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Abstract

In this paper, we determine the Veronesian embeddings of Hermitian unitals, i.e.,
the representations of Hermitian unitals as points of a 7-dimensional projective space
where the blocks are plane ovals. As an application, we derive that the following
objects coincide: (1) the generic hyperplane sections of Hermitian Veronesians in
8-dimensional projective space, (2) the Grassmannians of the classical spreads of
non-degenerate quadrics of Witt index 2 in 5-dimensional projective space, (3) the
sets of absolute points of trialities of Witt index 1. As a consequence, we prove that
the set of absolute points of a triality without fixed lines, but with absolute points,
determines the triality quadric and the triality itself uniquely.

1 Introduction

Veroneseans of finite projective spaces play an important role in finite geometry. In [13],
they are characterized as representations of PG(d, q) in PG(n, q), with n = 1

2n(n + 3),
such that the points of PG(d, q) correspond with (not all) points of PG(n, q), and the
lines of PG(d, q) correspond with plane ovals in PG(n, q). This characterization, how-
ever, also holds in the infinite case. In general, for a given field K and for any point-line
geometry S = (P ,L), one can consider injective mappings α : P → PG0(n, K), where
PG0(n, K) denotes the 0-dimensional subspaces (hence the points) of PG(n, K), such that
α maps de point sets of every line (a line is an element of L) onto an oval in a certain
plane of PG(n, K), and such that the image of P generates PG(n, K). (The lack of “clas-
sical” ovals in projective planes over noncommutative skew fields leads to considering
only commutative fields, and not noncommutative ones.) We call such an embedding of
S a Veronesean embedding. Motivated by the existence of some classes of examples of
Veronesean embeddings of Hermitian unitals, we take a closer look at this case in the
present paper. The starting observation is that most examples we know are embedded in
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7-dimensional projective space. In fact, all these examples are, for the same values of q,
isomorphic. This will be proved by showing that for a given Hermtitian unital, say related
to the quadratic Galois extension L of K, any Veronesean embedding of it in PG(7, K) is
projectively unique.

It turns out that Veronesean embeddings of Hermitian unitals are intimately connected to
triality. Not only do trialities of Type II over fields of characteristic different from 3 having
no nontrivial cubic roots of unity (for characteristic different from 2, this is equivalent
with −3 being a nonzero nonsquare) give direct rise to such objects, also the trialities
of Type II over other fields of characteristic different from 3 produce such objects, and
trialities of Type Iid can also sometimes be used to construct them. In fact, our approach
will allow us to reconstruct the triality quadric and the triality itself from a given set of
absolute points of a triality of Type II over a field of characteristic different from 3 having
no nontrivial cubic roots of unity. We will also discuss other beautiful, mainly geometric,
properties of Veronesean embeddings of Hermitian unitals in PG(7, K). Our results hold
in both the finite and infinite case.

The paper is structured as follows. In Section 2, we collect all notions that we need to
successfully prove our main results, and to discuss the main properties of Veronesean
embeddings of Hermitian unitals. Notice that we use a wide spectrum of notions, so this
section is rather large. We also state our Main Result in that section.

In Section 3, we prove our Main result. This section is the main body of our paper, and
we have divided it into subsections for clarity’s sake. It contains seemingly unrelated
results, that also might be of independent interest somewhere else, and we have stated
these results as lemmas (see Lemma 1 and Lemma 3).

In Section 4, we show how our Main Result proves that the objects mentioned in the
abstract are isomorphic.

Section 5, finally, is devoted to more properties of Veronesean embeddings of Hermi-
tian unitals, and, in particular, we will prove in that section our above claim about the
uniqueness of the triality of Type II over a suitable field, given its set of absolute points.

2 Preliminaries

Throughout, let K be a field, and let L be a quadratic Galois extension of K. We denote
the nontrivial element (which is an involution) of the corresponding Galois group by
x #→ x. We occasionally call this map (complex) conjugation.
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2.1 Hermitian unitals

A Hermitian curve over L/K in the projective plane PG(2, L) is any set of points of
PG(2, L) that is projectively equivalent to the set of points satisfying, after introducing
coordinates (X0, X1, X2), the equation

X0X1 + X0X1 = X2X2.

This set of points, say P , can be given the structure of a linear space by collecting all
nontrivial (i.e., containing at least two points) line intersections in a set B, and defining the
point-block geometry C = (P ,B) in the obvious way (incidence is given by containment;
the elements of B are usually called blocks, because in the finite case this structure is a
2-design). This point-block geometry will be called the Hermitian unital over L/K, and
will be denoted by U(L/K).

We will denote the set of points of a projective space PG(d, F), for F any field, by PG0(d, F).

Let L be a line of PG(2, L). Recall that, with respect to a given coordinatization of
PG(2, L), the cross ratio of four points a, b, c, d on L, with a $= b $= c $= a, is equal to

(a, b; c, d) =
rc − ra

rc − rb
:
rd − ra

rd − rb
,

where ra, . . . , rd are nonhomogeneous coordinates on L with respect to an arbitrary base.
The Baer subline containing the three distinct points a, b, c on L is the set of points x on
L with x = a or (a, b; c, x) ∈ K. Dually, one defines a Baer subpencil of the pencil of lines
through some fixed point p.

Now let p be an arbitrary point of PG(2, L). Let L be the set of lines through p. The
Baer subpencils of the pencil in p define the block set of a geometry M = (L, E), which is
a Möbius plane. The elements of E are called circles. The geometry M has the following
property: for every element L ∈ L, the structure ML = (L \ {L}, EL) obtained from M
by deleting the element L and all blocks not through L (and removing L from the blocks
that do contain L), is an affine plane (over L). The structure MAff

L = (L\ {L}, E), where
one removes L from every circle that contains L, will be called a pointed Möbius plane.
A circle through L with L removed will be called a pointed circle.

If p ∈ P , then there is a unique line L in L meeting C trivially (i.e., in {p}); it is often
called the tangent line in p to C. The corresponding pointed Möbius plane will be referred
to as the the pointed Möbius plane at p.

Abstractly, MAff
L can be defined as follows. Its point set is the point set of the affine

plane AG(2, K). Extend AG(2, K) to AG(2, L) and choose two imaginary points p, p′ at
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infinity that are mutually (complex) conjugate (i.e., they have complex conjugate slopes
that belong to L \ K). Then the pointed circles are the affine lines of AG(2, K) and the
ordinary circles are the nondegenerate conics in AG(2, K) whose extensions to AG(2, L)
contain p, p′ at infinity of AG(2, L).

2.2 Hermitian Veronesean

Now choose an arbitrary element η ∈ L\K, and consider the following map β : PG0(2, L) →
PG0(8, K):

β : (x0, x1, x2) #→ (x0x0, x1x1, x2x2; x0x1 + x0x1, x1x2 + x1x2, x2x0 + x2x0;

ηx0x1 + ηx0x1, ηx1x2 + ηx1x2, ηx2x0 + ηx2x0).

The direct image of β is called the Hermitian Veronesean of PG(2, L) with respect to L,
and we denote it by H. It is, up to isomorphism, independent of η. Also, in any one or
two of the last three coordinates, one may substitute η by η to still obtain a projective
equivalent set.

Here are some properties of the Hermitian Veroneseans H.

(HV1) The inverse image under β of any hyperplane section of H is the null set of a
Hermitian polynomial, i.e., a polynomial of the form

2∑

i=0

aiXiX i +
∑

0≤i<j≤2

aijXiXj + aijX iXj,

with ak ∈ K, k ∈ {0, 1, 2} and aij ∈ L, 0 ≤ i < j ≤ 2.

(HV2) The direct image of a line L of PG(2, L) is an elliptic quadric (Witt index 1) in some
3-dimensional subspace of PG(8, K).

