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1 Introduction

In 1986, Jacques Tits [9] classified affine buildings of rank at least 4. In fact,
he also included in his work the so-called non-discrete affine buildings, which
he called systèmes d’appartements, or apartment systems. Basically, these are
building-like structures with one big difference: they are no longer simplicial.
Easy examples are R-trees (rank 2 case; these are trees that continuously branch),
or the ‘buildings’ related to the ‘parahoric’ subgroups of a Chevalley group over
a field with non-discrete valuation. From the geometric point of view, the case
of rank 3 — when the apartments are 2-dimensional — is very interesting since
non-classical phenomena occur there.

In [9] Tits associates to every symmetric apartment system a so-called building
at infinity, which is a simplicial spherical building, see also [3]. The rank of this
building at infinity is precisely the dimension of its apartments. Hence, in the
2-dimensional case, generalized polygons appear. When the apartment system
is irreducible, then this polygon is not a digon. In the simplicial case, the only
generalized polygons that occur are projective planes, generalized quadrangles
and generalized hexagons. In 1992, the second author [13] introduced the notion
of a generalized polygon with discrete valuation and conjectured that the resulting
polygons are precisely the buildings at infinity of the rank 3 irreducible affine
buildings. This conjecture was verified for all cases except for the generalized
hexagons. However, in [7], we already showed that any generalized hexagon
isomorphic to the building at infinity of an affine building, admits a discrete
valuation in the sense of [13]. The starting point of the present paper is to
complete the proof of this conjecture by showing that every generalized hexagon
with valuation is isomorphic to the building at infinity of an affine building (of
type G̃2).

But we achieve more. In [2], Berenstein and Kapovich prove the existence of
2-dimensional (nontrivial, i.e., no blow-ups of spherical buildings) apartment sys-
tems admitting a generalized n-gon at infinity for any integer value of n > 2. The
natural question hereby is whether these structures are also characterized by ad-
mitting a valuation in some sense. Notice that discrete valuations are nonexistent
for n-gons with n != 3, 4, 6 by [13]. However, as we shall show below, if we sym-
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metrize the definition of generalized polygon with valuation (with respect to the
notions of points and lines) and allow real values (we shall call these generalized
n-gons with real valuation), then the only weight sequences (for a definition see
below) that can occur are the ones that come from 2-dimensional apartment sys-
tems as shown in [7]. Moreover, if n = 3, 4, then we provide a detailed proof for
the complete equivalence between generalized n-gons with real valuation and 2-
dimensional symmetric affine apartment systems. As an application we construct
classes of explicit examples of such structures which are not of Bruhat-Tits type
(meaning, where the buildings at infinity are not Moufang building), and which
include locally finite ones. These constructions are similar to the constructions
due to the second author in the simplicial case, see [10, 11, 12, 14]. It should be
noted that our construction shows some geometric similarity with a construction
due to Jacques Tits of apartment systems of type Ã2 using the trees associated
to the (projective) valuations of the panels (but left unproved in [9], Section 9 on
page 168). But our feeling is that Tits’ result is less practical for finding (new)
examples (and is also restricted to the case of Ã2). In fact, it is feasible that,
with some effort, one could use our results to generalize Tits’ characterization to
all R-buildings of dimension 2, but we did not insist on this in the present paper.

Remarkably, as a byproduct, we obtain that projective planes with real valuation
are equivalent with ultra-metric planes in which all triangles satisfy the sine rule,
for an appropriate though natural definition for angles between lines.

In the ideal case, one would like to prove the conjecture that the just mentioned
equivalence holds for all n ≥ 3. However, this seems to be out of reach for now. In
our present approach, the complications in the proofs seem to grow exponentially
with the girth. For n = 5, it is just feasible, but too long to include here. For
n = 6, assuming discreteness allows for an alternative argument, as we shall see.
Notice that our proofs for n = 3, 4 provide different arguments for the simplicial
case, which are in fact drastically shorter and more direct than the original proofs
of the second author. One does not need to go around the Hjelmslev geometries
and the rather complicated axiomatization related to this (see e.g. [4]). These
geometries were needed to define the vertices of the affine building. In the present
approach, we do no longer have vertices, but the points of the apartment system
are the different valuations that emerge from the given one. This simple idea,
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however, requires a lot of unavoidable technicalities to take care of. For example,
it is already fairly technical to prove that the residue of an n-gon with valuation
is again a generalized n-gon. We will do this explicitly for n ≤ 6. It will be clear
that similar methods should work in general, but our present approach fails for
that. So, on the one hand, the present methods are significantly stronger than
the old ones developed by the second author in the eighties, on the other hand,
one needs an improvement of another magnitude to prove the full conjecture.

Finally, we would like to remark that the central objects in this paper are inven-
tions of Jacques Tits, without whom this paper would never have been written.
The classification of irreducible affine buildings of rank at least 4 was just com-
pleted when the second author started a PhD, greatly inspired by this, on affine
buildings of type Ã2, advised by Mark Ronan in Chicago. The second author also
wants to express his profound thanks and estimation for the work and especially
the lectures of Jacques Tits at the Collège de France. The latter were a constant
motivation and inspiration. How a whole career can be ‘built’ on investigating
left-overs of one of the most remarkable mathematicians of the last century, the
one that created Incidence Geometry and made it almost a synonym of Group
Theory.

2 Preliminaries and Main Results

2.1 R-buildings

Let (W, S) be a finite irreducible Coxeter system. So W is presented by the set S

of involutions subject to the relations which specify the order of the products of
every pair of involutions. This group has a natural action on a real vector space
V of dimension |S|. Let A be the affine space associated to V . We define W to
be the group generated by the translations of A and W .

Let H0 be the set of hyperplanes of V corresponding to the axes of the reflections
in S and all its conjugates. Let H be the set of all translates of all elements of
H0. The elements of H are called walls and the (closed) half spaces they bound
are called half-apartments or roots. A vector sector is the intersection of all roots
that (1) are bounded by elements of H0, and (2) contain a given point x that
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does not belong to any element of H0. The bounding walls of these roots will
be referred to as the side-walls of the vector sector. A vector sector can also be
defined as the topological closure of a connected component of V \ (∪H0). Any
translate of a vector sector is a sector, with corresponding translated side-walls.
A sector-facet is an infinite intersection of a given sector with a finite number
of its side-walls. This number can be zero, in which case the sector-facet is the
sector itself; if this number is one, then we call the sector-facet a sector-panel.
The intersection of a sector with all its side-walls is a point which is called the
source of the sector, and of every sector-facet defined from it.

An R-building (also called an affine apartment system) (definition by Jacques Tits
as can be found in [6] by Mark Ronan, along with some historic background) is
an object (Λ,F) consisting of a set Λ together with a collection F of injections of
A into Λ (called charts) obeying the five conditions below. The image of A under
an f ∈ F will be called an apartment, and the image of a sector, half-apartment,
. . . of A under a certain f ∈ F will be called a sector, half-apartment, . . . of Λ.

(A1) If w ∈ W and f ∈ F , then f ◦ w ∈ F .

(A2) If f, f ′ ∈ F , then X = f−1(f ′(A)) is closed and convex in A, and f |X =
f ′ ◦ w|X for some w ∈ W .

(A3) Any two points of Λ lie in a common apartment.

The last two axioms allow us to define a function d : Λ× Λ → R+ such that for
any a, b ∈ A and f ∈ F , d(f(a), f(b)) is equal to the Euclidean distance between
a and b in A.

(A4) Any two sectors contain subsectors lying in a common apartment.

(A5′) Given f ∈ F and a point α ∈ Λ, there is a retraction ρ : Λ → f(A) such
that the preimage of α is {α} and which diminishes d.

We call |S|, which is also equal to dimA, the dimension of (Λ,F). We will
usually denote (Λ,F) briefly by Λ, with slight abuse of notation.

A detailed analysis of this definition and variations of it has been carried out by
Anne Parreau in [5]. In particular, she shows that, if Conditions (A1), (A2), (A3)



928 Koen Struyve and Hendrik Van Maldeghem

and (A4) are satisfied, then (A5′) is equivalent to d being a distance function,
together with

(A5) If we have three apartements, such that each two apartments of these share
a half-apartment, then the intersection of all three is non-empty.

2.2 Generalized polygons

Generalized polygons are the geometries corresponding to the spherical rank 2
buildings. Since we will use some specific terminology of these geometries, we
introduce this now.

A generalized n-gon, n ∈ N, n ≥ 2, or generalized polygon Γ = (P, L, I) is a
structure consisting of a point set P , a line set L (with P ∩ L = ∅), and a
symmetric incidence relation I between P and L, turning P ∪ L into a bipartite
graph G satisfying the following axioms.

(GP1) Every element is incident with at least three other elements.

(GP2) For every pair of elements x, y ∈ P∪L, there exists a non-repeating sequence
x0 = x, x1, . . . , xk−1, xk = y, with xi−1Ixi for 1 ≤ i ≤ k and with k ≤ n.

(GP3) The sequence in (GP2) is unique whenever k < n.

If instead a weaker version of (GP1) is satisfied where each element is incident
with at least two elements, we speak about a weak generalized n-gon.

A path is an ordered set of elements such that each two subsequent elements in
the set are incident. The length of a path is the number of elements in the set
minus one. A path is closed if the last element of the set equals the first, and
is non-stammering if for each element of the ordered set, the two neighbours are
different.

The distance d(x, y) between two elements x, y is the length of a shortest path
between both. If two elements x and y are at distance 2, then xy will denote the
unique element incident with both.
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Two points are collinear if they are incident with a common line, two lines are
concurrent if they are incident with a common point. Two elements are adjacent
if they are collinear or concurrent.

If two elements are at distance n, they are called opposite. If two elements x and
y are not opposite, then the unique element incident with y closest to x is the
projection of x on y.

2.3 Generalized polygons with (non-discrete) valuation

Let Γ = (P, B, I) be a generalized n-gon and u a function called the valuation
acting on pairs of adjacent elements, and with images in R+ ∪ {∞} (R+ being
the non-negative real numbers, and using the natural order on this set with ∞ as
largest element). Then we call (Γ, u) an n-gon with (non-discrete) valuation and
weight sequence (a1, a2, . . . , an−1, an+1, an+2, . . . , a2n−1) ∈ (R+

0 )2n−2 (R+
0 being

the positive real numbers) if the following conditions are met:

(U1) For each element z, there exists a pair x and y of elements incident with z

such that u(x, y) = 0.

(U2) u(x, y) = ∞ if and only if x = y.

(U3) If x, y and z are collinear points or concurrent lines, then u(x, y) < u(y, z)
implies u(x, z) = u(x, y).

