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Abstract

We give an explicit description of the Moufang sets of type F4,
i.e. the buildings arising from the simple algebraic groups of absolute
type F4 and relative rank one, over an arbitrary field. We use octonion
planes and certain polarities to find this description, and we rely on
the theory of Albert algebras. We also determine the automorphism
groups of the corresponding exceptional unitals, thereby completing
the program of J. Tits for these non-abelian Moufang sets. In partic-
ular we prove that every automorphism of that unital is induced by a
collineation of the ambient projective plane.
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1 Introduction

Moufang sets were introduced by Jacques Tits in [19] as an axiomization of
the isotropic simple algebraic groups of relative rank one, and they are, in
fact, the buildings corresponding to these algebraic groups, together with
some of the group structure (which comes from the root groups of the al-
gebraic group). In this way, the Moufang sets are a powerful tool to study
these algebraic groups.

Formally speaking, a Moufang set is a set X together with a collection
of groups

(

Ux ≤ Sym(X)
)

x∈X
, such that each Ux acts regularly on X \ {x},

and such that Uϕ
x = Uxϕ for all ϕ ∈ G† := 〈Ux | x ∈ X〉. The groups Ux

are called the root groups of the Moufang set, and the group G† is called its
little projective group. An automorphism of the Moufang set is an element
ψ ∈ Sym(X) such that conjugation by ψ restricted to Ux is an isomorphism

∗The second author is partially supported by the Research Foundation - Flanders
(Belgium) (F.W.O.-Vlaanderen).
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from Ux to Uxψ , for each x ∈ X. For the Moufang sets arising from algebraic
groups of k-rank 1, the set X is the set of all minimal k-parabolics, and each
Ux is the root subgroup of x (or, equivalently, the unipotent radical of x) with
respect to a fixed maximal k-split torus. The Moufang set of an algebraic
group is essentially equivalent to the algebraic group itself; more precisely,
the little projective group of the Moufang set is the adjoint representation
of the algebraic group.

The classical algebraic groups are very well understood, and the cor-
responding Moufang sets also have a satisfying and useful description. In
contrast, the exceptional groups are much less understood, in particular
from an elementary point of view. In this paper, we focus on the algebraic
groups of absolute type F4 and relative rank one (i.e. those of type F 21

4,1 in
the notation of [17]). Of course, these groups are known to arise as the
automorphism group of certain Albert algebras, but this point of view is
often too indirect to be useful. Our aim is to give an elementary descrip-
tion of these Moufang sets, and we immediately illustrate its usefulness by
completing Tits’ program for these groups (see below).

It was known before (see [1]) that the real algebraic group G of type
F 21

4,1 and relative R-rank one, is isomorphic to a centralizer subgroup C of

the polarity π of the real octonion projective plane P2(O) associated with
the standard involution of the real octonions O. Moreover, both points of
view define in a natural way a Moufang set as follows. On the one hand, let
B ≤ G be a Borel subgroup of G and let U be the corresponding unipotent
radical. Then the system (B\G, (Ug)Bg∈B\G) defines a Moufang set. On
the other hand, the group C acts on the set X of incident point-line pairs of
O fixed under the polarity π. For any such pair P ∈ X, the intersection VP

of C with the unipotent radical of the Borel subgroup corresponding with
P and related to the algebraic group of relative rank two, defined by the
automorphism group of the octonion projective plane P2(O), acts sharply
transitively on X \ {P}. The corresponding structure (X, (VP )P∈X) is a
Moufang set which is isomorphic to (B\G, (Ug)Bg∈B\G).

In this paper, we generalize this fact to an arbitrary field of arbitrary
characteristic (explicitly allowing characteristic 2), and we use this fact to
give an elementary description of these Moufang sets (only using an octonion
division algebra over the given field). Not surprisingly, we rely on the theory
of Albert algebras to obtain this result.

As an application, we complete Jacques Tits’ program on algebraic
groups or relative rank one and of type BC1 (i.e., with non-abelian root
groups) for these particular Moufang sets. This program consists of de-
termining the automorphism groups of the associated geometries. These
geometries are defined as follows. Let (X, (Ux)x∈X) be a Moufang set de-
fined by an algebraic group of relative rank one and of type BC1. Then the
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center Z(Ux) of Ux coincides with the commutator subgroup U ′
x and we can

consider the geometry (X,B), with

B = {{x} ∪ yU ′
x : x, y ∈ X,x &= y} ,

with yU ′
x the orbit of y under the action of U ′

x. The conjecture of Tits, yield-
ing a Fundamental Theorem for these geometries, states that Aut(X,B) is
precisely equal to Aut(X, (Ux)x∈X). That is exactly what we prove for the
algebraic groups of type F 21

4,1. In fact, our proof gives the extra informa-
tion that every automorphism of the geometry (X,B) arises from a unique
collineation of P2(O), which is a most satisfying situation.

2 The description

In order to describe the Moufang sets of type F4, we will make use of the
construction of a Moufang set out of a single group and one additional
permutation, as introduced in [3]. We briefly repeat this process.

Let U be a group with composition + and identity 0. (The operation
+ is not necessarily commutative, but it makes sense to choose an additive
notation.) Let X denote the disjoint union of U with {∞}, where ∞ is a
new symbol. For each a ∈ U , we denote by αa the permutation of X which
fixes ∞ and maps x to x + a for all x ∈ U . Let U∞ := {αa | a ∈ U}; this
group is naturally isomorphic to U .

Now suppose that τ is a permutation of U∗ := U \ {0}. We extend τ to
an element of Sym(X) (which we also denote by τ) by setting 0τ = ∞ and
∞τ = 0. Next we set U0 = U τ

∞ and Ua = Uαa
0 for all a ∈ U . Let

M(U, τ) := (X, (Ux)x∈X) .

Of course, this is not always a Moufang set, but it is clear that every Moufang
set arises in this way. (In [3], an explicit criterion is given which determines
when M(U, τ) is a Moufang set.)

We will now describe the group U and the permutation τ for the Moufang
sets of type F4. Let k be an arbitrary commutative field (of any character-
istic), let O be an octonion division algebra over k, and let N and T denote
the (reduced) norm and trace from O to k, respectively. We will denote the
standard involution of O by x (→ x, so that N(x) = xx and T (x) = x + x
for all x ∈ O. Let

U := {(a, b) ∈ O ×O | N(a) + T (b) = 0} .