(HV3) Let p be a point of PG(2, L). Then the space generated by the tangent lines at pβ of
the elliptic quadrics on H containing pβ is a 4-dimensional space P , and each point
of P \{pβ} lies on exactly one tangent line. Moreover, no line through pβ is tangent
to more than one such elliptic quadric.

(HV4) Every Baer subline in PG(2, L) maps under β onto a conic in some plane of PG(8, K).

These properties can be verified directly using elementary calculations with coordinates;
most of them are also contained in [6] and [14].

4



2.3 Generalized polygons

Generalized polygons were introduced by Jacques Tits in [15]. The claims below can be
found in the monograph [16]. The finite case for generalized quadrangles is extensively
studied in [9].

Let S = (P ,L) be a point-line geometry, where we view the elements of L as sets of points.
The incidence graph Γ(S) is the graph with vertex set P ∪ L and p ∈ P is adjacent to
L ∈ L if x ∈ L. Then we call S a generalized n-gon, or generalized polygon, if the
diameter of Γ(S) is equal to n, and the girth of Γ(S) is equal to 2n (the girth is the length
of the smallest cycle in Γ). In fact, in the present paper, we will only need generalized 4-
gons, also called generalized quadrangles, and generalized 6-gons, or generalized hexagons.
Another, more common example, is any projective plane, which is a generalized 3-gon.

It follows directly from the definition that elements of a generalized n-gon can have mutual
distance at most n in the incidence graph. Such elements will be called opposite. If the
valency of every vertex of Γ(S) is at least 3, then we call S thick ; otherwise just non-thick.

The prototype of examples of generalized quadrangles are the symplectic quadrangles,
which we will need in “dual form”. Let Q(4, K) be a nondegenerate quadric of Witt
index 2 in PG(4, K), e.g., with equation X0X1 + X2X3 = X2

4 . Then the points and lines
of PG(4, K) entirely contained in Q(4, K) form a generalized quadrangle, which we also
denote by Q(4, K). Let H be a hyperplane of PG(4, K), and suppose that H contains two
opposite lines of Q(4, K). Then the intersection of Q(4, K) with H is a hyperbolic quadric
Q+(3, K) (Witt index 2), and Q+(3, K) is a generalized quadrangle in its own right. But
it is also a subquadrangle. It is called a non-thick full subquadrangle since every point
of Q(4, K) on every line of Q+(3, K) is a point of Q+(3, K). It is easily seen that every
pair of opposite lines of Q(4, K) is contained in a unique non-thick full subquadrangle,
necessarily isomorphic to Q+(3, K). For short, we will sometimes call such a non-thick
full subquadrangle a grid.

Another class of examples arises from quadrics of Witt index 2 in PG(5, K). Let x2 +x+n
be an irreducible polynomial over K defining L, i.e., this polynomial is reducible over L.
Then the equation X0X1 + X2X3 = X2

4 + X4X5 + nX2
5 defines a quadric Q−(5, K), which

defines on its turn a generalized quadrangle, as above. In fact, the quadrangle Q(4, K) is
a thick full subquadrangle of Q−(5, K).

Finally, let H(3, L/K) be the null set in PG(3, L) of the Hermitian polynomial X0X1 +
X0X1 + X2X3 + X2X3. Then, again as before, H(3, L/K) defines a generalized quadran-
gle. But the incidence graphs of Q−(5, K) and of H(3, L/K) are isomorphic graphs (and
every isomorphism maps points to lines and vice versa); we say that these generalized
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quadrangles are dual to each other. Geometrically, such an isomorphism can be obtained
by the Klein correspondence.

Let S = (P ,L) be a generalized quadrangle. A set O of points is called an ovoid, if every
line of S is incident with exactly one point of O. Dually, a set S of lines is called a
spread if every point of S is incident with exactly one element of S. For example, a plane
intersection of H(3, L/K) not containing any line of H(3, L/K) intersects H(3, L/K) in the
points of an ovoid. This ovoid is called a Hermitian ovoid of H(3, L/K).

Next, we turn to hexagons. Since we will need the notion of triality anyway, it is convenient
to introduce the relevant class of examples with triality.

2.4 Triality

Consider, in PG(7, K), the triality quadric Q(7, K), which we denote by Q for short, of
Witt index 4 with equation X0X4 + X1X5 + X2X6 + X3X7 = 0. We will call subspaces
of projective dimension 3 solids, for short. It is well known that this quadric contains
2 families of generators (generators are solids entirely contained in Q), such that two
generators of the same family meet in an odd dimensional projective subspace, and two
belonging to different families meet in an even dimensional projective subspace. Now
define the triality graph TΓ as follows. The vertices are the points (gathered in Γ0), lines
(gathered in the set Γ1) and 3-spaces (gathered in the sets Γ3 and Γ′3, corresponding with
the two families above) of PG(7, K) entirely contained in Q; adjacency is defined as follows:
a line is adjacent to every point it contains, and to every solid it is contained in (notice that
every edge contains a vertex in Γ1 and that we thus do not obtain the incidence graph of
the corresponding building; the given adjacencies are enough since they define collinearity
of points and this, on its turn, completely determines the structure of the quadric). Then
this graph admits graph automorphisms that preserve the partition {Γ0, Γ1, Γ3, Γ′3}, but
induce any permutation of the set {Γ0, Γ3, Γ′3}. More in particular, there exist graph
automorphisms τ of order 3 inducing the cyclic permutation Γ0 → Γ3 → Γ′3 → Γ0. These
are called trialities. Now, call a point x ∈ Γ0 absolute as soon as the (graph) distance
in TΓ from x to xτ is 2. Similarly as for polarities in projective spaces, we can define
the Witt index of a triality as the ‘dimension’ of its ‘absolute geometry’: if there are no
absolute points, then the Witt index is 0; if there are absolute points, but no fixed lines,
then the Witt index is 1; if there are fixed lines—and hence also absolute points since it
is easily seen that every point of a fixed line is absolute—then the Witt index is equal
to 2. With this terminology, all trialities of Witt index at least 1 are classified in [15].
With the notation of [15], trialities of Type I have Witt index 2 and produce generalized
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hexagons, i.e., the geometry of absolute points and fixed lines, with natural incidence, is a
generalized hexagon. More precisely, the set of absolute points of a triality of Type Iid is
precisely the set of points of Q lying in some fixed hyperplane H isomorphic to PG(6, K),
and, identifying H with PG(6, K), this intersection is a quadric Q(6, K) of Witt index 3 in
PG(6, K). The corresponding generalized hexagon is thick and is denoted by H(K), called
the split Cayley hexagon (over K). The lines of H(K) are some lines of Q(6, K), certainly
not all. But the precise description is not important for our purposes.

A subset S of the line set of a generalized hexagon is called a spread if every line not in
S meets exactly one element of S, and if all elements of S are mutually opposite. In
Subsection 4.2, we will encounter an example.

Trialities τ of Type II come in three flavours, depending on the field K. If K has char-
acteristic 3, then τ has Witt index 2. Also, every absolute point is on a fixed line, and
every fixed line is concurrent with a certain given fixed line. This case is not important
for us. If charK $= 3 and K contains nontrivial cubic roots of unity, then τ again has Witt
index 2. The absolute points and absolute lines form a non-thick generalized hexagon,
which can be constructed abstractly as follows: the points are the incident point-line
pairs of PG(2, K); the lines are the points and lines of PG(2, K); incidence is natural. We
will see this more in detail in Subsection 4.1. Finally, when charK $= 3 and K does not
contain nontrivial cubic roots of unity, then the Witt index is equal to 1, and the set of
absolute points admits the unitary group PGU3(L′/K) (with obvious notation), where L′

is the quadratic Galois extension corresponding to the polynomial X2−X +1, and where
PGU3(L′/K) acts on the set of absolute points in the same way as it acts on a Hermitian
unital over L′/K. We remark that the set of absolute points is in this case an ovoid of
the triality quadric, i.e., a set of points with the property that every generator of Q(7, K)
contains exactly one absolute point. Applying triality, we obtain a spread, i.e., a set of
generators that partitions the point set of Q(7, K) (and both the ovoid and spread admit
a 2-transitive group). Intersecting with suitable hyperplanes gives spreads of the quadric
Q(6, K), which yield, on their turn, distance-3 ovoids of the associated near hexagon. But
we will not use these well known properties in the present paper. We refer to [10] for
more about ovoids and spreads of (finite) polar spaces.