(U4) Whenever x1Ix2I . . . Ix2nIx1, with xi ∈ P ∪B, one has

n−1∑

i=1

aiu(xi−1, xi+1) =
2n−1∑

i=n+1

aiu(xi−1, xi+1). (1)

One direct implication of (U2) and (U3) is that u is symmetric (by putting x = z

in (U3)). Also remark that this definition is self-dual when interchanging lines
and points, so whenever a statement is proven, we also have proven the dual
statement.

If we speak about the valuation of a side or corner x in an ordinary n-gon Ω we
mean the valuation between respectively the two corners or sides incident with
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x in Ω. If we talk about the valuations in an ordinary n-gon, then we mean
all the valuations of sides and corners. A path (x0, x1, . . . , xm) is said to have
valuation zero if u(xi−1, xi+1) = 0 for each i ∈ {1, 2, . . . , m − 1}. Such a path is
also non-stammering. We now show some preliminary lemmas which we will use
to formulate one of the main results.

Lemma 2.1 Given a line L and a point pIL, then there exists a point qIL such
that u(p, q) = 0.

Proof. Due to (U1) there exist two points r, sIL such that u(r, s) = 0. Applying
(U3) we obtain that either u(p, r) = 0 or u(p, s) = 0, in each case we have found
a suitable q. !

Lemma 2.2 Each path (x0, x1, . . . , xm) with m ≤ n + 1 and valuation zero is
contained in an ordinary n-gon Ω where all the valuations of corners and sides
are zero.

Proof. Using the previous lemma we can extend the path to a path (x0 := p, x1 :=
L, . . . , xn, xn+1) with valuation zero. It is now easily seen that the other valua-
tions in the unique ordinary n-gon triangle spanned by the path are zero too by
(U4). !

In order to make notations easier, such ordinary n-gon with all valuations zero will
be referred to as a non-folded n-gon. If there are exactly two non-zero valuations
in (necessarily) opposite elements x and y of an ordinary n-gon, then this ordinary
n-gon will be referred to as a simply folded n-gon folded along x (or y), two
elements in such an n-gon at the same distance from x (and hence also at the
same distance from y) are said to be folded together in that n-gon. The first main
result will imply that a1 = an+1 and thus that the valuations in x and y are equal
due to (U4).

Two opposite elements in Γ are said to be residually opposite if there is a shortest
path between them with valuation zero. If this is the case, then by (U4) all
shortest paths between both elements have valuation zero. If x is an element of Γ
then [x]opp is the set of residually opposite elements, this set is non-empty due to
the previous lemma. We say that two elements x and y are residually equivalent
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if [x]opp = [y]opp. The equivalence class is denoted as [x] = [y]. It is clear that
all elements of one equivalence class share the same type, so these classes can
be referred to as residual points ([P ]) or residual lines ([B]) depending on this
type. A residual point [p] is said to be incident with a residual line [L] if there
are p′ ∈ [p] and L′ ∈ [L] such that p′IL′. We then write [p]Ir[L]. The geometry
Γr([P ], [B], Ir) is denoted as the residue defined by u. The distance dr in the
incidence graph of this geometry is called the residual distance.

2.4 Main Results

Let (Γ, u) be a generalized n-gon with (non-discrete) valuation and weight se-
quence (a1, a2, . . . , an−1, an+1, an+2, . . . , a2n−1).

Main Result 1 If u has non-zero values, the weight sequence
(a1, a2, . . . , an−1, an+1, an+2, . . . , a2n−1) is a multiple of the weight sequence
(b1, b2, . . . , bn−1, bn+1, bn+2, . . . , b2n−1) with bi = | sin(iπ/n)|.

Main Result 2 If 3 ≤ n ≤ 6, then the residue defined by u is a (weak) general-
ized n-gon.

Main Result 3 If n ∈ {3, 4}, or if n = 6 and u is discrete, then there exists a
two-dimensional R-building (Λ,F) such that Γ is isomorphic to the generalized
polygon at infinity of (Λ,F) with valuation as defined in [7].

2.5 An application to ultrametric projective planes

In this application we explore a surprising link between projective planes with
valuations and some geometric conditions from Euclidean geometry.

Suppose (Γ, u) is a (generalized) triangle (or projective plane) with valuation.
Choose t ∈ R with t > 1. We then can define a function d(p, q) = t−u(p,q) ∈ [0, 1]
on pairs of points, and a similar function

∠(L,M) = arcsin(t−u(L,M)) ∈ [0,π/2]

on pairs of lines.
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Theorem 2.3 A projective plane Γ with a distance function d on pairs of points
valued in [0, 1] and an angle function ∠ on pairs of lines valued in [0,π/2], is
constructed from a projective plane with valuation as above, and hence is isomor-
phic to the building at infinity of some R-building, if and only if the following
conditions are fulfilled.

(M1) d is an ultrametric (this is a metric satisfying the stronger triangular in-
equality d(p, q) ≤ max(d(p, r), d(r, q))).

(M2) Two lines have angle zero if and only if they are equal.

(M3) On each line there are two points on the maximal distance 1 from each
other.

(M4) Through each point there are two lines with a right (π/2) angle.

(M5) The sine rule is fulfilled, i.e. if we have a triangle with lengths of the sides
A, B and C and opposing angles α, β and γ, then

A

sinα
=

B

sinβ
=

C

sin γ
.

3 Proof of the first main result

We start with a polygon Γ with valuation u, with weight sequence
(a1, a2, . . . , an−1, an+1, an+2, . . . , a2n−1), and such that u has non-zero values. Our
proof is heavily inspired by a similar result for the discrete case in [13]. In fact, we
will use some of the results (with the proofs remaining valid in the non-discrete
case) obtained there, directly in our proof. In particular, and to begin with, it is
shown in 3.1 of [13] that the weight sequence is unique, up to a non-zero multiple.
As is also exploited in [13], this has as consequence that the weight sequence is
symmetric, i.e., ai = an−i = an+i = a2n−i for i ∈ {1, 2, . . . , n− 1}.

Now let (x0, x1, . . . , x2n = x0) be any closed path of length 2n in Γ. Because of
(U4) we know that

n−1∑

i=1

aiu(xi−1, xi+1) =
2n−1∑

i=n+1

aiu(xi−1, xi+1), (2)
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and also that

n+1∑

i=3

ai−2u(xi−1, xi+1) =
2n+1∑

i=n+3

ai−2u(xi−1, xi+1). (3)

If one takes the sum of both equations, and simplifies the resulting expression
using a1 = an−1 = an+1 = a2n−1, one obtains

a2u(x1, x3) +
n−1∑

i=3

(ai + ai−2)u(xi−1, xi+1) + an−2u(xn−1, xn+1)

= an+2u(xn+1, xn+3) +
2n−1∑

i=n+3

(ai + ai−2)u(xi−1, xi+1) + a2n−2u(x2n−1, x2n+1).

(4)

This implies that

(a2, a3+a1, a4+a2, . . . , an−1+an−3, an−2, an+2, an+3+an+1, . . . , a2n−1+a2n−3, a2n−2)

is also a weight sequence. Hence there exists some positive real number k satis-
fying






ka1 = a2,

ka2 = a3 + a1,

ka3 = a4 + a2,

. . .

kan−2 = an−1 + an−3,

kan−1 = an−2.

(5)

One notices that, by taking the sum of all equations in the system of equations
above, that

k
n−1∑

i=1

ai = 2
n−1∑

i=1

ai − (a1 + an−1). (6)

This implies that 1 ≤ k < 2. As a consequence, we can find an α ∈]0,π/3] such
that k = 2 cos α. Also remark that aj = kaj−1 − aj−2 for j ∈ {3, n − 1}. If we
formally set a0 = an = 0, then this is also true for j ∈ {2, n}. Furthermore we
can suppose that a1 = sin α.
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Lemma 3.1 For i ∈ {0, 1, . . . , n} we have ai = sin(iα).

Proof. We prove this using induction on i. It is clear that this holds for i = 0
and i = 1 (by assumption and by definition of α, respectively). So let i ≥ 2 such
that aj = sin ja for j < i. Then we know that:

ai =kai−1 − ai−2 (7)

=2 cos α sin[(i− 1)α]− sin[(i− 2)α] (8)

= sin iα (9)

The second equality follows from the induction hypothesis, the third from the
trigonometric formula sin a + sin b = 2 sin[(a + b)/2] cos[(a− b)/2]. !

Lemma 3.2 α = π/n.

Proof. We have that an = 0, so sin nα = 0 by the previous lemma. This yields
α = mπ/n, with m ∈ N0 smaller than or equal to n/3 (since α ∈]0,π/3]). At the
same time we have ai > 0 for i ∈ {1, . . . , n − 1}. Let t be the smallest integer
greater than or equal to n/m. Because n/m ≤ t ≤ 2n/m (by n/m ≥ 3), it holds
that tmπ/n ∈ [π, 2π], so at ≥ 0. As t clearly is in {1, 2, . . . , n}, we obtain that
t = n, which implies that m = 1 (because m ∈ N0 and n ≥ 3) and α = π/n. !

Combining the two previous lemmas, we obtain:

Corollary 3.3 For i ∈ {0, 1, . . . , n}: ai = sin(iπ/n), and any other weight se-
quence of (Γ, u) is a multiple hereof.

Remark 3.4 It is easy to see that all k ∈ R satisfying Equation 5 are precisely
the eigenvalues of the path graph Pn−1 of length n−2, consisting of n−1 vertices.
Moreover, since all ai are positive, it is the unique eigenvalue for which the
coordinates of the associated eigenvectors have constant sign. This observation
can be used to give an alternative proof of the previous corollary. Doing so, one
sees that 2 cos(π/n) is in fact the largest eigenvalue of Pn−1.



Two-Dimensional Affine R-Buildings Defined by Generalized Polygons... 935

4 Proof of the second main result

By the first main result we can suppose for the proof of the second and third
main result that the weight sequence is given by ai = | sin(iπ/n)|/ sin(π/n). In
particular, a1 = 1.

Let n be a natural number with 3 ≤ n ≤ 6 for the rest of the proof.

If x and y are opposite elements, let τ(x, y) be the sum
∑n−1

i=1 aiu(xi−1, xi+1)
where (x0 = x, x1, . . . , xn−1, xn = y) is a shortest path from x to y; (U4) guaran-
tees independence of the chosen path.

Two elements x and y are said to be t-residually equivalent, if for each element z

the following are equivalent:

• z is opposite x and τ(x, z) < t;

• z is opposite y and τ(y, z) < t.

Notice that when t = 0, this definition is trivially fulfilled.

Lemma 4.1 Two adjacent elements x and y are u(x, y)-residually equivalent,
but not t-residually equivalent with t > u(x, y).

