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Abstract

In this paper embeddings of projective Klingenberg planes in a 5-dimensional
projective space are classified. It is proved that if a PK-plane is fully embedded in
PG(5, K), for some skewfield K, then it is either isomorphic to the Desarguesian pro-
jective Klingenberg plane (projective Hjelmslev plane for bijective σ) PH(2, D(K,σ))
over a ring of ordinary or twisted dual numbers or it is a subgeometry of an ordinary
projective plane. As a consequence we have in the finite case that, if a projective
Klingenberg plane of order (qt, t) is embedded in PG(5,q), then it is a projective
Hjelmslev plane PH(2, D(q,σ)) over a ring of ordinary or twisted dual numbers over
the Galois field GF(q). The embeddings related to the twisted case are new.
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1 Introduction

Projective Klingenberg and Hjelmslev planes are natural generalizations of ordinary pro-
jective planes. After having been studied intensively in the eighties (see e.g.[7] and [15])
those ring geometries were somewhat forgotten, until they made their comeback in the
theory of linear codes over finite rings (see [6] and [11]). This revival was one motivation
for us to study embeddings of Klingenberg planes. Only one result, proved by Artmann
[1], about the embedding of a class of Desarguesian Klingenberg planes was known. On
the other hand embeddings of other point-line geometries such as generalized polygons
were studied thoroughly (for a survey see [13] and [14]). Embeddings have helped in un-
derstanding the corresponding geometries, and have also directly and indirectly influenced
the coding theory that emerged from the geometries. As an example we mention the codes
arising from quadrics embedded in projective space, and the codes arising from geometric
hyperplanes of hexagons (and the latter arise from embeddings!), see [4]. Hence, studying
embeddings of Hjelmslev planes is certainly a worthwhile job.

Another motivating reason for writing this paper comes from a characterization theorem
of Cronheim [3]. He proved that the only finite uniform Desarguesian projective Hjelmslev
planes are the planes over rings of twisted dual numbers over a Galois field and the planes
over Witt rings of length two over a Galois field. He also gives a characterization of both
classes in terms of the automorphism group. We prove that the planes over the twisted
dual numbers are the only ones that can be embedded in a 5-dimensional projective
space, giving a new geometric characterization of this class of planes, and hence of the
corresponding class of rings.

The paper is organized as follows. In Section 2 we give some basic definitions about
Klingenberg and Hjelmslev planes needed in our main theorem. Section 3 gives an explicit
description of the classical embedding of the plane PH(2, D(K,σ)) over the ring of twisted
dual numbers over a skewfield. Our description is more explicit (using coordinates) and
more general than the result of Artmann (the latter is only valid for the non-twisted
case). New embeddings are contained in this description for proper PK-planes which are
not PH-planes. Section 4 formulates the main theorem: the classification of all (full)
embeddings of PK-planes in PG(5, K). As a consequence we obtain in the finite case a
characterization of the PH-planes over the rings of twisted dual numbers over a Galois
field. Finally, in Section 5, the main theorem is proved in a series of lemmas.
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2 Definitions and preliminaries

Definition 2.1. A projective Klingenberg plane (PK-plane) S = (P,L,∈,∼) is a point–
line incidence structure with neighbor relation ∼ = (∼P ,∼L) satisfying the following three
axioms :

(PK1) There exists an epimorphism φ from S onto a projective plane S such that φ(p) =
φ(q) if and only if p ∼P q for all p, q ∈ P and φ(L) = φ(M) if and only if L ∼L M
for all L, M ∈ L.

(PK2) Two non-neighboring points are incident with exactly one common line.

(PK3) Two non-neighboring lines are incident with exactly one common point.

Any ordinary projective plane is a PK-plane with the epimorphism φ the identity map
and with the neighbor relations ∼P and ∼L the trivial equality relations. A PK-plane is
called proper, if it is not a projective plane.

Definition 2.2. A projective Hjelmslev plane (PH-plane) H is a projective Klingenberg
plane with two additional axioms concerning the behaviour of neighboring elements. More
precisely H is a PH-plane if

(PH1) H is a PK-plane.

(PH2) Two neighboring points are incident with at least two distinct common lines.

(PH3) Two neighboring lines are incident with at least two distinct common points.

Projective Klingenberg and Hjelmslev planes were introduced by Wilhelm Klingenberg in
[9] and [10].