2.5 Grassmannians

For our applications, we will need the concept of Grassmannians and Grassmann coordi-
nates. We refer to Chapter 24 of [7] for more about this. Here, we content ourselves with
the basic definitions, and with the special case of line-Grassmannians.
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Let L be a line in PG(d, K), with d > 1. After coordinatization, we can pick two arbitrary
different points x and y on L, with coordinates (x0, x1, . . . , xd) and (y0, y1, . . . , yd), respec-
tively. This defines a unique point pL in PG(d, K), with d = 1

2(n
2+n−2), with coordinates

(pij)0≤i<j≤d, where pij = xiyj − xjyi. This point is independent of the choices of x and
y. The mapping L #→ (pij)0≤i<j≤d is called the (line) Grassmann map. The coordinates
pij, 0 ≤ i < j ≤ d, are called the (line) Grassmann coordinates, and the collection of
all points of PG(n, K) thus obtained is called the (line) Grasmannian of PG(d, K). One
can prove that the points of the line Grassmannian of PG(d, K) really generate the whole
space PG(n, K). Two easy direct properties are: (1) the set of lines of PG(d, K) through a
fixed point and contained in a fixed plane is mapped under the Grassmann map onto the
set of points of a line of PG(n, K); (2) the set of lines of PG(d, K) belonging to one family
of generators of a hyperbolic quadric in some solid of PG(d, K) is mapped onto the set of
points of a conic in some plane of PG(n, K).

2.6 Projective embeddings and our Main Result

Let S = (P ,L) be a point-line geometry, as before, where lines are completely determined
by their points, and let α : P → PG0(d, K) be a mapping such that the image of P
generates PG(d, K). If for any line L ∈ L, either the image under α is a point of PG(d, K),
or α is injective on the set of points on L and maps this point set into a line Lα, then
we call α a linear projective stacking of S. If moreover, α is injective, then we call it a
linear projective embedding of S. If moreover, every point of PG(d, K) on a line Lα has
an inverse image under α on L, then we call the linear projective embedding full.

Examples of full linear projective embeddings are given by the generalized quadrangles
Q+(3, K), Q(4, K) and Q−(5, K) (α is the identity map), and the generalized hexagon
H(K).

A plane oval O of PG(d, K) is a set of points of PG(d, K) contained in a plane π, such
that, for any point x ∈ O, there is a unique line of π through x intersecting O in just x,
and all other lines through x intersect O in exactly two points (including x!). Examples
are conics.

Let again S = (P ,L) be a point-line geometry. A Veronesean (projective) embedding of S
in the projective space PG(d, K) over a field K is an injective mapping α : P → PG0(d, K)
such that the image of the points of any line is a plane oval, and such that the image of
P under α generates PG(d, K).

We define equivalent projective embeddings in the usual way, i.e., two projective embed-
dings α and α′, be it Veronesean or linear, in PG(d, K) and PG(d, K)′, respectively, are
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equivalent if there is a projectivity σ : PG(d, K) → PG(d, K)′ mapping pα to pα′
, for all

points p ∈ P .

For example, the ordinary (quadric) Veronesean of PG(2, K) yields a Veronesean embed-
ding of PG(2, K) in PG(5, K). Conversely, every Veronesean embedding of PG(2, K) into
PG(5, K) is equivalent to the (quadric) Veronesean of PG(2, K), see [13].

Now consider, with respect to a quadratic extension L of K, the Hermitian Veronesean
H of PG(2, L). Then H ⊆ PG(8, K). Let H be a hyperplane of PG(8, K) related to a
non-degenerate Hermitian curve C in PG(2, L). Then H ∩H is a Veronesean embedding
of C, viewed as a Hermitian unital, in PG(7, K). If we call this the standard Veronesean
embedding of C, then our main result reads as follows.

Main Result. Let C = (P ,B) be a Hermitian unital over L/K. Then every Veronesean
embedding of C in PG(d, F), with F any field, and with d ≥ 7 is equivalent to the standard
Veronesean embedding of C.

3 Proof of the Main Result

3.1 A lemma on Q(4, K)

An important and handy tool for the sequel will be the study of linear projective stackings
of so-called affine quadrangles of hyperbolic type related to Q(4, K). These are defined
as follows. Consider a full non-thick subquadrangle Q+(3, K) on Q(4, K), then the subge-
ometry induced by Q(4, K) on the complement of Q+(3, K) is called an affine quadrangle
of hyperbolic type, but we will simply and briefly call it an affine quadrangle. We will use
the notation AQ(4, K) := AG(4, K)∩Q(4, K) for it and we note that it determines Q(4, K)
uniquely (see also [8]).

It is to be expected that linear projective embeddings of AQ(4, K) behave like restrictions
of linear projective embeddings of Q(4, K), and in fact, this is not so difficult to prove.
Also, it is to be expected that linear projective stackings of Q(4, K) for large enough
projective dimensions are just embeddings, and this is not so difficult to prove either.
But it is a bit more involved to see what happens when we consider linear projective
stackings of AQ(4, K). Nevertheless, the result is what we expect.

Lemma 1 Let α be a linear projective stacking of AQ(4, K) in some projective space
PG(d, F), with |K| > 2 and d ≥ 4. Then d = 4 and α is injective. If for each line K
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of AQ(4, K), there is a unique point of the line Kα not belonging to the image under α
of a point of AQ(4, K) incident with K, then α can be uniquely extended to a full linear
projective embedding of Q(4, K) in PG(4, F).

Proof First we claim that α is injective when restricted to the point set incident with
an arbitrary line. Indeed, suppose some line L is mapped onto a point Lα of PG(d, F).
Let L′ be any line of AQ(4, K) disjoint from L, opposite L in Q(4, K) and such that L
and L′ meet the same line of Q+(3, K). It is easy to see that all points of the non-thick
full subquadrangle generated by L and L′ are mapped onto points in 〈Lα, L′α〉. Consider
a line L′′ disjoint from L′ but not opposite L′ in Q(4, K). Playing the same game with L′′

and any line in {L, L′}⊥⊥∩AQ(4, K), and doing it again with the thus obtained lines yields
that, if |K| > 2, the image under α of AQ(4, K) is contained in 〈Lα, L′α, L′′α〉, which is
only at least 4-dimensional if at most one of Lα, L′α, L′′α is a point. Since Lα is a assumed
to be a point, we have that both , L′α and L′′α are lines and d = 4. Now we note that the
lines of AQ(4, K) meeting L′ outside Q+(3, K), structured by the grids through L′ form
a bi-affine plane, i.e., a projective plane with all points on a line removed, and with all
lines through a point on the first line removed. Projecting AQ(4, K)α from L′α onto a
(d− 2)-dimensional skew subspace U (hence a plane, since d = 2), we now see that one of
these lines G (corresponding to the grid containing L and L′) is projected onto a point.
Let M be any line concurrent with L′, and such that Mα is a line. Then for any line M ′

concurrent with L and such that M ′α is a line, such that M and M ′ are collinear in the
above mentioned bi-affine plane, and such that the joining line meets G, the projection
of M ′α is contained in the span of the projection of Gα and Mα. By connectivity, we now
see that the projection is contained in a projective line, and hence d = 3, a contradiction.

The claim is proved.

A similar argument as the last one in the previous paragraph shows that α is injective
on the set of points. Indeed, if two points of AQ(4, K) are mapped onto the same point
by α, then we can find a line L contained in a grid which is mapped by α into a plane of
PG(d, K) (and that grid contains two points not on L mapped to the same point by α).
Projection from Lα and arguing as above leads to d < 4.