Proof. Let z be an element opposite x with τ(x, z) < u(x, y). Consider the
unique shortest path (x0 = x, x1 = xy, x2, . . . , xn = z) from x to z containing xy.
Because a1 = 1, it holds that u(x, x2) ≤ τ(x, z) < u(x, y), so u(y, x2) = u(x, x2)
by (U3). This implies that y and z are opposite and that τ(y, z) = τ(x, z) (the
last is easily seen when considering the path (y, x1, x2, . . . , xn = z)).

If t > u(x, y), then consider a path (x, xy, y = y2, . . . , yn) where the path
(y2, . . . , yn) has valuation zero (possible by Lemma 2.1). !

Corollary 4.2 If xIyIz, then [x] = [z] if and only if u(x, z) > 0.

Lemma 4.3 Given a closed path Ψ, then there are at least two sides having the
same minimal valuation among all sides in Ψ.
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Proof. Let x and y be the two points on a side with minimal valuation, and
suppose all other sides have valuation strictly larger than u(x, y). Let t be the
second smallest valuation among the sides in Ψ. By repeatedly using Lemma 4.1
and going from x to y in Ψ not using xy, one proves that x and y are t-residually
equivalent, which contradicts Lemma 4.1. !

Lemma 4.4 If two elements x and y are not residually equivalent, but if there
exist aIx and bIy which are residually equivalent, then there is an element z

residually opposite one element of {x, y}, but at distance n− 2 from the other.

Proof. Without loss of generality, one can suppose that there exists an element d

which is residually opposite x, but not residually opposite y.

According to Lemma 2.1, there exists an element c incident with x such that
u(a, c) = 0. Let (x = x0, c = x1, . . . , xn−1, d = xn) be the unique shortest
path from x to d containing c. The element xn−1 is residually opposite, and
thus also opposite, a and b. This implies that d(y, d) = n or d(y, d) = n − 2.
In the second case we are done, so suppose we are in the first case. Let (y =
y0, y1, . . . , yn−2, yn−1 = xn−1, yn = d) be the unique shortest path from y to d

containing xn−1. Because the element xn−1 is residually opposite b, the path
(b, y = y0, y1, . . . , yn−2, yn−1 = xn−1) has valuation zero. As y is not residually
opposite d, the valuation u(yn−2, d) has to be non-zero. So xn−2 != yn−2 and
u(xn−2, yn−2) = 0. The element xn−2 will now be the desired element z, because
it is residually opposite y, but at distance n− 2 from x. !

Lemma 4.5 Let Ω be a simply folded n-gon. If two elements x and y are folded
together in Ω, then they are residually equivalent.

Proof. Here we need to distinguish between the different possibilities for n. Let
z be an element of Ω such that Ω is folded along z.

• n = 3. For this case the result follows directly from Corollary 4.2.

• n = 4. Again using Corollary 4.2, one only needs to prove that the two
elements of Ω at distance 2 from z are residually equivalent. Suppose this
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is not the case. Using the previous lemma, one can assume without loss of
generality that there is an element a residually opposite x, but at distance
2 from y.

Let (x, xz, x2, x3, a) be the unique shortest path (which has valuation zero)
from x to a containing xz. Let z′ be the element opposite z in Ω. The
element x3 is residually opposite xz′, and thus also residually opposite yz′

due to Corollary 4.2. This implies that the valuations u(y, a) and u(x3, ay)
are zero. But as also the valuations u(xz, x3) and u(x2, a) are zero, (U4)
would imply that u(xz, zy) = 0, which is a contradiction.

• n = 5. Using Corollary 4.2 and the previous lemma, one can assume without
loss of generality that x and y are at distance 2 from z, and that there exists
an element a residually opposite x, but at distance 3 from y.

Let (x, xz, x2, x3, x4, a) be the unique shortest path (which has valuation
zero) from x to a containing xz, and let (y, y1, y2, a) be the shortest path
from y to a. Choose an element bIa such that u(b, x4) = 0 (this is possible
due to Lemma 2.1). The element xz is residually opposite b, thus so is yz.
All of this implies that the path (yz, y, y1, y2, a, b) has valuation zero. A
consequence is that u(x4, y2) > 0, otherwise we could have chosen b to be
y2, leading to a contradiction.

Let z′ be the element opposite z in Ω, and let x′, y′ be the elements incident
with z′ closest to x and y respectively. Now x′ and y′ are both residually
opposite x3, implying that the unique shortest path from yy′ to x3 has
valuation zero. If we look in the unique ordinary pentagon containing yy′, x3

and y2, we see that the valuation of x3 in this pentagon is non-zero because
of (U4) and u(x4, y2) > 0. By (U3) we then obtain that the valuation of
x3 in the unique ordinary pentagon containing x3, yy′ and z is zero. This
contradicts (U4) and the fact that the valuation of z in this pentagon is
non-zero.

• n = 6. Apart from the case handled in Corollary 4.2, there are two cases
to consider here.

– The first case is when x and y lie at distance 2 or 4 from z, without loss
of generality one can suppose this to be 2. Similarly to the previous
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cases, let a be an element residually opposite x, but at distance 4 from
y. Let x1 be the unique element of Ω at distance 1 from x and 3
from z. Now consider the unique shortest path (x, x1, x2, x3, x4, x5, a)
from x to a containing x1, and the unique shortest path (y, y1, y2, y3, a)
from y to a. Observe that x4 ∈ [z]opp. Let Ω′ be the unique ordinary
simply folded hexagon containing z, x4, x and yz, and let b be the
element opposite x2 in this hexagon. By (U3), the unique ordinary
hexagon containing y, b, y1, and x4 is non-folded, so u(y, b) is zero and
x4 ∈ [y]opp.

Let Ω′′ be the unique ordinary hexagon containing z, y and x3, and
Ω′′′ the unique ordinary hexagon containing y, b and x3. Let c and
c′ respectively be the elements opposite xz in the hexagons Ω and Ω′′

respectively. Let d and d′ be the projections of c and c′, respectively,
on y. The hexagon Ω′′′ is a simply folded hexagon folded along y

(remember that u(y, b) was zero). So u(yz, d′) is non-zero, and thus
u(d, d′) is zero. This implies that c ∈ [c′]opp, so also the element c′′

opposite yz in Ω is in [c′]opp. Because the unique path from c′′ to c′

containing x2 has valuation zero, also the path from xz to c′ containing
x has valuation zero. Thus xz ∈ [c′]opp, which gives yz ∈ [c′]opp which
is a contradiction because yz and c′ are at distance 4 from each other.

– The last case to handle is the case where x and y are at distance 3
from z. For the final time, consider an element a ∈ [x]opp and at
distance 4 from y. Let x′ and y′ be the projections from z on x and y,
respectively, and let x′′ and y′′ be the elements in Ω at distance 4 from
z and 1 from x and y, respectively. Let a′ be the projection of x′′ on a;
this element is residually opposite x′, so it is also residually opposite
y′ (as shown in the previous case). The unique shortest path from y′

to a′ containing a (and because of this also y) thus has valuation zero.
Let a′′ be the projection of y′ on a. This element is residually opposite
x′′, but cannot be residually opposite y′′ as it is only at distance 4
from y′′. This contradicts the previous case applied to x′′ and y′′.

!
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Lemma 4.6 Let x, y be elements of Γ such that [x]Ir[y]. Then there exists y′ ∈
[y] such that xIy′.

Proof. Let F be the set of all flags containing an element of [x] and one of [y].
Let {x′, y′} be a flag of F such that the sum d of distances of x′ and y′ to x is
minimal. If d = 1, then x′ = x and xIy′. So we may suppose that d > 1.

Suppose that the distance of x to y′ is one bigger than the distance from x to
x′. Let (x0 = x, x1, . . . , xj−1 = x′, xj = y′) be the shortest path from x to
y′ containing x′ (j ≤ n). Let i be the smallest integer such that the subpath
(xi, . . . , xj−1, xj) has valuation zero. We have that i ≥ 1 (because otherwise it
is impossible that x′ ∈ [x]) and i ≤ j − 1. Using Lemma 2.1 we can extend this
subpath to a path (xi, . . . , xj−1, xj , xj+1, . . . , xi+n) with valuation zero of length
n. Consider the unique path (x′i = xi, x′i+1 = xi−1, . . . , x′i+n = xi+n) from xi to
xi+n containing xi−1. Then using (U4), we see that this path has valuation zero.
These two paths together form an ordinary n-gon Ω, which is simply folded along
xi. The previous lemma implies that x′j−1 ∈ [x] and x′j ∈ [y]. But the sum of
distances to x of these two incident elements is strictly less than d, contradicting
the minimality of d.

The case where the distance of x to x′ is one bigger than the distance from x to
y is proven analogously. !

The diameter of our new geometry Γr is clearly n. In order to prove it is a (weak)
generalized n-gon we have to show that there is no closed non-stammering path
of length less than 2n. So suppose by way of contradiction that we have such a
path ([x0], [x1], . . . , [x2m] = [x0]) with 2 ≤ m < n. The previous lemma allows
us to lift the path into a (not necessarily closed) path (x′0, x′1, . . . , x′2m) such that
[x′i] = [xi].

Due to Corollary 4.2 and the fact that the original path was non-stammering, this
path has valuation zero. If 2m < n, we extend this path to a path
(x′0, x′1, . . . , x′2m, x′2m+1, . . . , x

′
n) with valuation zero of length n (this is possible

by Lemma 2.1). Whether or not 2m < n, x′n is residually opposite x′0, but is
not opposite, and thus certainly not residually opposite x′2m. Hence we have a
contradiction and we have proven the second main result.
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5 Proof of the third main result

The main idea of the proof is starting from one valuation u on Γ, to construct
more valuations. Each of these valuations will correspond to a point of our R-
building. We first cite a lemma from [7] that we will use in our proof. We use
the following notation: the sector-panel with direction x and source α is denoted
by xα, the residual distance in the residue of β is denoted by dβ, and the length
of the intersection of two sector-panels with source β and directions x and y as
uβ(x, y).

Lemma 5.1 Let Λ be an affine apartment system with a generalized polygon Λ∞
at infinity. Let α be a point of Λ. Let x, a, b, c be elements of Λ∞ such that aIbIc,
and β a point on xα with d(α, β) = l. Then there exists δ > 0 such that for any
β′ on xα with d(α, β′) ∈ [l, l + δ], the following holds :

uβ′(a, c) = uβ(a, c) + ε
sin(dβ(b, x0)π/n)

sin(π/n)
d(β, β′),

where ε is a constant equal to





−1 if dβ(a, x) = dβ(c, x) = dβ(b, x)− 1,

1 if dβ(a, x) = dβ(c, x) = dβ(b, x) + 1,

0 if dβ(a, x) != dβ(c, x).

