direction of the Y -axis. Also, the translation with vec-
tor (−ad/gcd(a, c + d), ad/gcd(a, c + d)) is minimal in the direction of the line x + y = 0.
Let n1 be ad/gcd(a, c) and n2 be ad/gcd(a, c + d). For every path of type 1 we now
determine the length r and the width s of the corresponding minimal path of type 2.

For a path of type 1 along the positive or negative X-axis, it is clear that the width s is
equal to d. Consider (u1a + v1c, v1d) with u1a + v1c > 0 and u1, v1 ∈ Z and suppose that
u1a + v1c is smaller than the greatest common divider g1 of a and c. Then u1a + v1c =
u1(g1z1) + v1(g1z2) for unique z1 and z2 in N or 0 < u1z1 + v1z2 < 1 which is impossible.
It follows easily that if the path of type 1 is along the Y -axis, the width s is equal to
gcd(a, c). Consider (u2a + v2c, v2d) with u2a + v2(c + d) < 0 and u2, v2 ∈ Z and suppose
that u2a+v2(c+d) is bigger than −g2, with g2 the greatest common divider of a and c+d.
Then u2a+v2(c+d) = u2(g2z1)+v2(g2z2) for unique z1 and z2 in N or −1 < u2z1+v2z2 < 0
which is impossible. It follows easily that, if the path of type 1 is along the line x+y = 0,
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the width s is equal to gcd(a, c + d).

We now determine in each of the six cases the length r of the minimal path of type
2. If the path of type 1 is along the positive X-axis it is easily seen that the length r
is equal to c. If the path of type 1 is along the negative X-axis then we consider the
unique vector (c − ka, d) ∈< (a, 0), (c, d) > with k ∈ N0 such that −a < c − ka + d ≤ 0.
It follows that the length r is equal to −c + ka − d. Since the group < (a, 0), (c, d) >
is equal to < (−a, 0), (c − ka, d) >, the geometry M(a,0),(c,d) is equal to the geometry
M(−a,0),(c−ka,d)=M(−a,0),(−r−s,s). Furthermore, since the group < (−a, 0), (c − ka, d) >
is conjugated to < (a, 0), (ka − c − d, d) >, it follows that the geometry M(a,0),(c,d) is
isomorphic to M(a,0),(r,s). Next we consider the case where the path of type 1 is along the
positive Y -axis. Since s = gcd(a, c) = xa+yc for some integers x and y, we have a unique
vector (xa+yc, yd)+ z(0, n1) in < (a, 0), (c, d) > with z ∈ Z such that 0 ≤ yd+ zn1 < n1.
Then, the length r equals yd + zn1. The group < (0, n1), (s = xa + yc, r = yd + zn1) >
is contained in the group < (a, 0), (c, d) >. Since 0 = ka + lc with k = − c

g1
, l = a

g1
,

s = xa + yc and lx − ky = 1 it follows easily that a = ls and c = −ks. Since now
(a, 0) = −(y + zl)(0, n1) + l(s, r) and (c, d) = (x + kz)(0, n1) − k(s, r) it follows that
< (a, 0), (c, d) > is subset of < (0, n1), (s, r) >. Hence the geometry M(a,0),(c,d) is equal
to the geometry M(0,n1),(s,r). The group < (0, n1), (s, r) > is conjugated to the group
< (n1, 0), (r, s) > and hence the geometry M(0,n1),(s,r) is isomorphic to M(n1,0),(r,s). Now
consider the case where the path of type 1 is along the negative Y -axis. Since s =
xa + yc for some integers x and y, we have a unique vector (xa + yc, yd) + z(0, n1) in
< (a, 0), (c, d) > with z ∈ Z such that −n1 < xa + yc + yd + zn1 ≤ 0. Then, the length
r equals −yd − zn1 − g1. The group < (0,−n1), (s = xa + yc,−r − s = yd + zn1) >
is contained in the group < (a, 0), (c, d) >. Since 0 = ka + lc with k = − c

g1
, l =

a
g1

, s = xa + yc and lx − ky = 1 it follows that a = ls and c = −ks. Since now
(a, 0) = (y + zl)(0,−n1) + l(s,−r − s) and (c, d) = −(x + kz)(0,−n1) − k(s,−r − s) it
follows that < (a, 0), (c, d) > is subset of < (0,−n1), (s,−r − s) >. Hence the geometry
M(a,0),(c,d) is equal to the geometry M(0,−n1),(s,−r−s). The group < (0,−n1), (s,−r − s) >
is conjugated to the group < (n1, 0), (r, s) > and hence the geometry M(0,−n1),(s,−r−s) is
isomorphic to M(n1,0),(r,s). Next we consider the case where the path of type 1 is along
the line x + y = 0 with y > 0. Since s = −xa − y(c + d) for some integers x and
y, there is a unique vector (xa + yc, yd) + z(−n2, n2) in < (a, 0), (c, d) > with z ∈ Z