But the very same argument now shows that d = 4. Indeed, projection from a line Lα

yields a sub-bi-affine plane of some plane in PG(d, K), hence d ≤ 2 + 1 + 1 = 4.

Note that the argument above also shows that, if two lines of AQ(4, K) are opposite in
Q(4, K), then their images under α do not meet in PG(4, F).

Now assume that for each line K of AQ(4, K), there is a unique point, which we denote
by xK , of the line Kα not belonging to the image under α of a point of AQ(4, K) incident
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with K. If K and K ′ do not meet in AQ(4, K), but are not opposite in Q(4, K), then we
first claim that xK = xK′ . Indeed, we again project onto a suitable plane π from K the
bi-affine plane corresponding to K. It is easy to see that our assumption above implies
that there are a unique point z and a unique line R in π such that the projection of that
bi-affine plane is the bi-affine plane obtained from π by deleting z and R and all elements
incident with these. It follows directly that the projection of K ′α is one of the deleted
points, and so Kα and K ′α are concurrent. If Kα and K ′α met in a point t different from
xK and xK′ , then there would be some line M of AQ(4, K) with t ∈ Mα and K $= M $= K ′

and M meeting one of K, K ′ in AQ(4, K), say it meets K. But then M is opposite K ′ and
so Mα, K ′α cannot be contained in a common plane, a contradiction. The claim follows.

So the points of Q(4, K) not in AQ(4, K) have a uniquely defined image under α. Suppose
R is a line of Q(4, K) disjoint from AQ(4, K). Then Rα is contained in a unique line of
the regulus of PG(4, K) defined by any grid of Q(4, K) containing R and at least one line
of AQ(4, K). It follows easily that Rα is the complete set of points of a line of PG(4, F).

The proof of the lemma is complete. !

3.2 Bounding the dimension

Let C = (P ,B) be a Hermitian unital over the field K corresponding to the field extension
L. Let α be a Veronesean embedding of C in PG(d, F), with F some field, and with d ≥ 7.
Our first aim is to prove that d = 7.

Let us first recall the following representation of C.

Let AG(4, K) be a 4-dimensional affine space over K, and let PG(4, K) be the corresponding
projective space with hyperplane PG(3, K) at infinity. Let L be any line of PG(2, L)
meeting C in at least two points, and let AG(2, L) be the associated affine plane. Then
AG(2, L) has a natural representation in AG(4, K) using the fact that L is two-dimensional
over K. The lines of AG(2, L) are in bijective correspondence with the planes of AG(4, K)
whose line at infinity belongs to a certain fixed line spread Σ of PG(3, K). The elements
of Σ are in bijective correspondence with the points of L. In this setting, the equation of
C reduces to a quadratic equation in the coordinates in AG(4, K). It is easy to calculate
that this implies that there is a unique non-degenerate quadric Q(4, K) of Witt index 2
in PG(4, K) such that

(BBB1) The points of C off L are precisely the points of Q(4, K) in AG(4, K);
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(BBB2) The intersection of Q(4, K) with PG(3, K) is a non-degenerate hyperbolic quadric
(Witt index 2) Q+(3, K) where one class of generators entirely belongs to Σ;

(BBB3) The blocks of C intersecting L in a point x of C are precisely the lines of Q(4, K)
not in Q+(3, K) intersecting the element of Σ corresponding to x.

The letters “BBB” stand for Bruck & Bose [2] and Buekenhout [3]. The representation of
AG(2, K) above is attributed to Bruck & Bose (although André [1] discovered it ten years
earlier, too), while Buekenhout discovered the correspondence of the Hermitian unitals
with the non-degenerate quadrics in this representation.

So it is now clear that the points off L, together with the blocks of C meeting L non-
trivially form an affine quadrangle which we denote by AQL and which is isomorphic to
AQ(4, K).

Now fix a point x on L, with x ∈ P . The lines through x in PG(2, L) correspond bijectively
to the points of an elliptic quadric Q−(3, K) in a 3-dimensional projective space PG′(3, K)
with equation X0X1 = X2

2−tX2X3+nX2
3 , where L = K(z), with z a root of Z2−tZ+n = 0

(which is irreducible over K). The Baer subpencils over K of the pencil at x in PG(2, L)
correspond bijectively with the non-trivial plane intersections of Q−(3, K). Let M be the
tangent line of C at x in PG(2, L) and let M correspond to the point m of Q−(3, K). Then
the following assertions hold (they can be easily verified using appropriate coordinates).

(BBB4) If a Baer subpencil B of the pencil at x does not contain the line M , but does
contain the line L, then the corresponding set of lines of Q(4, K) together with a
unique line K of Q+(3, K) not belonging to Σ forms one set of generators of a full
non-thick subquadrangle Γ of Q(4, K). Also, Γ contains a unique element of Σ, and
all other lines of Γ correspond to blocks of C meeting all members of B in a point
of C. All these blocks are disjoint and cover all points of C that lie on elements of
B, except for x.

(BBB5) If a Baer subpencil B of the pencil at x contains both L and M , then the corre-
sponding set of lines of Q(4, K) together with two intersecting lines of Q−(3, K) form
a line pencil of Q(4, K). Hence no block of C meets at least 3 blocks that correspond
to members of B.

With slight abuse of language, we will call a set of blocks of C on x corresponding with
the lines of a Baer subpencil in PG(2, L) not containing M , a projective Baer subpencil of
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blocks. If a Baer subpencil in PG(2, L) does contain M , then the corresponding set of |K|
blocks of C is referred to as an affine Baer subpencil of blocks.

We are now ready to prove that d = 7.

Lemma 2 If α is a Veronesean embedding of C in PG(d, F), with d ≥ 7 and with C defined
over K, with |K| > 2, then d = 7.

Proof Let L be any block of C. We project Cα \ Lα from the plane 〈Lα〉 onto a
suitable (d− 3)-dimensional subspace PG(d− 3, F) of PG(d, F). Clearly, the obtained set
is a linear projective stacking of AQ(4, K) and satisfies the condition that, if a line M
of AQ(4, K) is not represented by a point of PG(d − 3, F), then there is a unique point
on the corresponding line of PG(d − 3, F) which is not the image of a point of AQ(4, K).
Lemma 1 now tells us that d− 3 ≤ 4, implying d = 7 !
The previous lemma fails for |K| = 2 as in this case every three points of any projective
space over GF(2) constitute a conic in the plane they generate, and so any generating
set of points of PG(8, 2) provides a Veronesean embedding of the Hermitian unital over
GF(4)/GF(2) (this unital is, by the way, isomorphic to the affine plane AG(2, 3)).

The previous proof combined with Lemma 1 and the classification of full linear projective
embeddings of generalized quadrangles in [4] uniquely determines the projection of Cα

from the plane determined by any of the blocks of C. In particular, we see that all ovals
on Cα must be conics.

3.3 The projection from a point

Next, we want to prove uniqueness of the projection of Cα from a point of Cα. Therefor,
we first determine the dimension of the space ξx generated by the tangent lines to the
various conics through a point xα, x ∈ P , at the point xα.

Let L be a block of C and x a point on L. The blocks through x distinct from L are the
lines of AQL that meet a certain but fixed line at infinity. If B ∈ B denotes such block,
then the tangent line at xα to Bα is projected from the plane 〈Lα〉 onto the unique point
of the projection of B \ {x} that is not a projection of a point of B \ B. All such points
lie on a unique line, by Lemma 1. Hence ξx is contained in the inverse image of that line
under the projection ρ from 〈Lα〉, which is a subspace of dimension 4. It also follows that
ξx does not contain the points of Cα not on Lα, and hence, by varying L though x, ξx

cannot contain any element of (P \ {x})α. So ξx is 3-dimensional.
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Now consider a point y of C not on L. The tangent space ξy is projected by ρ onto the
tangent space of AQL at the projection of yα, which is indeed 3-dimensional. But there,
by considering the blocks through y meeting L, we clearly see that the tangent lines
belonging to a fixed projective Baer subpencil form a quadratic cone with vertex yα.