We now return to our case. Let (Γ, u) be a generalized n-gon with valuation, x

an element of Γ, and t ∈ R+ a positive real number. We want to define a new
valuation uV (x,t) with V (x, t) an operator called the translation operator (uV (x,t)

will be referred to as the t-translation of u towards x, and u is t-translated towards
x).

How do we construct this new valuation? Remember that each element y has a
certain residual distance dr(x, y) from x in the residue Γr defined by u. We now
‘predict’ the translated residual distance dx,t

r (y) from x to y when t-translating u,
as it would be if we were indeed in an affine apartment system (we changed the
notation of the residual distance to an unary function to stress the dependability
of x, and the fact that we will only need distances from x). This function defined
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for t ∈ [0,+∞[ will be right-continuous and piecewise constant. First thing one
needs to assure here is that for two incident elements y, z, the translated residual
distances dx,t

r (y) and dx,t
r (z) differ by only one. The definition of this function

will be referred to as step (C1), the difference condition as condition (C2).

Because we know how the (translated) residual distances would behave if we were
in an affine apartment system, we can use Lemma 5.1 to predict how the trans-
lated individual valuations would behave if we were indeed in an affine apartment
system (this is done by a trivial integration of a piecewise constant function). The
set of all these individual valuations allows to construct a new ‘valuation’ uV (x,t)

(we still need to verify this is really a valuation). On pages 9-11 of the above
mentioned paper [7] it was shown that the weighted sum of the coefficients of t

along the path (x0, . . . , xn) depends only on the residual distances of d0 and dn

of x0 and xn respectively, under the assumption that d0 = x0. The argument
in [7] can be extended to show that this weighted sum depends only on d0 and
dn also when d0 is not zero by applying the same idea as in Case (v) on page
11 of [7] if j = 1 is a valley. Because here the predicted individual valuations
behave in the same way as they would in the affine apartment system case, this
result can be applied here (also using the fact that for two incident elements the
residual distances differ only by one) to guarantee that (U4) will be satisfied by
uV (x,t). The condition (U2) is trivially satisfied. For more insight in how uV (x,t)

is constructed see the example in the section below.

For the other two conditions and positivity of the valuation, we will define and
use the R-trees associated to elements of Γ. Note that an R-tree (or simply tree
when no confusion can arise) is simply an affine apartment system of type Ã1,
or, equivalently, of dimension one.

Choose a point x in a given tree. We can define a valuation v acting on the set
of pairs (e, f) of ends (parallel classes of sectors) of this tree as the length of the
intersection of the two half-apartments with boundary x and ends e and f . The
point x will be called the base point of the valuation.

One property of v is that for three arbitrary ends e, f, g the inequality v(e, f) <

v(f, g) implies v(e, g) = v(e, f). Now, given any binary function w acting on a set
E obeying this property, one can (re)construct a tree (if w is already a valuation of
a tree, then we will obtain the same tree) by taking the set {(e, t)|e ∈ E, t ∈ R+}
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and applying the equivalence relation

(e, t) ∼ (f, s) ⇔ t = s and t ≤ w(e, f)

(e, f ∈ E and s, t ∈ R+). The base point of this tree is the equivalence class
{(e, 0)|e ∈ E} =: x. The set of ends of this tree is in natural bijective correspon-
dence with E and the valuation in this tree with base point x coincides with w.
(This construction is a special case of the one of Alperin and Bass in [1].)

It is easily seen that this property is the same as (U3) when we restrict u to a
point row or line pencil. So to each line L or point p of Γ we can associate a tree
named T (L) or T (p) with a certain base point. The location of this base point
will play a major role in the next sections. Other choices of base points yield
other valuations of the tree.

We now return to the problem of (U1), (U3) and positivity. Obviously, this
will be solved if we can show that the change in valuations of elements incident
with an element y of Γ is described by changing the base point in the tree T (y).
With an eye on the above lemma, we want to move the base point towards an
end corresponding to an element aIy with dx,t

r (a) = dx,t
r (y) − 1 over a length

of t sin(dx,t
r (y)π/n)/ sin(π/n) with t a certain translation length such that the

translated residual distances of a and y stay the same. In order that the valua-
tions obtained by this change of base point correspond to the predictions of the
valuations using the above lemma, we need to verify three things.

• If the valuation of the pair consisting of a and another element bIy is going
to decrease (equivalent with saying that dx,t

r (b) = dx,t
r (y)− 1 and dx,t

r (y) !=
n), then this valuation corresponds with the predicted valuation using the
displacement of the base point in the tree if the two half-apartments with
ends a and b and source the base point have more in common than only
the base point, so uV (x,t)(a, b) > 0. (We refer to this as condition (C3).)

• If the valuation of the pair consisting of a and another element bIy is going
to stay the same (equivalent with saying that dx,t

r (b) = dx,t
r (y) + 1), then

we have correspondence between the two predictions if the base point lies
in the apartment with ends a and b, so uV (x,t)(a, b) = 0. (This will be
condition (C4).)
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• Finally note that if the valuation is going to increase (two elements b, cIy

with dx,t
r (b) = dx,t

r (c) = dx,t
r (y) + 1), we would need that the base point lies

on the intersection of the apartment with ends a and b, and the one with
ends a and c (thus uV (x,t)(a, b) = uV (x,t)(a, c) = 0). But this is already
covered by (C4), so there is no extra condition needed.

In the next part of the proof (after the example), we consider each case separately.

5.1 An example

We will illustrate with an example how uV (x,t) will be calculated in practice.
Suppose we are in the n = 3 case, and that x is a point. Let us say we have two
points x1, x2 different from x, and we want to define uV (x,t)(x1, x2). (For the
(C1) used here we refer to the next section.)

Suppose u(x, xi) = ti and suppose u(x1, x2) = t2, with t1 > t2 > 0 (there are
other cases, but let’s rectrict to this one). The residual distances are all zero
between these points. Let L be the line joining x1 and x2. Then ε in the formula
of Lemma 5.1 equals −1. We can take here δ = t2 (so far, the residual distances
to x do not change according to (C1)), and we obtain

uV (x,t)(x1, x2) = t2 − t for t ≤ t2. (10)

From then on, ε becomes zero until t = t1, since the residual distance to x from
x1 differs from that to x2; to x2 it becomes 2 and to x1 it is 0. Hence

uV (x,t)(x1, x2) = 0 for t2 < t ≤ t1. (11)

Note that, up to now, the residual distance from x to L was always 1, hence
the quotient of the sines has always been 1. This is going to change in the next
paragraph.

For t ≥ t1, ε equals 1, and the quotient of the sines is still 1, but only for
t ≤ τ(x, L) according to (C1), which is by definition bigger than t1. Hence

uV (x,t)(x1, x2) = t− t1 for t1 < t ≤ τ(x, L). (12)

At t = τ(x, L), the sine of d(x, L)π/3 becomes 0, and so the valuation becomes
constant again:

uV (x,t)(x1, x2) = τ(x, L)− t1 for τ(x, L) < t. (13)
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5.2 n = 3

We define (C1) and check (C2), (C3) and (C4).

5.2.1 (C1)

• If d(x, y) = 0, then dt,x
r (y) = 0 for t ∈ [0,+∞[.

• If d(x, y) = 1, then dt,x
r (y) = 1 for t ∈ [0,+∞[.

• If d(x, y) = 2, then

– dt,x
r (y) = 0 for t ∈ [0, u(x, y)[,

– dt,x
r (y) = 2 for t ∈ [u(x, y),+∞[.

• If d(x, y) = 3, then

– dt,x
r (y) = 1 for t ∈ [0, τ(x, y)[,

– dt,x
r (y) = 3 for t ∈ [τ(x, y),+∞[.

5.2.2 (C2)

Let y and z be a pair of incident elements. Without loss of generality one can
suppose that d(x, y) + 1 = d(x, z). The only not completely trivial cases are
where d(x, y) = 2 and dt,x

r (y) = 0. This happens when t ∈ [0, u(x, y)[, so also
t < τ(x, z) = u(x, y) + u(y, z), and thus dt,x

r (z) = 1. We conclude that (C2) is
satisfied.

5.2.3 (C3)

Let again y be an element, with a, b two elements incident with y, such that
dx,t

r (a) + 1 = dx,t
r (b) + 1 = dx,t

r (y). The only cases for which we need to verify
that uV (x,t)(a, b) > 0 are dx,t

r (y) = 1 or 2.

• If d(x, y) = 1, then dx,t
r (a) + 1 = dx,t

r (b) + 1 = dt,x
r (y) = 1. One can choose

a = x, then d(x, b) = 2, so in this case t ∈ [0, u(x, b)[. The following now
holds: uV (x,t)(a, b) = u(x, b)− t > 0.
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• If d(x, y) = 2, then dt,x
r (y) = 2 for t ∈ [u(x, y),+∞[. Assume that a = xy

and d(x, b) = 3. This yields that t ∈ [u(x, y), τ(x, b)[= [u(x, y), u(x, y) +
u(a, b)[. One checks that uV (x,t)(a, b) = u(a, b) − t + u(x, y) > 0, so (C3)
holds here.

• If d(x, y) = 3, then dt,x
r (y) = 1 for t ∈ [0, τ(x, y)[. This case is similar to

the case d(x, y) = 1, but now using Lemma 4.3 instead of (U3).

5.2.4 (C4)

Let y be an element, with a, b two elements incident with y, such that dx,t
r (a)+1 =

dx,t
r (b) − 1 = dx,t

r (y). We only need to verify that uV (x,t)(a, b) = 0 is when
dx,t′

r (b) < dx,t
r (b) for t′ < t.

• If d(x, y) = 1, we again choose x to play the role of a. It is clear that the
conditions then tell that t = u(x, b), and uV (x,t)(x, b) = u(x, b)− t = 0.

• If d(x, y) = 2, then dt,x
r (y) = 2 for t ∈ [u(x, y),+∞[. We choose a to

be the element xy. The element b thus lies at distance 3 from x, and
t = τ(x, b). Similarly to the (C3) case one checks that uV (x,t)(a, b) =
u(a, b)− t + u(x, y) = 0.

• If d(x, y) = 3, then dt,x
r (y) = 1 for t ∈ [0, τ(x, y)[. This case is similar to

the case d(x, y) = 1, but now using Lemma 4.3 instead of (U3).

5.3 n = 4

Before we check the conditions, we state some useful lemmas.

Lemma 5.2 It is impossible to have an ordinary quadrangle Ω containing exactly
two sides with non-zero valuations, such that opposite elements have the same
valuation, but each two corners of a side have different valuations.