such that 0 ≤ yd + zn2 < n2. Then, the length r equals yd + zn2. We have that
the group < (−n2, n2), (−r − s, r) > is contained in the group < (a, 0), (c, d) >. Since
0 = ka + l(c + d) with k = − (c+d)

g2
, l = a

g2
, s = −xa− y(c + d) and lx− ky = −1 it follows

easily that a = ls and c + d = −ks. Since now (a, 0) = (y + zl)(−n2, n2) − l(−r − s, r)
and (c, d) = −(x + kz)(−n2, n2) + k(−r − s, r) it follows that < (a, 0), (c, d) > is subset
of < (−n2, n2), (−r − s, r) >. Hence the geometry M(a,0),(c,d) is equal to the geometry
M(−n2,n2),(−r−s,r). The group < (−n2, n2), (−r − s, r) > is conjugated to the group <
(n2, 0), (r, s) > and hence the geometry M(−n2,n2),(−r−s,r) is isomorphic to M(n2,0),(r,s).
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Finally we consider the case where the path of type 1 is along the line x + y = 0 with
y < 0. There is a unique vector (xa + yc, yd) + z(−n2, n2) in < (a, 0), (c, d) > with
z ∈ Z such that 0 ≤ xa + yc − zn2 < n2. Then, the length r equals xa + yc − zn2.
The group < (n2,−n2), (r,−r − s) > is contained in the group < (a, 0), (c, d) >. Since
0 = ka + l(c + d) with k = − (c+d)

g2
, l = a

g2
, s = −xa − y(c + d) and lx − ky = −1 it

follows that a = ls and c + d = −ks. Since now (a, 0) = −(y + zl)(n2,−n2)− l(r,−r − s)
and (c, d) = (x + kz)(n2,−n2) + k(r,−r − s) it follows that < (a, 0), (c, d) > is subset
of < (n2,−n2), (r,−r − s) >. Hence the geometry M(a,0),(c,d) is equal to the geometry
M(n2,−n2),(r,−r−s). The group < (n2,−n2), (r,−r − s) > is conjugated to the group <
(n2, 0), (r, s) > and hence the geometry M(n2,−n2),(r,−r−s) is isomorphic to M(n2,0),(r,s).

We can conclude that a geometry M(a,0),(c,d) is isomorphic to a geometry M(n,0),(r,s) with
n the length of a path of type 1 and r and s the length and width of the corresponding
minimal path of type 2. Remark that paths of type 1 having the same length have
corresponding minimal paths of type 2 of same width.

We now consider the minimal length r of all minimal paths of type 2 given the paths
of type 1 with minimal length n. From above we know that the geometry M(a,0),(c,d) is
isomorphic to the geometry M(n,0),(r,s). We first consider the case where the two paths
of type 1 along the X-axis are the only paths of type 1 having the minimal length n.
Arithmetically this means that for all k ∈ N0 with ks ≤ n then n does not divide
k(r + εs), with ε ∈ {0, 1}. The tuple (r, s) is then such that for the unique (r, s)− k(n, 0)
(k ∈ N0) with n > −r + kn − s ≥ 0 we have that −r + kn − s ≥ r. Secondly, if there
is more than one direction in which the path of type 1 has minimal length n, then all
three directions have paths of type 1 of the same length. For all k ∈ N0 with ks < n
then n does not divide k(r + εs), with ε ∈ {0, 1}. Now r and s satisfy the following
conditions: for the unique (r, s) − k(n, 0) (k ∈ N0) with n > −r + kn − s ≥ 0 we have
that −r + kn − s ≥ r, for the unique k(r, s) + l(n, 0) (k and l ∈ Z) with kr + ln − s = 0
and n > ks ≥ 0 we have that ks ≥ r, for the unique k(r, s) + l(n, 0) (k and l ∈ Z) with
kr + ln + ks + s = 0 and n > ks ≥ 0 we have that ks ≥ r, for the unique k(r, s) + l(n, 0)
(k and l ∈ Z) with kr + ln − s = 0 and −n < ks + s ≤ 0 we have that −ks − s ≥ r, for
the unique k(r, s) + l(n, 0) (k and l ∈ Z) with kr + ln + ks + s = 0 and −n < ks + s ≤ 0
we have that −ks − s ≥ r.

