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Abstract

In [A. Devillers, H. Van Maldeghem, Partial linear spaces built on hexagons, European J. Combin. 28
(2007) 901–915], Devillers and Van Maldeghem determined the automorphism group of four classes of
geometries that have as collinearity graph the graph Γ (q) of all elliptic hyperplanes of a given parabolic
quadric Q(6, q) in PG(6, q) (adjacency is given by intersecting in a tangent 4-space). In their introduction
they mention that at the time they were not able to determine the full automorphism group of Γ (q), but that
their results might be useful for proving that it is isomorphic to PΓ O(7, q). In this note we use one of their
results to prove that this is indeed the case.
c© 2007 Elsevier Ltd. All rights reserved.

1. Introduction and statement of the main theorem

Let Q(6, q) be any given non-degenerate parabolic polar space in PG(6, q). Define the
following graph Γ (q): the vertices of Γ (q) are all non-degenerate elliptic quadrics Q−(5, q) ⊂
Q(6, q) and two vertices are adjacent provided the corresponding elliptic quadrics intersect in a
tangent 4-space, that is, a cone pQ−(3, q). In [3, Theorem 3] it is shown that Γ (q) is strongly
regular (see also Thas [4]). The aim of this note is to determine the full automorphism group of
Γ (q).

In Devillers and Van Maldeghem [3] the following geometry Γ1(q), q > 2 was introduced:
the points of Γ1(q) are all non-degenerate elliptic quadrics Q−(5, q) ⊂ Q(6, q) and the blocks
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are all sets of q elliptic quadrics mutually intersecting in a fixed tangent 4-space. Note that Γ (q)

is the collinearity graph of Γ1(q). The following result is Theorem 6 of their paper. It is also
implicitly contained in Cuypers [1] as we will see at the end of this section.

Theorem 1.1 ([3]). The full collineation group of Γ1(q), q > 2, is isomorphic to PΓ O(7, q).

It is this theorem that will turn out to be useful for proving the result conjectured in the
introduction of [3], that is, the main theorem of this article.

Main Theorem 1.2. The full automorphism group of Γ (q), q > 2, is isomorphic to PΓ O(7, q).

We will prove this theorem by showing that each automorphism of Γ (q) induces an
automorphism of the geometry Γ1(q). In order to do so we will use another geometry, N−O(7, q)

(see Cuypers [1]), which is a rank 3 geometry having Γ1(q) as its point–line system and having
Γ (q) as its point graph (in fact we really only use this geometry if q = 4, but as was pointed out
to the authors by a referee this geometry allows one to shorten the original argument for q = 4
by several pages).

We will prove that it is possible to recognizes triples of points of N−O(7, q), q $= 2, that are
on a plane of N−O(7, q) by counting the number of 4-cliques that contain a certain 3-clique.
This allows one to recover the planes of N−O(7, q) from the graph Γ (q). As it is possible to
recover the lines of N−O(7, q) using only the points and planes of N−O(7, q) Theorem 1.1
then implies our main theorem. Before defining the geometry N−O(7, q) we will have a look at
the following alternative description of the graph Γ (q).

Embed Q(6, q) in a non-degenerate elliptic quadric Q−(7, q). Then it is well known that there
is a unique involutory automorphism σ of Q−(7, q) fixing Q(6, q) pointwise and having no fixed
points in Q−(7, q)\ Q(6, q). The vertices of Γ (q) are the pairs {x, xσ }, x ∈ Q−(7, q)\ Q(6, q),
and two vertices {x, xσ }, {y, yσ } are adjacent if and only if one of the points x and xσ , say
x , is collinear (in Q−(7, q)) with one of the points y and yσ , say y. It is easily seen that this
is indeed an alternative description of the graph Γ (q). In this description, the vertex {x, xσ }
corresponds to the unique elliptic quadric Qx = {x, xσ }⊥, where A⊥ denotes the set of points
collinear with all points in the point set A; the tangent 4-space corresponding to {x, xσ } and
{y, yσ } is given by Q(6, q) ∩ {x, y, xσ , yσ }⊥ and the corresponding cone pQ−(3, q) has vertex
p = xy ∩ xσ yσ = xy ∩ Q(6, q).

