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Abstract

Finite Moufang generalized quadrangles were classified in 1974 as a
corollary to the classification of finite groups with a split BN-pair of rank
2, by P. Fong and G. M. Seitz [5, 6]. Later on, work of S. E. Payne and
J. A. Thas culminated in an almost complete, elementary proof of that
classification, see [17]. Using slightly more group theory, first W. M. Kan-
tor [13], then the first author [28], and finally, essentially without group
theory, J. A. Thas [23], completed this geometric approach. Recently,
J. Tits and R. Weiss classified all (finite and infinite) Moufang polygons
[40], and this provides a third independent proof for the classification of
finite Moufang quadrangles.

In the present paper, we start with a much weaker condition on a BN-
pair of Type B2 and show that it must correspond to a Moufang quad-
rangle, proving that the BN-pair arises from a finite Chevalley group of
(relative) Type B2. Our methods consist of a mixture of combinatorial,
geometric and group theoretic arguments, but we do not use the classi-
fication of finite simple groups. The condition on the BN-pair translates
to the generalized quadrangle as follows: for each point x, the stabilizer
of all lines through that point acts transitively on the points opposite x.

Keywords: (Split) BN-pair, Chevalley group, Moufang condition, generalized
quadrangle.
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1 Introduction

Generalized quadrangles arise as the natural geometries associated with Cheval-
ley groups/algebraic groups/classical groups/mixed groups of (relative) Type
B2. All these groups carry the structure of a BN-pair, in the sense of Tits [36].
In fact, roughly speaking, BN-pairs with a Weyl group of Type B2 are essentially
equivalent with generalized quadrangles admitting a certain homogeneity prop-
erty (in the terminology and notation below: transitivity on ordered quadruples
(z1, z2, z3, z4) of points with z1 ∼ z2 ∼ z3 ∼ z4 ∼ z1 and z1 #∼ z3; z2 #∼ z4).

Finite BN-pairs of Type B2 (in fact, more generally, of rank 2) can be classified
using the classification of finite simple groups, see [4]. However, it remains in-
teresting to prove such classifications without invoking the classification of finite
simple groups, mainly because so-called “elementary proofs” usually give much
more information about the geometric or group theoretical structure under in-
vestigation. Moreover, new ideas needed in the proof could be used in different
situations.

In the present paper we are interested in classifying generalized quadrangles
that satisfy a weak variant of the Moufang property for finite generalized quad-
rangles, or, equivalently, a weak form of the notion of a split BN-pair of Type
B2, without invoking the classification of finite simple groups. It is not surpris-
ing that we have to appeal to not-so-elementary group theoretic work such as
the classification of finite split BN-pairs of rank 1.

Recall that a group G is said to have a BN-pair (B, N), where B, N are sub-
groups of G, if the following properties are satisfied:

(TI1) 〈B, N〉 = G;

(TI2) H = B∩N!N and N/H = W is a Coxeter group with distinct generators
s1, s2, . . . , sn;

(TI3) BsiBwB ⊆ BwB ∪BsiwB whenever w ∈ W and i ∈ {1, 2, . . . , n};

(TI4) siBsi #= B for all i ∈ {1, 2, . . . , n}.

The subgroup B, respectively W , is a Borel subgroup, respectively the Weyl
group, of G. The natural number n is called the rank of the BN-pair; in this
paper, the rank (which corresponds to the rank of the associated building)
is always 2. In that case, the Weyl group N/(B ∩ N) is a dihedral group
of size 2m for some m. We say that the BN-pair (B, N) is of Type B2 if
W is a dihedral group of size 8. The associated building mentioned above
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is the incidence structure with elements the cosets of the maximal subgroups
containing B and two (distinct) such cosets being incident if their intersection
is nonempty. There is no loss of generality to assume that G acts faithfully on
that structure, and we will do so throughout. It is well known that there are
precisely n maximal subgroups containing B, and they are called the maximal
parabolic subgroups, or maximal parabolics.

Let G be a group with a BN-pair (B, N) of Type B2, and let P1, P2 be the two
maximal parabolic subgroups containing B. For i = 1, 2, let si ∈ G normalize
N and Pi, but not P3−i. Put H = B ∩ N , as usual. We introduce Condition
(†).

(†) For some i ∈ {1, 2}, there exists a subgroup U of B with U "Pi such that
UH = B ∩Bsi .

We can now state our Main Result. We recall that we assume that a group
with a BN-pair acts faithfully on the associated building. Also, a group G with
a BN-pair (B, N) is split if there is a normal nilpotent subgroup U of G with
B = U(B ∩N).

Main Result. A finite group G with a BN-pair of type B2 satisfying (†) is iso-
morphic to an almost simple group with socle one of the simple classical groups
S4(q) ∼= O5(q), U4(q) ∼= O−

6 (q) or U5(q), for some prime power q. Hence for
a group G with a BN-pair of type B2 the conditions (†) and “being split” are
equivalent.

In order to prove that result, we translate this condition to the corresponding
building related to the group G, and this building is a so-called “generalized
quadrangle” (for an abstract definition, see below), whose elements are “points”
and “lines”. We say that a point x of a generalized quadrangle S is a center of
transitivity if there is a group of collineations fixing all lines through x and acting
transitively on the points not on a common line with x. A direct translation
(see below) of our Main Result yields:

Main Result (Geometric Version). If in a finite generalized quadrangle S
every point x is a center of transitivity, then S is a classical generalized quad-
rangle related to the standard BN-pair in one of the classical groups mentioned
in the Main Result above (for an explicit list see Subsection 2.4 below).

We use a mixture of geometric, combinatorial and group theoretic arguments to
prove the Geometric Version of our Main Result. In fact, it is rather fascinating
to see how all these methods add up to deliver a complete proof. If geometric or
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combinatorial methods fall short, then group theory helps out; conversely, where
group theory would need long and highly nontrivial and technical arguments,
geometry and combinatorics provide short and elegant solutions. Moreover,
we have to distinguish many cases, and all of them use different results in
geometry, combinatorics or group theory. Although we do not know of any
counter example, we do not see how to extend our proof to the infinite case.

In order to make our proof more transparent, we have organized it as follows.
We first prove a weaker assertion (we assume that the quadrangle is what we
call half pseudo Moufang). With an eye on generalization to other types of rank
2 BN-pairs, this deserves separate mention anyway. From this weaker assertion,
we derive our Main Result with some additional arguments.

Our Main Result implies the solution of some long standing conjectures and
open problems. The most famous is the following: prove without the classifica-
tion of finite simple groups that every finite thick generalized quadrangle every
point of which is an elation point is a classical (or dual classical) generalized
quadrangle. We refer to Theorem C in Section 3.

In the next section we introduce generalized quadrangles and we mention some
important basic facts. In Section 3 we translate Condition (†) to geometry, and
we introduce our intermediate condition which we call the half pseudo Moufang
condition. Sections 4 up to 7 are devoted to the classification of half pseudo
Moufang generalized quadrangles. In Section 8, we prove our Main Result
(Geometric Version).

2 Finite Generalized Quadrangles

2.1 Finite generalized quadrangles: combinatorics

A (finite) generalized quadrangle (GQ) of order (s, t), s, t ∈ N∗, is an incidence
structure S = (P ,L, I) in which P and L are disjoint (non-empty) sets of
objects called points and lines respectively, and for which I is a symmetric
point-line incidence relation satisfying the following axioms.

(1) Each point is incident with t + 1 lines (t ≥ 1) and two distinct points are
incident with at most one line.

(2) Each line is incident with s + 1 points (s ≥ 1) and two distinct lines are
incident with at most one point.

(3) If x is a point and L is a line not incident with x, then there is a unique
point-line pair (y, M) such that xIMIyIL.
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If s = t, then S is also said to be of order s. If s > 1 and t > 1, then we call the
GQ thick. Generalized quadrangles were introduced by Tits in his celebrated
work on triality [34] as a subclass of a larger class of incidence structures, namely
the generalized polygons, in order to provide a geometric interpretation of the
Chevalley groups of rank 2. The main results up to 1983 on finite generalized
quadrangles are contained in the monograph Finite Generalized Quadrangles
(denoted by “FGQ” throughout) by Payne and [J. A.] Thas [17].

There is a point-line duality for GQ’s of order (s, t) for which in any definition
or theorem the words “point” and “line”, and the parameters s and t, are
interchanged. Normally, we assume without further notice that the (point-line)
dual of a given theorem or definition has also been given.

Let S = (P ,L, I) be a (finite) thick generalized quadrangle of order (s, t). Then
|P| = (s + 1)(st + 1) and |L| = (t + 1)(st + 1). Also, s ≤ t2 [9, 10] and, dually,
t ≤ s2. We will refer to these basic inequalities as “The inequalities of Higman”.

If S is a GQ of order (s, 1), then S is also called a grid with parameters s+1, s+1.
Dual grids are defined dually. A flag of a GQ is an incident point-line pair. An
anti-flag is a non-incident point-line pair. If (p, L) is an anti-flag of the GQ
S, then by projLp we denote the unique point on L which is collinear with p.
Dually we define the notion projpL.

Let x and y be (not necessarily distinct) points of the GQ S of order (s, t); we
write x ∼ y and say that x and y are collinear, provided that there is some line
L such that xILIy (and x #∼ y means that x and y are not collinear). Dually,
for L, M ∈ L, we write L ∼ M or L #∼ M according as L and M are concurrent
or non-concurrent. If x #= y ∼ x, the line incident with both x and y is denoted
by xy, and if L ∼ M #= L, the point which is incident with both L and M is
sometimes denoted by L ∩M . For x ∈ P , we put x⊥ = {y ∈ P ‖ y ∼ x} (note
that x ∈ x⊥). For a pair of distinct points {x, y}, the trace of {x, y} is defined
as x⊥ ∩ y⊥, and we denote this set by {x, y}⊥. Then |{x, y}⊥| = s + 1 or t + 1,
according as x ∼ y or x #∼ y, and in the latter case, the trace is called nontrivial.
More generally, if A ⊆ P, A⊥ is defined by A⊥ =

⋂
{x⊥ ‖ x ∈ A}. For x #= y,

the span of the pair {x, y} is {x, y}⊥⊥ = {z ∈ P ‖ z ∈ u⊥ for all u ∈ {x, y}⊥}
(so {x, y}⊥⊥ = ({x, y}⊥)⊥). Then |{x, y}⊥⊥| = s + 1 or |{x, y}⊥⊥| ≤ t + 1
according as x ∼ y or x #∼ y.

If x ∼ y, x #= y, or if x #∼ y and |{x, y}⊥⊥| = t + 1, we say that the pair
{x, y} is regular. The point x is regular provided {x, y} is regular for every
y ∈ P \ {x}. One easily proves that either s = 1 or t ≤ s if S has a regular pair
of non-collinear points, see Chapter 1 of FGQ. Regularity for lines is defined
dually.
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A triad of points is a triple of pairwise non-collinear points. Given a triad T , a
center of T is just an element of T⊥.

2.2 Subquadrangles

A subquadrangle, or also subGQ, S ′ = (P ′,L′, I′) of a GQ S = (P ,L, I) is
a GQ for which P ′ ⊆ P, L′ ⊆ L, and where I′ is the restriction of I to
(P ′ × L′) ∪ (L′ × P ′). The following well known result will be used, often
without notice.

Theorem 2.1 (2.2.2 of FGQ) Let S ′ be a proper subquadrangle of the GQ S,
where S has order (s, t) and S ′ has order (s, t′) (so t > t′). Then we have

(1) t ≥ s; if s = t, then t′ = 1.
(2) If s > 1, then t′ ≤ s; if t′ = s ≥ 2, then t = s2.
(3) If s > 1 and t′ > 1, then

√
s ≤ t′ ≤ s and s3/2 ≤ t ≤ s2.

(4) If t = s3/2 > 1 and t′ > 1, then t′ =
√

s.
(5) Let S ′ have a proper subquadrangle S ′′ of order (s, t′′), s > 1. Then t′′ = 1,
t′ = s and t = s2.