Next we pay attention to finite PK- and PH-planes. Let S be a finite PK-plane. Then
there exists a unique pair (s, t) of non-zero integers such that for any flag (p, L) of S there
are exactly t points on L neighboring with p and exactly s points on L not neighboring
with p. The pair (s, t) is called the order of S.

In a finite PK-plane of order (s, t) the following holds : |P| = s2+st+t2, |L| = s2+st+t2,
any line is incident with s + t points, any point is incident with s + t lines, any point has
t2 neighbors, any line has t2 neighbors, t|s and r = s

t is the order of the projective plane
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S and s ≤ t2 or t = 1 (see [5] and [8]). The PK-planes of order (s, 1) are the ordinary
projective planes of order s.

The first examples of projective Klingenberg and Hjelmslev planes given by Klingenberg
in [9] are constructed in an algebraic manner and they are now called Desarguesian PK-
(viz. PH-planes). We recall here briefly this construction.

For a local ring R with unique maximal ideal J the incidence structure (P ,L, I) is defined
as follows.

The points are the triples (x, y, z) ∈ R×R×R up to a right scalar which is a unit in R and
with (x, y, z) &∈ J×J×J . The lines are the triples [u, v, w] ∈ R×R×R up to a left scalar
which is a unit in R and with [u, v, w] &∈ J × J × J . The point represented by (x, y, z) is
incident with the line represented by [u, v, w] if and only if u ·x+ v · y +w · z = 0. Finally,
two points, represented by (x, y, z) and (x′, y′, z′) are neighbors if and only if (x′, y′, z′) −
(x, y, z)λ ∈ J × J × J for some λ ∈ R \ J and similarly for lines.

The projective ring plane S defined in this way is a PK-plane (with the epimorphism from
S onto a projective plane S induced by the natural mapping from the local ring R onto
its residue skewfield R = R/J) and S is denoted by PK(2,R). If R is finite, the plane
PK(2,R) has order (s, t) with s = |R| and t = |J |.
Two additional properties of the local ring make the plane PK(2, R) a projective Hjelmslev
plane. Indeed, if R is a left and right chain ring and if every nonunit is a left and right zero
divisor in R, then neighboring points (lines) are incident with at least two lines (points).
A local ring which is a left and right chain ring and whose maximal ideal consists of
twosided zero divisors is called a Hjelmslev ring or H-ring. In the finite case the maximal
ideal always consists of two sided zero divisors. Hence, a finite chain ring is always a
H-ring.

An important class of H-rings are the so-called twisted dual numbers over a skewfield.

Let K be a skewfield and σ an automorphism of K. Then the ring of σ-dual numbers over
K is defined as the set K × K with addition (a + bt) + (c + dt) = (a + c) + (b + d)t and
multiplication (a + bt) · (c + dt) = ac + (ad + bcσ)t

It is easy to see that this is an H-ring with unique maximal ideal J = Kt satisfying
J2 = (0) and we use the notation D(K,σ) for this ring of twisted dual numbers. If K is
the finite field GF(q), the rings are denoted D(q, σ).

For σ the identity automorphism one obtains the well-known ring of dual numbers D(K)
over K.
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If σ is in the above definition an endomorphism, but not an automorphism, then we obtain
a left chain ring that is not a right chain ring. With abuse of notation, we will denote
the corresponding projective Klingenberg plane by PH(2, D(K,σ)), although it is not a
Hjelmslev plane.

3 The classical embedding of PH(2, D(K,σ))

In [1] B. Artmann shows that the PH-plane PH(2, K[t]/tn) over the ring of polynomials
with coefficients in the field K modulo tn can be embedded in the (3n − 1)-dimensional
projective space over K. As a special case he obtains an embedding of the projective
Hjelmslev plane PH(2, K[t]/t2) ∼= PH(2, D(K)) over the ring of dual numbers over the
field K in the projective space PG(5,K).

For an explicit description of this embedding, we make use of an adaptation of the em-
bedding given by Thas in [12] for the more general case of projective planes over full
matrix rings Mn(GF(q)). From that embedding one easily derives an embedding for finite
PH-planes over non-twisted dual numbers D(q) = {a + bt | a, b ∈ GF(q)} as this ring can
be identified with the subring

{(
a b
0 a

)
| a, b ∈ GF(q)

}

of the full matrix ring M2(GF(q)).