Then we can make U into a (nonabelian) group by defining the group “ad-
dition”

(a, b) + (c, d) := (a + c, b + d − ca)
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for all (a, b), (c, d) ∈ U ; it is easily checked that this is indeed a group, with
neutral element (0, 0) and with the inverse given by −(a, b) = (−a, b). Now
we define a permutation τ on U∗, by setting

τ(a, b) = (−ab−1, b−1)

for all (a, b) ∈ U∗. Then we can state the main result of this paper as follows.

Theorem 2.1. M(U, τ) is a Moufang set; it is the building of an algebraic
group of type F4 whose k-rank is 1, that is, the group F 21

4,1. Conversely, all

Moufang sets arising as the building of an algebraic group of type F 21
4,1 can

be obtained in this way.

3 Octonion planes

We now give two descriptions of the Moufang projective planes P2(O) defined
over the octonion division algebra O. The first description is very simple
and direct, whereas the second description is needed to see the relation with
the groups of type F4.

We first describe P2(O) as a point-line incidence geometry (P,L, ∗) ob-
tained by extending the affine plane A2(O). The point set P consists of
three types of points. First, we have points of the form (a, b) with a, b ∈ O;
secondly, we have points of the form (c) with c ∈ O; and thirdly, there is one
other point which we denote by (∞). The line set L is defined in a similar
way; it consist of three types of lines: we have lines of the form [m,k] with
m,k ∈ O, lines of the form [&] with & ∈ O, and one other line which we
denote by [∞]. The incidence relation ∗ is defined as follows.

(a, b) ∗ [m,k] ⇐⇒ ma + b = k

(a, b) ∗ [&] ⇐⇒ a = &

(c) ∗ [m,k] ⇐⇒ c = m

(c) ∗ [∞] ∀c ∈ O

(∞) ∗ [&] ∀& ∈ O

(∞) ∗ [∞]

(The three remaining point-line combinations are never incident.) Then
(P,L, ∗) is a Moufang projective plane, which we will denote by P2(O).

Remark 3.1. In fact, ∗ is a subset of (P ×L)∪ (L×P), that is, it consists
of the above relations together with their symmetrized versions, so L ∗ p if
and only if p ∗ L for all p ∈ P and all L ∈ L.

Remark 3.2. This representation has the disadvantage that the line [m,k]
has slope −m rather than m, but for historical reasons, it has become the
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standard way to represent a projective plane; see, for example, [5, Chap-
ter VI].

We now give another description of P2(O), where the points and lines
are described by elements of a reduced Albert algebra. We will describe the
Albert algebras as cubic norm structures [7, §38], so that our approach will
work equally well if char(k) is 2 or 3. We let O3 denote the 3 × 3 matrices
with entries in O, and we denote the transpose of such a matrix by x (→ xt.

Let g :=

(

γ1 0 0
0 γ2 0
0 0 γ3

)

for some fixed elements γ1, γ2, γ3 ∈ k∗. We set

H(O3, g) := {x ∈ O3 | x = g−1xtg ∧ diag(x) ∈ k3} ;

the condition diag(x) ∈ k3 is, in fact, only needed if char(k) = 2. We also
write H(O3, (γ1, γ2, γ3)) for H(O3, g). Then every element x ∈ H(O3, g) can
be written in the form

x =





α1 γ2a3 γ3a2

γ1a3 α2 γ3a1

γ1a2 γ2a1 α3



 ;

we will denote this element by x = (α1,α2,α3; a1, a2, a3). Observe that
H(O3, g) is a vector space of dimension 27 over k. Moreover, we denote
the element (1, 1, 1; 0, 0, 0) simply by 1. Now we set, for every element
x = (α1,α2,α3; a1, a2, a3) ∈ H(O3, g),

N(x) := α1α2α3 −
3

∑

i=1

γjγkαiN(ai) + γ1γ2γ3T (a1a2a3) , (3.1)

where (ijk) are cyclic permutations of (123). Then (k,H(O3, g), N, 1) is
a cubic norm structure, which we will also denote by H(O3, g). Its corre-
sponding trace and adjoint are given by the formulas

T (x, y) =
3

∑

i=1

(αiβi + γjγkT (aibi)) ,

where x = (α1,α2,α3; a1, a2, a3) and y = (β1,β2,β3; b1, b2, b3), and

x% = (δ1, δ2, δ3; d1, d2, d3)

with δi = αjαk − γjγkN(ai) and di = γi ajak − αiai for each cyclic permu-
tation (ijk) of (123). We will also use the notation T (x) := T (x, 1). The
linearization of the adjoint map is denoted by x × y := (x + y)% − x% − y%;
this “product” × is sometimes called the Freudenthal cross product of the
cubic norm structure. Note that the quadratic maps

Ux : H(O3, g) → H(O3, g) : y (→ T (x, y)x − x% × y

make H(O3, g) into an (exceptional) quadratic Jordan algebra over k of
degree 3, which we will denote by J(H(O3, g)).

5



Remark 3.3. This construction is equally possible if O is an octonion al-
gebra which is not a division algebra (and is hence split); the corresponding
Albert algebra is then also called split. It is also possible to define Albert
division algebras, as those division algebras which become isomorphic to a
split Albert algebra after scalar extension to the algebraic (or separable)
closure k. These algebras can be described explicitly by the so-called Tits
constructions, but we will not need these explicit constructions here.

Now we can define an incidence structure (P̂ , L̂, ∗) as follows. We let
P̂ := {(x) | x ∈ H(O3, g), x &= 0, x% = 0}; two elements (x) and (x′) denote
the same point of P̂ if and only if x and x′ are proportional, i.e. kx = kx′.
Similarly, L̂ := {[y] | y ∈ H(O3, g), y &= 0, y% = 0}, where [y] and [y′] denote
the same line of L̂ if and only if ky = ky′.

We define the incidence relation ∗ by

(x) ∗ [y] ⇐⇒ T (x, y) = 0 .

Then (P̂ , L̂, ∗) is a projective plane which is isomorphic to P2(O); we will
denote this incidence geometry by P2(O)g.