If S ′ is a subGQ with order (s, t′) of the GQ S with order (s, t), and x is a
point of S not in S ′, then clearly, on every line of S ′, there is a unique point of
S ′ collinear with x. This set of points forms a so-called ovoid of S ′ (i.e., a set
1 + st′ mutually non-collinear points of S ′), which is called the ovoid subtended
by x. The dual of an ovoid is a spread, and a subtended spread is defined dually
in a subquadrangle with order (s′, t).

2.3 Automorphisms

A collineation or automorphism of a generalized quadrangle S = (P ,L, I) is a
permutation of P ∪ L which preserves P , L and I.

Let L be a line of a thick GQ S of order (s, t). A symmetry about L is an
automorphism of S which fixes every element of L⊥. The line L is called an
axis of symmetry if the group H of symmetries about L has size s. In such a
case, if M ∈ L⊥ \ {L}, then H acts regularly on the set of points of M not
incident with L. Dually, one defines the notion of center of symmetry. It is
easy to see that every axis of symmetry is a regular line. A whorl about L is
an automorphism of S fixing all points incident with L. An elation about the
line L is a whorl about L that fixes no line in the set of lines not concurrent
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with L. By definition, the identity is an elation about every line. The line L
is called an elation line if there is a group of elations about L acting (sharply)
transitively on the set of lines not concurrent with L. The line L is called a
translation line if it is an elation line and if every point incident with L is a
regular point. This is equivalent with requiring that L is an elation line and
that the corresponding group of elations is abelian, see [27, 17]. Finally, the line
L is called an axis of transitivity if the group of whorls about L acts transitively
on the set of lines not concurrent with L. Dually, one defines whorls, elations
about a point, elation points, translation points and centers of transitivity.

The following theorem will often be used without further notice.

Theorem 2.2 (2.4.1 of FGQ) Let θ be an automorphism of the GQ S =
(P ,L, I) of order (s, t). The substructure Sθ = (Pθ,Lθ, Iθ) of S which consists
of the fixed elements of θ must be given by (at least) one of the following:

(i) Lθ = ∅ and Pθ is a set of pairwise non-collinear points;
(i)’ Pθ = ∅ and Lθ is a set of pairwise non-concurrent lines;
(ii) Pθ contains a point x so that y ∼ x for each y ∈ Pθ, and each line of Lθ is
incident with x;
(ii)’ Lθ contains a line L so that M ∼ L for each M ∈ Lθ, and each point of
Pθ is incident with L;
(iii) Sθ is a grid;
(iii)’ Sθ is a dual grid;
(iv) Sθ is a subGQ of S of order (s′, t′), s′, t′ ≥ 2.

2.4 Classical and dual classical generalized quadrangles

We now briefly describe the thick finite classical GQ’s. They are related to the
classical (Chevalley) groups (of type B2).

(i) Consider a nonsingular quadric of Witt index 2, that is, of projective index
1, in PG(4, q) and PG(5, q), respectively. The points and lines of the quadric
form a generalized quadrangle which is denoted by Q(4, q) and Q(5, q), respec-
tively, and has order (q, q) and (q, q2), respectively. The corresponding simple
Chevalley groups are O5(q) and O−

6 (q), respectively.
(ii) Next, let H be a nonsingular Hermitian variety in PG(3, q2), respectively
PG(4, q2). The points and lines of H form a generalized quadrangle H(3, q2),
respectively H(4, q2), which has order (q2, q), respectively (q2, q3). The simple
Chevalley groups are the unitary groups U4(q) and U5(q), respectively.
(iii) The points of PG(3, q) together with the totally isotropic lines with re-
spect to a symplectic polarity form a GQ W (q) of order q. The corresponding
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Chevalley group is the symplectic group S4(q).

For more details and properties of these classical quadrangles, see Chapter 3 of
FGQ. We just note that the dual of W (q) is isomorphic to Q(4, q), and that
the dual of H(3, q2) is isomorphic to Q(5, q), which can also be seen from the
groups, as O5(q) ∼= S4(q) and O−

6 (q) ∼= U4(q). The point-line duals of the
classical GQ’s are called the dual classical GQ’s.

3 Half Pseudo Moufang Quadrangles and the
Main Results

A panel of a GQ S = (P ,L, I) is an element (x, L, y) of P × L × P for which
xILIy and x #= y. Dually, one defines dual panels. A Moufang generalized
quadrangle is a GQ S = (P ,L, I) in which the following conditions hold:

(M) for any panel (x, L, y) of S, the group H of all automorphisms of S fixing
all lines incident with x, all lines incident with y, and all points incident
with L (sometimes called root-elations), acts transitively on the set of
points that are incident with some given line MIx, M #= L, and different
from x;

(M′) for any dual panel (L, x, M) of S, the group of all automorphisms of S
fixing all points incident with L, all those incident with M , and all lines
incident with x (also called root-elations), acts transitively on the set of
lines that are incident with a given point zIL, z #= x, and different from
L.

Remark 3.1 If Condition (M) holds in a thick GQ S, then, with the notation
of (M), if M ′ #= L is an arbitrary line through x, respectively y, then H also
acts transitively on the points incident with M ′, different from x, respectively
y. The same remark holds for dual panels.

Let S be a thick Moufang GQ. The group generated by all root-elations will be
called the little projective group.

Moufang quadrangles were introduced in the appendix of [37] (as a special
case of Moufang spherical buildings). It was noted by Tits in [38] that the
classification of finite split BN-pairs of rank 2 by Fong and Seitz [5, 6] (or
rather a corollary of their main result, see Section 5.7 of [43] for a detailed
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discussion), implies that a thick finite generalized quadrangle is Moufang if and
only if it is a classical or dual classical GQ (but at present there is also the
monograph [40] by Tits and Weiss where all Moufang polygons are classified).
In [25], [J. A.] Thas, Payne and the second author proved that the Properties
(M) and (M′) are equivalent. Hence, if we call a GQ half Moufang if it satisfies
(M) or (M′), then every half Moufang finite GQ is Moufang, and hence classical
or dual classical. We will use this result in the rest of the paper a few times.

Now let S = (P ,L, I) be a thick GQ of order (s, t) and let H be an automor-
phism group of S. For points x, y of S, we denote by Hx,y the stabilizer of both
x and y in H. Similarly for lines. Consider the following conditions.

(PM) For every panel (x, L, y), with x, y ∈ P and L ∈ L, there is a normal sub-
group H(x, y) of Hx,y of elations about both x and y which acts regularly
on the set of points that are incident with any line MIx, respectively
M ′Iy, M #= L #= M ′, and different from x, respectively y. The group
H(x, y) will be sometimes referred to as a pseudo elation group

(PM′) For every dual panel (L, x, M), with L, M ∈ L and x ∈ P , there is a
normal subgroup H(L, M) of HL,M of elations about both L and M which
acts regularly on the set of lines that are incident with an arbitrary point
yIL, respectively zIM , y #= x #= z, and different from L, respectively M .

A GQ is called pseudo Moufang (with respect to H) if both Properties (PM)
and (PM′) hold. It is called half pseudo Moufang if one of the Properties
(PM) or (PM′) holds. The (half) pseudo Moufang condition was, under a
slightly different form, introduced by the first author during some lectures in
the Seminar of Incidence Geometry at Ghent University in 1999 [26] in order
to study the so-called ‘strong elation generalized quadrangles’ (see below).

Throughout, we will sometimes write ‘HPMGQ’ instead of ‘half pseudo Moufang
generalized quadrangle’ for the sake of convenience, and we always denote the
corresponding group by H. Hence we will often forget to mention this group
explicitly.

Let (x, L, y) be a panel of the thick generalized quadrangle S = (P ,L, I) of
order (s, t) and suppose that s < t. Let S(x, y) be the set of elations about
both x and y, and suppose that |S(x, y)| ≥ s. Suppose moreover that S(x, y)
is not a group. Then clearly there is some automorphism φ #= 1 of S generated
by S(x, y) which fixes all lines incident with x and all lines incident with y,
and which fixes some point of S not incident with L. By Theorem 2.2, the
set of fixed points and lines of φ forms a subGQ of S of order (s′, t), s′ < s,
contradicting the fact that s < t (cf. Theorem 2.1). Hence if s < t, then
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Property (PM) is equivalent with requiring that for every panel (x, L, y), there
is a set of s elations about both x and y all contained in H.

It is easy to see that in a pseudo Moufang GQ every point is a center of transi-
tivity and every line is an axis of transitivity. Finite GQ’s every point of which
is a center of transitivity and every line of which is an axis of transitivity are
classified in [42] (and all such GQ’s are classical or dual classical). Consequently
every finite pseudo Moufang GQ is a Moufang GQ. It is now our first aim to
classify the thick finite half pseudo Moufang GQ’s. The following result will be
obtained.

Theorem A. Every finite thick half pseudo Moufang generalized quadrangle
is a classical or dual classical quadrangle (or, equivalently, a Moufang quadran-
gle). Conversely, every (finite) classical or dual classical generalized quadrangle
(or, equivalently, every finite Moufang quadrangle) is a half pseudo Moufang
quadrangle with respect to any group H containing the little projective group,
and the pseudo elation groups are independent of H. In particular, every pseudo
elation group is a group of root-elations.

Extending the terminology of [42], we will call a quadrangle each point of which
is a center of transitivity, or each line of which is an axis of transitivity, a half
2-Moufang GQ. The following is a reformulation of the Main Result (Geometric
Version).

Theorem B. Every finite half 2-Moufang generalized quadrangle is classical
or dual classical.

A generalized quadrangle is called a strong elation generalized quadrangle (SEGQ)
if each of its points is an elation point. It is a well known open problem to clas-
sify the SEGQ’s without the classification of finite simple groups (see Payne
[15, 16], K. Thas [28] and Van Maldeghem [42]). As each point of a half Mo-
ufang quadrangle (satisfying Property (M)) is an elation point, see Chapter 9
of FGQ, this problem also generalizes the problem considered in [25].

A consequence of Theorem B reads as follows:

Theorem C. Each finite strong elation generalized quadrangle is classical or
dual classical.

We now prove the equivalence of Condition (†) with the condition of half 2-
Moufang quadrangle, giving rise to our Main Result.

First assume (†). Let S be the corresponding GQ. Without loss of generality,
we may assume i = 1 and P1 corresponds to a point x (which is stabilized by
P1); the parabolic P2 then stabilizes a line L. The stabilizer of the flag {x, L}
is the Borel subgroup B. Since U stabilizes L, and U is normal in P1 (which
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acts transitively on the lines through x), it is easy to see that U stabilizes every
line through x. Since H fixes some point of S not collinear with x (namely, the
unique point not collinear with x in the orbit of x under the action of N), and
since B∩Bs1 acts transitively on the points not collinear with x (by the BN-pair
property), we conclude that UH = B∩Bs1 implies that also U acts transitively
on the set of points not collinear with x. So x is a center of transitivity.

Conversely, a standard argument (along the lines of the first paragraph of the
proof of Lemma 4.1) shows that a (thick) half 2-Moufang GQ corresponds to
a group G with a BN-pair of Type B2. Taking for U the full group of whorls
(in G) about the point x corresponding to the Borel subgroup B, we easily see
that U satisfies Condition (†) for P1 the stabilizer of x. !

We now mention an additional consequence of our Main Result (Geometric
Version).

Theorem D. A finite GQ S satisfying

(UM) for any panel (p, L, q) of S, and any line MIq, M #= L, the group of all
automorphisms of S fixing all lines incident with p and fixing M , acts
transitively on the set of points incident with M , and different from q,

is classical or dual classical.

Conversely, every classical or dual classical GQ satisfies (UM).

Indeed, suppose that S satisfies Property (UM). For (p, L, q) an arbitrary panel
of S, and M #= L an arbitrary line through q, denote the group as defined by
(UM) by H(p, L, q; M). Fix the point p, and define the group Φ(p) by

Φ(p) = 〈H(p, L, q; M) ‖ q ∼ p #= q, MIq, M #= L〉.