Proof. Suppose that such a quadrangle Ω does exist. Then let p, q be corners of
Ω such that u(p, q) > 0, and such that the valuation in p is bigger than the one
in q. There exists an rIpq such that u(p, r) = u(q, r) = 0 (by Lemma 2.1 and
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(U3)). Let Ω′, Ω′′ be the ordinary quadrangles sharing a path of length 4 with Ω
and containing r, p and r, q, respectively. Denote the element opposite pq in Ω by
s. Let p′, q′ and r′ be the projections of, respectively, p, q and r on s. Because
the valuation in p is bigger than the one in q, (U4) applied in both Ω′ and Ω′′

yields u(r′, q′) < u(r′, p′) (because these are the only two other terms in applying
(U4) differing in both quadrangles), so u(r′, q′) = u(p′, q′) > 0 by (U3).

The valuations of the elements r and r′ in Ω′ cannot be equal because the valua-
tion of q in Ω′ is strictly smaller than the valuation of q′ in Ω′. So the two corners
with smallest valuation in Ω′ — guaranteed by (the dual of) Lemma 4.3 — have
to be in the corners q and r′. Applying (U4) we obtain u(q, q′) +

√
2u(qq′, qr) +

u(q, r) = u(q′, r′) +
√

2u(r′q′, r′r) + u(r, r′), which implies that u(q′, r′) = 0, a
contradiction. !

Lemma 5.3 Let a, b be two opposite elements. Then there exist two paths
(a, x1, x2, x3, b) and (a, y1, y2, y3, b) from a to b such that u(a, x2) = u(x2, b),
u(a, y2) = u(y2, b) and u(x1, y1) = 0, if and only if for each path (a, z1, z2, z3, b)
the equality u(a, z2) = u(z2, b) holds.

Proof. The implication from right to left is trivial by (U1). So suppose the left
part of the statement is satisfied.

First remark that (U4) tells us that u(x3, y3) = 0, so the situation is symmetric in
a and b. Suppose that u(a, z2) < u(z2, b), then without loss of generality we may
assume that u(x1, z1) = 0 (by (U3)). But then u(x2, a)+

√
2u(x1, z1)+u(a, z2) <

u(x2, b) +
√

2u(x3, z3) + u(b, z2), which contradicts (U4). !

If for two opposite elements a and b the situation of the above lemma holds, then
we say that those two points are equidistant.

Lemma 5.4 If two opposite points x, y are not equidistant, then there exists a
path (x, a, b, c, y) from x to y, such that u(x, b) ≥ u(b, y) and u(a, c) = 0.

Proof. First note that, if for all paths (x, a′, b′, c′, y) from x to y it would happen
that u(x, b′) ≤ u(b′, y), then condition (U4) or Lemma 5.3 is violated in a quad-
rangle defined by two paths (x, a′, b′, c′, y) and (x, a′′, b′′, c′′, y), where a′ and a′′

are chosen so that u(a′, a′′) = 0 (which is possible due to (U1)).
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So we know the existence of a path (x, a′, b′, c′, y) with u(x, b′) > u(b′, y′). If
u(a′, c′) = 0, then we are finished, so assume this is not the case. Using Lemma 2.1,
we can find a′′Ix with u(a′, a′′) = 0. Let (x, a′′, b′′, c′′, y) be the unique shortest
path from x to y containing a′′. Lemma 4.3 tells us that either u(c′, c′′) = 0 or
u(a′′, c′′) = 0. If we are in the first case, then applying Lemma 4.3 again on the
other type of elements in the ordinary quadrangle leads to a contradiction with
Lemma 5.2. So u(a′′, c′′) = 0. Using (U4) one sees that (x, a′′, b′′, c′′, y) is a path
with the desired properties. !

We are now ready to check (C1), (C2), (C3) and (C4).

5.3.1 (C1)

• If d(x, y) = 0, then dt,x
r (y) = 0 for t ∈ [0,+∞[.

• If d(x, y) = 1, then dt,x
r (y) = 1 for t ∈ [0,+∞[.

• If d(x, y) = 2, then

– dt,x
r (y) = 0 for t ∈ [0, u(x, y)[,

– dt,x
r (y) = 2 for t ∈ [u(x, y),+∞[.

• If d(x, y) = 3, with xIaIbIy then

– dt,x
r (y) = 1 for t ∈ [0, u(x, b) + u(a, y)/

√
2[,

– dt,x
r (y) = 3 for t ∈ [u(x, b) + u(a, y)/

√
2,+∞[.

• If d(x, y) = 4, then in the case that there exist a, b and c such that
xIaIbIcIy, with u(x, b) != u(b, y), let k(x, y) be the minimum of both (this
is independent of a, b and c due to Lemma 4.3). In the case that x and y

are equidistant, we define k(x, y) to be equal to τ(x, y)/2. Then we have

– dt,x
r (y) = 0 for t ∈ [0, k(x, y)[,

– dt,x
r (y) = 2 for t ∈ [k(x, y), τ(x, y)− k(x, y)[.

– dt,x
r (y) = 4 for t ∈ [τ(x, y)− k(x, y),+∞[.
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5.3.2 (C2)

Let y, z be a pair of incident elements. Without loss of generality one can suppose
that d(x, y) + 1 = d(x, z). There are three non-trivial cases.

• d(x, y) = 2, with dt,x
r (y) = 0, and dt,x

r (z) = 3. This yields
t ∈ [0, u(x, y)[∩[u(x, y) + u(xz, z)/

√
2,+∞[. The last intersection is clearly

empty and thus this case cannot occur.

• d(x, y) = 3, with dt,x
r (y) = 1 and dt,x

r (z) = 4. Let xIaIbIy. This situa-
tion occurs when t ∈ [0, u(x, b) + u(a, y)/

√
2[∩[τ(x, z) − k(x, z),+∞[. As

k(x, z) ≤ min(u(x, b), u(b, z)) + u(a, y))/
√

2, the range for t is empty, thus
this case cannot occur either.

• d(x, y) = 3, with dt,x
r (y) = 3 and dt,x

r (z) = 0. Let xIaIbIy. This happens
when t ∈ [0, k(x, z)[∩[u(x, b)+u(a, y)/

√
2,+∞[. Again the bound k(x, z) ≤

min(u(x, b), u(b, z)) + u(a, y))/
√

2 leads to a contradiction.

5.3.3 (C3)

Let again y be an element, with a, b two elements incident with y, such that
dx,t

r (a) + 1 = dx,t
r (b) + 1 = dx,t

r (y).

• If d(x, y) = 1, then dt,x
r (y) = 1 for t ∈ [0,+∞[. Let a be the element x.

then d(x, b) = 2, so in this case t ∈ [0, u(x, b)[. The following now holds:
uV (x,t)(a, b) = u(x, b)− t > 0.

• If d(x, y) = 2, then dt,x
r (y) = 2 for t ∈ [u(x, y),+∞[. We may assume that

a = xy and d(x, b) = 3. This yields that t ∈ [u(x, y), u(x, y) + u(a, b)/
√

2[.
One checks that uV (x,t)(a, b) = u(a, b)−

√
2(t− u(x, y)) > 0, so (C3) holds

here.

• If d(x, y) = 3, with xIpIqIy then

– dt,x
r (y) = 1 for t ∈ [0, u(x, q) + u(p, y)/

√
2[. We distinguish two sub-

cases.
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∗ If u(x, q) > t, then we choose a = q. The element b is then
at distance 4 from x, with dt,x

r = 0, hence t ∈ [0, k(x, b)[. If
u(q, b) ≤ t, then u(q, b) = k(x, b) ≤ t which is impossible (remem-
ber u(x, q) > t). As uV (x,t)(q, b) = u(q, b) − t, condition (C3) is
satisfied here.

∗ The other subcase is where u(x, q) ≤ t. Note that dt,x
r = 2, thus

d(x, b) = 4. Since u(x, q) ≤ t and t < k(x, b), we have u(q, b) =
u(x, q) and u(p, y) > 0. We construct a as follows: let r be an
element incident with x such that u(p, r) = 0 and let s be an
element incident with r such that u(x, s) = 0. The element a is the
projection of s on y. Let c be the projection of b on r. Lemmas 4.3
and 5.2 yield u(a, s) = u(y, as) = 0, u(r, as) = τ(x, a)/

√
2, a

and x are equidistant (by Lemma 5.3), and dt,x
r (x, a) = 0. As

uV (x,t)(a, b) = u(a, b) − t, we have to prove that u(a, b) ≥ k(x, b)
in order to prove (C3).
Let Ω be the unique quadrangle containing b, y, s and r. If b

and x are equidistant, then the valuation of b in Ω is zero, and
(U4) implies u(a, b) ≥ u(r, as)/

√
2 = k(x, b). Finally suppose that

b and x are not equidistant, then Lemma 5.3 implies u(x, s) !=
u(s, c), and thus u(x, s), u(s, c) ≥ k(x, b) (by definition of k(x, b)).
Applying (U4) in Ω tells us now that u(a, b) ≥ u(s, c) ≥ k(x, b),
which we needed to show.

– dt,x
r (y) = 3 for t ∈ [u(x, q) + u(p, y)/

√
2,+∞[. Let a be q in this

case. The element b will thus be at distance 4, while dx,t
r (b) = 2.

So t ∈ [k(x, b), τ(x, b) − k(x, b)[, which also means that b and x are
not equidistant. Careful analysis reveals that uV (x,t)(a, b) = τ(x, b) −
k(x, b)−t, which is strictly larger than zero because dx,t

r (b) = 2 implies
t ∈ [k(x, b), τ(x, b)− k(x, b)[.

• If d(x, y) = 4, then dt,x
r (y) = 2 for t ∈ [k(x, y), τ(x, y) − k(x, y)[. Notice

that x and y are not equidistant. Let (x, p, q, a, y) be a path as constructed
in Lemma 5.4. This fixes our choice of a. Let (x, r, s, b, y) be the unique
path from x to y containing b. One checks that uV (x,t)(a, b) = u(a, b) −√

2(t− k(x, y)) = u(a, b)−
√

2(t−u(y, q)). The value of t is strictly smaller
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than u(x, s)+u(s, b)/
√

2 (because dt,x
r (b) = 1). All we have to check is that

uV (x,t)(a, b) ≥ 0 when t = u(x, s)+u(s, b)/
√

2. Using (U4), one proves that
uV (x,t)(a, b) = u(p, r) ≥ 0 for this value of t.

This concludes the proof of (C3) in this case.

5.3.4 (C4)

In this case, the condition (C4) can be proved analogously to the proof of (C3).