It is clear that all geometries M(n,0),(r,s) with 0 ≤ r < n, s > 0, for all integers k and
l, (kn + lr)2 + (ls)2 + (kn + lr)(ls) ≥ 12 and satisfying the above mentioned conditions
are mutually non-isomorphic. These conditions can be summarized as follows: Either
s > gcd(n, r) and s > gcd(n, r + s) and then the unique (r, s) − k(n, 0) (k ∈ N0) with
n > −r + kn − s ≥ 0 has −r + kn − s at least r. Or either s = gcd(n, r) = gcd(n, r + s)
and then the unique (r, s) − k(n, 0) (k ∈ N0) with n > −r + kn − s ≥ 0 has −r + kn − s
at least r, the unique k(r, s) + l(n, 0) (k and l ∈ Z) with kr + ln − s = 0 and n > ks ≥ 0
has second coordinate bigger than or equal to r, the unique k(r, s) + l(n, 0) (k and l ∈ Z)
with kr + ln + ks + s = 0 and n > ks ≥ 0 has second coordinate bigger than or equal to
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r, the unique k(r, s) + l(n, 0) (k and l ∈ Z) with kr + ln − s = 0 and −n < ks + s ≤ 0
has second coordinate at most −r − s and the unique k(r, s) + l(n, 0) (k and l ∈ Z) with
kr + ln + ks + s = 0 and −n < ks + s ≤ 0 has second coordinate at most −r − s.

We now show that all geometries S∗
(r), for different r satisfying the above conditions, are

mutually non-isomorphic. Let Γ be a geometry S∗
(r) with r ≥ 2. As mentioned before this

geometry is a quotient of the honeycomb geometry, S∞/G with G the group generated
by a glide reflection g with axis the line through (0, 0) and (−1, 2) and with smallest
associated translation vector (−r, 2r).

Consider an arbitrary point A0 of the geometry. A path of type 3 in A0 is constructed as
follows: Consider an incident point-line-point triple (A0, A1, A2) with A2 *= A0. The path
P 3

(A0,A1,A2) is then uniquely determined by taking as A2i−1, i ≥ 2, the element incident
with A2i−2, different from A2i−3 and such that an element incident with A2i−1 and different
from A2i−2, does belong to Γ2(A2i−4) and by taking as A2i, i ≥ 2, the element incident
with A2i−1, different from A2i−2 and not belonging to Γ2(A2i−4).

A finite path of type 3 in A0 is a path of type 3 in A0 which consists of an infinite
succession of the finite path (A0, A1, A2, . . . , A2n = A0), n > 3. We say that its length is
equal to n.

Considering the paths of type 3 as graph-theoretical paths in the incidence graph of the
honeycomb geometry, it is easily seen that in every point of the geometry there are two
finite paths of type 3 and four infinite paths of type 3. Indeed, if the points A0 and A4

are represented by vertices on a line parallel to 2x + y = 0, then the two corresponding
paths of type 3 in A0 have length 4r.

Hence geometries S∗
(r) with different parameter r are non-isomorphic.

We now show that all geometries S∗∗
(r), for different r satisfying the above conditions, are

mutually non-isomorphic. Let Γ be a geometry S∗∗
(r) with r ≥ 2. As mentioned before this

geometry is a quotient of the honeycomb geometry, S∞/G with G the group generated
by a glide reflection g with axis the line through (1/4, 0) and (0, 1/2) and with smallest
associated translation vector (−r − 1/2, 2r + 1).

As in the previous we consider the paths of type 3 as graph-theoretical paths in the
incidence graph of the honeycomb geometry. It is then easily seen that in every point of
the geometry there are two finite paths of type 3 and four infinite paths of type 3. Indeed,
if the points A0 and A4 are represented by vertices on a line parallel to 2x + y = 0, then
either one corresponding path of type 3 in A0 has length 4r + 2, the other length 2r + 1
or the two corresponding paths of type 3 in A0 have both length 4r + 2, depending on
wether or not the point A0 is represented by a vertex at euclidian distance 1/4 from the
axis of g.

Hence geometries S∗∗
(r) with different parameter r are non-isomorphic.
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Also, from the previous we can conclude that geometries out of {S∗
(r) | r ≥ 2} are different

from geometries out of {S∗∗
(r) | r ≥ 2}.

We now show that all geometries M∗
(r),(s,0), for different r, s satisfying the above conditions,

are mutually non-isomorphic. Let Γ be a geometry M∗
(r),(s,0) with r ≥ 2 and s ≥ 4. As

mentioned before this geometry is a quotient of the honeycomb geometry, S∞/G with G
the group generated by a glide reflection g with axis the line through (0, 0) and (−1, 2)
and with smallest associated translation vector (−r, 2r) and a translation (s, 0). Two
vertices are identified if and only if there is either a glide reflection with axis 2x+ y = ks,
k ∈ Z and translation vector (2l + 1)(−r, 2r), l ∈ Z or either a translation k(s, 0) +
l(−2r, 4r), k, l ∈ Z taking the one onto the other. It is clear that every point of Γ can be
represented by a unique pair (i, j) with coordinates i, j in the rectangle formed by the
vertices (0, 0)(s, 0)(−r, 2r)(−r+s, 2r) without the line segments [(−r, 2r)(−r+s, 2r)] and
[(s, 0)(−r + s, 2r)]. We therefore call this domain D a fundamental domain. The surface
of one hexagon is equal to

√
3/2. Since the surface of the fundamental domain equals√

3rs, we conclude that the geometry Γ contains 2rs points and lines.