Then Φ(p) is a group of whorls about p. By a result of Cuypers mentioned and
proved in [3], the natural geometry Γ(p) defined by P \ p⊥ (and thus having
lineset L \ {N ‖ NIp}), is connected. So, for each two distinct points x and
y of Γ(p), there is a set of distinct points {x = z0, z1, . . . , zr = y} for some
r ∈ N0, so that zi ∼ zi+1 for i = 0, 1, . . . , r − 1. Clearly, for each such i, there
is a collineation θi in Φ(p) mapping zi onto zi+1, hence we have that Φ(p) acts
transitively on P \ p⊥. By theorem B, the first assertion of Theorem D follows.

Now suppose p is a center of transitivity of a GQ S. Then the following is easy
to observe: for any panel of the form (p, L, q), and any line MIq, M #= L,
the group of all automorphisms of S fixing all lines incident with p and fixing
M , acts transitively on the set of points incident with M , and different from q.
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Since in a classical generalized quadrangle, every point is a center of transitivity,
the final assertion of Theorem D follows. !

In particular, it now follows that in Theorem A, we may delete from Condition
(PM) the assumption that H(x, y) is a normal subgroup, and we may replace
the condition of H(x, y) acting regularly by acting transitively, and we still end
up with the same conclusion.

Standing Hypothesis. For the sake of simplicity, we will from now on use the
notion of a half pseudo Moufang GQ only for GQ’s satisfying Property (PM).

4 Finite Moufang Quadrangles are Pseudo Mo-
ufang Quadrangles

Here, we prove the second part of Theorem A, namely, that every classical and
dual classical GQ is an HPMGQ “in a unique way”. We first show a general
lemma and use the notation of the previous section.

Lemma 4.1 If S is an HPMGQ with respect to the group H, then H acts
transitively on the set of ordered quadruples (z1, z2, z3, z4) of points with z1 ∼
z2 ∼ z3 ∼ z4 ∼ z1 and z1 #∼ z3; z2 #∼ z4.

Proof. Let L, M, M ′ be three distinct lines of S with M #∼ L #∼ M ′. We claim
that some element of H fixes L and maps M to M ′.

First suppose that M ′ ∼ M . Let x = projL(M ∩M ′) and let y be an arbitrary
point on L distinct from x. Select a nontrivial θ ∈ H(x, y) and denote M ′′ = M θ.
Choose any line M0 meeting both M ′ and M ′′, but not incident with x, and put
L′ = projxM0. Set y′ = M0 ∩ L′. Then there exists θ′ ∈ H(x, y′) mapping M ′′

to M ′. Hence we found σ = θθ′ ∈ H fixing L and mapping M to M ′.

Next suppose that M #∼ M ′. Then either L ∈ {M, M ′}⊥⊥ — in which case
there exists for every pair of distinct points x, y incident with L, a collineation
σ ∈ H(x, y) mapping M to M ′ — or there exists a line M∗ meeting both M
and M ′ and not meeting L. Applying twice the foregoing argument, our claim
follows. We conclude now easily that H acts transitively on the set of ordered
non-concurrent pairs of lines.

Hence, for two quadruples (z1, z2, z3, z4) and (z′1, z
′
2, z

′
3, z

′
4) as in the statement

of the lemma, we may assume z1z2 = z′1z
′
2 and z3z4 = z′3z

′
4. Applying elements

of H(x, y), for appropriate points x, y such that z1z2Ix ∼ yIz3z4, the result
follows easily. !
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Remark 4.2 Completely similar one also shows that in a half 2-Moufang GQ
the full automorphism group acts transitively on ordered pairs of opposite points
(lines).

Proposition 4.3 Let S be a finite Moufang (and hence classical or dual clas-
sical) quadrangle with little projective group H. Then S is an HPMGQ with
respect to H if one defines the pseudo elation groups as the corresponding root-
elation groups. Moreover, if S is half pseudo Moufang with respect to some
other group H∗, then H ≤ H∗ and the pseudo elation groups are necessarily the
root-elation groups.

Proof. The first statement is obvious and follows from the semi-regular action
of any root-elation. Suppose now that the classical or dual classical GQ S is
half pseudo Moufang with respect to the group H∗. By Lemma 4.1, H∗ is
flag-transitive and hence it contains all root-elations, except possibly if S is
isomorphic to W (2), W (3), Q(4, 2), Q(4, 3) or H(3, 9) (this is due to Seitz [18];
it is also mentioned in Theorem 4.8.7 of [43]). But it is easily seen that in the
first four cases the elements of any pseudo elation group must be root-elations. If
S is isomorphic to H(3, 9) and if H∗ does not contain all root-elations of S, then
it follows from [18] that H∗ has order at most 4|PSL(3, 4)| = 28.32.5.7, which is
much less than the number of ordered quadruples of points (as in the statement
of Lemma 4.1) in H(3, 9) (that number is equal to 25.36.5.7), contradicting the
fact that H∗ acts transitively on the set of such ordered quadruples of S. Hence
we have shown that H∗ contains all root-elations of S and consequently that
H ≤ H∗.

Now let the order of S be equal to (s, t) and let θ ∈ H∗(x, y), for some distinct
collinear points x, y. Note that there exists a root-elation σ fixing all lines
through x, all lines through y, and such that zθ = zσ for at least one point z
not incident with xy. The automorphism θσ−1 fixes pointwise a subquadrangle
of order (s′, t), with 1 < s′ ≤ s. Indeed, 1 < s′ because θ is an elation and
hence its order divides the prime power s, which implies that it fixes at least
three points of the line xy. If s ≤ t, then necessarily s = s′ by Theorem 2.1,
and so θ = σ. That leaves two cases.

(1) S is dual to H(4, t). We have H(x, y) " H∗
x,y, so every Sylow p-

subgroup P of H∗
x,y, where p is the unique prime number dividing s and t,

contains H(x, y) (which, we recall, consists of root-elations). We choose P such
that it contains θ. Write (s, t) = (p3k, p2k). If θ /∈ H(x, y), then θσ−1 fixes
pointwise a subquadrangle S ′ of order (s′, p2k). By 2.2.1 of FGQ, s′p2k ≤ p3k,
hence s′ ≤ pk. So s′ = pk by the inequality of Higman, and S ′ is dual to
H(3, t) (so isomorphic to Q(5,

√
t)). Now θσ−1, which belongs to P , must act
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trivially on the set of lines through x. So, interpreted in PG(4, t) (by dualizing
to H(4, t)), the collineation θσ−1 is linear. If we now interpret the set of points
incident with xy as a Hermitian curve in a classical projective plane of order t,
then θσ−1 is a linear automorphism of that curve fixing at least two points of
the curve, and hence also fixing the “polar point” of the joining line of those
two fixed points. Hence θσ−1 fixes a triangle in that projective plane, implying
that its order divides (t − 1)2 (remembering that θσ−1 is linear) and therefore
cannot be contained in P , a contradiction.

(2) S is isomorphic to H(3, s). In this case, it is easily seen that H∗(x, y),
for distinct points x ∼ y, must contain at least one root-elation σ (otherwise a
Sylow p-subgroup (p as before) of H∗

x,y would have size at least |〈H(x, y), H∗(x, y)〉
| = s2, as H ≤ H∗ and H(x, y) " H∗

x,y, a contradiction). Let L be any line
through x distinct from xy. Then HL acts on L as PSL2(s), see e.g. [43, Ta-
ble 8.1]. It is not so hard to see that HL,x has the same action on the points
incident with L as HL,x,y. So we may conjugate σ by HL,x,y and obtain, if s is
even, all root-elations of H(x, y), or, if s is odd, s−1

2 elements of H(x, y), which
generate H(x, y). Consequently, since H∗(x, y) is normal in H∗

x,y, we conclude
H∗(x, y) = H(x, y). !

We prove the first part of the Theorem A in the next sections. We start with
some general observations, which will in particular settle the case s > t. We
then invoke the classification of finite split BN-pairs of rank 1 and consider the
case of sharply 2-transitive groups first. The other cases are treated afterwards.
Whenever we can, we state lemmas and propositions in a more general context.

5 Some General Observations

5.1 Property (H)

The first properties that we will observe only rely on the fact that a half pseudo
Moufang GQ is a half 2-Moufang GQ. So we first show this.

Lemma 5.1 Suppose the thick GQ S = (P ,L, I) of order (s, t) is half pseudo
Moufang. Then every point of S is a center of transitivity.

Proof. Suppose x is an arbitrary point of S. Let H(x) be the group defined
by 〈H(x, y) ‖ y ∼ x, y #= x〉; then it is clear that every element of H(x) fixes
every line incident with x. It is also clear, by the definition of H(x), that if y
and z are distinct collinear points in P \ x⊥, then there is an element of H(x)
mapping y onto z.
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Now suppose y and z are non-collinear points in P \ x⊥. By an observation
first made by Cuypers (see Brouwer [3]), there exists a sequence of points y =
u0, u1, . . . , u# = z with ui−1 ∼ ui and ui #∼ x, for all i ∈ {1, 2, . . . , $}. Applying
the first part of the proof $ times, the lemma follows. !

Definition 5.2 Now let x and y be two non-collinear points of the GQ S =
(P ,L, I). Then we put cl(x, y) = {z ∈ P ‖ z⊥ ∩ {x, y}⊥⊥ #= ∅}. A point u
has Property (H) provided that z ∈ cl(x, y) if and only if y ∈ cl(x, z) whenever
(x, y, z) is a triad of points in u⊥; we denote the dual notion also by Property
(H).

Lemma 5.3 Suppose S is a thick GQ of order (s, t) such that some point u of
S is a center of transitivity. Then u has Property (H).

Proof. Let {x, y, z} be a triad in u⊥ with the property that z ∈ cl(x, y).
Suppose v is a point such that v ∼ z and v ∈ {x, y}⊥⊥. Consider a whorl φ
about u which maps v onto z, and which fixes x (such a whorl exists by the
transitivity assumption). Then yφ ∼ y and z = vφ ∈ {x, yφ}⊥⊥, and hence
y ∈ cl(x, z). It now easily follows that the point u has Property (H). !

Isomorphic generalized quadrangles are defined in the usual standard way. We
use the notation S ∼= S ′ to denote isomorphic quadrangles S and S ′.

Proposition 5.4 Suppose every point of the thick GQ S of order (s, t) is a
center of transitivity. Then one of the following possibilities occurs:

(a) S is classical (and isomorphic to W (s) or H(4, s)), or
(b) every span of non-collinear points has size 2, or
(c) s > t and every point is regular.

In particular, this applies to half pseudo Moufang generalized quadrangles.

Proof. By Lemma 5.3 each point has Property (H). Now apply 5.6.2 of FGQ,
noting that from 5.2.1 of FGQ follows that a (thick) finite generalized quadran-
gle of order (s, t) with s ≤ t and all points regular is necessarily isomorphic to
W (s). !

5.2 Some results on elation generalized quadrangles

If s ≤ t, then there is a further restriction on the structure of an HPMGQ
of order (s, t), which can be stated in the (implicitly) more general context of
elation GQ’s. Its proof is based on 9.5.1 of FGQ (see also [26]).
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Proposition 5.5 Let S = (P ,L, I) be a thick GQ of order (s, t) and suppose
x ∈ P is an elation point with elation group G. Suppose that for every y ∈ P\x⊥
the span {x, y}⊥⊥ has exactly 2 elements, and that for every line LIx and every
line M ∈ L\L⊥ the span {L, M}⊥⊥ has exactly 2 elements. Then the center of
G is trivial. In particular, s > t.

Proof. Denote the lines through x by Li, i ∈ {0, 1, . . . , t}, and let y be an
arbitrary point of P \ x⊥. Put Mi := projyLi for every i, and let Gi be the
stabilizer of Mi in G (so Gi acts regularly on the points of Mi distinct from
Li ∩Mi). Furthermore, let G∗

i be the stabilizer of xi := Mi ∩ Li in G. Suppose
by way of contradiction that the center Z(G) of G is nontrivial and let g be
a nontrivial element of Z(G). If g ∈ ∩s

i=0G
∗
i , then {y, yg, x} ⊆ {x, y}⊥⊥, a

contradiction since yg #= y. Hence, without loss of generality, we may assume
that g does not belong to G∗

0. Since G0 centralizes g, the group G0 fixes M g
0 . The

latter line does not meet M0. Let Mj be the unique line through y which meets
M ′

0 = M g
0 . Then we conclude that every element of the orbit of Mj under the

action of G0 meets every element of the triad {M0, M ′
0, Lj}. Since that orbit

has size s and also L0 is a center of the triad, we see that {M0, M ′
0, Lj} ⊆

{M0, Lj}⊥⊥, again a contradiction. Hence Z(G) is trivial.