5.4 n = 6 and the valuation is discrete

Here the discreteness allows us to define the translations in a much easier way
using recursion. We start with a valuation u where the valuations of one type of
elements are integer multiples of 3, while valuations of the other type are integer
multiples of

√
3 (with proper rescaling, this is a consequence of the discreteness,

see [7]). The valuation u also defines a residual distance dr. We use this as the
constant translated residual distance dx,t

r with t ∈ [0, 1[ or [0,
√

3/2[ depending on
the type of x (notice that this implies that (C1) and (C2)). The condition (C4)
is satisfied because it is satisfied for t = 0, and because the valuations in question
stay zero. The discreteness makes it so that because (C3) is satisfied for t = 0, it
will also be satisfied for t in the ranges above (because the range is small enough
so the valuation in question cannot decrease to zero).

Let’s clarify this with an example first. Suppose that x is an element such that
the valuations of that type of element are integer multiples of

√
3, and let k ∈

[0,
√

3/2]. Applying what is said above the displacement of the base point of the
trees associated with an element y with residual distance dr(x, y) to yield the
valuation uV (x,k) will be as given in the following table; all displacements are
towards an element which is in the residue closest to x:

dr(x, y) 0 1 2 3 4 5 6
Displacement of base point none k

√
3k 2k

√
3k k none

Note that k is small enough so that the displacements do not make the base
points reach branch points of the trees, except for the maximal value k =

√
3/2
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and dr(x, y) = 3. Branch points are not supposed to be crossed, because for
(C3), valuations are not allowed to decrease to zero (which is what happens at
branch points), except for the final point (for a k-translation, (C3) needs only to
be checked for values t in [0, k[).

We can repeat the same procedure on the new valuations we obtain but with
one major caveat: the valuations are no nice integer multiples anymore (because
we can k-translate with k a real number in [0, 1] or [0,

√
3/2] depending on the

situation). However, we can handle this as follows. Let W be a Coxeter group
of type G̃2 acting naturally on a Euclidean affine plane A. Take a special vertex
s. Notice that, with proper rescaling, the distances from s to all the walls of a
parallel class of walls is exactly the image set of the valuations u of the elements
incident with a certain type of elements. Let s′ be a point of the plane A at
distance k from s, on the same wall (with type the element we have translated
to) as s. Due to Lemma 5.1 (or by looking at the example above), we can again
identify distances from s′ to all the walls of a parallel class to image sets of
valuations uV (x,k) of certain elements as above. (We can no longer identify with
a type of elements, there will be more classes of elements, due to the residue
corresponding with uV (x,k) being a weak generalized hexagon.)

We can now l-translate uV (x,k) to an element y in the same way as above, with l

small enough that we do not ‘cross’ any walls with the corresponding displacement
of the point in the plane. The displacement will now happen along the line at
angle dπ/n with the line through s and s′, with d the distance in the residue of
uV (x,k) from x to y. One cannot cross the wall because we will have moved some
base points of trees to branch points. Note however that ‘arriving’ at a wall is
allowed, so one can get across that wall with the next translation.

This procedure allows us to repeat the construction, obtaining all subsequent
translations of u we want.

We again clarify further with an example. Suppose x as in the above example and
let t be

√
3/3. Now suppose that y is an element which is at distance 2 from x

in the residue of uV (x,k). With the above procedure it follows that we l-translate
to y with l ∈ [0,

√
3/3] (when l =

√
3/3, we arrive again in a special point of

A). Again we could make a table and confirm that indeed the base points reach
branch points of the tree except for the maximal value l =

√
3/3.
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5.5 What about n = 5 and the non-discrete case for n = 6?

One could use similar techniques as for the cases n = 3 and n = 4 to investigate
these cases. The things one would need to prove are mostly quantitative versions
of the qualitative lemmas of the proof of the second main result. However extend-
ing the, already extensive, complexity of the case studies n = 3 and n = 4 to these
higher cases, would probably require an additional number of pages comparable
with the number of pages already contained in the current version of the paper.
For this reason we choose to restrict ourselves to the already handled cases.

5.6 Some first observations

Now that we defined additional valuations, we need to show that they form the
point set of an R-building. We need some properties to do so.

Lemma 5.5 The residual distance of x and y in the residue of uV (x,t) equals
dt,x

r (y).

Proof. This follows from the way we defined (C1) for n = 3 and n = 4, and from
the construction for the discrete case when n = 6. !

Lemma 5.6 If dx,t
r (y) = n, then dx,t′

r (y) = n for every t′ ≥ t.

Proof. The only case for which this is not directly clear is n = 6. Applying the
previous lemma we see that in the residue of uV (x,t) the elements x and y are
residually opposite and that each shortest path between both has valuation zero.
Because of the way we defined uV (x,t′), it follows that the path also has valuation
zero for uV (x,t′). This proves the lemma. !

Corollary 5.7 When translating towards x, the residual distance dx,t
r (y) only

increases, up to the point that dx,t
r (y) = d(x, y).

Proof. Again we only need to prove this when n = 6. Because of the above lemma
and the fact that the residue is a weak generalized n-gon where each element is
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incident with at least 2 elements, we see that dx,t
r (y) only increases. It increases

to d(x, y) because if for an arbitrary element z we have dx,t
r (z) = d(x, z) < n,

then for an element aIz there exists t′ ≥ t such that dx,t
r (a) = d(x, a) (this is due

to the displacement of the base point of the tree associated to z, which happens
at a constant rate towards the projection of x on z). Repeating this argument
implies that dx,t

r (y) will eventually become d(x, y). !

5.7 Structural properties of the set of translated valuations

Let Λ(u) be the set of all valuations obtained by translating u a finite number of
times.

Lemma 5.8 If we know the values of a valuation v on the pairs of elements
incident with an element x, and we know that an element y is residually opposite
x, then we know the values of v on the pairs of elements incident with y.

Proof. Let a, bIy, then (U4) in an n-gon containing a, b, x and y tells us that
v(a, b) = v(a′, b′) where a′ and b′ are the projections on x of a and b, respectively.

!

Lemma 5.9 Let Ω be an n-gon in Γ, non-folded for a valuation v ∈ Λ(u), such
that all values of v in the line pencils of the corners and points on the sides of Ω
are known, then the values of v are known entirely.

Proof. Let x be an element of Γ. Let y be an element of Ω with minimal distance
k to x. Notice that k < n. If k = 0, then we know the valuations of pairs of
elements incident with x, so suppose k > 0. Let z be the projection of x on y.
Then there are two ordinary n-gons containing z and sharing a non-stammering
path of length n with Ω. By applying (U3), (U4) at least one of these two n-gons
is non-folded for the valuation v. Let Ω′ be such an n-gon. The valuations in the
line pencils of the corners and points on the sides of Ω′ are known because of the
previous lemma. The minimal distance from x to an element of Ω′ is now strictly
less than k. So by repeating the above argument one sees that one knows the
value of v everywhere. !
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Corollary 5.10 If dt′,x
r (y) = 0 for all t′ ∈ [0, t[, then uV (x,t) = uV (y,t).

Proof. If n = 6, then this follows from the ‘discrete’ construction.

In the other cases, let Ω be a non-folded n-gon (for u) containing x. If we can
prove that for each element z in Ω the relation dt′,x

r (z) = dt′,y
r (z) holds for all

t′ ∈ [0, t[, then the displacements of the base points in the trees corresponding to
the elements of Ω are the same, so by the previous lemma also uV (x,t) = uV (y,t).
Moreover, it suffices to prove this for z equal to x and equal to the element
opposite x in Ω because of (C2).

If z = x, then note that, due to the symmetry of the definitions in (C1), dt′,y
r (x) =

0 is equivalent with dt′,x
r (y) = 0 for all t′ ∈ R+, so also for t′ ∈ [0, t[. So the result

follows from the assumption.

If z is opposite x in Ω, note that due to the residual equivalency of x and y (by
Lemma 5.5), we have that τ(x, z) = τ(y, z) = 0, and thus dt′,x

r (z) = dt′,y
r (z) = n

for all t′ ∈ R+. !

Remark 5.11 It should also be noted that at this point one can prove that the
group of projectivities of a line L preserves the tree structure associated with L.
This allows for a characterization due to Jacques Tits in the case n = 3, which
was formulated without proof in [9].

5.8 Apartments

An apartment in our R-building will consist of all valuations in Λ(u) for which a
given ordinary n-gon is non-folded. Here, we investigate which valuations keep a
given ordinary n-gon non-folded. Later on, this will give us the affine structure
of the apartments.

Let u be a valuation, and let Ω be a non-folded n-gon in Γ containing an element x.
Note that due to (U4) and multiple use of Lemma 2.1 each flag can be embedded
in such a non-folded n-gon, so results obtained here for single points or flags of
Ω are true for all points or flags.

Using the definition of t-translation one easily obtains that a translation V (x, t)
moves the base point of the tree corresponding to an element y of Ω along the
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apartment of that tree with ends the two elements of Ω incident with y. The new
base point lies at length t sin(d(x, y)π/n)/ sin(π/n) towards the projection of x

on y (note that in the cases that this projection is not defined, the length will be
zero).

Consider the affine real two-dimensional space A. One can think of this as a
(degenerate) affine apartment system with an ordinary n-gon at infinity. Identify
this n-gon with Ω and let α be a point of A. Now consider the point at distance t

on the sector-panel with source α and direction x. We observe that, for an element
y of Ω at infinity, the distance component perpendicular to the direction to y, of
the original to the new point is t sin(d(x, y)π/n)/ sin(π/n), which is exactly the
same as above.

Note also that Ω is non-folded for the valuation uV (x,t), and that the displacements
of the base points in the aforementioned trees describe uV (x,t) completely when
u is known, due to Lemma 5.9. So we can identify the points of A with the
valuations obtained by translating u to elements of a certain non-folded n-gon
for u. This spawns a few direct consequences.

Corollary 5.12 Let x be an element of Γ and let t and s be non-negative real
numbers. Then

• uV (x,t)V (x,s) = uV (x,t+s) (local additivity).

• uV (x,t)V (y,s) = uV (y,s)V (x,t) if xIy (local commutativity).

• uV (x,t)V (y,t) = u if τu(x, y) = 0 (reversibility).

• If a path (x0, x1, . . . , xi) (with i ≤ n) has valuation zero for some valua-
tion u, and suppose that v is a valuation obtained from u by subsequently
translating towards the respective elements of the path. Then there exists a
j ∈ {1, . . . , i} and t′, s′ ∈ R+ such that v = uV (xj−1,t′)V (xj ,s′). In addition,
the total sum of lengths of all the translations does not increase.