Now consider an arbitrary affine Baer subpencil in x containing L. Since there can be
no block of C meeting L not in x and meeting another member of that pencil, we see
that in AQL, all corresponding lines go through the same point at infinity, that is to say,
they all share the same point in projection from ρ. Hence, all the tangent lines at xα to
the images under α of the members of this affine Baer subpencil are contained in a solid.
Varying L, we conclude similarly as above that all these lines are contained in a plane.

Now let πx be the plane obtained by projecting the solid ξx from xα. Then each block
through x is represented by a point of πx and this representation is injective. Moreover,
each projective Baer subpencil corresponds to (all points of) a conic in πx and each affine
Baer subpencil to (some points on) a line of πx. Now note that the affine Baer subpencils
in x form an affine plane. Let B be such a pencil, and let Bx be the corresponding line in
πx. Let C be an arbitrary projective Baer subpencil in x and let Cx be the corresponding
conic in πx. Consider a point z ∈ Cx, with z /∈ Bx. Let u vary over Cx, then the line zu of
π determines a unique affine Baer subpencil in x, and exactly one line zu does not meet
Bx in a point of πx that represents a block through x. It follows easily that the points of
Bx that represent blocks through x of C form an affine line of π, and so the affine plane
determined by the affine Baer subpencils, which is an affine plane over K, is isomorphic
to an affine plane in π, hence an affine plane over F. This also proves that K and F are
isomorphic.

It also follows that the pointed Möbius plane at x is represented in πx with points all
points of an affine plane, with pointed circles all lines of this affine plane, and with circles
some conics in that affine plane. We now observe that this representation is unique.

Lemma 3 If the pointed Möbius plane at x is represented in AG(2, K) such that its point
set is the point set of AG(2, K) and its pointed circles are the affine lines of AG(2, K), then
its circles are all (elliptic) conics in AG(2, K) that share two conjugate imaginary points
at infinity in the extension AG(2, L). Hence this representation is projectively equivalent
with the one given at the end of Subsection 2.1.

Proof This follows from the fact that every collineation of AG(2, K) preserves the family
of elliptic conics, due to the Fundamental Theorem of Projective Geometry. !
Let us now project Cα from the point xα, and denote the projection map by σ. Then ξx is
projected onto the plane πx, and by the above, the structure in πx of the pointed Möbius
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plane at x is projectively unique. Let M be a block of C not through x but meeting L.
The plane 〈Mα〉 does not meet the solid ξx, as no plane of PG(4, K) intersecting AQ(4, K)
in a (full) conic contains a point at infinity of AQ(4, K). Hence the projection of Mα

under σ is a conic CM in some plane πM skew to πx. This is projectively unique. For each
point z on CM , there is a corresponding point z′ of C, and there is a corresponding block
xz′ of C, hence there is a corresponding conic through xα, and so a corresponding tangent
line in ξx, which determines a unique point zx in πx. The line zzx is the projection of
(xz′)α. Hence the projection under σ of the image under α of all blocks through x meeting
M is projectively uniquely determined. Moreover, let M ′ be another block meeting all
blocks through x that meet M . Then M ′ασ is a conic meeting all lines zzx above. There
is exactly one conic through each point of each line zzx (indeed, let u be the point, and
let z∗z∗x, z

∗∗z∗∗x be two such lines, then the unique such conic through u meets the line
z∗∗∗z∗∗∗x in the intersection point xz∗∗∗x ∩ 〈u, z∗, z∗∗, z∗x, z

∗∗
x 〉). Hence also this structure is

projectively unique. Notice that everything up to now is defined in a 5-dimensional space
W , and notice that the planes defined by disjoint blocks are also disjoint. Since we may
regard such a pair as arbitrary, we have, in general, that disjoint blocks define disjoint
planes.

For a line Z through x, there is a unique corresponding point xZ of πx which is the
projection of the tangent line at x at the conic Zα.

Now let K be a block through x not meeting M . Then Mασ is not contained in W (this
can be seen using the projection from 〈Lα〉 and Lemma 1). Now there exists a block Y not
through x meeting K and meeting two distinct blocks B1, B2 of the projective Baerpencil
BM in x determined by M , say in the points uK , x1, x2, respectively. There is also a
second block Y ′ not through x meeting K, B1, B2 in, say, uK′ , x′1, x

′
2, respectively. Since

M is not contained in W , all choices for xασ
K and xασ

K′ on Mασ are projectively equivalent.
But once these choices are made, we claim that the rest is uniquely determined. Indeed,
let BY be the projective Baer subpencil in x determined by Y . Then, for each element
Z ∈ BY , the line Zασ is the unique line through xZ meeting both planes 〈uασ

K , xασ
1 , xασ

2 〉
and 〈uασ

K′ , x′1
ασ, x′2

ασ〉 (the fact that this defines a unique point is due to the fact that the
two planes are skew).

From the previous paragraph follows that, whenever three blocks B1, B2, B3 through x are
contained in a projective Baer subpencil, then Bασ

1 ∪Bασ
2 ∪Bασ

3 uniquely determines the
image under ασ of all points on all blocks of that subpencil. But now our claim follows
since in any Möbius plane with circle size at least 4, given two circles C1, C2 meeting in
two distinct points, every point x is contained in a circle meeting C1 ∪ C2 in at least 3
distinct points (indeed, choose points xi ∈ Ci, i = 1, 2, with xi /∈ C1 ∩ C2; then there is
a unique circle C through x, x1, x2. If C intersects both C1 and C2 in respective unique
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points, then replace x2 by another point in C2 \C1—this is possible since circles are large
enough).

3.4 End of the proof of the Main Result

Now, since the image under ασ of B spans a 5-dimensional space, the image under α of
BY spans a 6-dimensional space. So, if we replace B by a projective Baer subpencil not
containing x, we see that the image under α of any projective Baer subpencil is projectively
uniquely determined. In particular, Bα

M is projectively uniquely determined. One checks
that Bα

M is embedded as follows in a hyperplane HM . The space ξx is contained in HM ;
the plane 〈Cα〉, for every block C not through x and meeting all elements of BM , is
skew to ξx, and the conics Bα, for B ∈ BM , meet every such plane (which we will call
horizontal for BM) in unique points and the tangent lines to these conics (which we call
vertical for BM) at x form a quadratic cone in ξx.

Let us make an intermediate but important remark. It is easy to see that the horizontal
planes define a perspectivity between the vertical conics, fixing the point xα. As an
immediate consequence, the set of horizontal planes is determined by three vertical conics
and two horizontal planes.

All tangent lines at x in ξx can be considered as given and their structure is projectively
unique (follows from Lemma 3). Moreover, with the above notation, Kα can be chosen
(outside HM) in a projectively unique way. It follows from our remark in the previous
paragraph that all horizontal planes for BY are determined. Since we also know the
planes corresponding to all vertical conics for BY (as we know their image under σ),
and a horizontal plane meets the plane of any vertical conic in a unique point (belonging
to Cα), all points of Bα

Y are uniquely determined. But now, similarly as for ασ, the
embedding α is completely and projectively uniquely determined.

The proof of our Main Result is complete.

4 Some consequences

4.1 Segre varieties

Here, we describe Veronesean embeddings of Hermitian unitals arising from Segre vari-
eties.
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We keep using our notation L, K, x, etc.

The following initial paragraph holds for every field, but we will only apply it to the fields
L and K. Therefor, we can use the notation L, for the time being.