Remark 3.4. If O is the split octonion algebra over k, then this incidence
structure gives rise to a so-called Hjelmslev-Moufang plane. These are not
projective planes (two lines may intersect at more than one point), but by in-
troducing other relations in addition to incidence, some interesting geometric
properties arise. (To be correct, the relation defined by T (x, y) = 0 is then
called connectedness, whereas incidence has a more restrictive definition.)
We refer to [13, 16, 21] for more details, and to [4] for a characteristic-free
study of these geometries.

Proposition 3.5. Let g := diag(γ1, γ2, γ3). The maps

(a, b) (→ (γ1N(b), γ2N(a), γ3; a, b, ba)

(c) (→ (γ1N(c), γ2, 0; 0, 0,−c)

(∞) (→ (1, 0, 0; 0, 0, 0)

[m,k] (→ [γ2γ3, γ1γ3N(m), γ1γ2N(k);−γ1mk,−γ2k, γ3m]

[&] (→ [0, γ3, γ2N(&);−&, 0, 0]

[∞] (→ [0, 0, 1; 0, 0, 0]

form an isomorphism from P2(O) to P2(O)g; we will denote this isomor-
phism by φg.

Proof. By writing out the conditions for an element x ∈ H(O3, g) to satisfy
x% = 0, it is easily checked that φg(P) = P̂ and φg(L) = L̂. An easy
calculation then shows that φg(a, b)∗φg [m,k] if and only if N(ma+b−k) = 0,
that is, if and only if (a, b) ∗ [m,k] (since O is a division algebra). A similar
(and even easier) calculation settles the other cases.
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Remark 3.6. Even though the Albert algebra H(O3, g) depends on the
choice of g, the projective plane P2(O)g which we have obtained from it, is
(up to isomorphism) independent of this choice, as follows from Proposition
3.5.

One of the reasons that the Albert algebras are well studied, is their
relation with the exceptional algebraic groups of type F4.

Theorem 3.7. Let H(O3, g) be an arbitrary Albert algebra over k (so O is
possibly split). Then Aut(H(O3, g)) is an algebraic group of type F4. Let r
be its k-rank; then r ∈ {0, 1, 4}. Moreover, r = 4 if and only if H(O3, g) is a
split Albert algebra, and r ≥ 1 if and only if H(O3, g) has non-zero nilpotent
elements.

Proof. Let J := H(O3, g). The fact that Aut(J) is an algebraic group of
type F4 was first proven by Chevalley and Schafer for fields of characteristic
different from 2 and 3 in the context of Lie-groups [2], and generalized to
arbitrary fields by Springer [14]; see also [7, (25.13) and (26.18)]. The facts
about the k-rank can be found, for example, in [17, p. 60–61] for fields of
characteristic different from 2 (without proof).

In general characteristic, one could argue as follows. (We are grateful to
T. A. Springer for explaining the ideas to us.) Assume that the k-rank of
G = Aut(J) is positive, i.e. G is isotropic, and let T be a maximal k-split
torus of G. Consider the natural k-rational representation α : G → GL(J0),
where J0 is the subspace of trace zero elements of J (and hence J = 〈1〉⊕J0).
Let v be a weight vector for T with weight χ; then α(g)(v) = χ(g) · v for all
g ∈ T . Since α(g) induces an element of Aut(J), this implies N(1+χ(g)·v) =
N(1 + v) for all g ∈ T , hence N(1 + tv) = N(1 + v) for all t ∈ k

∗
; by Zariski

density, this constant has to be N(1) = 1, and it follows by [14, Prop. 3.15]
that v is nilpotent. By the same argument, if dim(T ) > 1, there are pairwise
nonproportional orthogonal nilpotent elements, which can only happen if J
is split.

Conversely, if J is split, then it is k-isomorphic to H(O3, 1) with O split,
and then G is split; see, for example, [15, Theorem 17.6.3(ii)]. Assume finally
that J has nilpotent elements; then it follows from [15, Theorem 17.6.5(ii)]
that G is isotropic over k.

4 Polarities

We recall that a polarity of an incidence structure (P,L, ∗) is a map π which
maps P to L and L to P, which is incidence preserving and of order 2. A
point or a line a ∈ P ∪ L is called absolute (with respect to π) if a ∗ π(a).
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The octonion plane P2(O)g = (P̂ , L̂, ∗) inside H(O3, g) has a very natural
polarity, which is simply given by π̂g : (x) ↔ [x]. It is clear from the
definitions of P2(O)g and π̂g that every element of Aut(H(O3, g)) induces a
collineation of P2(O)g which commutes with the polarity π̂g. More precisely:

Theorem 4.1. Let G be the collineation group of P2(O)g, and let G† be
the little projective group of P2(O)g (that is, the subgroup of G generated by
all elations of the projective plane). Let ψ be the natural group morphism
from Aut(H(O3, g)) to G. Then ψ is an isomorphism from Aut(H(O3, g))
to CentG†(π̂g), the group consisting of the elements of G† which commute
with π̂g.

Proof. Let J := J(H(O3, g)). Following [6], we denote by M1(J) the group
of norm-preserving linear maps from J to itself. (This is, in fact, an algebraic
group of type E6, but we will not need this.) Then for every element η ∈
M1(J), there is a corresponding element η̂ ∈ M1(J) such that T (a, b) =
T (aη, bη̂) for all a, b ∈ J ; we have that η = η̂ if and only if η ∈ Aut(J).
Every such an η ∈ M1(J) induces a collineation of P2(O)g by the maps

P → P : (x) (→ (xη) ; L → L : [y] (→ [yη̂] ; (4.1)

so the map ψ extends to a map from M1(J) to G. In fact, we have that
ψ(M1(J)) = G†. In characteristic different from two, this is [6, Chap IX,
Sect. 8, Thm. 13]; in general characteristic, this follows from [4, Theorem
4.3 together with the argument preceding Lemma 4.9]. Note that Jacobson
uses the term “elation” where Faulkner uses “transvection”.

On the other hand, it follows from (4.1) that η = η̂ if and only if ψ(η)
commutes with π̂g, and hence ψ(Aut(H(O3, g))) = CentG†(π̂g).

It remains to show that ψ is injective. But this follows immediately from
[6, Chap IX, Sect. 8, Lemma 1]. (Jacobson’s proof works in all characteris-
tics. Note that his cross product × is half of ours.)