Suppose now that s ≤ t. Then by Frohardt [7], s and t are powers of the
same prime number p, and hence G is a p-group. But every such group has a
nontrivial center.

The proposition is proved. !

If an HPMGQ is also an EGQ, then we can prove property (H) for lines.

Lemma 5.6 Let S be a thick HPMGQ of order (s, t) such that for each point
x the group H(x) = 〈H(x, y) | y ∼ x #= y〉 is a group of elations about x. Then
each line of S satisfies Property (H).

Proof. Let V, W be two opposite lines. Denote the points on V and W by vi

and wi, i ∈ {0, 1, . . . , s}, respectively. We can choose the indices in such a way
that vi ∼ wi, and we denote the line viwi by Li, i ∈ {0, 1, . . . , s}. We prove
Property (H) for the line L0. It suffices to prove that, if Z ∈ {V, W}⊥⊥\{V, W},
and if W ′ is an arbitrary line through w0, then for every i ∈ {2, 3, . . . , s}, there
exists a line Z ′ concurrent with projv1

W ′ and with projvi
W ′ and incident with

the point z := Z ∩L0. Here, the lines V, W, Z play the role of the points x, y, z,
respectively, in Definition 5.2.

Let θ ∈ H(v0, w0) map v1 onto vi. Let θ′ ∈ H(v0, z) map vi onto v1. Then
θθ′ ∈ H(v0) and θθ′ fixes L1. It follows that θθ′ ∈ H(v0, v1). Hence θθ′ fixes
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L′ := projv1
W ′. Since θ fixes W ′, we deduce that W ′ is concurrent with both

L′ and L′θ (and note that the latter is equal to projvi
W ′). Since θ′ now maps

L′θ back onto L′, the line Z ′ := projzL
′ is concurrent with both projv1

W ′ and
projvi

W ′ and incident with z.

The lemma is proved. !

If all lines of an HPMGQ satisfy Property (H), then we can say more.

Lemma 5.7 If all lines of the thick HPMGQ S satisfy Property (H) (and note
that this is particularly the case if all lines of S are regular), then either S is
dual classical, or the size of each span of non-concurrent lines is equal to 2.

Proof. If there is a span of non-concurrent lines with size at least 3, then by
5.6.2 of FGQ, either S is isomorphic to the dual of H(4, t), or all lines of S are
regular. In the latter case, all lines are axes of symmetry by Theorem 3.7 of
[27]. Consequently S is half Moufang and hence dual classical. !

The connection between HPMGQ’s and GQ’s having an elation point is given
by the following observation.

Lemma 5.8 Let S be a thick HPMGQ of order (s, t) with s ≤ t, so that each
span of non-collinear points has size 2. Then each point x is an elation point
with corresponding elation group H(x). Moreover, H(x) is the complete set of
elations of S about x.

Proof. Immediate from 8.2.4 (v) of FGQ and the fact that the automorphism
group of S acts transitively on the points of S. !

These results have, for our situation, the following interesting consequence.

Corollary 5.9 Let S be a thick HPMGQ of order (s, t) with s ≤ t. Then S is
classical.

Proof. According to Proposition 5.4, either S is classical, or each span of non-
collinear points has size 2. In the latter case Lemma 5.8 and Lemma 5.6 imply
that each line of S satisfies Property (H). Now Lemma 5.7 says that, if S is
not classical, then the size of each span of non-concurrent lines is equal to 2.
Lemma 5.5 leads to the contradiction s > t.

The corollary is proved. !

Henceforth we may assume that s > t. Roughly speaking, the idea of the rest
of the proof is as follows. If there are no subquadrangles of order (s′, t) of a
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given HPMGQ S of order (s, t), then in many cases it will be possible to prove
that, for each point x, the group H(x) is an elation group, and we may apply
the results of the current subsection. We now investigate what we can say if
there are such subquadrangles.

5.3 Observations on subquadrangles

Before considering the general case of subGQ’s of order (s′, t) of HPMGQ’s of
order (s, t), we prove a lemma with more restrictive parameters but in a slightly
more general context, which we will need later on when dealing with the half
2-Moufang case.

Lemma 5.10 Let S be a half 2-Moufang generalized quadrangle of order (q2, q),
q > 1 (such that all points are centers of transitivity). If S admits a subquad-
rangle of order (q, q) isomorphic to W (q), then S is isomorphic to H(3, q2).

Proof. First we note that every pair of non-collinear points of S is contained
in a subquadrangle isomorphic to W (q). This easily implies that every such
pair of points is regular, and hence that every subquadrangle of S of order q is
isomorphic to W (q).

Fix some point x ∈ S, and let y and z be non-collinear points in x⊥. Let
H0(x) be the subgroup of the group H(x) of whorls about x which fixes both
y and z. Let p be the unique prime dividing q. Since H0(x) acts transitively
on {y, z}⊥ \ {x}, there is a nontrivial Sylow p-subgroup P of H0(x) of order at
least q. Since q and q2 − 1 are relatively prime, the group P fixes some point
u on the line xy different from x and y. Since P also fixes the set {y, z}⊥⊥
pointwise, it fixes all points of {u, u′}⊥⊥, with u′ ∈ {y, z}⊥⊥ \ {y}. It follows
easily that P fixes at least q + 1 points incident with every line through x. By
[29], either the fixed points of P are contained in a unique subquadrangle S ′ of
order q (isomorphic to W (q)), or all elements of P are symmetries about x, in
which case S is half Moufang, and hence classical and isomorphic to H(3, q2).

So we may assume that P acts as a group of symmetries about x in the subGQ
S ′ ∼= W (q). Suppose by way of contradiction that P does not act transitively
on the set {y, z}⊥ \ {x}. Since P has at least order q, this implies that some
nontrivial θ ∈ P fixes some point v ∈ {y, z}⊥ \{x}. Since θ induces a symmetry
about x in S ′, it fixes S ′ pointwise. But then θ is an involution (by, e.g., [29]).
This implies p = 2. Also, θ fixes {y, z}⊥ pointwise, the group 〈θ〉 is normal in P
(as it consists of all elements of P fixing {y, z}⊥ \ {x} pointwise) and the order
of P is equal to 2q (since the order of the quotient group P/〈θ〉 is divisible by
q). Consequently P does act transitively on {y, z}⊥ \ {x}, a contradiction.
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So P acts transitively on {y, z}⊥ \ {x}. Since every element of P fixes every
point of S ′ in x⊥, we see that we induce the full little projective group in S ′.
By the dual of 12.10.8 of [32] (see also Chapter 12 of [33]), the result follows. !

Proposition 5.11 Suppose that S = (P ,L, I) is a thick HPMGQ of order
(s, t) and let S ′ = (P ′,L′, I′) be a thick subGQ of S of order (s′, t). Then S ′

is also an HPMGQ (with respect to the induced group), and hence classical by
Corollary 5.9.

Proof. Let (x, L, y) be an arbitrary panel of S ′ and regard it as a panel of S.
Let V Ix and WIy be so that V #= L #= W , and let M and M ′ be distinct lines,
M #= L #= M ′, so that M, M ′ ∈ {V, W}⊥ ∩ L′. Let θ be the element of H(x, y)
that maps M onto M ′. It is clear that, if for each such (x, L, y), V, W , M, M ′,
we have that θ stabilizes S ′ (globally), then S ′ is an HPMGQ with respect to
the stabilizer H ′ in H of S ′. Suppose that θ does not fix S ′. Then by Theorem
2.1, and 2.3.1 of FGQ, S ′∩(S ′)θ is a subGQ of S of order (1, t); moreover, s′ = t
and s = t2. Hence S has a regular pair of points. Since H acts transitively on
the set of pairs of non-collinear points, each point of S is regular. This implies
that each point of S ′ is regular and so S ′ is isomorphic to W (t) by 5.2.1 of FGQ.

The proposition now follows from Lemma 5.10. !

6 Groups with a Split BN-Pair of Rank 1

We now introduce some notation that we will keep until Section 7.2 (included),
unless explicitly stated otherwise.

Standing Hypotheses. From now on, S is a thick HPMGQ of order (s, t),
s > t, and V and W are non-concurrent lines of S. We put Ξ = {V, W}⊥ =
{L0, L1, . . . , Ls}, and set vi = Li∩V , respectively wi = Li∩W , for i = 0, 1, . . . , s.
We define G = 〈H(vj, wj) ‖ j ∈ {0, 1, . . . , s}〉. Then (G, Ξ) is a (not necessarily
faithful) permutation group. We denote by N the kernel of the action of G on
Ξ.

Lemma 6.1 The permutation group (G, Ξ) satisfies the following two proper-
ties.

(BN1) G acts 2-transitively on Ξ, and |Ξ| > 2;

(BN2) for every Li ∈ Ξ, the stabilizer of Li in G has a normal subgroup H(vi, wi)
which acts regularly on Ξ \ {Li}.
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Proof. This follows immediately from the definition of an HPMGQ. !

The previous lemma means that (G, Ξ) is a finite group with a split BN-pair of
rank 1. We now invoke the classification of such groups (which does not depend
on the classification of finite simple groups) and obtain:

Proposition 6.2 The permutation group (G/N, Ξ) is either a sharply 2-transitive
group, or one of the groups

(a) PSL2(s), s ≥ 4,
(b) R( 3

√
s), a (Ree) group of type 2G2 in characteristic 3,

(c) Sz(
√

s), s > 4, a (Suzuki) group of type 2B2;
√

s is then an odd exponent
of 2, or
(d) PSU3(

3
√

s2), with s > 4.

all acting on their natural permutation module of degree s + 1.

Proof. This follows immediately from Lemma 6.1 and the classification of
finite split BN-pairs of rank 1 by Shult [19] and Hering, Kantor and Seitz [8]. !

Each of the groups under (a), (b), (c) and (d) is nonabelian simple, except for
R(3) ∼= PΓL2(8).

We will denote the group H(vi, wi) also by G(Li) and call it a root group of
(G/N, Ξ), or of G/N .

Proposition 6.2 allows us to divide the rest of the proof into different subcases
according to the isomorphism class of G/N . We will first treat the sharply 2-
transitive case, and then handle the other cases (to which we will refer as “the
simple case”, although not all groups are simple, see above).

Remember that we use our standing hypotheses.

7 Proof of Theorem A

7.1 The sharply 2-transitive case

With will prove a slightly more general result, with an eye on the proof below
of Theorems B and C.

Before proceeding, however, and for the convenience of the reader, we recall the
following well known result, which we will use a second time later on.
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Theorem 7.1 (9.4.1 of FGQ) Let S be a GQ of order (s, t), s #= 1 #= t.
Suppose that Ω and ∆ are disjoint sets of points of S. Suppose that K is a
group of collineations of S which acts on Ω, but not transitively. Suppose the
following conditions are satisfied:

(1) |∆| > 2;
(2) |Ky| is independent of y for y ∈ Ω;
(3) each element of Ω is collinear with a constant number of points of ∆;
(4) if x and y are points of ∆, then there is a sequence of points x =
z1, z2, . . . , zn = y so that z1, z2, . . . , zn ∈ ∆, and zi #∼ zi+1 for i = 1, 2, . . . , n− 1;
(5) if v is a point of Ω and v′ is a point of ∆ for which v ∼ v′, then each point
of vv′ which is different from v′ is a point of vK.

Then |∆| ≤ t + 1 + b, where b is the average number of points of ∆ different
from d which are collinear with a given point d ∈ ∆.

We now abandon for once our Standing Hypotheses in the first part of the next
proposition.

Proposition 7.2 Let S be a finite thick SEGQ of order (s, t) and suppose that
the set of elations about some point is an elation group. Let V, W be two opposite
lines in S. Suppose that the group E generated by the elations about the points
of V which fix W , acts on the points of V as a sharply 2-transitive group. Then
either s ≤ t or S is classical or dual classical.

In particular, under the standing hypotheses, and assuming that (G/N, Ξ) is a
sharply 2-transitive permutation group, the HPMGQ S is classical.