Consider an arbitrary point A0 of the geometry. A path of type 1 in A0 is constructed as
follows: Consider an incident point-line-point triple (A0, A1, A2) with A2 *= A0. The path
P 1

(A0,A1,A2) is then uniquely determined by taking as Ai, i ≥ 3, the element incident with
Ai−1, different from Ai−2 and such that each element incident with Ai and different from
Ai−1, does not belong to Γ2(Ai−3). Clearly, a path of type 1 in A0 = (x, y)G corresponds
to a graph-theoretical path in I(S∞) starting in the vertex (x, y) and with all vertices
corresponding to points in P 1

(A0,A1,A2) on one line: a line parallel to either y = 0, either
x = 0 or either y = −x.

There are six paths of type 1 in a point A0 = (u, v)G. If A0 and A2 are represented by
vertices on a line parallel to the X-axis then it is easily seen that the path P 1

(A0,A1,A2)

is an infinite succession of a path (A0, A1, A2, . . . , A2s = A0) with Ai *= Aj for all i, j
∈ {0, . . . , 2s − 1} and i *= j (path of type 1(∗)).
Next let A0 = (u, v)G and A2 be represented by vertices on a line parallel to the Y -
axis. In other words, A2 = (u, v + 1)G or A2 = (u, v − 1)G. We first make the following
observation. Let (u, v) be identified with a vertex (u, v + z), z ∈ Z0 by some glide
reflection g′. Then z = 2(2l + 1)r for some l ∈ Z and the axis of g′ has equation
2x − 2u + y − v = z/2 with 2u + v + z/2 = ks, k ∈ Z. But then (u − 1, v + 1)g′ =
(2u + v + z/2 − u + 1 − v − 1 − (2l + 1)r, v + 1 + (2l + 1)2r) = (u, v + 1 + z) and
(u+1, v−1)g′ = (2u+v+z/2−u−1−v+1− (2l+1)r, v−1+(2l+1)2r) = (u, v−1+z).
It follows that (u, v + z + 1) and (u, v + z − 1) can not be identified with (u, v + 1) nor
with (u, v − 1). Hence A2 is not equal to A2+2z nor to A2z−2.
First let A0 = (u, v)G be a point on the axis of a glide reflection in G and A2 = (u, v+1)G.
Let d be the greatest common divider of 2r and s. Remark that the translation t with
vector 2r

d (s, 0) + s
d(−2r, 4r) = (0, 4rs

d ), is minimal in the direction of the Y -axis. Hence
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the vertices (u, v) and (u, v)t are identified. Consider now the vertex (u, v + r). Let
g1 be the glide reflection with axis 2x − 2u + y − v = 2rs

d and with translation vector
s
d(−2r, 4r) − (−r, 2r). Then (u, v + r)g1 = (2u + v + 2rs

d − u − v − r − 2rs
d + r, v + r +

4rs
d − 2r) = (u, v − r + 4rs

d ) which is identified with the vertex (u, v + r). Since d < 2s
it follows that v + r < v − r + 4rs

d . Hence the path P 1
(A0,A1,A2) is an infinite succession

of a path (A0 = (u, v)G, A1, A2 = (u, v + 1)G, . . . , A2r = (u, v + r)G, . . . , A8rs/d−2r =
A2r, . . . , A8rs/d = A0), where not all Ai, 0 ≤ i ≤ 8rs/d − 1 are mutually different (path
of type 1(!)). Analogously for A2 = (u, v − 1)G. Now if A0 = (u, v)G is not a point on
the axis of a glide reflection and A2 = (u, v + 1)G or (u, v − 1)G then it is easily seen
that the path P 1

(A0,A1,A2) is also of type mentioned above. Indeed, the path P 1
(A0,A1,A2) is

an infinite succession of a path (A0, A1, A2, . . . , A8rs/d = A0). Suppose now that all Ai,
0 ≤ i ≤ 8rs/d − 1 are mutually different. It is clear that G contains a glide reflection
with axis a line 2x + y = ks, 2u + v < ks < 2u + v + 4rs/d. If A2 = (u, v + 1)G,
let then B0 be the intersection point of the line 2x + y = ks with the line x = u.
If A2 = (u, v − 1)G, let then B0 be the intersection point of the line 2x + y = ks −
4rs/d with the line x = u. Then P 1

(B0=(u,ks−2u)G,B1=(u+1/3,ks−2u+1/3)G,B2=(u,ks−2u+1)G), resp.