Using Proposition 3.5, it is easily verified that this polarity π̂g corre-
sponds to the polarity πg of P2(O) given by the maps

(a, b) ↔ [γ−1
1 γ2 ab−1,−γ−1

1 γ3 b−1] (b &= 0)

(a, 0) ↔ [−γ−1
2 γ3 a−1] (a &= 0)

(0, 0) ↔ [∞]

(c) ↔ [−γ−1
1 γ2 c−1, 0] (c &= 0)

(0) ↔ [0]

(∞) ↔ [0, 0] .

We would now like to know under which conditions these polarities
have absolute points, and we will need the quadratic Jordan algebra J =
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J(H(O3, g)) for this. Even though there is no multiplication on J , it makes
sense to define powers of elements of J , by setting x0 := 1, x1 := 1, and
then recursively xn+2 := Ux(xn) for all natural numbers n; in particular,
x2 = Ux(1) and x3 = Ux(x). We first recall some well known properties of
quadratic Jordan algebras of degree 3.

Lemma 4.2. For all x, y ∈ J , we have

(i) x3 − T (x)x2 + T (x%)x − N(x)1 = 0 ;

(ii) x% = x2 − T (x)x + T (x%)1 ;

(iii) 2T (x%) = T (x)2 − T (x2) ;

(iv) T (x × y) = T (x)T (y) − T (x, y) .

Proof. See, for example, [10].

Lemma 4.3. The polarity π̂g has absolute points if and only if there exists
an element x ∈ J(H(O3, g)) such that x &= 0 and x2 = 0.

Proof. We first note that the Jordan algebra J = J(H(O3, g)) is power
associative (see [8] for a precise characteristic-free formal definition of this
notion). This follows from [8, Proposition 1], since an Albert algebra never
contains non-zero absolute zero divisors (i.e. elements z &= 0 such that
Uz = 0); see, for example, [9, p. 209]. In particular, if zn = 0 for some z ∈ J
and some natural number n, then zm = 0 for every natural number m ≥ n.

Now let (x) ∈ P; then x &= 0 and x% = 0 by the definition of P. By
definition, (x) is absolute with respect to π̂g if and only if (x) ∗ [x], that
is, if and only if T (x, x) = 0. Since x × x = 2x% = 0, it follows from
Lemma 4.2(iv) that T (x, x) = T (x)2, and hence (x) is absolute if and only
if T (x) = 0. Also, Lemma 4.2(ii) simplifies to x2 = T (x)x, and hence (x) is
absolute if and only if x2 = 0.

It remains to show that, if x ∈ J is such that x &= 0 and x2 = 0, then
x% = 0. Because of the power associativity, x2 = 0 implies that x3 = 0 as
well. Hence Lemma 4.2(i) implies that T (x%)x = N(x)1, and since x cannot
be a multiple of 1, this implies that T (x%) = 0. By Lemma 4.2(iii), T (x) = 0,
and by Lemma 4.2(ii) we can conclude that x% = 0.

Lemma 4.4. The polarity π̂g has absolute points if and only if J(H(O3, g))
has non-zero nilpotent elements.

Proof. Since J = J(H(O3, g)) is power associative, xn = 0 for some x ∈
J \{0} and some natural number n implies y2 = 0 for y = x&n/2', and hence
the result follows from the previous lemma.
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Theorem 4.5. Let H(O3, g) be a non-split Albert algebra over k. Then the
following are equivalent.

(i) The polarity π̂g has absolute points ;

(ii) J(H(O3, g)) has non-zero nilpotent elements ;

(iii) H(O3, g) ∼= H(O3, (1,−1, 1)) ;

(iv) Aut(H(O3, g)) has k-rank 1 .

Proof. The equivalence (i)⇔(ii) is Lemma 4.4; the equivalence (ii)⇔(iv)
follows from Theorem 3.7. The equivalence (ii)⇔(iii) (for fields of arbitrary
characteristic) follows from Springer’s Theorem [12, 11]; see also [10].

It is clear from (iv) of this theorem that this is the case we are interested
in; we will assume from now on that π̂g has absolute points. By (iii), we
may in fact assume that g = diag(1,−1, 1). The polarity πg now gets the
easy form

(a, b) ↔ [−ab−1,−b−1] (b &= 0) ; (c) ↔ [c−1, 0] (c &= 0) ;

(a, 0) ↔ [a−1] (a &= 0) ; (0) ↔ [0] ;

(0, 0) ↔ [∞] ; (∞) ↔ [0, 0] .

(4.2)

Clearly, the flags (1, 0) ∗ [1] and (1) ∗ [1, 0] are absolute with respect to πg.
It will often be more convenient to have the flags (∞) ∗ [∞] and (0, 0)∗ [0, 0]
as absolute flags, so we will apply a transformation which maps the former
to the latter. It turns out that the resulting polarity π then gets the very
easy form

(a, b) ↔ [a,−b] ; (c) ↔ [c] ; (∞) ↔ [∞] . (4.3)

The absolute points of this polarity π are given by the set

X = {(a, b) ∈ P | N(a) + T (b) = 0} ∪ {(∞)} .

Observe that X \ {(∞)} is precisely the set U as in section 2.

5 Moufang structure

We would now like to recover the Moufang structure on the set X arising
from the rank one group Autk(H(O3, g)). By Theorem 4.1, this group acts
on X, and its action is obtained by restricting the action of the little projec-
tive group G† of the projective plane P2(O) to the action of H† := CentG†(π)
on the set X. In particular, the action of the unipotent radical of a minimal
parabolic k-subgroup of the group H† (which is, by Theorem 3.7 and The-
orem 4.1, an algebraic group of absolute type F4 of k-rank 1) is obtained
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by the restriction to X of the action of the unipotent radical of a mini-
mal parabolic k-subgroup of the group G† (which is an algebraic group of
absolute type E6 of k-rank 2).