Proof. We can keep the notation Ξ and related objects, with respect to L, M
as in our Standing Hypotheses. Moreover, we denote by Γ(Ξ) the set of points
on the lines of Ξ, and by Ω the set of points of S which are not on a line of Ξ (so
not contained in Γ(Ξ)). Also, define ∆ as the set of points which are incident
with V or W . We assume throughout s > t and show that S is classical.

Suppose that G does not act transitively on Ω. We claim that Gy is trivial for all
y ∈ Ω. Indeed, if some nontrivial element θ of G fixes y, then θ fixes projV y and
projW y (which are not collinear!). It follows that θ fixes two elements of Ξ and
so θ ∈ N . This implies that θ fixes a subGQ of order (s, t′), t′ > 1, contradicting
s > t and Theorem 2.1. We now observe that all conditions of Theorem 7.1
above are satisfied, and with b = s+1, we obtain 2(s+1) ≤ t+1+(s+1), and
hence s ≤ t, a contradiction. So G acts transitively on Ω. Hence the subgroup
H0 ≤ G stabilizing X = {v0, w1}⊥ \ {v1, w0} acts transitively on X, but fixes
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the lines V and W pointwise. Since V and W are essentially arbitrary in S (by
Remark ??), the main result of [21, 22] implies that S is classical.

The second part of the proposition now follows from Corollary 5.9. !

Note that, if s > t, the only classical quadrangles satisfying the assumption
of the previous proposition have s ∈ {2, 3}, since the 2-transitive permutation
groups in question of the classical quadrangles are PSL2(s) with their natural
action.

7.2 The simple case

We use the same notation as in the previous section. In particular, S is an
HPMGQ of order (s, t), s > t > 1, with respect to the group H, and G is the
group generated by all H(vi, wi), 0 ≤ i ≤ s. The kernel of the action of G on
the set of lines Ξ = {V, W}⊥ is denoted by N . By Section 7.1, we can assume
that G/N does not act sharply 2-transitively on Ξ. In particular, s is a prime
power. We denote G/N by K.

We distinguish two different cases.

Proposition 7.3 If every point of S is regular, then S is classical.

Proof. First we assume that there is a subquadrangle S ′ of order (s′, t), with
1 < s′ < s. Then by Theorem 2.1, s = t2 and s′ = t (as t ≤ s′, since S ′ has
regular points). Also, S ′ is classical and isomorphic to W (t) by 5.2.1 of FGQ.
By Lemma 5.10, S is classical.

Now suppose that S does not admit any subquadrangle of order (s′, t), with
1 < s′ < s. The group H(v0) of whorls about v0 generated by all groups
of type H(v0, x), with x ∼ v0, x #= v0, acts transitively on the set of points
of S not collinear with v0. If an element of H(v0) fixes at least two distinct
nontrivial traces in v⊥0 , then by [29], either it fixes a subquadrangle of order
(t, t) — impossible by our assumption — or it fixes v⊥0 pointwise. Hence the
action of H(v0) on the set of nontrivial traces in v⊥0 has a Frobenius kernel and
so we obtain a group F , which is a normal subgroup of H(v0), containing the
normal subgroup N ′ " H(v0) which fixes v⊥0 pointwise and, modulo N ′, acting
regularly on the set of nontrivial traces in v⊥0 (clearly, H(v0) acts transitively
on those traces). So F is defined such that F/N ′ precisely is the Frobenius
kernel of H(v0)/N ′ in its action on the nontrivial traces in v⊥0 . It follows that
F acts semi-regularly on the set of points opposite v0. But, by the definition
of Frobenius kernel, H(v0, x)N ′/N ′ ≤ F/N ′, so that H(v0, x) ≤ F for all points
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x collinear with v0. Hence F = H(v0) acts sharply transitively on the set of
points opposite v0. Since the elements of F fixing at least one nontrivial trace
in v⊥0 are symmetries about v0, we deduce that F contains t symmetries about
v0 (in fact, |N ′| = t). So v0, and then each point of S, is a center of symmetry,
S is half Moufang and the proposition follows. !

Proposition 7.4 If the span of every pair of non-collinear points has size 2,
then S is classical or dual classical.

Proof. First suppose that S does not admit any subquadrangle of order (s′, t),
with 1 < s′ < s. This immediately implies that, with the notation of the
previous proof, and using 8.1.1 of FGQ, the group H(v0) (and also the full
group of whorls about v0) either acts as a proper Frobenius group on the set of
points of S not collinear with v0, or it acts regularly on that set of points. If
H(v0) does not act regularly on the points non-collinear with v0, then by the very
definition of Frobenius kernel, all groups H(v0, x), with x #= v0 collinear with
v0, belong to the Frobenius kernel of H(v0). Hence H(v0), which is generated
by those groups H(v0, x), coincides with its Frobenius kernel, a contradiction.

If the full group of whorls about v0 does not coincide with H(v0), then by
Hauptsatz 8.7 of [12], the Frobenius kernel H(v0), which is an elation group
for the elation point v0, is nilpotent, and hence has a nontrivial center. But
then some pair of non-concurrent lines must have a span of size at least 3 by
Proposition 5.5. Consequently S is classical or dual classical by Lemmas 5.6
and 5.7.

So we may assume that H(v0) is the full group of all whorls about v0, and it
does act regularly on the set of points non-collinear with v0. We refer to this
property (which holds for all points of S) as (*).

Suppose z = wj is an arbitrary point on W not collinear with v0 (so j #= 0),
and put {v0, z}⊥ = {z0, z1, . . . , zt}. Let Gi be the full group of elations about
zi, i = 0, 1, . . . , t, and suppose G′

i is the subgroup of Gi fixing v0 and z. Then
Property (*) for the zi’s implies that (〈G′

i ‖ i ∈ {0, 1, . . . , t}〉, {v0, z}⊥) is a
group K with a split BN-pair of rank 1 (the root groups are the G′

i’s). Suppose
first that K does not act sharply 2-transitively on {v0, z}⊥. Then there is a
prime p′ and a natural number h′ with t = p′h

′
. Put s = ph, with p prime and h

a positive integer (recall that we are in the simple case !). The group H(v0, w0)
fixes some third point u0 on the line L0 = v0w0, and if p′ #= p, then clearly it
also fixes some second line U0 through u0, U0 #= L0. Hence U0 is contained in
{V, W ′}⊥⊥ for an appropriate line W ′ through w0. Lemmas 5.6 and 5.7 imply
that S is classical or dual classical. So we may assume p = p′ and H(v0) is
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a p-group, hence has a nontrivial center. As in the previous paragraph, we
conclude that S is classical or dual classical. Note that these arguments apply
as soon as t is a prime power.

Consequently we may assume that K acts sharply 2-transitively on {v0, z}⊥.
Clearly, the group GL0,Lj acts as an automorphism group of K. Now, no non-
trivial σ ∈ GL0,Lj fixes {v0, z}⊥ pointwise (as otherwise σ would be a nontrivial
whorl about both v0 and z, clearly a contradiction to Property (*) applied to v0

and z), so GL0,Lj acts as a faithful automorphism group on K. Note also that
GL0,Lj fixes at least two points of {v0, z}⊥ (namely, w0 and vj).

First assume that K is not solvable. Then t + 1 ∈ {112, 292, 592} (see 20.2 of
[14]). Identifying {v0, z}⊥ with the 2-dimensional vector space over the field
with

√
t + 1 elements, we see that a nontrivial element σ of GL0,Lj induces in

the stabilizer of the zero vector an element of GL2(
√

t + 1) that normalizes
the (maximal) subgroup SL2(5); hence σ is a scalar. But a scalar can only fix
a nonzero vector if it is the identity. Consequently GL0,Lj must be trivial, a
contradiction.

Hence we may assume that K is solvable. Denote by T the permutation group
acting on {v0, z}⊥ and generated by K and GL0,Lj . Then either T is a subgroup
of AΓL2(t + 1), or t + 1 ∈ {32, 34, 52, 72, 112, 232} (see 19.9 of [14]). Putting
t + 1 = p′h

′
, with p′ prime and h′ a positive integer, we see that in the first

case |GL0,Lj | ≤ h′ (as |AΓL2(t + 1)| = (t + 1)th′). An easy inspection reveals
that this is only possible if s = 27, t + 1 = 16 and G/N is the Ree group
PΓL2(8) of degree 28. In this case GL0,Lj contains a unique involution θ, which
fixes a subquadrangle S ′ of order (3, 3) pointwise. It is easy to see that the full
little projective group of S ′ is induced by the collineation group of S. Hence
this implies that there is an involutory automorphism of PΓL2(8) fixing in the
corresponding Ree unital two points a, b and interchanging the two other points
on the block though a and b, a contradiction (all involutions in PΓL2(8) are
conjugate and they fix exactly 4 points on a block). Hence we have t + 1 ∈
{32, 34, 52, 72, 112, 232}. If t + 1 ∈ {52, 72, 112, 232}, then a similar argument as
above (now with SL2(3) instead of SL2(5)) shows that GL0,Lj must be trivial,
a contradiction. So there remains to consider the cases t + 1 ∈ {32, 34}. If
t+1 = 32, then t = 23 and so t is a prime power. We remarked before that this
leads to S being classical or dual classical. So t+1 = 34. If s is not divisible by 2
or 5, then we can argue as in the case where t is a prime power to conclude that
S is classical or dual classical. Hence s ∈ {27, 28, . . . , 212, 53, 54, 55}, because
t < s ≤ t2. But all of these possibilities violate the fact that st(1+st)

s+t must be an
integer.

We conclude that S admits a subGQ S ′ of order (s′, t), with 1 < s′ < s, which
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is half pseudo Moufang by Proposition 5.11. By Corollary 5.9, S ′ is classical
(as s′ ≤ t). So we have the following three possibilities:

(a) S ′ ∼= Q(4, t);

(b) S ′ ∼= H(4, 3
√

t2);

(c) S ′ ∼= Q(5,
√

t).

In Case (a), any line not belonging to S ′ subtends some spread of S ′, implying by
3.4.1 of FGQ that t is even; but then each span of non-collinear points has size t,
a contradiction. Case (b) is not possible as each span of non-collinear points of
H(4, 3

√
t2) has size 3

√
t+1, see 3.3.1 of FGQ. Finally, in Case (c), putting q2 = t,

the stabilizer of L0, L1 in the group G/N must have orbits whose union has size
q+1 (otherwise S ′, which can be assumed to contain V, W, L0, L1, has an image
containing L0, L1, V, W and distinct from S ′, contradiction, as this would imply
that S has regular pairs of points). Also, clearly q divides s = |H(v0, w0)| (by
considering the number ofQ(5, q) subGQ’s through v0, v0w0, w0). By inspection,
this immediately implies that G/N is isomorphic to either PSU3(q2) or R(q).
Hence (s, t) = (q3, q2) and S is dual to H(4, t) by the fact that H acts transitively
on the pairs of non-collinear points and applying the dual of Appendix B of [24].

This completes the proof of the proposition. !

The proof of Theorem A is thus complete.

8 Classification of (Finite) Half 2-Moufang Gen-
eralized Quadrangles

We prove Theorem B.

Let S = (P ,L, I) be a thick generalized quadrangle each point of which is
a center of transitivity. Let V and W be non-concurrent lines of S. Put Ξ =
{V, W}⊥ = {L0, L1, . . . , Ls}, set vi = Li∩V and wi = Li∩W , for i = 0, 1, . . . , s.
We will sometimes treat w0 as an arbitrary point on L0 distinct from v0, and
W as an arbitrary line through w0 distinct from L0.

We denote by H an automorphism group of S containing all the whorls about
points.

By Proposition 5.4, and the fact that every quadrangle of order (s, s) all points of
which are regular is isomorphic to W (s), we have, similarly as in Proposition 5.4,
that either S is classical, or the span of every pair of points has size 2, or t < s
and every point is regular. We now treat the two latter cases.
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8.1 Every point is regular and t < s

Here, there are two subcases, just as in Proposition 7.3.