In fact, it is easy to see that the construction also works in the infinite case, and so we
present it in full generality for general dual numbers D(K) over a field or even a skewfield
K.

The embedding α goes as follows. Any point of PH(2, D(K)) represented by (x0 +x1t, y0 +
y1t, z0 + z1t) is mapped by α to the line of PG(5, K) through the points represented
by (x0, 0, y0, 0, z0, 0) and (x1, x0, y1, y0, z1, z0). These two 6-tuples represent indeed two
distinct points of PG(5, K) since (x0, y0, z0) &= (0, 0, 0) and it is easy to see that the line
α(p) is independent of the choice of the representative triple for p. The representatives of
neighboring points can always be chosen as (x0 +x1t, y0 + y1t, z0 + z1t) and (x0 +x′

1t, y0 +
y′

1t, z0 + z′
1t). Hence if p and q are neighboring, then the corresponding lines pα and qα

have the point (x0, 0, y0, 0, z0, 0) in common.

Now we look at the lines. Any line of PH(2, K) represented by [u0 +u1t, v0 +v1t, w0 +w1t]
is mapped to the 3-space of PG(5, K) which is the intersection of the two hyperplanes
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[0, u0, 0, v0, 0, w0] and [u0, u1, v0, v1, w0, w1]. Again the two 6-tuples represent two distinct
hyperplanes of PG(5, K) since (u0, v0, w0) &= (0, 0, 0) and the 3-space Lα is independent of
the choice of the representative triple for L. The 3-spaces corresponding to neighboring
lines (with chosen representatives [u0+u1t, v0+v1t, w0+w1t] and [u0+u′

1t, v0+v′
1t, w0+w′

1t])
are contained in the same hyperplane [0, u0, 0, v0, 0, w0].

The incidence relation in the PH-plane corresponds with the natural incidence in PG(5, K).

The embedding described above is called the classical embedding of PH(2, D(K)) in PG(5, K).

We can generalize this embedding to the case of twisted dual numbers D(K,σ) by defining
the image of a point represented by (x0 + x1t, y0 + y1t, z0 + z1t) as the line through the
points represented by (x0, 0, y0, 0, z0, 0) and (x1, xσ

0 , y1, yσ
0 , z1, zσ

0 ) and the image of a line
represented by [u0 + u1t, v0 + v1t, w0 + w1t] as the 3-space which is the intersection of the
hyperplanes represented by [0, uσ

0 , 0, v
σ
0 , 0, wσ

0 ] and [u0, u1, v0, v1, w0, w1]. Here, σ can be
non-bijective.

We also call this embedding the classical embedding of PH(2, D(K,σ)) in PG(5, K).

We mention that the same kind of embedding for the projective line over D(K,σ) can be
found as Example 5.4 in [2].

4 Main Result

In the preceding section we saw how the PH-plane over the (twisted) dual numbers over
the skewfield K can be classically embedded in PG(5, K). In this section we characterize
this embedding under some natural hypotheses.

Definition 4.1. Consider a projective Klingenberg plane S with point set P and line set
L possessing a proper epimorphism φ onto a projective plane S. Let K be a skewfield
and let PG(5, K) be the 5-dimensional projective space over K with line set Π and set of
solids Σ (a solid is a 3-dimensional subspace). Let α be a map from P to Π and from L
to Σ satisfying the following properties.

(PE1) For x ∈ P and L ∈ L, we have x ∈ L if and only of xα ∈ Lα.

(PE2) For x, y ∈ P , we have that x ∼ y if and only if xα meets yα nontrivially; for
L,M ∈ L, we have that L ∼ M if and only if Lα and Mα are contained in a
hyperplane.
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Then we call α an embedding.

By Lemma 5.5 below, there is a natural embedding of S into a plane π of PG(5, K). If
this embedding is full, i.e. if all points and lines of π are images of points and lines of S,
then we call α full. In the next section, we will prove the following theorem.

Theorem 4.2. If S is a projective Klingenberg plane with a natural proper epimorphism
onto a projective plane S and if S is fully embedded in PG(5, K), for some skewfield K,
then either

(i) S is a projective Hjelmslev (or Klingenberg for non-bijective σ) plane
PH(2, D(K,σ)) over a ring of twisted dual numbers and the embedding is the classical
one, or

(ii) S is a subgeometry of a projective plane (and in this case two distinct lines always
meet in at most one point, and, dually, every two distinct points are joined by at
most one line).