We will now explicitly compute this action. We fix an arbitrary minimal
k-parabolic subgroup of H†, that is to say, we fix an arbitrary maximal flag
of X; see, for example, [18, Theorem 5.2]. Recall that H† has k-rank one, so
maximal flags of X are simply elements of X. We choose the element (∞) as
our maximal flag; the corresponding maximal flag of P2(O) is

(

(∞), (∞)π
)

=
(

(∞), [∞]
)

. The minimal k-parabolic subgroup PH corresponding to (∞) in
H† is a k-subgroup of the minimal k-parabolic subgroup PG corresponding
to

(

(∞), [∞]
)

in G†. We may now choose an arbitrary maximal k-split torus
TG of PG (all maximal k-split tori are k-conjugate). Again by [18, Theorem
5.2], this amounts to choosing an arbitrary apartment containing the flag
(

(∞), [∞]
)

; we choose the apartment X through the points (0), (0, 0) and
(∞). The corresponding unipotent radical UG of PG is equal to the product
of the three root groups corresponding to the pair

(

X,
(

(∞), [∞]
))

. Let U1

be the group of collineations fixing all points on the line [0] and all lines
through the point (∞); let U2 be the group of collineations fixing all lines
through the point (∞) and all points on the line [∞]; let U3 be the group of
collineations fixing all points on the line [∞] and all lines through the point
(0). Then UG = U1U2U3. More explicitly, we have U1 = {x1(M) | M ∈ O}
where

x1(M) :
(a, b) (→ (a, b − Ma)
[m,k] (→ [m + M,k]

;

U2 = {x2(B) | B ∈ O} where

x2(B) :
(a, b) (→ (a, b + B)
[m,k] (→ [m,k + B]

;

U3 = {x3(A) | A ∈ O} where

x3(A) :
(a, b) (→ (a + A, b)
[m,k] (→ [m,k + mA]

.

(We have omitted the actions on the points (c) and the lines [&]; it is clear how
to extend these maps.) It follows that UG = {x(A,B,M) | A,B,M ∈ O}
where x(A,B,M) := x1(M)x2(B)x3(A), and hence

x(A,B,M) :
(a, b) (→ (a + A, b + B − Ma)
[m,k] (→ [m + M,k + B + mA + MA]

. (5.1)

The subgroup of UG consisting of the elements which stabilize the set X,
will be the unipotent subgroup UH of PH corresponding to its k-split torus
which is the stabilizer of the apartment {(0, 0), (∞)} of the Moufang set
with underlying set X (i.e. the rank 1 building of the group H† over k).
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Since the k-rank of H† is 1, UH will be equal to the root group U∞ of the
Moufang set X.

So let ϕ = x(A,B,M) be an element of UG stabilizing X. In particular,
by (5.1), ϕ maps the flag (0, 0) ∗ [0, 0] to the flag (A,B) ∗ [M,B + MA], and
this flag has to be fixed under π. Hence M = A and B + MA = −B, or
equivalently, (A,B) ∈ X and M = A. We will write x(A,B) for x(A,B,A),
for all (A,B) ∈ X. Conversely, a simple calculation using (5.1) shows that
every element of the form x(A,B) with (A,B) ∈ X, stabilizes X. It follows
that U∞ = UH = {x(A,B) | (A,B) ∈ X} and, again by (5.1), that its action
on X is given by

x(A,B) : (a, b) (→ (a + A, b + B − Aa) . (5.2)

In particular,

x(A,B) · x(C,D) = x(A + C,B + D − CA) ,

and therefore U∞ is indeed the group U as we have described in section 2.

It only remains to find a collineation σ of P2(O) which commutes with π
and interchanges the points (0, 0) and (∞); let τ be the restriction to X of
such a map σ. Since σ is a collineation, U τ

∞ = Uσ
H will be a root group again,

and will therefore coincide with the root group U(0,0) of the Moufang set X.
It follows that the construction of M(U∞, τ) as described in section 2 will
then indeed yield the Moufang set which is the rank 1 building corresponding
to H†.

Such a collineation σ is given by the map

σ :
(a, b) (→ (−ab−1, b−1)
[m,k] (→ [k−1m,k−1]

,

and its restriction τ to X is indeed the map τ as described in section 2. This
finishes the proof of Theorem 2.1.

6 Tits’ program

Let X be the set of absolute points of the polarity π of P2(O). We endow
X with all subsets of X obtained by intersecting X with lines of P2(O) that
meet X in at least two points. We denote this family of subsets by B and
call its elements blocks. As we will show in Lemma 6.1 below, the incidence
structure U(O) := (X,B) is the Tits unital corresponding to the Moufang set
M(U∞, τ) relative to Z(U∞), i.e. the elements of B are precisely the images
under 〈U∞, U0〉 of the subset {(∞)} ∪ (0, 0)Z(U∞) = [0] ∩ X (where we use
the standard notation xG for the orbit of the element x under the action
of the group G). In particular, the groups U∞ and U0, and hence also the
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little projective group S := 〈U∞, U0〉, are automorphism groups of U(O),
and hence the full automorphism group of U(O) acts doubly transitively
on X.

Lemma 6.1. The elements of B are precisely the images under 〈U∞, U0〉 of
the subset {(∞)} ∪ (0, 0)Z(U∞) = [0] ∩ X.

Proof. We have to show that an arbitrary block of U(O) is the intersection
of U(O) with a line of P2(O). Since both the centralizer of the polarity
π in the automorphism group of P2(O) and the little projective group S
of the Moufang set M(U∞, τ) act doubly transitively on X, it suffices to
show this for the block defined by the orbit under Z(U∞) of the point (0, 0).
An element x(a, b) ∈ U∞ lies in the center if and only if ca = ac for all
c ∈ O, and this happens precisely when a = 0; it follows that the orbit of
(0, 0) under Z(U∞) is equal to {(0, b) | T (b) = 0}, and this is precisely the
intersection of the line [0] with the set X.

We now address the question whether the full automorphism group of
U(O) is induced by automorphisms of P2(O). This contributes to the fun-
damental program explained by Jacques Tits in his lectures at Collège de
France, see [20], which has as aim to determine the full automorphism group
of all unital-like geometries defined by Moufang sets with nonabelian root
groups.

We will answer the question affirmatively. In the following theorem,
Aut(X,B) denotes the set of permutations of X that preserve the family B.
Also, Aut(X, (Ux)x∈X) is the set of permutations of X that, under conjuga-
tion, preserve the family {Ux : x ∈ X}.

Theorem 6.2. Let (X, (Ux)x∈X) be an arbitrary Moufang set of type F4,
and let

B = {{x} ∪ yZ(Ux) : x, y ∈ X,x &= y} .

Then
Aut(X,B) = Aut(X, (Ux)x∈X) .