First suppose that there is no subquadrangle of order (s′, t), with 1 < s′ < s. Let
H(v0) be the group of whorls about v0; then, as in the proof of Proposition 7.3,
H(v0) contains a subgroup F containing all symmetries about v0 — say that
the group of these symmetries is N ′ — so that F/N ′ acts regularly on the set of
nontrivial traces in v⊥0 (that is, F/N ′ is the Frobenius kernel of the Frobenius
group H(v0)/N ′ in its action on the set of nontrivial traces in v⊥0 ). Also, F is
a group of elations about v0. Now let R be an arbitrary line not incident with
v0, and let p be an arbitrary prime dividing s. Let S be a Sylow p-subgroup in
H(v0)R. Then S is a group of elations about v0, as there are no subGQ’s of order
(s′, t), s′ > 1, in S. Whence SN ′/N ′ is a subgroup of F/N ′, so that S ≤ F .
As p was arbitrary, we conclude that H(v0)R ≤ FR. As there are no thick
subGQ’s of order (s′, t), it follows that FR acts transitively, and then regularly,
on the points on R which are not collinear with v0. Since R is arbitrary, we
can conclude that F acts regularly on the points not collinear with v0, so that
|N ′| = t (because |F | = s2t and the number of nontrivial traces in v⊥0 is equal
to s2). Whence v0 is a center of symmetry. The result follows as in Proposition
7.3.

Next suppose that there is some subquadrangle S ′ of order (s′, t), with 1 < s′ <
s. As in the proof of Proposition 7.3, S ′ is isomorphic to W (t) and s = t2. The
result now follows from Lemma 5.10.

8.2 The span of every pair of non-collinear points has
size 2

Again, we distinguish two cases with respect to subquadrangles.

8.2.1 First case: S does not admit a subGQ of order (s′, t), 1 < s′ < s

We start with a lemma on finite Chevalley groups of rank 1.

Lemma 8.1 Let K be a group acting on a X and suppose that the permuta-
tion group (K, X) is permutation equivalent to the action of PSL2(q) (q ≥ 4),
PSU3(q) (q ≥ 3), Sz(q) (q ≥ 8) or R(q) (q ≥ 3), with q an appropriate prime
power, on the natural permutation module (respectively of size q + 1, q3 + 1,
q2 +1 or q3 +1). Let x ∈ X be arbitrary. Let P be the unique Sylow p-subgroup
of Kx (which is also a regular — on X \ {x} — normal subgroup of Kx). Then
[P, Kx] = P .
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Proof. Choose y ∈ X \ {x} arbitrarily. First of all, note that [P, Kx] ≤ P
as P is normal in Kx. It is easy to check that in all cases, there is an element
ϕ ∈ Kx,y fixing only x, y. Let α, β ∈ P with α #= β and both nontrivial. Suppose
[ϕ, α] = [ϕ, β]; then ϕα = ϕβ. But ϕα fixes only yα in X \ {x}, while ϕβ fixes
only yβ in X \ {x}, contradiction. So [ϕ, P ] = P .

The lemma is proved. !

We now continue with the proof of Theorem B and assume that S does not
admit a subGQ of order (s′, t), 1 < s′ < s. Note that this assumption is
automatic whenever s ≤ t. It is easy to see that the group H(v0) of whorls
about v0 is a Frobenius group on the set of points opposite v0 (cf. 8.1.1 of
FGQ). The Frobenius kernel F (v0) consists of the set of all elations about v0.
In particular S is an SEGQ.

Let H(W, vi), i = 0, 1, . . . , s, be a group of elations about vi which fixes W
and acts regularly on W \ {wi} (that exists since S is an SEGQ). In a similar
fashion, we define H(V, wi). The group G(V ) = 〈H(W, vj) ‖ j ∈ {0, 1, . . . , s}〉
acts as a split BN-pair of rank 1 on the set Ξ. Similarly, the group G(W ),
defined analogously, also acts as a split BN-pair of rank 1 on Ξ. Clearly G(W )
acts as an automorphism group on G(V ) and is normal in 〈G(V ), G(W )〉.
Suppose now first that G(V ) is related to a simple group (the non sharply-2-
transitive case, where G(V ) modulo the kernel is not isomorphic to R(3)). We
first claim that the action of G(V ) on Ξ must coincide with the action of G(W )
on Ξ. Indeed, suppose not. We denote the (faithful) actions of G(V ) and G(W )
on Ξ by GV and GW , respectively (and both GV and GW are simple groups).
Since H(W, vi) and H(V, wi) normalize each other, for all i = 0, 1, . . . , s, the
groups GV and GW normalize each other. Hence GV , GW " 〈GV , GW 〉, and
consequently GV ∩GW " GV , implying |GV ∩GW | = 1. But then GV and GW

centralize each other. This now easily leads to a contradiction. Our claim is
proved.

Now let ϕ ∈ G(V )vi be arbitrary, i ∈ {0, 1, . . . , s}, and let u ∈ H(W, vi) be
arbitrary. By our previous claim, there is a unique element u′ ∈ H(V, wi)
such that uu′ fixes all points on both V and W . Clearly, uu′ centralizes every
element of H(W, vj), for all j ∈ {0, 1, . . . , s}. This means that uu′ commutes
with ϕ. Hence, the actions of ϕ and uu′ on the set of lines through the point
wi commute. Since u′ has trivial action on that set, this implies that [ϕ, u] ∈
H(W, vi) ∩ H(V, wi). Now from Lemma 8.1 follows that H(W, vi) = H(V, wi)
and so S is an HPMGQ, hence classical or dual classical.

Suppose now that G(V ) is related to R(3). As no element of G(W ) modulo
the kernel (NW ) acts trivially on G(V ) modulo the kernel (NV ), G(W )/NW is a
faithful automorphism group of G(V )/NV . So G(W )/NW ≤ Aut(G(V )/NV ) =
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G(V )/NV
∼= R(3), and hence G(W ) and G(V ) have the same action on Ξ. One

now proceeds as in the previous paragraph.

So we may assume that the action of G(V ) on Ξ is sharply 2-transitive. By
Proposition 7.2, s ≤ t. By [7], s and t are powers of the same prime p. If s = p,
then by [1], S is classical. Now suppose that s + 1 is a prime. Then the action
of G(V ) on Ξ must coincide with the action of G(W ) on Ξ, because H(W, vi)
acts as an automorphism group on G(W ), and hence on the Frobenius kernel
of G(W ), which is a group of prime order.

Now, if H(W, v0) = H(V, w0), then, as before, we see that S is half pseudo
Moufang and hence classical or dual classical. Otherwise, since s and t are
both powers of the prime 2, the group H(W, v0) fixes a line through w0 different
from L0 and from W (but it does not fix all lines through w0). Consider any
nontrivial θ ∈ H(W, v0). If θ′ ∈ H(V, w0) is such that θθ′ acts as the identity
on Ξ, then the fixed point structure of θθ′ is a subquadrangle S ′

θ of order (s, tθ),
with tθ > 1. The intersection of all Sθ’s is a subquadrangle S ′ of order (s, t′),
with 1 < t′ ≤ s ≤ t (in fact, one notes that t′ = tθ), stabilized under the action
of H(W, v0). Moreover, the action of H(W, v0) on S ′ coincides with the action
on S ′ of H(V, w0). Hence S ′ is an HPMGQ, and so classical or dual classical.
In S ′, the group H(W, v0) is a root group. But H(W, v0) is cyclic of order s,
and abelian root groups are elementary abelian, implying that s = 2, so that S
is classical.

Hence we may assume that neither s nor s + 1 is a prime. This implies by a
straightforward arithmetical argument — see e.g. 19.3 of [14] — that s = 8.
Now, there are exactly two non-isomorphic sharply 2-transitive groups of degree
9 = s + 1 (see [14]). They are obtained as follows. We may identify the set
being permuted with a 2-dimensional vector space over GF(3), and the Frobe-
nius kernel is the translation group. The stabilizer of the zero vector is either a
cyclic group of order 8, or a quaternion group of order 8. It is easy to verify that
GL2(3) contains a unique subgroup isomorphic to a quaternion group of order
8, and that two distinct cyclic groups of order 8 in GL2(3) generate GL2(3), and
hence can never normalize each other. This immediately implies that H(W, v0)
acts in the same way on Ξ as H(V, w0) (since clearly H(V, w0) normalizes G(V ),
hence preserves the vector space structure, hence can be identified with a sub-
group of GL2(3), hence normalizes H(W, v0); note that H(W, v0) ∼= H(V, w0)
for transitivity reasons). As in the previous paragraph, we obtain a classical
subGQ S ′ with root groups isomorphic to either a cyclic group of order 8 (again
a contradiction), or a quaternion group of order 8. Hence S ′ is isomorphic to
the dual of H(4, 4). But then a point x of S outside S ′ subtends an ovoid in
S ′ (the set of points of S ′ collinear with x). Brouwer (1981, unpublished) has
proved though that H(4, 4) has no spreads. Hence this case does not occur.
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8.2.2 Second case: S admits subGQ’s of order (s′, t), 1 < s′ < s

Without loss of generality we may assume that a subGQ S ′ of order (s′, t)
contains V, W, v0, v1 (and hence w0, w1). Every whorl about v0 mapping w1

onto another point of S ′ preserves S ′ as otherwise the intersection of S ′ with
its image is a subquadrangle of order (1, t), contradicting the fact that the span
of every pair of non-collinear points has size 2 (as well in S ′ as in S). Hence
every point of S ′ is a center of transitivity, and by the first part of the proof
(and the fact that, as s′ ≤ t, S ′ cannot have a subquadrangle of order (s′′, t)
with 1 < s′′ < s′) S ′ is a dual classical quadrangle. By inspection S ′ is either
isomorphic to Q(4, s′) with s′ odd (a contradiction since any line of S outside
S ′ subtends a spread of S ′ and Q(4, s′) has no spreads by 3.4.1(i) of FGQ), or
S ′ is isomorphic to Q(5,

√
t), with s′ =

√
t. We can put t = q2, with q a prime

power.

Let H ′ be the stabilizer of S ′ in H. Then the restriction of H ′ to S ′ contains
the little projective group PSU(4, q) of S ′.

The rest of the proof is subdivided as follows. First we derive a divisibility
condition in the general case, and then we distinguish between q odd and q
even. In both cases we use properties of involutions in H ′ to show that S is
dual to H(4, q2). In the course of the proof, we will therefore have to establish
some lemmas about involutions acting on Q(5, q).

A divisibility condition

We claim that s − q is divisible by q(q − 1). Indeed, from a previous discus-
sion follows that every pair of opposite points of S is contained in exactly one
subquadrangle of order (q, q2). Let n be the number of such subquadrangles con-
taining some fixed (but arbitrary) point of S. Counting in two ways the number
of triples (S ′′, x, y), with S ′′ a subquadrangle of order (q, q2), and x, y a pair of
opposite points of S ′′, we obtain (1+s)(1+sq2)×n×q4 = (1+s)(1+sq2)×s2q2×1,
from which follows that n = s2/q2. Hence q divides s.

Using the criterion given in the proof of Theorem 8.3.3 of [43], it is easy to
see that H ′ contains an element h (a so-called generalized homology, living in a
torus of SU4(q2)) which is a whorl about two opposite points, say v0 and w1, of
S ′, and whose restriction to S ′ is of order q− 1. Hence h has order (q− 1)k, for
some positive integer k. Suppose some nontrivial element h′ of 〈h〉 fixes a point
x on the line V , outside S ′. Then h′ fixes pointwise a subquadrangle of some
order (s′, q2), which must necessarily coincide with S ′ (because the order of the
intersection must be (q, q2)), a contradiction. Hence 〈h〉 acts semi-regularly on
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the point set of V outside S ′, which has size s− q. It follows that (q− 1)k, and
hence q − 1, divides s− q.

We conclude that q(q − 1) divides s− q, as q and q − 1 are relatively prime.

Some properties of fixed point free involutions of Q(5, q), q odd

We will need some specific properties of involutions of Q(5, q), which we now
establish. The proofs use standard calculations, and we shall content ourselves
by mentioning the main steps. Throughout, we assume that q is odd.