This has the following consequence in the finite case.

Corollary 4.3. If S is a finite projective Klingenberg plane of order (qt, t), for some
natural numbers q, t, and if S is embedded in PG(5, q), then S is a projective Hjelmslev
plane PH(2, D(q, σ)) over a ring of twisted dual numbers and the embedding is the classical
one.

5 Proof of the main result

We prove the theorem in a series of lemmas. Throughout we assume that S is a projective
Klingenberg plane with point set P and line set L, and with a natural proper epimorphism
φ onto a projective plane S. We assume that S is embedded in PG(5, K), for some skewfield
K.

Lemma 5.1. Let x1, x2, x3 be three distinct points of S with x1 ∼ x2 ∼ x3. Then xα
1 , xα

2

and xα
3 all contain the same point z.

Proof. Since there are at least 3 lines through xφ
1 in S, and since the lines of S through

both x1 and x2, and through both x1 and x3, determine at most two line neighborhood
classes, we can select a line L ∈ L incident with x1 and not incident with either x2 or x3.
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Let x4 ∈ P be such that x1 ∼ x4 and x4 is incident with L. Let π be the plane determined
by xα

1 and xα
4 . Note that π ⊆ Lα. Since neither x2 nor x3 are incident with L, none of

xα
2 , xα

3 is contained in π. But since both xα
2 , xα

3 must meet both xα
1 and xα

4 , we deduce
that xα

1 , xα
2 , xα

3 , xα
4 all meet in the same point z. !

Lemma 5.1 easily implies that all lines of PG(5, K) that are the image under α of points
of the same point neighborhood N , meet in a unique point, that we may denote as Nα.
Dually, every line of a fixed line neighborhood M maps under α to a solid contained in a
fixed hyperplane Mα.

Lemma 5.2. If N1, N2, N3 are three distinct point neighborhoods of S, then Nφ
1 , Nφ

2 , Nφ
3

are collinear if and only if Nα
1 , Nα

2 , Nα
3 are collinear. Hence all images under α of the

point neighborhoods are contained in a same plane π and there is a natural monomorphism
ϕp : S → π.

Proof. Suppose first that Nφ
1 , Nφ

2 , Nφ
3 are collinear, and assume, by way of contradiction,

that Nα
1 , Nα

2 , Nα
3 are not collinear, say they span the plane π. Then for every line L of S

contained in the neighborhood M of lines that meet N1, N2, N3 nontrivially, we see that
π ⊆ Lα ⊆ Mα. This implies that, whenever a point x ∈ N1 is incident with at least two
elements of M (and every such point is!), then it is incident with all members of M , a
contradiction.

In order to show the converse, we first claim that it suffices to prove that not all Nα,
with N running through the set of point neighborhoods, are incident with a common line
of PG(5, K). Indeed, suppose this is true, and suppose that N1, N2, N3 are three point
neighborhoods with Nα

1 , Nα
2 , Nα

3 on a common line K of PG(5, K), but with Nφ
1 , Nφ

2 , Nφ
3

not collinear. Let N be an arbitrary point neighborhood. Then choose any point neigh-
borhood N ′ &= N and the line joining Nφ and N ′φ meets the union of the three lines
determined by Nφ

1 , Nφ
2 , Nφ

3 in at least two different points N∗φ and N∗∗φ. By the previous
paragraph, both N∗α and N∗∗α are incident with K, and hence, again by the previous
paragraph, so is Nα, which shows our claim. So suppose by way of contradiction that all
Nα are incident with a common line K. Then clearly, for every line L ∈ L, the image Lα

contains K. Let x ∈ P be arbitrary and let L1, L2 ∈ L both be incident with x and such
that L1 &∼ L2. Then Lα

1 and Lα
2 span PG(5, K) and hence their intersection is precisely

K. This means that xα = K, contradicting injectivity of α on P . !

We now prove two easy properties of the plane π.