P 1
(B0=(u,ks−4rs/d−2u)G,B1=(u+1/3,ks−4rs/d−2u−2/3)G,B2=(u,ks−4rs/d−2u−1)G) is an infinite succession

of a finite path (B0, B1, B2, . . . , B8rs/d = B0) with all Bi, 0 ≤ i ≤ 8rs/d − 1 mutually
different, a contradiction.

Finally let A0 = (u, v)G and A2 be represented by vertices on a line parallel to x +
y = 0. In other words, A2 = (u − 1, v + 1)G or A2 = (u + 1, v − 1)G. The graph
theoretical path of type 1 defined by ((u, v)G, (u − 2/3, v + 1/3)G, (u − 1, v + 1)G), resp.
((u, v)G, (u + 1/3, v − 2/3)G, (u + 1, v− 1)G) is identified with the path defined by ((−u−
v − r, v + 2r)G, (−u − v + 1/3 − r, v + 1/3 + 2r)G, (−u − v − r, v + 1 + 2r)G), resp.
((−u−v− r, v +2r)G, (−u−v +1/3− r, v−2/3+2r)G, (−u−v− r, v−1+2r)G) which is
parallel to the Y -axis. From the previous we conclude that the path P 1

(A0,A1,A2) is a path
of type 1(!).

We conclude that in every point A0 there are four paths of type 1(!) and two paths of
type 1(∗). It is clear that in every point A0 of the geometry Γ the paths of type 1(∗)
have the same length s. Hence geometries with different s are non-isomorphic. Two
geometries with equal s and with the same number of points, have equal parameter r.
Hence geometries with equal s but different r are non-isomorphic. We can conclude that
the geometries M∗

(r),(s,0) with different (r, s) are mutually non-isomorphic.

We now show that all geometries M∗∗
(r),(s,0), for different r, s satisfying the above conditions,

are mutually non-isomorphic. Let Γ be a geometry M∗∗
(r),(s,0) with r ≥ 2 and s ≥ 4. As

mentioned before this geometry is a quotient of the honeycomb geometry, S∞/G with
G the group generated by a glide reflection g with axis the line through (1/4, 0) and
(0, 1/2) and with smallest associated translation vector (−r−1/2, 2r+1) and a translation
(s, 0). Two vertices are identified if and only if there is either a glide reflection with axis
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2x+ y = ks + 1/2, k ∈ Z and translation vector (2l + 1)(−r− 1/2, 2r + 1), l ∈ Z or either
a translation k(s, 0) + l(−2r − 1, 4r + 2), k, l ∈ Z taking the one onto the other. It is
clear that every point of Γ can be represented by a unique pair (i, j) with coordinates i,
j in the quadrangle formed by the vertices (0, 0)(s, 0)(−r, 2r + 1)(−r + s, 2r + 1) without
the line segments [(−r, 2r + 1)(−r + s, 2r + 1)] and [(s, 0)(−r + s, 2r + 1)]. We therefore
call this domain D a fundamental domain. The surface of one hexagon is equal to

√
3/2.

Since the surface of the fundamental domain equals
√

3(r + 1/2)s, we conclude that the
geometry Γ contains 2(r + 1/2)s points and lines.

Remark that the axes of the glide reflections in G have equation 2x+ y = ks+1/2 with k
an integer. Reflecting (u, v) about the line 2x + y = ks + 1/2 gives (ks + 1/2 − u− v, v).

As in the previous case, there are six paths of type 1 in a point A0 = (u, v)G. If A0

and A2 are represented by vertices on a line parallel to the X-axis then it is easily seen
that the path P 1

(A0,A1,A2) is a path (A0, A1, A2, . . . , A2s = A0) with Ai *= Aj for all i, j
∈ {0, . . . , 2s − 1} and i *= j (path of type 1(∗)).
Next let A0 = (u, v)G and A2 be represented by vertices on a line parallel to the Y -
axis. In other words, A2 = (u, v + 1)G or A2 = (u, v − 1)G. We first make the following
observation. Let (u, v) be identified with a vertex (u, v + z), z ∈ Z0 by some glide re-
flection g′. Then z = (2l + 1)(2r + 1) for some l ∈ Z and the axis of g′ has equation
2x − 2u + y − v = z/2 with 2u + v + z/2 = ks + 1/2, k ∈ Z. But then (u − 1, v + 1)g′ =
(2u+v+z/2−u+1−v−1− (2l+1)(r+1/2), v+1+(2l+1)(2r+1)) = (u, v+1+z) and
(u+1, v−1)g′ = (2u+v +z/2−u−1−v +1− (2l+1)(r+1/2), v−1+(2l+1)(2r+1)) =
(u, v − 1 + z). It follows that (u, v + z + 1) and (u, v + z − 1) can not be identified with
(u, v + 1) nor with (u, v − 1). Hence A2 is not equal to A2+2z nor to A2z−2.
First let A0 = (u, v)G be represented by a vertex (u, v) on a line 2x + y = ks, k ∈ Z and
A2 = (u, v +1)G. Let d be the greatest common divider of 2r +1 and s. Remark that the
translation t with vector 2r+1