Throughout, we consider the quadric Q(5, q) of PG(5, q) with equation X0X1 +
X2X3 = X2

4− ##X2
5 , where ## is some fixed non-square in the field GF(q). The

point with coordinates (0, . . . , 0, 1, 0, . . . , 0), where the 1 is in the ith position,
will be denoted by ei−1 (and so {e0, e1, . . . , e5} is a generating set of points for
PG(5, q)). A Hermitian spread of H(5, q) is a set of q3 + 1 mutually opposite
lines of H(5, q) with the property that for any two lines L, M of this spread,
the set {L, M}⊥⊥ belongs to the spread.

Lemma 8.2 Let σ be a fixed point free involution of Q(5, q), q odd. Then either
σ fixes a Hermitian spread of Q(5, q) elementwise (and every point is mapped
onto a collinear one), or σ fixes elementwise a set S of q2 + 1 lines with the
property that for every two lines L, M ∈ S, one has S ∩ {L, M}⊥⊥ = {L, M},
and consequently for every line X /∈ S of Q(5, q), the set {X, Xσ}⊥⊥∪{X, Xσ}⊥
meets S in exactly 2 elements (and in this case there exists a point which is
mapped onto an opposite point by σ).

Proof. Note first that σ must arise from an involution of PG(5, q), see for
instance Proposition 4.6.3 of [43]. Clearly σ does not fix all lines of Q(5, q),
hence we may without loss of generality assume that σ does not fix e0e2. The
image of this line can not be concurrent with it (as the intersection would be a
fixed point), hence we may without loss of generality assume that (e0e2)σ = e1e3.
Hence σ stabilizes the two sets of q+1 lines determined by the hyperbolic quadric
Q+(3, q) obtained from Q(5, q) by intersecting with the space PG(3, q) having
equations X4 = X5 = 0. As these sets behave as projective lines with respect
to their stabilizers, we already deduce that σ is a linear collineation, i.e., the
companion field automorphism of σ is the identity (otherwise σ fixes

√
q + 1

lines of each set, and hence at least (
√

q + 1)2 points, a contradiction). We now
show that there is at least one fixed line.

Assume, by way of contradiction, that σ does not fix any line of Q(5, q). The
restriction of σ to PG(3, q) has, without loss of generality, the following de-
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scription:

σ : PG(3, q) → PG(3, q) : (x0, x1, x2, x3) 2→ (k$x1, x0, $x3, kx2),

with k, $ ∈ GF(q). Our assumption translates to −k and −$ being non-squares
in GF(q), implying that k$ is a square, with square roots, say,

√
k$ and −

√
k$.

Hence the point with coordinates (
√

k$, 1, 0, 0) (which is not a point of Q(5, q))
is fixed by σ, implying that σ fixes a 4-dimensional projective space which
meets Q(5, q) in a nonsingular quadric isomorphic to Q(4, q). Without loss of
generality, we may take as equation for that 4-space X5 = 0, with still the space
with equations X4 = X5 = 0 being fixed, too. It follows that also the space
with equation X4 = 0 is fixed (recall that Q(5, q) is fixed), and so σ can be
written as follows:

σ : PG(5, q) → PG(5, q) : (x0, x1, x2, x3, x4, x5) 2→

(k$x1, x0, $x3, kx2,
√

k$x4, ε
√

k$x5),

where we possibly have to interchange the two notations
√

k$ and −
√

k$ for
the square roots of k$, and where ε ∈ {+1,−1}. If ε = +1, then for every
a, b, c ∈ GF(q), the point with coordinates (

√
k$, 1, a$, a

√
k$, b, c) is fixed by σ.

Such a point belongs to Q(5, q) if and only if
√

k$ + a2$
√

kl = b2− ##c2, which
always has solutions in a, b, c over GF(q), a contradiction. Hence ε = −1.
If
√

k$ is a square in GF(q), say a2 =
√

k$, then the point with coordinates
(
√

k$, 1, 0, 0, a, 0) is fixed by σ and belongs to Q(5, q). Otherwise,
√

k$ may be
written as ##b2, and then the point with coordinates (−

√
k$, 1, 0, 0, 0, b) is fixed

by σ and belongs to Q(5, q). Both are contradictions and we can conclude that
σ fixes at least one line.

Since the number of lines is even, σ has to fix at least two lines. Without loss
of generality we may assume that σ fixes the lines e0e3 and e1e2. Hence the
restriction of σ to PG(3, q) looks as follows:

σ : PG(3, q) → PG(3, q) : (x0, x1, x2, x3) 2→ (ε$x3, εx2, $x1, x0),

with $ ∈ GF(q), and ε ∈ {+1,−1}. Since σ has no fixed points on Q+(3, q), we
deduce that ε$ is not a square in GF(q). Suppose now that the restriction of σ to
e4e5 is the identity. Then σ maps (x0, x1, x2, x3, x4, x5) to (ε$x3, εx2, $x1, x0, ax4, ax5),
for some a ∈ GF(q)∗, and this is of order 2 only if ε$ = a2, a contradiction.
Hence there exist elements a1, a2, a3 ∈ GF(q) such that σ can be represented
as follows:

σ : PG(5, q) → PG(5, q) : (x0, x1, x2, x3, x4, x5) 2→
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(ε$x3, εx2, $x1, x0, a1x4 + a2x5, a3x4 − a1x5).

An elementary calculation shows now that, expressing that σ preserves Q(5, q)
and σ is involutory, we have only the following two possibilities:

(1) ε = −1

Then $ = − ##a2
3, a2 =##a3 and a1 = 0. It is easily checked that every point

of PG(5, q) is conjugate to its image under σ with respect to the bilinear form
associated with Q(5, q). Hence every point of Q(5, q) is incident with exactly
one fixed line. The set of fixed lines thus forms a spread. Let L, M be two lines
of that spread, and suppose that x is a point of Q(5, q) incident with a line K
which meets both of L and M . Then xσ should be contained in 〈L, M〉, and
should also be collinear with x on Q(5, q). This is clearly only possible if xxσ

belongs {L, M}⊥⊥. We have shown that the set of fixed lines is a Hermitian
spread of Q(5, q).

(2) ε = 1

Here, a2 = − ##a3 and $ = a2
1− ##a2

3. In this case, the coordinates of the
points of Q(5, q) which are mapped onto a collinear point of Q(5, q) are given
by (x0, x1, x2, x3, x4, x5) satisfying

{
x0x1 + x2x3 = x2

4− ##x2
5,

(a2
1− ##a2

3)x3x1 + x0x2 = a1x2
4+ ##a1x2

5.

We count the number of fixed lines. There are two of them inside PG(3, q).
A line outside is incident with a point having coordinates (x0, x1, . . . , x5) with
(x4, x5) #= (0, 0). There are q2 − 1 choices to accomplish that for (x4, x5).
Further, in order that the above system of equations has a solution (and hence
a unique solution) in (x3, x0), it is necessary and sufficient that (x1, x2) #= (0, 0).
Again there are q2 − 1 choices to accomplish this. In total, this gives us (q2 −
1)(q2 − 1) solutions of the above system. Since each line has q + 1 points (note
that such a fixed line outside PG(3, q) does not intersect PG(3, q)), and each
point has q−1 different representations with coordinates, we obtain q2−1 more
fixed lines. Hence in total exactly q2 + 1 of them.

Furthermore, the lines e0e3 and e1e2 can be regarded as arbitrary fixed lines, and
we see that no other fixed line is contained in the space 〈e0e3, e1e2〉. This implies
that, for two fixed distinct lines L, M , we always have that {L, M}⊥∪{L, M}⊥⊥
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contains precisely two fixed lines of σ. Furthermore, counting the lines of Q(5, q)

thus covered — including the fixed lines (namely, (q2+1)q2

2 × ((q +1)+ (q− 1))+
(q2 + 1) = (1 + q2)(1 + q3)), we see that every line X which is not fixed by σ
is in such a set, and hence its image under σ is in the same set, implying that
{X, Xσ}⊥⊥ ∪ {X, Xσ}⊥ meets S in exactly 2 elements.

The lemma is proved. !

An involution of S fixing S ′ pointwise in the case q odd

We maintain our assumption that q is odd.

Consider in H ′ the group of whorls about both v0 and w1. This group has even
order (see above) and hence contains some nontrivial Sylow 2-subgroup P2. Let
θ be an involution of P2. Suppose that θ acts nontrivially on S ′ (then it fixes
exactly 2(q2 + 1) lines and q2 + 3 points of S ′, as is easy to show). Consider
a point x outside S ′ on the line V . Let y be the unique point on W collinear
with xθ (notice that V and W are fixed). We first claim that x is not fixed
under θ. Indeed, if it were, then θ would fix a subquadrangle of order (s′, q2),
s′ > 1, containing v0 and w1. As before, this subquadrangle should coincide
with S ′, contradicting the fact that x does not belong to S ′. Hence x and y are
opposite points and determine a unique subquadrangle S(x, y) of order (q, q2)
that contains x, xθ, y, yθ. Notice that S(xθ, yθ) = S(x, y). Hence S(x, y) is
stabilized by θ. Suppose that θ has some fixed point z in S(x, y). Suppose first
that z does not belong to S ′. Then, as we just proved, z is not incident with
any line of S ′ (any such line would be fixed by θ, and hence would be incident
with either v0 or w1). But then the projection of z on any line of S ′ fixed under
θ is fixed by θ and does not belong to S ′, a contradiction. Hence z belongs
to S ′. So it is collinear with either v0 or w1 (or both). Hence, without loss of
generality, we may assume that v0 belongs to S(x, y) (as v0IV ). But then, since
q is odd, also a second point v′ of S(x, y) on V is fixed. If it belonged to S ′,
then S ′ = S(v′, projW v0) = S(x, y), a contradiction, hence it must lie outside
S ′. But this contradicts our previous claim.

So we have shown that θ induces a fixed point free involution in S(x, y). Hence
there is some line L of S(x, y) fixed under θ, with L different from V and from
W (by Lemma 8.2). This line cannot belong to S ′, as all the fixed lines in
S ′ are incident with either v0 or w1, and so v0 or w1 would belong to S(x, y)
(if distinct lines belong to S(x, y), then the intersection point also belongs to
S(x, y)), a contradiction to our previous paragraph. Hence the projection of v0

on that line, which is also fixed by θ, is a point on a line of S ′, and is different
from the q2 + 3 fixed points of θ in S ′. This is a contradiction to our first claim
in the previous paragraph. Hence θ fixes S ′ pointwise.
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Now the arguments of our previous paragraphs show that θ does not fix any
point outside S ′. In particular, choosing x as before, the subquadrangle S(x, y)
has no (point) intersection with S ′. One now easily deduces that we can parti-
tion the point set of V into subsets of size q + 1, each belonging to a subquad-
rangle of order (q, q2) which also contains W , and which is fixed under θ. This
shows that q + 1 divides s− q.

So we may put s = 1
2r(q

3 − q) + q, with r ∈ N.

The black hole and a final divisibility condition

We finish the case of q odd. We keep our notation of the previous paragraphs.

Denote by Ω the set of points of S that are not incident with any line of S ′. We
shall call it for convenience the black hole with respect to S ′. An easy counting
yields |Ω| = q2(s−q)(s−q3), and every line not belonging to S ′ contains exactly
s− q3 points of Ω.

The collineation θ still is an involution of S fixing S ′ pointwise.

We will now define two classes of subquadrangles of S. The first class consists
of all subquadrangles of order (q, q2) that are (globally) fixed under θ and that
contain at least one point mapped under θ to a non-collinear point. Such a
point necessarily belongs to the black hole. A subquadrangle of order (q, q2) is
uniquely determined by any such point and its image under θ, and has exactly
q2 + 1 fixed lines (by Lemma 8.2). The second class of subquadrangles consists
of all subquadrangles of order (q, q2) that are (globally) fixed under θ and that
do not contain any point not collinear with its image. Such subquadrangles
have exactly q3 + 1 fixed lines, which form a Hermitian spread of it (again by
Lemma 8.2). Hence any quadrangle of the first class shares exactly q2 + 1 lines
with S ′, and every subquadrangle of the second class shares exactly q3 +1 lines
with S ′. We will now compute the size of the second class.