Let H(L, 1) denote the non-thick generalized hexagon with points set F the set of incident
point-line pairs of PG(2, L), and line set P ∪L the union of the point and line sets (P and
L, respectively) of PG(2, L). We embed H(L, 1) in PG(d, L), with d ∈ {7, 8}, as follows.
Let θ be any field endomorphism of L. Define the map γ : F → PG0(8, L) as follows. For
a given incident point line pair {(x0, x1, x2), [a0, a1, a2]}, with a0x0 + a1x1 + a2x2 = 0, we
define the image under γ as the point with coordinates

(a0x
θ
0, a0x

θ
1, a0x

θ
2; a1x

θ
0, a1x

θ
1, a1x

θ
2; a2x

θ
0, a2x

θ
1, a2x

θ
2).

If θ $= id, then the set of images generates PG(8, L); if θ = id, then all images are (clearly)
contained in the hyperplane (with obvious notation for the variables) with equation X0,0+
X1,1 + X2,2 = 0. In the latter case we obtain part of the Segre variety corresponding with
PG(2, L).

Now let C be the Hermitian unital in PG(2, L) whose corresponding curve has equation
X0X1 + X0X1 = X2X2. We gather the incident point-line pairs consisting of a point of
C and the tangent line to C at that point in the set C!; they have generic coordinates
{(x0, x1, x2), [x1, x0,−x2]}. In order to obtain a Veronesean embedding of C after applying
γ to C!, two necessary conditions must be satisfied. The first one is, that the points of a
block of C are transferred under !γ into a set of planar points of PG(8, L). The second
one is that we can find a subspace PG(8, K) containing all the images.

Let us start with the first one. We consider the block B induced by the line with equation
X2 = 0. Then we obtain as image under γ the following set of points:

{(xθ
0x1, x

θ
1x1, 0; xθ

0x0, x
θ
1x0, 0, ; 0, 0, 0) | x0x1 + x0x1 = 0, x0, x1 ∈ L, (x0, x1) $= (0, 0)}.

Putting x0 = 0 and x1 = 0, respectively, we see that the points (0, 1, 0; 0, . . . , 0) and
(0, 0, 0; 1, 0, . . . , 0) are contained in that image. Hence the first and fifth coordinate must
satisfy a linear equation. Putting x0 = 1, we deduce that x1 = +xθ

1, for some + ∈ L, and
for all x1 ∈ L such that x1 + x1 = 0. Since this set of x1’s is nonempty, we may choose
such a fixed x0; then, for any k ∈ K, also kx0 satisfies the given condition. This implies
k = kθ, for all k ∈ K, which implies that θ is either the identity, or coincides with complex
conjugation.

Suppose that θ coincides with complex conjugation. Labelling the coordinates as (X0,0,
X0,1, . . . , X2,1, X2,2), we easily see that the image under γ of C! is contained in the 5-space
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with equations X0,0 = X1,1, X0,2 + X2,1 = 0 and X1,2 + X2,1 = 0. In fact, we here obtain
the image of C under the ordinary quadric Veronesean of PG(2, L). Since the dimension
is here 5 < 7, we do not consider this case further.

Hence θ is the identity. The image of the block B now lies on the conic with equations
X2

0,0 = X0,1X1,0, X0,0 + X1,1 = X0,2 = X1,2 = X2,0 = X2,1 = X2,2 = 0. We now check
the second condition. Let η ∈ L \ K be arbitrary. We perform the following coordinate
change: 





X ′
0,1 = X0,1,

X ′
0,0 = X0,0 + X1,1,

X ′
1,1 = ηX0,0 + ηX1,1,

X ′
1,0 = X1,0,

X ′
0,2 = X0,2 −X2,1,

X ′
2,1 = ηX0,2 − ηX2,1,

X ′
2,2 = X2,2,

X ′
1,2 = X1,2 −X2,0,

X ′
2,0 = ηX1,2 − ηX2,0.

We now see that C!γ is contained in a subspace PG(7, K) of PG(8, L) with equation
X ′

0,0 + X ′
2,2 = 0. Hence we obtain a Veronesean embedding of C.

We have shown:

Corollary 4 If C is a Hermitian curve over L/K in PG(2, L), then the image of C on the
corresponding Segre variety is a standard Veronesean embedding of C.

4.2 Grassmannians of Hermitian spreads

Consider the generalized quadrangle H(3, L/K) in PG(3, L). Let π be a plane of PG(3, L)
intersecting H(3, L/K) in an ovoid O, which is a non-degenerate Hermitian curve. Con-
sider the Klein correspondence mentioned in Subsection 2.3, which maps the lines of
H(3, L/K) onto the points of a the generalized quadrangle Q−(5, K) in PG(5, K), and the
points of H(3, L/K) are mapped onto the lines of Q−(5, K). The points of O are mapped
onto the lines of a spread S of Q−(5, K), called a Hermitian spread. Embed Q−(5, K) into
a quadric Q(6, K) of Witt index 3. Then there exists a naturally embedded split Cayley
hexagon H(K) on Q(6, K) such that S is precisely the set of lines of Q−(5, K) that also be-
long to H(K). It is also well known, see [12], that the line Grassmannian takes the lines of
H(K) to a generating set of points of some 13-dimensional projective subspace PG(13, K)
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of the space PG(20, K) generated by the full line Grassmannian. Intersecting PG(13, K)
with the full line Grassmannian of PG(5, K) — which has dimension 14 — we see that the
line Grassmannian takes S to a set of points C in a 7-dimensional space PG(7, K). Since,
viewed as a unital, the blocks are reguli, it follows easily that the blocks are transformed
by the line Grassmannian to conics. Also, using an easy explicit calculation, it is easily
seen that C really generates PG(7, K), and by our Main Result, we obtain the classical
Veronesean embedding.

Hence we have shown:

Corollary 5 The line Grassmannian of a Hermitian spread of the quadric Q−(5, K) of
Witt index 2 of PG(5, K) is projectively isomorphic to the standard Veronesean embedding
of the corresponding Hermitian unital.

This can also be seen in a different way. Indeed, In the above description, we extend
PG(6, K) to PG(6, L). Then Q(6, K) is extended to Q(6, L), and H(K) to H(L). The space
PG(5, L), as the extension of PG(5, K) now intersects Q(6, L) in a hyperbolic quadric
Q+(5, L). The lines of H(L) that belong to Q+(5, L) define a subhexagon H the line
Grassmannian of which defines part of a Segre variety corresponding with PG(2, L), see
[12] (the arguments of this construction in the latter easily generalize to the infinite case).
In fact, the lines of H correspond with the flags of PG(2, L), and the elements of S
correspond with the fixed flags under a Hermitian polarity, see [17] (the arguments in the
latter also easily extend to the infinite case). The corollary now follows from Corollary 4.

4.3 Trialities

We show our last corollary.

Corollary 6 Let τ be a triality of Witt index 1, i.e., it has type II (notation as in [15])
and is defined over a field K with characteristic different from 3 and such that K does not
contain nontrivial cubic roots of unity. Let L be the quadratic extension of K defined by
the nontrivial cubic roots of unity. Then the set of absolute points of τ has the structure
of a Hermitian unital C over L/K, where blocks correspond to plane conics. This set of
absolute points is again isomorphic to the standard Veronesean embedding of C.

Proof Over L, the triality τ extends to a triality τ ′, still of type II, but now with
Witt index 2, and the fixed lines form part of the Segre variety corresponding with the
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projective plane PG(2, L), in which the set of absolute points of τ corresponds precisely
to the set of flags of PG(2, L) fixed under a Hermitian polarity, see [15, Théorème 9.2.1].
The assertion now follows from Corollary 4. !

5 Some more properties of Veronesean embeddings
of Hermitian unitals

In this section, we collect some more properties and connections with other geometric
objects. Some proofs require tedious calculations, and we will only be sketchy about
these; other arguments are purely synthetic (once the ground work with coordinates is
finished) and we write these down in detail.