We can now define the geometry N−O(7, q) (see Cuypers [1]). The points of N−O(7, q)

are the pairs {x, xσ }, x ∈ Q−(7, q) \ Q(6, q). The lines of N−O(7, q) are the pairs of lines
{L , Lσ }, with L a line of Q−(7, q) intersecting Q(6, q) exactly in a point. The planes of
N−O(7, q) are the pairs of planes {π, πσ }, with π a plane of Q−(7, q) intersecting Q(6, q)

exactly in a line. The incidence is the natural one, that is, a point {x, xσ } is incident with a line
{L , Lσ } iff either x ∈ L or x ∈ Lσ , . . . . Clearly N−O(7, q) = (Q−(7, q) \ Q(6, q))/〈σ 〉.
The following arguments, suggested to us by the anonymous referee, provide a quick proof
of Theorem 1.1, and we include it for the sake of completeness. In [1] it is explained that
the affine polar space Q−(7, q) \ Q(6, q) is the universal cover of the geometry N−O(7, q).
Now the full automorphism group of Q−(7, q) \ Q(6, q) is the stabilizer G Q of Q(6, q) in
PΓ O−(8, q). It is well known that the center of G Q has order two and is exactly 〈σ 〉 and that
G Q/〈σ 〉 ∼= P#O(7, q). Because N−O(7, q) = (Q−(7, q) \ Q(6, q))/〈σ 〉 and because of the
fact that Q−(7, q) \ Q(6, q) is the universal cover of the geometry N−O(7, q) it now follows
that P#O(7, q) is the full automorphism group of N−O(7, q). At this point we remark that, for
q > 2, the planes of N−O(7, q) are exactly the subspaces of Γ1(q) that determine a clique of
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size q2 of Γ (q). Hence it is possible to recover N−O(7, q) from Γ1(q), q > 2. Theorem 1.1
follows.

2. Proof of the main theorem

We first remark that the case q = 3 has also been settled by Devillers [2] by computer. Note
also that the case q = 2 is trivial, since Γ (2) is a complete graph, and hence has the symmetric
group on 28 letters as full automorphism group.

We will now turn to the study of 3-cliques in Γ (q).

2.1. Three mutually adjacent elliptic quadrics

Let Q1, Q2 and Q3 be three distinct elliptic quadrics Q−(5, q) ⊂ Q(6, q) such that
Q1 ∼ Q2 ∼ Q3 ∼ Q1 in Γ (q). It is easily seen that one of the following cases must occur.

a. Q1∩Q2 = Q1∩Q3 = Q2∩Q3. We say that our three quadrics are of type a. In the alternative
description of the graph this situation corresponds to three pairs of points {x1, xσ

1 }, {x2, xσ
2 }

and {x3, xσ
3 }, such that, without loss of generality, x1, x2 and x3 are three points on a line.

b. Q1 ∩ Q2 ∩ Q3 is a line. We say that our three quadrics are of type b. In the alternative
description of the graph this situation corresponds to three pairs of points {x1, xσ

1 }, {x2, xσ
2 }

and {x3, xσ
3 }, such that, without loss of generality, x1, x2 and x3 are three points spanning a

singular plane.
c. Q1 ∩ Q2 ∩ Q3 is an ovoidO ∼= Q−(3, q). We say that our three quadrics are of type c. In this

case one can easily see that for every such ovoid O in Q1 ∩ Q2 there exists a unique elliptic
quadric Q such that Q1 ∩ Q2 ∩ Q = O and Q1 ∼ Q ∼ Q2. In the alternative description
of the graph this situation corresponds to three pairs of points {x1, xσ

1 }, {x2, xσ
2 } and {x3, xσ

3 },
such that, without loss of generality, x1, x2 are collinear, x1 and x3 are collinear and x2 and
xσ

3 are collinear.