Moreover, if we consider an arbitrary embedding of the Tits unital U(O) =
(X,B) in P2(O) (as set of absolute points of an associated polarity ρ), then
every element of Aut(X,B) arises from a unique collineation of P2(O) which
stabilizes the unital U(O).

Since it is clear that every collineation of P2(O) which stabilizes U(O)
induces an element of Aut(X, (Ux)x∈X), and also that every element of
Aut(X, (Ux)x∈X) induces an element of Aut(X,B), it suffices to show the
last part. We start with some lemmas.
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Lemma 6.3. Let a, b ∈ X, a &= b. For a block B containing b, let Sa(B) be
the set of blocks containing a and meeting B. If B,B′ are blocks containing
b, then Sa(B) = Sa(B′) if and only if B = B′.

Proof. By the double transitivity, we may assume a = (∞) and b = (0, 0).
The other points of X are (x, y), with xx + y + y = 0, x, y ∈ O. Now let B
and B′ be two blocks of U(O) subtended from the lines L,L′, respectively.
Clearly, if B = B′, then Sa(B) = Sa(B′). Hence, we assume from now on
that Sa(B) = Sa(B′) and show that B = B′. Let L and L′ have coordinates
[&, 0] and [&′, 0], respectively. The line with coordinates [x] subtends a block
of U(O) that meets B if and only if there exists y ∈ O with xx + y + y = 0
and &x + y = 0. This is equivalent with xx = &x + x&. Our assumption now
implies that

Ξ := {x ∈ O | xx = &x + x&} = {x ∈ O | xx = &′x + x&
′
} =: Ξ′ .

Hence all x ∈ Ξ satisfy the relation &x+x& = &′x+x&
′
, which can be written

as T ((&− &′)x) = 0. Since we assume & &= &′, and since not all elements of O
have trace zero, we may select an element y ∈ O such that T ((&− &′)y) &= 0.
Let now p vary over the center k of O, and express that py belongs to Ξ.
We obtain the condition p2yy = p(&y +y&). Hence there is a unique nonzero
solution p0 such that p0y ∈ Ξ. But clearly T ((&−&′)p0y) = p0T ((&−&′)y) &= 0,
a contradiction.

This has the following consequence. We denote by G the full automor-
phism group of U(O).

Corollary 6.4. The little projective group S of the Moufang set M(X∞, τ)
is a normal subgroup of G. Also, S is uniquely determined by U(O).

Proof. We show that Z(U∞) is equal to the set of elements of G which
fix all blocks through (∞); the result will then follow from the fact that
S = 〈Z(Ua) | a ∈ X〉.

It is easy to check that Z(U∞) indeed fixes all these blocks, and acts
sharply transitively on the points of any of these blocks except for the point
(∞). Now suppose that some element g ∈ G does not belong to Z(U∞) and
fixes all blocks that contain (∞). Upon replacing g by a suitable element of
gZ(U∞) we may suppose that g fixes some point b. Now put (∞) = a and
apply the previous lemma. We obtain that g must fix all blocks through b,
but since there is a unique block through every two points, it must then
clearly fix all points of U(O).

We now consider an arbitrary embedding (as set of absolute points of
an associated polarity ρ) of U(O) in P2(O). Every block B is contained in
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some line LB, and the blocks C for which LC is incident with Lρ
B will be

called conjugate to B. Our next aim is to prove that we can recognize this
conjugacy relation in the abstract Tits unital.

But before we proceed, we construct a collection of collineations of P2(O)
which lie in the little projective group.

Lemma 6.5. Let r, s ∈ O∗. Then the maps

(a, b) (→
(

s(a · sr), rb · sr
)

, for all a, b ∈ O ,

[m,k] (→
[

r · ms−1, rk · sr
]

, for all m,k ∈ O ,
(6.1)

form a collineation of P2(O) which lies in the little projective group. More-
over, if N(r) = N(s) = 1, then this collineation commutes with the polarity
π(1,−1,1) as given in (4.2), so in particular, it stabilizes the unital U(O) (with
respect to this embedding), and therefore induces an element of S.

Proof. Let J := H(O3, (1,−1, 1)), and consider the map χr,s from J to itself
given by

χr,s : (α,β, γ; a, b, c) (→ (αN(r),βN(s), γN(r)−1N(s)−1;

N(r)−1N(s)−1s(a · sr), N(r)−1N(s)−1r s · br, r · cs)

for all α,β, γ ∈ k and all a, b, c ∈ O. This map is clearly k-linear. Using the
formula (3.1) for the norm N of J , and recalling that O is “commutative
and associative under the trace”, it is not very hard to calculate that χr,s

is norm-preserving; therefore, by (4.1), it induces an element of the little
projective group of P2(O). Its companion automorphism χ̂r,s is given by

χ̂r,s : (α,β, γ; a, b, c) (→ (αN(r)−1,βN(s)−1, γN(r)N(s);

N(s)−1s(a · sr), N(r)−1r s · br,N(r)−1N(s)−1r · cs)

for all α,β, γ ∈ k and all a, b, c ∈ O. Indeed, it is easily checked that
T (xη, yη̂) = T (x, y) for all x, y ∈ J .

Moreover, if N(r) = N(s) = 1, then χr,s = χ̂r,s, and hence these
maps are automorphisms (alternatively, these maps then fix the element
1 = (1, 1, 1; 0, 0, 0)); by Theorem 4.1, the induced collineation then com-
mutes with the polarity π(1,−1,1).

It remains to check (for arbitrary r and s again) that the collineation
induced by the pair (ηr,s, η̂r,s) as in (4.1) is given by the formulas (6.1). It
follows from Proposition 3.5 with γ1 = −γ2 = γ3 = 1 that the isomorphism
φ from P2(O) to P2(O)(1,−1,1) is given by the maps

(a, b) (→
(

N(b),−N(a), 1; a, b, ba
)

, for all a, b ∈ O ,

[m,k] (→
[

−1, N(m),−N(k);−mk, k,m
]

, for all m,k ∈ O ;
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recall that the coordinates of the elements of P2(O)(1,−1,1) are only defined
up to scalar multiplication. Now one can compute from these maps, together
with the formula for χr,s for the points (where it suffices to look at the third,
fourth and fifth coordinates) and for χ̂r,s for the lines (where it suffices to
look at the first, fifth and sixth coordinates) that the induced collineation
is given by

(a, b) (→
(

s(a · sr), r s · b r
)

, for all a, b ∈ O ,

[m,k] (→
[

N(s)−1r · ms, r s · k r
]

, for all m,k ∈ O ;

using the fact that s−1 = N(s)−1s, we get the formulas (6.1) as required.