Consider any point x of a subquadrangle S ′′ of the second class. Then xθ is
collinear with x. Take any line L of S ′′ fixed by θ and different from xxθ. Let y
be the projection of x onto L. Then S ′′ is uniquely determined by x and yθ. In
order to be able to count the number of members of the second class, we have
to know precisely in how many cases it happens that, if a point z outside S ′ is
on a line Z of S ′, and if the point z′ is the image of the projection of z onto
some line of S ′ opposite Z, the subquadrangle of order (q, q2) containing z and
z′ is in the first class. That is exactly what we will now do.

Let X be an arbitrary line of S not contained in S ′. Then there are exactly
q3 + 1 lines of S ′ concurrent with X, defining a set SX of q3 + 1 intersection
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points incident with X. Each pair of distinct points x, y of SX now defines a
unique subquadrangle S(x, y) of order (q, q2) as the one containing x, y, xθ and
yθ (and hence also Xθ). Each black hole point b on X also defines a unique
subquadrangle, namely the one through b, bθ. The latter always belongs to
the first class. Also, by Lemma 8.2, each of these has exactly two fixed lines
concurrent with both X and Xθ. Hence all these subGQ’s define a partition
of the black hole points on X in sets of size q − 1. It follows that there are
precisely s−q3

q−1 = 1
2(r−2)q(q+1) of these. Moreover, each subquadrangle having

exactly two fixed lines meeting X and Xθ, is of the first class and arises in
this way. Hence, exactly 1

2(r − 2)q(q + 1) pairs of points of SX give rise to a
subquadrangle of the first class, and all other pairs define subquadrangles of
the second class. There are 1

2(q
3(q3 +1)− (r− 2)q(q +1)) pairs remaining. But

each subquadrangle they define is counted 1
2q(q +1) times (the number of pairs

it contains). This gives a total of q2(q2 − q + 1)− r + 2 subquadrangles of the
second class containing X.

Now there are q2(q2 +1)(s− q) possibilities to choose the line X. If we combine
(multiply) this with the number of subquadrangles of the second class containing
X, then we have counted each subquadrangle exactly q2(q3 + 1) times (the
number of lines not on the fixed Hermitian spread).

So this gives a final total of

1

2
rq3(q2 + 1)(q − 1)− r(r − 2)q(q2 + 1)(q − 1)

2(q2 − q + 1)

subquadrangles of the second class.

Since the first term is an integer, the second is, too. As q2 − q + 1 is prime to
all of q, q2 + 1 and q − 1, this implies that r(r − 2) is divisible by q2 − q + 1.
We know that r ≥ 2 and r ≤ 2q − 1. We now show that r = 2. Suppose
first that r = 2r′ is even. Then r′(r′ − 1) is divisible by q2 − q + 1, and hence
r′(r′ − 1) = 0. Hence r′ = 1 and so s = q3, implying that S is dual classical
(by [24], Appendix). Suppose now that r = 2r′ + 1 is odd. Then q2 − q + 1
divides 4r′2 − 1. Since r′ < q and 4r′2 − 1 is odd, the only possibilities are
q2− q + 1 = 4r′2− 1 and 3(q2− q + 1) = 4r′2− 1. In the former case, q2− q + 2
must be a perfect square, contradicting (q − 1)2 < q2 − q + 2 < q2. In the
latter case, 3q(q − 1) = 4(r′ − 1)(r′ + 1). Since q is a power of an odd prime,
q divides one of r′ − 1 or r′ + 1. Put r′ = aq ± 1; then, since r′ < q, we must
have r′ = q − 1. But then 3q(q − 1) = 4(r′ − 1)(r′ + 1) = 4q(q − 2) implying
q = 5, r′ = 4 and (s, t) = (545, 25). But then s + t does not divide st(1 + st), a
contradiction.

This finishes the case of q odd. !
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We now turn to the case of q even. We will again use some properties of
involutions of Q(5, q).

Some properties of involutions of Q(5, q), q even

Lemma 8.3 Let there be given an involution θ of Q(5, q), q even. Then there
is at least one fixed point. If x is such a fixed point, and if either all lines
through x are fixed, or exactly one line through x is fixed, or all fixed points of
θ collinear with x are incident with one line, then there is a line through x all
points of which are fixed.

Proof. Since (1 + q)(1 + q3) is odd, θ fixes at least one point. Let x be
such a point. Suppose first that all lines through x are fixed. Since θ may be
viewed as an involution of PG(5, q), it is clear that as such, it stabilizes the
plane generated by two arbitrary lines through x (remark that θ has trivial
companion automorphism since all lines through x in some 4-space are fixed).
But an involution in a projective plane fixes at least one further point y. If y
is in Q(5, q), then θ fixes all points on the line xy (note that θ fixes no point of
Q(5, q) not collinear with x) and the assertion is proved. If y is not in Q(5, q),
then its “polar hyperplane” is fixed, and so there is a subquadrangle of order
(q, q) through x fixed. But this subquadrangle is isomorphic to W (q), and hence
the points collinear with x are structured as a projective plane, implying that θ
fixes all points on one of the lines through x (keeping in mind that q is even!).

Suppose now that θ fixes exactly one line through x. Let M be a line through x
with M θ #= M . Then the plane 〈M, M θ〉 is fixed by θ and hence there is at least
one fixed point in that plane different from x, and evidently not belonging to
Q(5, q). Again this implies that there is a subGQ isomorphic to W (q) through x
fixed under θ. Since there are an odd number of lines through x in that subGQ,
the fixed line must belong to it. Since no other line through x is fixed, it easily
follows that all points on that fixed line L must be fixed themselves (if x #= zIL,
z #= zθ, and L #= NIz, then {N, N θ}⊥⊥ contains a fixed line through x).

Finally suppose that all fixed points of θ that are collinear with x are incident
with one line, say L. We may assume that not all lines through x are fixed (as
we dealt with that situation above). As before, we obtain a subGQ of order q
containing x that is fixed by θ, and our assumption implies, by the foregoing
arguments, that it also contains L (otherwise some point collinear with x not
on L is fixed). If the companion automorphism of θ is nontrivial, then θ fixes
points on

√
q + 1 lines through x, a contradiction. Hence θ is linear and the

result follows as above.
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This completes the proof of the lemma. !

This now has the following interesting corollary, which we state as a lemma.

Lemma 8.4 If θ #= 1 is an involution of S, and s > q3, then it does not fix
any subGQ of order (q, q2) pointwise.

Proof. Indeed, suppose the involution θ fixes the subGQ S ′ pointwise. Note
that every fixed point of θ belongs to S ′. Suppose s > q3, and let x be a black
hole point. As in the odd case, there is a unique subquadrangle S(x, xθ) = S(x)
of order (q, q2) containing x and xθ #∼ x. By Lemma 8.3, there is some fixed
point y of θ in S(x), necessarily belonging to S ′. But then θ fixes all lines
through y, hence θ fixes all points in S(x) on one of the lines L incident with
y. Hence S ′ and S(x) share all points of the line L. Projecting x onto L, we
see now that x lies on a line of S ′, contradicting the fact that it was supposed
to be a black hole point. !

Root elations in S, q even

Consider a nontrivial root-elation of S ′ fixing all lines concurrent with V , and
let θ be a collineation of S inducing this root-elation in S ′. Since root elations
in S ′ have order 2, the order of θ is equal to 2f , for some natural number f .
Then θf is an involution which, by Lemma 8.4, does not act trivially on S ′. So
θf coincides with θ in S ′. Hence, without loss of generality, we may assume
that f = 1 and θ is an involution. Clearly, if θ fixes a point not on V , then
it would fix a subGQ of order (q, q2) pointwise, a contradiction by Lemma 8.4.
Hence all fixed points of θ are incident with V and all fixed lines of θ meet V .
Let u be any point on V and suppose that u is not fixed. Then there exists
a black hole point w collinear with u. Let S(w) be the subGQ of order (q, q2)
containing w and wθ. It is fixed under θ and hence has a fixed point. But all of
its fixed points must be on V , implying by Lemma 8.3 that V belongs to S(w)
and that in particular u is fixed. We have shown that θ fixes all points on V .
Consequently, there is a group U [v0, v1] of whorls about both v0 and v1 with an
order divisible by q (in fact, using Lemma 8.4, one can see that there is such a
group of order precisely q). We distinguish two possibilities.

First, suppose all lines concurrent with V are fixed for all appropriate θ. Since
θ belongs to a group of order q, we then have that |{V, W}⊥⊥| ≥ q + 1, and,
in fact, {V, W}⊥⊥ contains all lines of S ′ meeting v0w0 and v1w1. Since the
two latter lines are essentially arbitrary (relative to the next claim), we see that
every line outside S ′ subtends a Hermitian spread of S ′. Since two Hermitian
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spreads always share at least one line (as can be easily seen using the dual
representation H(3, q2); there a Hermitian spread is a plane section, and two
plane sections meet in a line section, which is always non-empty), there can
be no black hole points (since two lines through such a point subtend disjoint
spreads). Hence s = q3 and S is dual classical by [24], Appendix B.

Next, suppose that not all lines concurrent with V are fixed by some θ. We
claim that we may assume that s is divisible by q3.

Indeed, let u be a point on V incident with a line L not fixed by θ. We remark
that, by the construction of θ, the latter acts semi-regularly on the set of lines
through u different from V (otherwise, since not all lines through u are fixed,
θ induces a semi-linear collineation in the appropriate subquadrangle, implying
that θ fixes at least one point not on V , contradiction). Let S ′′ be the subGQ
of order (q, q2) containing u and w0. (So u #∼ w0.) By conjugating with torus-
elements (i.e., collineations of S ′′ fixing u, V, W and w0), we see that the group
K of whorls about v0 which are dual whorls about V acts transitively on the
set Lu of lines through u distinct from V itself; hence its order is divisible by q2.
The action of K on Lu clearly coincides with the “translation group” inherited
from S ′′ (or from any subGQ of order (q, q2) through u, as follows immediately
from the main hypothesis that u is a center of transitivity). Suppose now that K
does not act semi-regularly on the points of v0w0 different from v0. Then some
nontrivial element ψ of K fixes some point, say, w0 (without loss of generality).
Clearly ψ cannot fix all lines through u. Also, ψ is an involution because ψ2 fixes
all lines through u. Using conjugation with respect to the same torus elements
as above, we see that we may assume that K fixes w0. By the transitivity,
there is a group K ′ of whorls about v0, fixing v0w0 pointwise, fixing u, and
acting regularly on Lu. Let ϕ ∈ K ′ be arbitrary, then the commutator [ψ, ϕ]
is either a root-elation and belongs to K (and then S is half Moufang because
all nontrivial elements of K are conjugate by the foregoing torus elements), or
trivial. In the trivial case, the product ϕψ (where we now choose ϕ in such a
way that it has the same action on W as ψ) is an involution fixing S ′′ pointwise,
hence the identity, hence again ψ belongs to K ∩K ′ and S is half Moufang by
considering conjugation with the torus elements.

Hence we may assume that K acts semi-regularly on the points of v0w0 different
from v0. Likewise, we may assume that the group generated by K and U [v0, u]
acts semi-regularly on the points of v0w0 different from v0. Since that group is
easily seen to have an order divisible by q3, the claim follows. We deduce that,
since we already know that q− 1 is a divisor of s− q, the number s can written
as s = rq3(q − 1) + q3. But we know that s ≤ q4, so r = 1 and s = q4.
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The case s = q4

Now suppose that s = q4 = t2. Then by 1.2.4 of FGQ, each triad of lines has
q2 + 1 centers. Now fix an arbitrary point x of S, and consider the group G
of all whorls about x. Let y #∼ x. If 1 #= θ ∈ Gy and θ is an involution, then
θ fixes a subGQ of order (q, q2) pointwise, contradiction by Lemma 8.4, so the
order of θ is odd. It follows that a Sylow 2-subgroup G2 of G has size q10, and
acts regularly on the points not collinear with x. So S is an EGQ with elation
point x, and the elation group is a 2-group. As all spans of non-collinear points
have size 2, it follows by Theorem 5.5 that there must be non-concurrent line
spans of size at least 3. But this contradicts the fact that each triad of lines has
precisely q2 + 1 centers.

This completes the proof of Theorem B. !
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