Lemma 5.3. Let π be the plane defined in Lemma 5.2. Then for every point x ∈ P, the
line xα meets π in a unique point.
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Proof. Let x be any point of S, and suppose that it belongs to the point neighborhood
class N . Then Nα belongs to the intersection of π and xα. Hence we only must show
that xα is not contained in π. Suppose, by way of contradiction, it is. Choose two points
y, z of S not in N such that the lines xy and xz are not neighboring. Since y and z do
not belong to N , the lines yα and zα do not meet xα. Hence these lines meet π in unique
points and it follows that both (xy)α and (xz)α contain the plane π, contradicting the
fact that xy and xz are not neighboring. !
Lemma 5.4. Let π be the plane defined in Lemma 5.2. Then for every line L ∈ L, the
solid Lα meets π in a line.

Proof. Clearly Lα contains a line of π. Suppose, by way of contradiction, that π is
contained in Lα. Select a point x ∈ P on L, and a line L′ ∈ L not neighboring L, but
incident with x. The solid L′α contains a line of π, and it contains xα (and these two lines
are distinct by Lemma 5.3). Hence Lα and L′α share a plane, a contradiction. !

Let π be a plane of PG(5, K). With the dual of π, we mean the projective plane obtained
from π by considering as points all solids through π, and as lines all hyperplanes through
π.

Dually to Lemma 5.2 one proves that the hyperplanes Mα, with M running through all
line neighborhood classes, are lines of a dual plane π′ of PG(5, K), and we denote the
corresponding natural monomorphism by ϕl. Note also that, for any line neighborhood
class M , the hyperplane Mα is generated by all lines xα, with x running through the
points of S incident with a member of M .

So with every point neighborhood class N of S corresponds a point Nα in the plane π,
and also a solid through the plane π′ (which is the intersection of all hyperplanes Mα,
with M running through the set of line neighborhood classes such that Mφ is incident
with Nφ). We denote that solid by Nα∗. Likewise, for a line neighborhood class M , there
is a line Mα∗ of PG(5, K) spanned by the points Nα, with N running through the point
neighborhood classes such that Nφ is incident with Mφ.

Note that Mα∗ ⊆ Mα, for M a line neighborhood, and Nα ⊆ Nα∗, for N any point
neighborhood.

The condition on the embedding of being “full” now precisely means that the monomor-
phism ϕp is an isomorphism. However, for the time being, we do not assume this extra
condition yet.

Next we prove that both planes π and π′ either are disjoint, or coincide.

A digon is a pair of distinct lines, each one incident with a pair of distinct points.
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Lemma 5.5. The planes π and π′ either are disjoint, or coincide. Also, as soon as S
contains a digon, the planes are disjoint.

Proof. We first show that, if S contains two lines L,L′ that meet in at least two points
x, x′, then π and π′ are not disjoint. Suppose, by way of contradiction, that they are
disjoint.

Let R be the intersection in PG(5, K) of Lα and π. By Lemma 5.4, R is a line, which is
clearly also contained in L′α (as L and L′ are neighboring). Since x, x′ are incident with
L, L′ in S, we also have that xα and x′α are contained in Lα and L′α; hence the plane
Lα ∩ L′α contains the line R and the points z := xα ∩ π′ and z′ := x′α ∩ π′ (the latter
are indeed points by the dual of Lemma 5.4). If z &= z′, then the line R, contained in π,
meets the line zz′ in a point of π′, contradicting our hypothesis. Hence z = z′. But since
xα and x′α also share a point in π, this easily implies xα = x′α, and hence x = x′.

Now we assume that π and π′ are different, but not disjoint. Notice that π′ is the
intersection of any three hyperplanes Mα

i , i = 1, 2, 3, where M1,M2,M3 are three line
neighborhood classes with non-concurrent epimorphic images under φ. But we can choose
Mi, i = 1, 2, 3, in such a way that none of Mα∗

1 ,Mα∗
2 ,Mα∗

3 contains the intersection π∩π′.
Since Mα

i contains both π′ and Mα∗
i , it then follows that Mα

i contains π and the proof is
complete. !

We now first treat the case π &= π′.

Lemma 5.6. If π &= π′, then S is a subgeometry of PG(2, K).

Proof. By Lemma 5.5, we know that π and π′ are disjoint. Hence, for any point neigh-
borhood N , the solid Nα∗ is generated by Nα and π′. It follows easily that, for each point
x ∈ P , the line xα meets π′ in a unique point, which we denote by xβ, and for each line
L ∈ L, the solid Lα meets π′ in a unique line, which we denote by Lβ. Also the mapping
β thus defined is clearly injective and preserves incidence and non-incidence. Hence β is
a monomorphism and the result follows. !