Note that it is not possible for three distinct mutually adjacent elliptic quadrics Q1, Q2 and Q3
to intersect in a cone pQ(2, q) (otherwise the point p would be the vertex of two distinct cones
pQ−(3, q) in Q1, namely of the cones Q1 ∩ Q2 and Q1 ∩ Q3).

2.2. Recovering N−O(7, q)

Main Theorem 2.1. The full automorphism group of the graph Γ (q), q ≥ 3, is isomorphic to
PΓ O7(q).

Proof. In view of Theorem 1.1, it suffices to distinguish the 3-cliques of type a from the other
ones. We do this by counting the number of elliptic quadrics adjacent to all vertices of a given
3-clique. So let Q1, Q2, Q3 be three mutually adjacent elliptic quadrics, and let {xi , xσ

i } be the
pair of points corresponding to Qi in our alternative description, i = 1, 2, 3. Let {y, yσ } be a
pair of points corresponding to a generic elliptic quadric Q $∈ {Q1, Q2, Q3} adjacent to each Qi ,
i = 1, 2, 3.

a. Suppose Q1, Q2, Q3 are of type a. We may assume that x1, x2, x3 lie on a common line
L , which meets Q(6, q) in a point z. We may assume that y is collinear with x1, x2, and
hence also with x3. There are q − 3 choices for y on L . Henceforth, we assume y $∈ L .
Then 〈y, x1, x2〉 is a singular plane π meeting Q(6, q) in a singular line S and containing
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L . Each such singular plane gives rise to q(q − 1) choices for y not on L . Since there
are q2 + 1 such singular planes in Q−(7, q) through L , we now see that there are exactly
q(q − 1)(q2 + 1) + q − 3 = q4 − q3 + q2 − 3 elliptic quadrics adjacent to all of Q1, Q2, Q3,
and different from Q1, Q2, Q3.

b. Suppose Q1, Q2, Q3 are of type b. We may assume that x1, x2, x3 span a plane π on
Q−(7, q), which meets Q(6, q) in a line L . We may also assume that y is collinear
with x1 on Q−(7, q). There are q2 − 3 choices for y in π (and then y ranges through
S0 := {x1, x2, x3}⊥ \ Q(6, q)). Henceforth we assume that y is not contained in π . Then
y belongs to either S1 := {x1, x2, xσ

3 }⊥ \ Q(6, q), or S2 := {x1, xσ
2 , x3}⊥ \ Q(6, q), or

S3 := {x1, xσ
2 , xσ

3 } \ Q(6, q). By symmetry, |S1| = |S2| = |S3|. So it suffices to count
the number of elements y of S1. Clearly y belongs to a plane α $= π containing x1, x2. There
are q2 such planes. Each such plane intersects (xσ

3 )⊥ in a line, which is different from both
x1x2 and L . Hence |S1| = q2 · q .

We conclude that there are 3q3 + q2 − 3 elliptic quadrics Q $∈ {Q1, Q2, Q3} adjacent to
all of Q1, Q2, Q3.

c. Suppose Q1, Q2, Q3 are of type c. We may assume that x1x2, x1x3 and x2xσ
3 are lines on

Q−(7, q). Let Si , i = 0, 1, 2, 3, be defined as in Case b. We determine the cardinalities of
these sets. If y is a generic element of S0, then y lies in a plane α through x1x2 and on
the line α ∩ x⊥

3 , which is incident with x1 and contains a unique point of Q(6, q). There
are q2 + 1 choices for α and q − 1 for y on α ∩ x⊥

3 , giving rise to |S0| = (q2 − 1)(q − 1).
Likewise, |S1| = |S2| = (q2 +1)(q −1). Concerning S3, we note that {x1, xσ

2 , xσ
3 }⊥ intersects

Q(6, q) precisely in the ovoid O = Q1 ∩ Q2 ∩ Q3. Now {x1, xσ
2 , xσ

3 }⊥ is the intersection
of Q−(7, q) with a 4-space U . Since the plane 〈x1, xσ

2 , xσ
3 〉 is non-singular, the subspace U

meets Q−(7, q) in a non-degenerate quadric Q(4, q), which has exactly q3 + q2 + q1 points
in total, and hence exactly q3 + q points off O.