Note that the reversibility statement also implies that, if v ∈ Λ(u), then Λ(v) =
Λ(u).
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5.9 Convexity

The next thing to investigate is how an ordinary n-gon Ω behaves with respect
to translations towards elements outside Ω. This will allow us to prove the
(convexity) condition (A2) later on.

Lemma 5.13 Let Ω be an ordinary n-gon and x an element not residually equiv-
alent to any of the elements of Ω. Then Ω cannot be a non-folded n-gon for uV (x,t)

with t > 0.

Proof. Consider the closed path (x0, x1, . . . , x2n = x0) defined by Ω. There is
an i ∈ {1, . . . , 2n} such that the residual distances from x to xi−1 and xi+1,
are both larger than the residual distance from x to xi. We excluded that xi

is residually equivalent to x, so the right derivative (with respect to t) of the
valuation uV (x,t)(xi−1, xi+1) is positive in a certain interval (for t) containing 0
where the residual distances to x in the path are constant. This implies that Ω is
not non-folded for t in this interval but different from zero. We also know that we
can partition [0,+∞[ in a finite set of intervals with constant residual distances
to x in the path, so repeating the above argument proves the lemma. !

Lemma 5.14 Let {p, L} be a flag in Γ, let l, m be positive real numbers, and let
Ω be a non-folded n-gon. Then, if Ω is non-folded for the valuation uV (p,l)V (L,m),
it is also non-folded for the valuations uV (p,l′)V (L,m′), for all l′ ∈ [0, l] and m′ ∈
[0,m]. Moreover, there is a point p′ and line L′ in Ω such that uV (p,l′)V (L,m′) =
uV (p′,l′)V (L′,m′) for all l′ ∈ [0, l] and m′ ∈ [0,m].

Proof. For the first assertion, note that using Corollary 5.7 it follows that, if we
are translating to a certain flag {p, L}, we can first ‘use up’ that much of the
translations to p and L (note that these commute) such that we only end up with
valuations to elements not residually equivalent to an element of the ordinary n-
gon. If we now translate further than this, the apartment loses its non-foldedness
and never regains it, due to Lemma 5.13. So if for uV (p,l)V (L,m) the n-gon Ω is still
non-folded, it has to be that p and L remain residually equivalent to elements of
the n-gon for the whole translation. So if we translate ‘less’ (uV (p,l′)V (L,m′) with
l′ ∈ [0, l] and m′ ∈ [0,m]), Ω will still be non-folded.
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The second assertion now follows from Lemma 5.13 and Corollary 5.10 (the ele-
ments p and L stay residually equivalent to the same pair of incident elements of
the n-gon for the whole translation because of Corollary 5.7). !

5.10 Existence of apartments containing two valuations

Lemma 5.15 Let u be a valuation, and v, w ∈ Λ(u). Then there exists a point
p and line LIp in Γ, and non-negative real numbers k and l such that w =
vV (p,k)V (L,l).

Proof. First remark that w ∈ Λ(u) = Λ(v). So w can be obtained from v with a
series of i translations. We prove with induction that this series of translations
can be reduced into the desired form.

If i ≤ 1 this is trivial. If i > 1 we can reduce the last i− 1 translations into the
desired form, so we have that w = vV (x,k)V (y,l)V (z,m) with yIz and k, l, m ∈ R+

(note that the last two translations commute).

We now start a second induction on j = max(d(x, y), d(x, z)). If this is 1, then
we are done because of Corollary 5.12. So suppose that j > 1, and that we can
reduce to the desired form if the maximum is strictly less than j. Without loss of
generality, assume the maximum in the definition is reached for d(x, z). Let t be
the smallest real positive number such that the residual distance between x and
z in vV (x,t) equals the actual distance in Γ. There exists an element x′ such that
d(x′, z) < d(x, z) and x′ is residually equivalent with x for vV (x,t′), with t′ < t

(the existence of such an x′ will be clarified below).

If k ≤ t, then w = vV (x,k)V (y,l)V (z,m) = vV (x′,k)V (y,l)V (z,m), and so we are done in
this case by the second induction hypothesis. If k > t, then

w = vV (x,k)V (y,l)V (z,m) = (vV (x,t))V (x,k−t)V (y,l)V (z,m).

By the definition of t, there exists a non-folded n-gon for the valuation vV (x,t)

containing x, y and z. This implies that the last three translations can be reduced
into the desired form of two translations towards two incident elements in the path
from x to z (by Corollary 5.12). If both of these translations are not towards
z, then we are done due to the second induction hypothesis. If this is not the
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case then w = (vV (x,t))V (y,l′)V (z,m′) = (vV (x′,t))V (y,l′)V (z,m′) for certain l′ and m′,
which is again reducable due to the second induction hypothesis.

All that is left to do is to clarify the existence of the element x′ above. We
will only point out which elements should be chosen as x′, the verification of the
conditions is easily done. We can assume that d(x, z) ≥ 2.

• n = 3

– d(x, z) = 2, here we set x′ = z.

– d(x, z) = 3, here we take x′Iz, such that u(xx′, z) = 0. The existence
of such an x′ follows from applying Lemma 4.3 on a triangle containing
x, z and two elements incident with x constructed by (U1).

• n = 4

– d(x, z) = 2, here we set x′ = z.

– d(x, z) = 3, let (x, a, b, z) be the unique path of lenght 3 from x to z. If
u(a, z) = 0, we let x′ be b. If this is not the case then let c be an element
incident with x and such that u(a, c) = 0. Next construct an element
d incident with c such that u(x, d) = 0. The last two constructions
are possible by Lemma 2.1. Finally x′ will be the projection of d on
z. Note that x and x′ are equidistant due to Lemmas 5.2 and 5.3.

– d(x, z) = 4, if x and z are equidistant, we let x′ be z. Otherwise, using
Lemma 5.4, we can construct a path (x, a, b, c, z) such that u(x, b) ≥
u(b, z) and u(a, c) = 0. Here we let x′ be the element b.

• n = 6 and discrete. In this case the existence is guaranteed by the discrete-
ness and Lemma 4.6. !

Corollary 5.16 If we reduce vV (p,l)V (L,m)V (p′,l′)V (L′,m′) to an expression of the
form vV (p′′,l′′)V (L′′,m′′), then l′′ + m′′ ≤ l + m + l′ + m′.

Proof. All the reductions in the proof of the above lemma use Corollary 5.12,
which does not increase the sum of the lengths of the translations. !
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Lemma 5.17 For each pair of valuations v, w ∈ Λ(u) there is an ordinary n-gon
Ω in Γ which is non-folded for both v and w.

Proof. Due to the previous lemma there exists a point p and line LIp in Γ,
l, m ∈ R+ such that w = vV (p,l)V (L,m). Let Ω be an ordinary n-gon in Γ containing
p and L such that Ω is non-folded for v (these exist because of Lemma 2.2).
Because both p and L lie in Ω, translations towards p and L produce valuations
for which Ω remains non-folded. In particular this holds for w = vV (p,l)V (L,m).

!

5.11 Building the affine apartment system

We end by putting all the pieces together to form an affine apartment system.
Let Λ(u) be the set of points. Remember that if v ∈ Λ(u), then Λ(u) = Λ(v).

Let Ω be an ordinary n-gon of Γ. Consider the set A(Ω) of all the valuations in
Λ(u) for which this n-gon is non-folded. Suppose that two valuations v1 and v2 are
in this set. Lemma 5.15 tells us that there exists a flag {p, L} in Γ and k, l ∈ R+

such that v2 = vV (p,k)V (L,l)
1 . As Ω is non-folded for both v1 and v2, Lemma 5.14

implies that there exists a flag {p′, L′} in Ω such that v2 = vV (p′,k)V (L′,l)
1 . We thus

have that all the valuations in the set A(Ω) can be obtained out of each other by
translating towards elements of Ω. This is exactly the set of valuations which has
been studied in Corollary 5.12. In the reasoning behind this corollary it was seen
that the valuations can be interpreted as points of A. The sector with source
v ∈ Λ(u) and as direction the flag {p, L} will be the set {vV (p,k)V (L,l)|k, l ∈ R+}.

This allows us to define a chart fΩ,v,p,L, for a v ∈ Λ(u), and Ω a non-folded n-gon,
containing a flag {p, L} (the chart is defined such that a chosen fixed sector of
A is mapped to the sector with source v and direction {p, l}). Let F be the
collection of all these charts. Condition (A1) can now easily seen to be true.

The second condition to check is (A2). Let f = fΩ,v,p,L and f ′ = fΩ′,v′,p′,L′ be
two charts in F . Let X = f−1(f ′(A)). The points (or valuations) which are
in the image of both charts, are those valuations for which both Ω and Ω′ are
non-folded. Let v′′ be a valuation for which this is the case (if there is not such
a v′′, the condition (A2) is trivially satisfied). Lemma 5.14 implies that X is
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star convex for f−1(v′′). Because v′′ is arbitrary in f(X), one obtains that X is
convex. That X is also closed follows from the fact that translations change the
valuations continuously.

Next thing we need to show is the existence of a w ∈ W such that f |X = f ′ ◦w|X .
Consider both X and the similar set X ′ = f ′−1(f(A)). In order to prove the
existence of such a w we need to prove that X can be mapped onto X ′ by some
w ∈ W . The map φ = f ′−1 ◦ f is bijective from X to X ′. Let x1 and x2 be
elements of X. Then their images under f are two valuations v1 and v2. Because
they lie in the same apartment A(Ω), there is a flag {q, M} in Ω and k, l ∈ R+ such
that v2 = vV (q,k)V (M,l)

1 . But as these two valuations are also in A(Ω′), we know by
Lemma 5.14 that there exists a flag {q′,M ′} in Ω′ such that v2 = vV (q′,k)V (M ′,l)

1 .
Since the lengths of the translations and the type of elements towards which is
translated do not change, it follows that φ is distance preserving and preserves
the type of the directions at infinity of A. This implies the existence of the needed
w.

Condition (A3) is satisfied because of Lemma 5.17.

Now, (A4) can be shown to be true as follows. Suppose we have two sectors related
to two flags {p, L} and {q, M} of Γ. These can be embedded in an ordinary n-gon
Ω. The apartment A(Ω) contains sectors with directions {p, L} and {q, M}. This
only leaves us to prove that two sectors related to the same flag always intersect
in a subsector. This last assumption is true because if we have two ordinary
n-gons Ω and Ω′ containing p and L, it follows from Corollary 5.7 that there exist
l, m ∈ R+ such that for each l′ ≥ l, m′ ≥ m the valuation uV (p,l′)V (L,m′) takes only
the value zero in both Ω and Ω′. The set of these valuations forms the desired
subsector.