d (s, 0) + s
d(−2r − 1, 4r + 2) = (0, 4rs+2s

d ), is minimal in the
direction of the Y -axis. Hence the vertices (u, v) and (u, v)t are identified. Consider now
the vertex (u, v+r+1). Let g1 be the glide reflection with axis 2x−2u+y−v = 2r+1

d s+ 1
2

and with translation vector s
d(−2r − 1, 4r + 2)− (−r − 1/2, 2r + 1). Then (u, v + r + 1)g1

= (2u + v + 2r+1
d s + 1

2 −u− v− r− 1− s
d(2r + 1) + r + 1

2 , v + r + 1 + s
d(4r + 2)− 2r− 1) =

(u, v−r+ s
d(4r+2)) which is identified with the vertex (u, v+r+1). Since d < 2s it follows

that v+r+1 < v−r+ s
d(4r+2). Hence the path P 1

(A0,A1,A2) is a path (A0 = (u, v)G, A1, A2 =

(u, v + 1)G, . . . , A2r+2 = (u, v + r + 1)G, . . . , A(8r+4)s/d−2r = A2r+2, . . . , A(8r+4)s/d = A0),
where not all Ai, 0 ≤ i ≤ (8r + 4)s/d − 1 are mutually different (path of type 1(!)).
Analogously for A2 = (u, v−1)G. Now if A0 = (u, v)G with (u, v) not on a line 2x+y = ks,
k ∈ Z and A2 = (u, v + 1)G or (u, v − 1)G then it is easily seen that the path P 1

(A0,A1,A2)

is also of type mentioned above. Indeed, the path P 1
(A0,A1,A2) is an infinite succession of a

path (A0, A1, A2, . . . , A(8r+4)s/d = A0). Suppose now that all Ai, 0 ≤ i ≤ (8r + 4)s/d − 1
are mutually different. It is clear that G contains a glide reflection with axis a line
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2x + y = ks + 1/2, 2u + v < ks < 2u + v + 2(2r + 1)s/d. If A2 = (u, v + 1)G, let
then B0 be the intersection point of the line 2x + y = ks with the line x = u. If
A2 = (u, v − 1)G, let then B0 be the intersection point of the line 2x + y = ks − 2(2r +
1)s/d with the line x = u. Then P 1

(B0=(u,ks−2u)G,B1=(u+1/3,ks−2u+1/3)G,B2=(u,ks−2u+1)G), resp.

P 1
(B0=(u,ks−2(2r+1)s/d−2u)G,B1=(u+1/3,ks−2(2r+1)s/d−2u−2/3)G,B2=(u,ks−2(2r+1)s/d−2u−1)G) is an infi-

nite succession of a finite path (B0, B1, B2, . . . , B(8r+4)s/d = B0) with all Bi, 0 ≤ i ≤
(8r + 4)s/d − 1 mutually different, a contradiction.

Finally let A0 and A2 be represented by vertices on a line parallel to x + y = 0. In other
words, A2 = (u − 1, v + 1)G or A2 = (u + 1, v − 1)G. The graph theoretical path of type
1 defined by ((u, v)G, (u − 2/3, v + 1/3)G, (u − 1, v + 1)G), resp. ((u, v)G, (u + 1/3, v −
2/3)G, (u+1, v−1)G) is identified with the path defined by ((−u−v−r, v+2r+1)G, (−u−
v + 1/3 − r, v + 1/3 + 2r + 1)G, (−u − v − r, v + 2 + 2r)G), resp. ((−u − v − r, v + 2r +
1)G, (−u− v + 1/3− r, v − 2/3 + 2r + 1)G, (−u− v − r, v + 2r)G) which is parallel to the
Y -axis. From the previous we conclude that the path P 1

(A0,A1,A2) is a path of type 1(!).

We conclude that in every point A0 there are four paths of type 1(!) and two paths of
type 1(∗). It is clear that in every point A0 of the geometry Γ the paths of type 1(∗)
have the same length s. Hence geometries with different s are non-isomorphic. Two
geometries with equal s and with the same number of points, have equal parameter r.
Hence geometries with equal s but different r are non-isomorphic. We can conclude that
the geometries M∗∗

(r),(s,0) with different (r, s) are mutually non-isomorphic.

Also, from the previous we can conclude that geometries out of {M∗
(r),(s,0) | r ≥ 2, s ≥ 4}

are not isomorphic to geometries out of {M∗∗
(r),(s,0) | r ≥ 2, s ≥ 4}.