Lemma 6.6. Let B be any block. Then the stabilizer in S of B acts tran-
sitively on the set of blocks conjugate to B.

Proof. We consider the embedding as given at the end of Section 4, so that
the polarity ρ takes the form (4.3). We may choose LB = [0]; then Lρ

B = (0).
A line [0, k] through (0) meets the unital nontrivially (meaning: in at least
two points) if and only if −T (k) is a nonzero norm n in O. Let r be an
arbitrary nonzero element of O. Consider the map gr, r ∈ O∗, from P2(O)
to itself, given by

(a, b) (→ (rr−1 · ar, rb · r) , for all a, b ∈ O ,

[m,k] (→ [r(m · rr−1), rk · r] , for all m,k ∈ O .

By Lemma 6.5 with s = rr−1, we see that gr is a collineation of P2(O) which
belongs to the little projective group. It is easy to check, using the fact
that any subalgebra of O which is generated by two elements is associative,
that gr commutes with the polarity ρ and hence is an automorphism of the
unital U(O); since it lies in the little projective group of P2(O), it follows
that gr ∈ S for all r ∈ O∗.

Now let [0, k′] be a second line meeting the unital nontrivially, and let
−T (k′) = n′, with n′ a nonzero norm in O. Then n′n−1 is also a nonzero
norm in O, say n′n−1 = N(r). So gr maps [0, k] onto some line [0, k′′] with
T (k′′) = n′n−1T (k) = T (k′) and hence T (k′ − k′′) = 0.

Now the mapping E(k′ − k′′) ∈ Z(U∞) defined by

(a, b) (→ (a, b + k′ − k′′) , for all a, b ∈ O ,

[m, z] (→ [m, z + k′ − k′′] , for all m, z ∈ O ,

maps [0, k′′] to [0, k′] and so gsE(k′− k′′) maps [0, k] onto [0, k′] and belongs
to S.

This now implies the following:
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Lemma 6.7. The stabilizer in S of any block B acts transitively on the
points of U(O) off B.

Proof. In view of the previous lemma, we only need to show that the stabi-
lizer in S of two conjugate blocks B and B′ acts transitively on B′.

To show this, consider the first embedding of the unital, where the unital
is given by the polarity (4.2). More exactly, the point set consists of the
points with coordinates (a, b), with N(a) − N(b) = 1, together with the
“points at infinity” (c), with N(c) = 1. We may take for B the block
consisting of the points at infinity, and for B′ the block consisting of the
points (a, 0), with N(a) = 1. Let x, x′ ∈ O have norm 1, then put r = x−1x′

(hence N(r) = 1), and consider the map hr from P2(O) to itself defined by

(a, b) (→ (ar, rbr) , for all a, b ∈ O ,

[m,k] (→ [rm, rkr] , for all m,k ∈ O .

Then hr maps (x, 0) to (x′, 0) and by Lemma 6.5 with s = 1, hr ∈ S.

The next lemma characterizes and recognizes conjugate blocks.

Lemma 6.8. For every block B and every point P of the unital off B, there
is a unique block B′ through P which is invariant under the stabilizer in S
of B and P . The blocks B and B′ are conjugate.

Proof. We consider the embedding used in the previous lemma, and we may
take, by the previous lemma, for B the block of points at infinity, and for P
the point (1, 0). Let s be an arbitrary element of O with norm 1. Then by
Lemma 6.5 with r = s−2, the map is from P2(O) to itself defined by

(a, b) (→ (s · as−1, s−2b · s−1) , for all a, b ∈ O ,

[m,k] (→ [s−2 · ms−1, s−2k · s−1] , for all m,k ∈ O .

belongs to S, and it clearly fixes both B and P . Let B′ be the block through
(1, 0) conjugate to B, and suppose that some block C &= B′ containing (1, 0)
is fixed by all such is. Since the line (1) does not define a block (it is
a tangent line, the absolute line equal to the polar image of (1, 0)), there
exists a nonzero element m ∈ O∗ such that C = [m,m]. Hence we have the
identity

s−2ms−1 = m ,

for all s ∈ O with N(s) = 1. Equivalently, s2ms = m, for all norm 1
elements s. Putting s = −1, we see that m = −m, hence the characteristic
of k is equal to 2. It now follows that, for all elements x ∈ O, the identity

x2mx = x2mx
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holds (putting s = xx−1).

Substituting x + 1 for x and cancelling out the common terms m and
x2mx = x2mx, we obtain

(x + x)2m = m(x + x)

for all x ∈ O, and hence T (x) ∈ {0, 1} for all x ∈ O with T (x) &= 0, which
is a contradiction since the octonions over the field of two elements is not s
division algebra.

From now on, we consider the embedding of U(O) in P2(O) where the
unital is given by the polarity (4.3). We show that every g ∈ G is induced by
a collineation of P2(O). Since G acts two-transitively on X, we may assume
that g fixes the points (∞) and (0, 0).

A block defined by the intersection of a line L with the point set X of
the unital will be denoted by B(L).

Every line [a] defines a block through (∞); hence there is a permutation
ϕ of O such that the image under g of the block B([a]) is the block B([aϕ]).
We have 0ϕ = 0; let c := 1ϕ.

If m &= 0, then the block B([m, 0]) is the conjugate to B([m]) through
(0, 0); hence B([m, 0])g = B([mϕ, 0]).

Let (a, b) be a point of U(O) distinct from (∞). Then (a, b) lies on the
block B([0, b]). This block is conjugate to B([0]), and is hence mapped onto
some block B([0, bα]). This defines a permutation α of all elements x ∈ O
with −T (x) a norm in O. Note (a, b)g = (aϕ, bα). If a = 0, then T (b) = 0
and g maps the point (0, b) onto the point (0, bα). Hence α permutes the
elements with trace zero amongst themselves.