5.1 Some subspaces related to points and blocks

Let again C = (P ,B) be a Hermitian unital over the field K, and α a Veronesean embed-
ding of C in PG(7, K). For convenience, we shall conceive C as a Hermitian curve in the
projective plane PG(2, L). Let x ∈ P be arbitrary. In the beginning of Subsection 3.3, we
showed that the set of tangents at xα to the various conics through xα is contained in a
solid ξx. Moreover, we showed that the lines through xα of this solid which are not tan-
gent lines to any conic form a plane, which we will denote by πx. In fact, it is easy to see
that, if we conceive Cα as a hyperplane section in PG(8, K) of the Hermitian Veronesean
H of PG(2, L) (with corresponding Hermitian Veronesean map ν), then πx is the tangent
plane at xα to the unique elliptic quadric on H through x that intersects the hyperplane
spanned by C in just x (and this elliptic quadric corresponds with the tangent line at x
to C).

From our description of the projection from xα of Cα in Subsection 3.3, we also deduce
that the projection of Cα from the entire subspace ξx is an elliptic quadric with one point a
removed, in some 3-dimensional projective space. The inverse image under this projection
of the tangent plane at a of that elliptic quadric is a hyperplane which we will denote by
χx and call the tangent hyperplane at xα. In the finite case, the above tangent plane to
the ellitpic quadric is the unique plane in the corresponding 3-dimensional space space
that does not meet the elliptic quadric minus the point. It follows that, still in the finite
case, χx is the unique hyperplane in PG(7, K) containing ξx and intersecting Cα in just
x. This implies that, in the finite case, this hyperplane is unique without the assumption
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of containing ξx, since any hyperplane meeting Cα in just x must obviously intersect the
planes spanned by the conics through xα in the tangent lines at xα, and hence contain ξx.

Recall that, for any block L ∈ B, the projection from 〈Lα〉 of Cα \ Lα is a natural
embedding of AQ(4, K). Hence, there is a unique plane in that projection not containing
any projected point of Cα\Lα. The inverse image under the projection of this point is thus
the unique hyperplane of PG(7, K), denoted χL, meeting Cα in Lα. We call it the conic
hyperplane at L. It can equivalently be obtained as follows. For each line M of PG(2, L),
we can consider the reducible Hermitian curve that consists of M only (if M has equation
V = 0, the this curve has equation V · V = 0, where a denotes the image of a ∈ L under
the unique nontrivial element of the Galois group of L/K). The corresponding hyperplane
χM of PG(8, K) meets H in M ν , and is called the quadric hyperplane at M ν . If L is the
intersection of M with C, then one easily sees that χL = χM ∩ PG(7, K). Also, if x ∈ C,
and M is the line in PG(2, L) tangent to C at x, then χx = χM ∩ PG(7, K).

We first prove a lemma.

Lemma 7 The quadric hyperplanes of a Hermitian Veronesean of a projective plane con-
stitute the dual of the Hermitian Veronesean of the dual projective plane.

Proof Let, with abbreviated but obvious notation, the Hermitian Veronesean map be
given by

β : (xi) #→ (xixi; xjxj+1 + xjxj+1; ηxjxj+1 + ηxjxj+1), i, j = 1, 2, 3

where η ∈ L \ K, arbitrary but fixed, and j + 1 must be read cyclically. One calculates
that the dual coordinates of the quadric hyperplane related to the line with equation∑

aixi = 0 equal

[aiai;
ηajaj+1 − ηajaj+1

η − η
;
ajaj+1 − ajaj+1

η − η
].

An easy coordinate change now concludes the proof. !
From this lemma, it follows that the set of quadric hyperplanes of H at quadrics which
intersect PG(7, K) in just one point, is the dual of the standard Veronesean embedding
of C in the space it generates. In particular, all these hyperplanes intersect in a fixed
point N of PG(8, K). It is our intention to show that N belongs to PG(7, K) if and only
if charK = 3. To this aim, we must use coordinates again. While using these, we will
show along the way that the map xα #→ χx, x ∈ C, is part of a polarity if and only if
charK $= 3. In fact, we will do this first. We will also deduce some other consequences,
related to triality later.
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5.2 Points vs. tangent hyperplanes

Proposition 1 The map xα #→ χx, x ∈ C, is part of a polarity ρ in PG(7, K) if and only
if charK $= 3. More in particular,

(i) If charK /∈ {2, 3}, then ρ is an orthogonal polarity of Witt index 3 or 4. The Witt
index is 4 precisely and only when K has no nontrivial cubic roots of unity and L
is the quadratic Galois extension of K with respect to the nontrivial cubic roots of
unity (in other words, L does contain nontrivial cubic roots of unity).

(ii) If charK = 2, then ρ is a symplectic polarity. However, there is a unique quadric
Q in PG(7, K) of Witt index 3 or 4, containing all points of Cα and such that the
tangent hyperplane at xα, x ∈ P, is precisely χx. The Witt index is 4 precisely and
only when K has no nontrivial cubic roots of unity and L is the quadratic Galois
extension of K with respect to the nontrivial cubic roots of unity (in other words, L
does contain nontrivial cubic roots of unity).

(iii) If charK = 3, then there is a unique point N in PG(7, K) such that the map Nxα #→
χx is part of an orthogonal polarity of Witt index 3 in the projection PG(6, K) of
PG(7, K) from N .

Proof This is a ‘computational’ proof, and we will only mention the important steps
(all calculations, however, can be easily done by hand).

First of all, in order to cover all characteristics at the same time, we choose as irreducible
quadratic polynomial defining L the polynomial X2 + X + n = 0, where n ∈ K (this
is always possible). We will write the zeros over L of this polynomial as η and η, and
we use the same η to define the Hermitian Veronesean, see above. The Hermitian curve
C is defined by the equation X0X1 + X0X1 = X2X2. A generic point of this curve has
coordinates

(a + η(bb− 2a), 1, b), a ∈ K, b ∈ L.

Applying β, we obtain the generic point of Cα (for our own convenience and ease of
computations, we have replaced the coordinate corresponding to ηX0X1 + ηX0X1 with
ηX0X1 + ηX0X1) :

(a2 + a(bb− 2a) + n(bb− 2a)2, 1, bb;

bb, b + b, a(b + b) + (bb− 2a)(etab + ηb);

a + 2n(bb− 2a), etab + ηb, a(ηb + etab) + nj(b + b)(bb− 2a)),
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and PG(7, K) clearly has equation Y2 = Y3, denoting coordinates in PG(8, K) by Y0, Y1, . . . , Y8.

The tangent line in PG(2, K) to C at this generic point has equation

(X0 + (a + η(bb− 2a))X1 − bX2)(X0 + (a + η(bb− 2a))X1 − bX2) = 0.

If we denote b = br + biη, then the dual coordinates of the corresponding quadric hyper-
plane in PG(8, K) are:

[1, a2 + a(bb− 2a) + n(bb− 2a)2, bb;

bb− a,−bra− (bb− 2a)(br + nbi),−br − bi;

−bb + 2a, br(bb− 2a)− abi, bi].

We now see that this generic hyperplane contains the fixed point (0, 0,−1; 2, 0, 0; 1, 0, 0).
This point is contained in PG(7, K) if, and only if, −1 = 2, so if, and only if, charK = 3.

Let us first assume that charK $= 3.

One checks that, intersecting the above hyperplane with PG(7, K), we have to delete the
third and fourth entries, but keep the sum of those as third entry. In the coordinates
of the points, we can simply delete the fourth entries. This way, we obtain a coordinate
system in PG(7, K) consisting of 8 coordinates, so that we can calculate with matrices of
the right dimension to recognize polarities.