5.3.5 Local structure LS(24)

Let Γ be a geometrically point-homogeneous bislim geometry which is locally LS(24), and
let x be a point of Γ. With previous notation, the lines of Γx are x1y1, x2z1, x1z2 and y1y2.
The point x is a vertex of exactly four triangles: -xx1y1, -xx2z1, -xx1z2 and -xy1y2.
With respect to x, the triangle -xx1y1 has the characteristic property that its vertices
different from x are exactly those points in Γ2(x) that are contained in another triangle
containing x. If we call -xx1y1 therefore special for x, then we claim that -xx1y1 is
special for all its vertices. Indeed, we show this for x1, the proof for y1 being completely
similar. By definition, the special triangle for x1 with vertices in {x1} ∪ Γ2(x1) is either
-xx1y1 or -xx1z2. Suppose the latter is special for x1.

Considering Γx1
, it then follows that z2 is collinear with the “third” point z′1 on the line

x1y1 of Γ, and that x2 is collinear with the “third” point y′
2 on x1z2. Clearly we have

z2x1 *= z2z′1 *= z2x and x2y′
2 *= x2x. Also notice that y′

2 is not collinear to x.
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Suppose by way of contradiction that x2z1y′
2 is a line. Since there are now two lines

xz1 and x1y′
2 meeting the two lines x2z1 and x2x, and since there is a unique point z1

collinear with both x and x2 (and not on xx2), comparing Γx2
with LS(24) implies that

z′1 is collinear with x2 (because clearly y1 is not collinear with x2). That gives an extra
line in Γx1

, a contradiction. Hence y′
2 is not incident with x2z1.

We now consider two possibilities.

• -xx1y1 is special for y1.

Looking in Γy1
, we then see that z1 and z′1 are collinear, and that x1 is collinear with

the “third point” on y1y2, and that third point is incident with a line through x1 not
in Γy1

. This implies that y1y2y′
2 is a line. We consider Γz2

and see that it contains
the lines xx1, y2y′

2 and x1z′1. Comparing with LS(24), we conclude that -xx1z2 is
special for z2 and so x is collinear with the “third point” on z2z′1, a contradiction
since only y2 and x1 are collinear with both x and z2.

• -xy1y2 is special for y1.

The situation is now symmetric in x1 and y1, and so z1 is collinear with the “third
point” y3 on the line y1y2 and z′1 is collinear with y2. Notice that y3 *= y′

2 (this would
cause an extra line y1y′

2 in Γx1
).

Now consider Γx2
. This already contains the lines xz1 and x1y′

2. Since the only points
collinear with both x and x2 are x1 and z1 (considering Γx), x is not contained in the
special triangle for x2. Hence either x1 is, or z1 is. In the first case, x1 is collinear
with the “third point” on x2z1, which is then either y1 or z′1. Clearly only z′1 qualifies.
But then x2z1 must coincide with one of the lines z′1y2 or z′1z2, a contradiction since
this would imply that {y2, z2} ∩ {x2, z1} *= ∅.
Hence z1 is collinear with y′

2. Since x2z1y′
2 is not a line, this implies that z1y′

2y3 ia
a line. Interchanging the roles of x1 and y1, we see that also x2y′

2y3 is a line. This
is the final contradiction.

Our claim is proved.

So a triangle is special either for all its vertices, or for none of its vertices. Thus it
makes sense to talk about special triangles without referring to the vertices. Moreover,
we now deduce that the lines y1y2 and x1z2 meet in Γ, say in u2, and this implies that
the triangle -u2y2z2 is special. So every line is an edge of a (unique) special triangle.
Moreover, we observe that the “third” point on x1y1 is collinear with x2, and that now
Γx

∼= Γx2

∼= LS(24) implies that ΓL, with L = xx1, is isomorphic to LS(24) as well!
Moreover, we also see that -xx1y1 is special for L in the dual setting. All this implies
that, if we consider the geometry of points, lines and nonspecial triangles in Γ, with

29



natural incidence, then this is a thin rank 3 geometry of type Ã2, and we can repeat the
arguments of [5] to deduce that this is a quotient of the honeycomb geometry, enriched
with the hexagons as a third type of elements (and natural incidence). But in this quotient,
the incidences in the special triangles are induced by the incidences in the nonspecial
ones, hence the special triangles are also induced by the quotient. This implies that Γ
is one of the geometries in (HC1), (HC2), (HC3a), (HC3b), (HC4a) or (HC4b), with
the parameters chosen in such a way that the local structure in every point is LS(24).
In fact, we have to consider all the cases where one identifies points of the honeycomb
geometry that are at graph theoretic distance 6 from each other. For (HC1), we obtain
S(3,0); for (HC2), we obtain M(3,0),(i,d), with d ≥ 4 and i ∈ {0, 1, 2} (d = 3 gives different
local structure). But by subtracting an appropriate multiple of (3, 0) from (i, d), we see
that we obtain the geometries listed in the Main Result 1, except that also apparently
M(3,0),(−1−d,2d+1) is missing (but this is isomorphic to M(3,0),(−d,2d+1) by the isomorphism
(x, y) 0→ (−x − y, y)), and that apparently also M(3,0),(−1−d,2d) is missing (but this is
similarly isomorphic to M(3,0),(1−d,2d)).