Since if a &= 0, the point (a, b) is also incident with the block B([−ba−1, 0]),

we deduce that (a, b)g = (aϕ,−(−a−1b)ϕaϕ) and hence xα = −(−a−1x)ϕaϕ,
for all a ∈ O∗ with N(a) + T (x) = 0.

Now consider the line [m,−l] with m &= 0. This line defines a block if
and only if N(m)+T (l) &= 0 and there is some (a, b) ∈ X with ma+b+l = 0.
The latter is equivalent with

0 = N(a) − T (ma + l)

= N(a − m) − N(m) − T (l).

Thus, [m,−l] defines a block if and only if N(m) + T (l) ∈ N(O∗). All lines
defining a block conjugate to B([m,−l]) are incident with (m, l). Amongst
these are the lines [m] and [−lm−1, 0]. We deduce that

B([m,−l])g = B([mϕ,mϕ(−m−1l)ϕ]) .
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Note that, if T (l) = 0 and m &= 0, then [m,−l] always defines a block.
Since its image under g is incident with (0, l)g = (0, lα), we deduce that

lα = mϕ(−m−1l)ϕ = mϕ(m−1l)ϕ , (6.2)

for all l with T (l) = 0 and all m ∈ O∗. In particular we can choose m = 1
to obtain

lα = c(−l)ϕ = clϕ , (6.3)

for all l ∈ O with T (l) = 0.

Let us denote the set of all elements with trace zero by O0. Note that O0

is a hyperplane in the 8-dimensional k-space O0. Also, we remarked above
that α permutes the elements of O0 (so Oα

0 = O0).

The next lemma proves the additivity of ϕ.

Lemma 6.9. For all x, y ∈ O we have (x + y)ϕ = xϕ + yϕ. In particular,
(−x)ϕ = −(xϕ).

Proof. We start by choosing an arbitrary element t ∈ O0 such that tx−1 ·y ∈
O0. Such t certainly exists since the sets O0 and {u ∈ O : T (ux−1 ·y) = 0}
are hyperplanes in the eight-dimensional k-vector space O, and hence these
hyperplanes meet nontrivially. We now construct the following sequence of
blocks, starting from B0

x,y,t = B([x, 0]).

• The unique block B1
x,y,t through (∞) conjugate to B0

x,y,t is B([x]).

• The unique block B2
x,y,t through (0, t) conjugate to B1

x,y,t is B([x,−t]).

• The unique block B3
x,y,t through (0, 0) conjugate to B2

x,y,t is B([−tx−1, 0]).

• The unique block B4
x,y,t through (∞) conjugate to B3

x,y,t is B([−tx−1]).

• The unique block B5
x,y,t conjugate to both B4

x,y,t and B([y, o]) is B([−tx−1,−(tx−1)y]).

• The unique block B6
x,y,t through (0, t) conjugate to B5

x,y,t is B([x + y,−t]).

• The unique block B7
x,y,t through (∞) conjugate to B6

x,y,t is B([x + y]).

We now apply the map g to this sequence of blocks. By the consecutive
uniqueness of the defined blocks (and noting that we substitute xϕ, yϕ and
tα ∈ O0 for x, y and t, respectively), the block (B7

x,y,t)
g coincides on the one

hand with B([(x+y)ϕ]), and on the other hand with B7
xϕ,yϕ,tα = B([xϕ+yϕ]).

Note that we did not need the condition tα(xϕ)−1 · yϕ ∈ O0. The reason
is that the condition tx−1 · y ∈ O0 is only needed to be sure that the line
[−tx−1,−tx−1 ·y] defines a block. When we construct the above sequence of
blocks using xϕ, yϕ and tα, we are sure that at every step we get the image
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of the corresponding block under g. Hence, in Step 5 above, we know that
there is a unique block conjugate to both B4

xϕ,yϕ,tα and B([yϕ, 0]), and we
know that it contains a point of the block B([0])g = B([0]), and so we know
that −tα(xϕ)−1 · yϕ ∈ O0.

We now extend Equation (6.2) to all elements l for which lα is defined.

Lemma 6.10. For every b ∈ O with T (b) ∈ −N(O), and every m ∈ O∗,
we have

bα = mϕ(m−1b)ϕ = cbϕ.

Proof. Let a ∈ O∗ be such that T (b) = −N(a). We may assume that a &= m
by replacing a by xx−1, with x /∈ k, if necessary. Putting l = −(ma+ b), we
deduce from the above that [m,−l] defines a block through the point (a, b) of
U(O). Hence (a, b)g = (aϕ, bα) is contained in [m,−l] = [mϕ,mϕ(−m−1l)ϕ].
This means that

mϕaϕ + bα = mϕ(−m−1l)ϕ ,

and substituting l by −(ma + b) and using the additivity of ϕ, we get bα =
mϕ(m−1b)ϕ = cbϕ (the latter by putting m = 1).

We now extend α to O by defining bα = cbϕ. By Lemma 6.10, this is
well defined and by Lemma 6.9, α is additive.

We now prove that Lemma 6.10 holds for all b ∈ O.

Lemma 6.11. For every b ∈ O and every m ∈ O∗, we have bα = mϕ(m−1b)ϕ.

Proof. By the additivity of both ϕ and α, it suffices to show that every
element b of O is the sum of elements whose trace is plus or minus a norm.
Let x ∈ O have trace 1, i.e., T (x) = 1. Then

b = (b − T (b)x) + N(1 + b)x − x − N(b)x

is the sum of four elements with respective traces T (b − T (b)x) = 0 =
N(0), T (N(1 + b)x) = N(1 + b), T (−x) = −1 = −N(1) and T (−N(b)x) =
−N(b).

Putting m′ = m−1b in the previous lemma, we obtain the identity

(mm′)ϕ = c−1(mϕm′ϕ) , (6.4)

for all m,m′ ∈ O.

We can now finish the proof of the fact that g is a collineation of P2(O).
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Lemma 6.10 implies that the action of g on the points of the unital is
given by (x, y) (→ (xϕ, cyϕ). Using the calculation rules given in Lemma 6.11
and Identity 6.4, one easily checks that the mapping

(x, y) (→ (xϕ, cyϕ) , for all x, y ∈ O ,

[m, t] (→ [mϕ, ctϕ] , for all m, t ∈ O ,

is a collineation of P2(O) and extends g.

This shows the main Theorem 6.2 of this section.
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