It is an easy exercise to calculate the coordinates [A0, A1, . . . , A7] of the generic tangent hy-
perplane (which is the intersection of the generic quadric hyperplane above with PG(7, K))
in function of the coordinates (Z0, Z1, . . . , Z7) of the corresponding generic point of Cα.
We obtain, in matrix form, and multiplied with 1− 4n, which cannot be zero anyway:





A0

A1

A2

A3

A4

A5

A6

A7





=





0 1− 4n 0 0 0 0 0
1− 4n 0 0 0 0 0 0 0

0 0 2− 6n 0 0− 1 0 0
0 0 0 0 2n− 1 0 0 1
0 0 0 2n− 1 0 0 1 0
0 0 −1 0 0 2 0 0
0 0 0 0 1 0 0 −2
0 0 0 1 0 0 −2 0





·





Z0

Z1

Z2

Z3

Z4

Z5

Z6

Z7





.

One easily verifies that this is a symplectic polarity if charK = 2, and an orthogonal
polarity otherwise (assuming charK $= 3).
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The corresponding quadric is easy to calculate, in case that the characteristic is not 2 or
3. We obtain:

(1− 4n)Z0Z1 + (2n− 1)Z3Z4 + Z3Z7 + Z4Z6 − 2Z6Z7 = (3n− 1)Z2
2 + Z2Z5 − Z2

5 .

By a simple inspection, one sees that also in characteristics 2 and 3, all points of Cα

are contained in the quadric with the above equation. We denote this quadric by Q. In
characteristic 3, it is immediate that Q is degenerate, since (3n − 1)Z2 + Z2Z5 − Z2

5 =
−(Z2 + Z5)2. Moreover, the point N is the unique vertex of the quadric, and the quadric
projects from N onto a non-degenerate quadric of Witt index 3 (proved similarly to the
general case below). This concludes (iii).

Now suppose charK = 2. First we claim that Q is unique. Indeed, if we view the
corresponding symplectic space as an orthogonal quadric in some 8-dimensional projective
space, then it is easy to see that Q must arise from a hyperplane section. This section is
completely determined by a set of generating points. Since the points xα, for x varying
over C, generate PG(7, K), the claim follows.

Now we write the equation of Q as

Z0Z1 + Z3(Z7 + Z4) + Z4Z6 = Z2
5 + Z2Z5 + (n + 1)Z2

2 ,

which clearly implies that the Witt index is either 3 or 4. Now, the Witt index equals
4 if, and only if, the equation X2 + X + n + 1 = 0 has a solution in K. But we know
that X2 + X + n = 0 does not admit any solution in K. Now, since over any field
(with characteristic 2 of course) reducibility of two of the three polynomial X2 + X + 1,
X2 + X + n, X2 + X + n + 1 implies reducibility of the third (add two respective zeros
together to obtain a zero of the third polynomial), we see that X2 +X +n+1 is reducible
over K if and only if X2 + X + 1 is irreducible over K but reducible over L. Noting that
nontrivial cubic roots of unity satisfy X2 + X + 1 = 0, this completes the proof of (ii).

Now suppose charK /∈ {2, 3}. Substituting 2Z7 by Z4 + Z ′
7 and 2Z6 by Z3 − Z ′

6, the
equation of Q becomes (after multiplying with 2):

2(1− 4n)Z0Z1 + (4n− 1)Z3Z4 + Z ′
6Z

′
7 = (6n− 2)Z2

2 + 2Z2Z5 − 2Z2
5 .

It is now clear that the Witt index is either 3 or 4. It equals 4 precisely when −3(1− 4n)
is not a square in K. But since X2−X +n is irreducible over K, the element 1−4n is not
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a square in K. Note also that −3 is a square in K if, and only if, X2 + X + 1 is reducible
over K, i.e., if, and only if, K contains nontrivial cubic roots of unity. These remarks are
enough to conclude, as above, that the Witt index is 4 if, and only if, K has no nontrivial
cubic roots of unity, but L does.

This completes the proof of the proposition. !
So we know now what the collection of tangent hyperplanes looks like in de dual space
(it is again isomorphic to a standard Veronesean embedding of C, if charK $= 3). But
we also know what the collection of tangent hyperplanes and conic hyperplanes forms.
Moreover, in characteristic 2, there is a nice duality, which has no counterpart in other
characteristics, as far as we can see.

Proposition 2 The collection of all tangent hyperplanes and all conic hyperplanes of
PG(7, K) (with respect to Cα) is anti-isomorphic to the projection from N of H onto a
hyperplane not containing N . Moreover, if charK = 2, then this set is also isomorphic to
Cα union the collection of the nuclei of all conics on Cα.

Proof The first part follows from noting that in the description of the Hermitian
Veronesean of the dual of PG(2, K), the role of the hyperplane PG(7, K) is played by the
point N .

Now let charK = 2. By transitivity of the unitary group on the blocks of C and thus on
the conics of Cα, it suffices to show for one conic C ⊆ Pα that its nucleus K, the point
N and the image under β of the point P of PG(2, K) obtained by applying the unitary
polarity corresponding to C on the line LC defining C, are collinear.

If we take for C the Hermitian curve as above, and for LC the line X2 = 0, then one
easily calculates that P = (0, 0, 1), P β = (0, 0, 1; 0, 0, 0; 0, 0, 0), K = (0, 0, 0; 0, 0, 0; 1, 0, 0).
Hence the line P βK passes through the point N = (0, 0, 1; 0, 0, 0; 1, 0, 0). !

5.3 Triality

We now return to triality and show that and how any Veronesean embedding of a Hermi-
tian unital over K in PG(7, K) uniquely and geometrically determines a triality, if K has no
nontrivial cubic roots of unity, but L does. Of course, we already know that, conversely,
under these assumptions, every such embedding (by uniqueness!) comes from a triality.
But here we show that the triality is unique. In fact, it is geometrically beautiful to see
that we can, starting with the rather sparse embedding of C in PG(7, K), reconstruct the
triality quadric and the triality itself. Here is a sketch.
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Proposition 3 Every triality of Witt index 1 is determined by its set of absolute points.

Proof We have already reconstructed the triality quadric Q of type D4, under the
given assumptions. Let τ be any triality with as set of absolute points the set Cα. Now
we show that the plane πx, x ∈ Cα, is precisely the intersection π′x of xαρ and xαρ2

. We
know that π′x is invariant under the stabilizer in U3(L/K) of xα. If π′x ∩ ξx = {xα}, then
the projection from ξx of π′x would be an invariant line in the quotient space. But this
quotient space is equipped with an elliptic quadric with one point removed, and the above
stabilizer induces a group which does not fix any line in that quotient space (leaving the
details for the reader). If πx meets ξx in a line, then we use the fact (which we again
do not prove, but the reader might do this for himself) that no line of ξx is invariant
(this is easy for lines tangent to conics; for the other lines one uses the fact that they
are tangent lines to an elliptic quadric, which corresponds with the tangent line at x to
C; invariance of a line would mean that on this line a Baer subline is invariant, and this
is a contradiction). Hence π′x must be contained in ξx, and with the same arguments as
before, we must then have π′x = πx. If we now number the two classes of generators of Q
with 1 and 2, then we can assume that xαρi

is the unique generator of type i through πx.
If z is a point of Q not contained in a πx, for any x ∈ C, then z is contained in xαρ and in
yαρ2

, for unique x, y ∈ C (because the image under the triality of C is a so-called spread
of Q). Moreover, our assumption implies that xαρ ∩ yαρ2

= {z}. It then follows that zρ

is the unique generator of type 1 through y and meeting xαρ2
in a plane. Notice that we

now also know the images of generators that at the same time do not contain a point xα

and share a plane with xαρ or xαρ2
. Finally, if z is contained in the plane πx, then we can

take two generators of which we already know the image and which just meet in z and
apply the same method as before.

This completes to proof of the proposition. !

Remark 8 If charK = 3, then the planes πx project from N onto so-called hexagon
planes of a generalized hexagon naturally embedded on the projected quadric. Moreover,
the projection from N of Cα is a natural Hermitian ovoid of that hexagon. This shall be
pursued in a sequel paper. Note that, in this case, the point N behaves partly as a kind
of a “nucleus”, whence the notation for it.
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