From now on, we assume that the embedding is full, and we classify the case π = π′.

Lemma 5.7. Suppose π = π′. If α is full, and if N is a point neighborhood class of S,
then the set {xα : x ∈ N} runs through all lines of PG(5, K) that are incident with Nα

and are contained in Nα∗, except for the lines in π.
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Proof. Let N be a point neighborhood class. Let x ∈ N be arbitrary. The solid Nα∗

contains π and xα. Let K &= xα be an arbitrary line through Nα in Nα∗. Let M be the
unique line neighborhood class of S with the property that Mα∗ is contained in the plane
generated by K and xα. Let L ∈ M be such that x is incident with L, and let y ∈ N
be such that y is not incident with L. The plane generated by yα and K meets π in a
unique line M ′α∗. Let L′ ∈ M ′ be such that y is incident with L′. Note that M &= M ′

since both Lα and L′α contain the line K, and since, if M ′ = M , they would also both
contain Mα∗, they would both meet the solid xα∗ in the same set, implying that y would
belong to both lines L,L′, a contradiction. Hence L and L′ meet in a unique point z, and
so Lα and L′α meet in the unique line zα. But they both contain K, so K = zα. !
Lemma 5.8. If π = π′, then the projective Klingenberg plane S is isomorphic to PH(2, D(K,σ)),
for some endomorphism σ and the embedding α is classical.

Proof. We introduce coordinates X0, X1, X2, . . . , X5 in PG(5, K). We choose for π the
plane with equation X1 = X3 = X5 = 0. Consider the plane π′ with equation X0 = X2 =
X4 = 0. Let N be any point neighborhood class and let Nα∗ be the corresponding solid.
Since it contains π as a consequence of Lemma 5.5, it meets π′ in a unique point uN outside
π and by Lemma 5.7, the line of PG(5, K) through uN and Nα is the image xα of a point
x ∈ N . Since solids of the form Lα, L ∈ L, meet π′ in a line, it is now easy to see that the
mapping β : π → π′ : Nα +→ uN is an injective collineation. We can choose the coordinates
such that β maps (1, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 1, 0) and (1, 0, 1, 0, 1, 0), respec-
tively, to (0, 1, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 1) and (0, 1, 0, 1, 0, 1), respectively. It
follows with elementary linear algebra (a version of the Fundamental Theorem of Projective
Geometry) that there exists an endomorphism σ of K such that β maps (x0, 0, y0, 0, z0, 0)
to (0, xσ

0 , 0, y
σ
0 , 0, zσ

0 ). It now follows easily that the points of S are mapped under α
onto lines generated by points (x0, 0, y0, 0, z0, 0) and (x1, xσ

0 , y1, yσ
0 , z1, zσ

0 ). All these lines
are precisely the lines of the standard embedding of PH(2, D(K, σ)). Since the solids of
PG(5, K) corresponding to lines of S are determined by the lines of PG(5, K) correspond-
ing to points of S, the embedding is completely determined and standard. The lemma is
proved. !

In the finite case, the embedding is automatically full under the conditions of Corollary 4.3.
Moreover, it is clear that finite proper Klingenberg planes always contain digons. Indeed,
if not, then consider a line L of a finite Klingenberg plane of order (qt, t) without digons.
Through each point of L, there are t lines neighboring L. Since there are no digons, all
these lines are different and we obtain a set of (q + 1)t(t − 1) + 1 lines of the same line
neighborhood class. This contradicts (q + 1)t(t− 1) + 1 > t2. Consequently Corollary 4.3
follows.
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Remark 5.9. By Lemma 5.7 it follows that all point neighborhoods are affine planes.
A PH-plane with this property is called uniform. Cronheim [3] has proved that the only
finite uniform Desarguesian projective Hjelmslev planes are either planes over a ring of
twisted dual numbers over a Galois field or planes over a Witt ring of length two over a
Galois field. Corollary 4.3 now gives a characterization of the first class. These are the
only uniform planes that are embeddable in PG(5, q).

Remark 5.10. The problem in the non-full case is considerably more involved, and it
is even not clear what the examples are. Possibly there might be non-Desarguesian PK-
planes non-fully embedded, as some preliminary work seems to indicate.
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