Now, (HC3a) and (HC3b) are not eligible because the points at graph theoretic distance
≥ 3 from the axis of the glide reflections can never be identified with points at distance
6; finally (HC4a) gives rise to M∗

(r),(3,0), and (HC4b) to M∗∗
(r),(3,0), with r ≥ 2.

Clearly, S(3,0) is a 11
2 -cover of all other examples.

5.3.6 Local structure LS(51)

Although we must prove that every geometrically point homogeneous bislim geometry
with local structure LS(51) is again a quotient of the honeycomb geometry, and so we
could expect a proof similar to the one for LS(24) above, it is more convenient to give a
direct proof.

Let x0 be an arbitrary point of Γ. Let x−3, x−2, x−1, x1, x2, x3 be the points collinear
with x0, denoted in such a way that x0x−1x2, x0x−3x−2 and x0x1x3 are the elements of
Γ1(x0), and x−1x−2x1, x−1x−3, x2x1 and x2x3 are lines of Γx0

. Note that LS(51) has trivial
automorphism group, so every point collinear with x0 has a geometric property in Γx0

that
uniquely defines it. For example, x1 is the unique point in Γx0

incident with a transversal
and such that x0x1 meets three lines of Γ3(x0) that are also contained in Γx0

. We will call
x1 the successor of x0. Remark that, in view of Γx−2

∼= LS(51), x−2 should be collinear
with the “third” point x−4 on the line x−1x−3 (since the transversal of Γx−2

cannot be
incident with x0) and x−3 should be collinear with the “third” point on the line x−2x−4.
It follows easily that x−1 is the successor of x−2, and similarly x−3 is the successor of
x−4. Considering Γx−3

, we see that x−2 is the successor of x−3 and, similarly, that x0 is
the successor of x−1. From the line x0x−2x−3 we deduce that, whenever a point x is the
successor of the point y, then the “third” point on the line xy is the second successor
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of x (meaning, the successor of the successor). This now implies that x2 is the second
successor of x0, and hence the successor of x1. Similarly x3 is the successor of x2. We
now see that we have chosen the indices such that xi is the successor of xi−1, for all pairs
{i, i − 1} of indices yet introduced.

It follows that the subgeometry of Γ induced by all successors and predecessors (with
obvious meaning) of x0 is bislim, and hence coincides with Γ itself. Hence we can denote
the point set of Γ by {xi : i ∈ Z}. There are now two cases to consider. Either i = j
whenever xi = xj (and we denote in this case Γ by Γ(∞)), or there exist two numbers
i, j such that xi = xj. Since successors and predecessors are unique, we then see that
xi+n = xj+n, for all n ∈ Z, and so we obtain a unique geometry Γ(k) for every given
finite cardinality k of the point set. It is easily seen that k ≥ 10, as otherwise we do not
have local structure LS(51) in each point. For k ∈ {7, 8, 9}, we obtain LS(77), LS(73) and
LS(58), respectively.

It is also clear that Γ(∞) is a 11
2 -cover of Γ(k), for every k ∈ N, k ≥ 10.

This completes the proof of our Main Result 1.

A Appendix: A list of local structures

References

[1] H. S. M. Coxeter, Self dual configurations and regular graphs, Bull. Amer. Math.
Soc. 56 (1950), 413 – 455.

[2] H. Gropp, Configurations and their realization, Discr. Math. 174 (1997), 137 – 151.

[3] H. Van Maldeghem, Ten Exceptional geometries from trivalent distance regular
graphs, Annals of Combinatorics 6 (2002), 209 – 228.

[4] H. Van Maldeghem, Slim and bislim geometries, in “Topics in Diagram Geometry”
(ed. A. Pasini), Quaderni di Matematica 12 (2003), 227 – 254.

[5] H. Van Maldeghem and V. Ver Gucht, Bislim flag transitive geometries of gonality
3: constructions and classification, to appear in Ars Combin.

Hendrik Van Maldeghem
Department of Pure Mathematics and Computer Algebra
Ghent University
Galglaan 2, 9000 Gent

31



1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

26 27 28 29 30
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31 32 33 34 35

36 37 38 39 40

41 42 43 44 45

46 47 48 49 50

51 52 53 54 55

56 57 58 59 60
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61 62 63 64 65

66 67 68 69 70

71 72 73 74 75

76 77
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