We conclude that in this case there are 3(q2 + 1)(q − 1) + q3 + q = 4q3 − 3q2 + 4q − 3
elliptic quadrics Q $∈ {Q1, Q2, Q3} adjacent to all of Q1, Q2, Q3.

Now for q $= 4, the numbers in a–c all differ from each other (for q = 4, the numbers found in a
and b are the same).

Hence the block of Γ1(q), q $= 4, through the two adjacent elliptic quadrics Q, Q′ of Γ (q)

is the union of those 3-cliques of Γ (q) that contain Q, Q′ and that are themselves contained in
precisely q4 − q3 + q2 − 3 4-cliques.

The following argument which settles the case q = 4 does in fact work for all q $= 2. If
q = 4 then the numbers found in a and b are equal, but differ from the number found in c.
Hence the above allows us to recognize those 3-cliques of Γ (q) that are coplanar in N−O(7, q).
Now suppose we have a 4-clique such that each 3-clique in it is coplanar in N−O(7, q). Say,
in the alternative representation, that the vertices of the 4-clique are {xi , xσ

i }, i = 1, 2, 3, 4. We
may suppose that x1, x2, x3 are coplanar in Q−(7, q). If these three points are in fact on a line
then it immediately follows that the 4-clique is coplanar in N−(7, q). So suppose that x1, x2 and
x3 are coplanar in Q−(7, q), but not collinear. Without loss of generality we may assume that
x4 is collinear with x1 and x2. Suppose it were not to be collinear with x3. Then, however, the
3-clique determined by {xi , xσ

i }, i = 2, 3, 4 can never be coplanar in N−O(7, q), contradicting
our assumptions. Hence a 4-clique each 3-clique of which is coplanar in N−O(7, q) has to be
coplanar in N−O(7, q). Hence the planes of N−O(7, q) are exactly those q2-cliques of Γ (q)

each 3-clique of which extends in exactly q4 − q3 + q2 − 3 or 3q3 + q2 − 3 ways to a 4-clique.
This shows that it is possible to recover the planes of N−O(7, q) from Γ (q). Since the lines of
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N−O(7, q) are exactly those q-cliques that arise as intersections of planes, we see that we can
recover N−O(7, q) from Γ (q). The theorem follows. !

2.3. An alternative approach

The use of the geometry N−O(7, q) allows one to overcome the difficulties that arise if
one wants to reconstruct Γ1(q) directly from Γ (q) if q = 4. There is however another way
to characterize the lines of Γ1(q) directly in Γ (q), which works whenever q > 3. One can
characterize directly those q-cliques that are blocks of Γ1(q) as follows. For q > 4, the blocks
of Γ1(q) are exactly those q-cliques C of Γ (q) satisfying the following Condition (*): if a vertex
v $∈ C is adjacent to at least three vertices of C , then it is adjacent to all vertices of C . In the case
q = 4, there are additional 4-cliques satisfying Condition (*), and one can distinguish these from
the blocks of Γ1(q) by recognizing the blocks as those 4-cliques B that satisfy Condition (*) and
have the additional property that there are exactly 204 vertices v of Γ (q) not belonging to B, but
such that every pair of vertices of B lies, together with v, in a 4-clique satisfying Condition (*).
The proof of this alternative characterization however needs about three pages, whereas the use
of N−O(7, q) provides an elegant way to overcome the difficulties arising when q = 4. Hence
we omit this proof here.
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