For (A5) we have three ordinary n-gons Ω, Ω′ and Ω′′, each pair sharing a path
of length n. From (U3) and (U4) we deduce that, if for a valuation v ∈ Λ(u) the
ordinary n-gon Ω is non-folded, then at least one of Ω′ and Ω′′ is non-folded for
v, too. This means that every point of A(Ω) belongs to A(Ω′) or to A(Ω′′), or to
both. Since it is easy to see that the intersection of two apartments is closed, the
sets A(Ω) ∩A(Ω′) and A(Ω) ∩A(Ω′′) are not disjoint, proving (A5).

We only still need to prove that the ‘distance’ function d defined on pairs of
valuations by (A1), (A2) and (A3) is indeed a distance function. (For two valua-
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tions v and vV (p,k)V (L,l), the distance between both is defined as the length of the
third side of a triangle in a Euclidean plane where two sides have length k and
l, and with the angle between both sides π/n.) However by re-reading the proof
in [5] of the equivalence of the various definitions of affine apartment systems,
one sees that the weaker inequality d(u, v) ≤ 2(d(u,w) + d(w, v)) also suffices.
This inequality is a direct consequence of Corollary 5.16.

So we conclude that the set of points Λ(u), endowed with the set of apartments

{A(Ω) | Ω is an ordinary n-gon of Γ},

forms a 2-dimensional affine apartment system with the generalized n-gon Γ at
infinity.

All that is left to show is that the construction of [7] applied to the affine apart-
ment system defined on Λ(u) and the point defined by the valuation u, gives us
back the valuation u on Γ. One has to prove that, if x and y are adjacent, the
corresponding sector-panels with source u share a line segment of length u(x, y).
This follows from Corollary 5.10 and the fact that, if x and y are adjacent, one
has dt,x

r (y) = 0 if and only if t ∈ [0, u(x, y)[.

6 Proof of the application (Theorem 2.3)

Suppose we have a projective plane Γ and a real number t ∈ R+\{0}. Also
suppose we are either given a valuation u, or two functions d and ∠ satisfying
the conditions listed in Theorem 2.3. Use the identities d(p, q) = t−u(p,q) and
∠(L,M) = arcsin(t−u(L,M)) to reconstruct the other function(s).

It is easily seen that condition (U2) for valuations corresponds to condition (M2)
and the part “d(p, q) = 0 ⇔ p = q” of condition (M1).

If we have three points p, q and r, then

u(p, q) ≥ min(u(p, r), u(r, q)) ⇔ d(p, q) ≤ max(d(p, r), d(r, q)).

The left hand side is satisfied for a valuation because of (U3) and Lemma 4.3;
the right hand side is satisfied for a distance because of (M1). So condition (U3)
for points on a line is equivalent with the inequality part of (M1).
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Condition (U1) for valuations is directly equivalent with conditions (M3) and
(M4).

Also condition (U4) corresponds directly to the sine rule condition (M5).

The only part that needs a closer look is how condition (U3) for valuations follows
from conditions (M1) up to (M5) (and the already proven conditions (U1), (U2),
(U3) for points on a line and (U4)). Let L, M and N be three lines through a
point p. By (U1), there exist two lines Y and Z through p such that u(Y, Z) = 0.
Since (U1) and (U3) hold for points on a line, Lemma 2.1 also holds. So there
exist qIY and rIZ with u(p, q) = u(p, r) = 0. We now have for the line qr that
τ(p, qr) = 0 by (U4). (Note that τ is well-defined because (U4) holds.)

Let l, m and n be the respective projections of L, M and N on the line qr . Using
(U4) we see that u(L,M) = u(l, m), u(M, N) = u(m,n) and u(L, n) = u(l, n).
So condition (U3) for the three lines L, M and N follows directly from the same
condition (U3) for the three points l, m and n.

7 Some examples

7.1 n = 3

Here we rely on some results for the discrete case. The second author proved
in [15] that the notion of a projective plane with valuation is equivalent to one
of a planar ternary ring with valuation. Moreover he also investigated in [10]
how the valuation behaves in planar ternary rings with extra algebraic proper-
ties (nearfields, quasifields, linearity, etc.). In particular he proved the following
result, the arguments of which can be copied verbatim in the non-discrete case.

Proposition 7.1 A quasifield with valuation v, which is a unary function with
values in Z ∪ {∞} gives rise to a planar ternary ring with valuation (and thus
also to a projective plane with valuation and an affine apartment system with a
projective plane at infinity), if the following three conditions are fulfilled:

(V1) v(a) = ∞ if and only if a = 0.

(V2) If v(a) < v(b), then v(a + b) = v(a).
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(V3) v(a1b− a2b) = v(a1 − a2) + v(b).

We now construct such quasifields (again inspired by previous results of the sec-
ond author in [10]). Let K+,. be a field with a non-discrete valuation v in the
classical sense (which is in fact the above definition for quasifields applied to
fields, so (V3) becomes v(ab) = v(a) + v(b)).

Remark 7.2 Notice that the classical affine apartment systems with a (Desar-
guesian) projective plane at infinity already appear here by taking those quasi-
fields with valuation which are (skew) fields.

Now let α be a field automorphism, with finite order, of K, preserving the valu-
ation v. So α generates a finite group of automorphisms G. One can define the
norm map n : K → K : a 1→

∏
α′∈G α′(a). Notice that v(n(a)) = |G|v(a). Let

σ be a map from the image of the norm map n to G such that σ(1) is the unit
element of G, and that v(a) = v(b) implies σ(n(a)) = σ(n(b)).

It follows that one can construct an André quasifield K+,& by taking the elements
of K with the addition of the field and a new multiplication 2 : K ×K → K :
(a, b) 1→ a.bσ(n(a)). Moreover, we now show that this quasifield with the map
v forms a quasifield with valuation. We only have to verify (V3) for the new
multiplication. First remark that v(a 2 b) = v(a.bσ(n(a))) = v(a) + v(bσ(n(a))) =
v(a) + v(b). The last step holds because α and thus all elements of G preserve v.

We now calculate v(a1 2 b− a2 2 b). There are two possibilities that can occur.

• v(a1) != v(a2), suppose without loss of generality that v(a1) < v(a2). Then

v(a1 2 b− a2 2 b) = v(a1 2 b) (14)

= v(a1) + v(b) (15)

= v(a1 − a2) + v(b), (16)

where the first step is true because v(a12b) = v(a1)+v(b) < v(a2)+v(b) =
v(a2), (V2), and v(−1) = 0 (which easily follows from the definition of
valuation).
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• The other possibility is that v(a1) = v(a2). Then

v(a1 2 b− a2 2 b) = v(a1.b
σ(n(a1)) − a2.b

σ(n(a2))) (17)

= v((a1 − a2).bσ(n(a1))) (18)

= v(a1 − a2) + v(bσ(n(a1))) (19)

= v(a1 − a2) + v(b), (20)

where the second step holds because v(a1) = v(a2) implies σ(n(a1)) =
σ(n(a2)).

Combining both cases, we see that (V3) holds for the quasifield K+,& with valu-
ation v.

We now provide some explicit examples of the above situation. Let k be any field,
let M be a subset of N\{0} generated multiplicatively by a certain set of primes.
Now let K be the field of rational functions in t, but allowing all rational powers
r/s of t with s ∈ M . If k(t) = f(t)/g(t) ∈ K with f(t) and g(t) polynomials
(also allowing powers of the form above), we then set v(k(t)) to be the minimal
non-vanishing power of t in f(t) minus the minimal non-vanishing power of t in
g(t). One verifies that K together with v forms a field with valuation.

• Let k be a finite field with characteristic p and M the set of integer powers
of p. Then a suitable choice for α is the automorphism that maps t

r
s to

( t1/s

1+t1/s )r.

• Now let k be any field and M generated by all the odd primes (so M is
the set of the odd non-negative integers). Now one can set α to be the
automorphism that maps t

r
s to (−t

1
s )r.

All of these examples have a non-classical projective plane at infinity, but have
classical residues. In addition they are locally finite when k is finite.

There are also examples where one can choose one residue completely freely. For
a given planar ternary ring R, one can define a “positively valuated ternary ring”
R{t}, similarly as in the discrete case, see [11]. Indeed, one considers the power
series

∑
n∈N antn in t where N is a set of positive integer multiples of a certain
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rational number (for different power series, this number may be different) and
an ∈ R for n ∈ N . Since any finite number of such power series can be thought
of as belonging to the same discrete version of this construction, the ternary
operation can be copied from [11], and also the proof of the fact that we have
a positively valuated ternary ring. Now, in completely the same way as in the
discrete case, one constructs a projective plane with (non-discrete) valuation out
of this. The residue defined by this valuation is precisely the projective plane
coordinatized by R. To the best of our knowledge, these are the first examples of
such non-discrete apartment systems with an arbitrary (possibly finite) residue.

7.2 n = 4

The construction we will explain here is again inspired by an example for the
discrete case by the second author in [12]. We will only sketch how the coordina-
tizing structure with valuation looks like. All proofs for the finite case still hold
here (this is due to the fact than any finite number of elements in the coordina-
tizing structure can be ‘embedded’ in a discrete case). In particular, the reader
can consult [15] for explicit formulae to derive the valuation of the generalized
quadrangle from the valuation of the coordinatizing structure.

Consider the finite field k = GF(q) with q = 2h. Let h1 and h2 be two natural
numbers such that q − 1 and −1 + 21+h1+h2 are relatively prime (for example
h = 3, h1 = 1 and h2 = 0). For i = 1, 2, let θi be raising to the power 2hi , which
form automorphisms of this finite field. Now consider the field K of Laurent
series

∑
n∈N antn in t where N is a set of integer multiples of a certain rational

number, bounded below (again, for different Laurent series, this number may
be different) and an ∈ k for n ∈ N . There is a natural valuation on this field,
defined by v(

∑
n∈N antn) = m where m is the smallest element of N such that

am is non-zero (well defined by the boundedness below). One can extend θi for
i ∈ {1, 2} to the field K by

(
∑

n∈N

antn)θi =
∑

n∈N

aθi
n tn. (21)
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The coordinatizing structure is now given by:

Q1(k, a, l, a′) = (kθ1)2.a + a′, (22)

Q2(a, k, b, k′) = aθ2 .k + k′, (23)

wih k, l, k′, a, b, a′ ∈ K and v the natural valuation.

For more information about this example and coordinatizing structures, see [12].
One can show that this example defines a generalized quadrangle with valuation
where both the quadrangle itself and its residue are non-classical.

These are, to the best of our knowledge, the first explicitly defined examples of
non-discrete R-buildings of this nature.

Acknowledgment. We would like to thank the referee for reading the details of
our proofs, pointing out a slight error and inquiring various additional arguments
that made the paper more readable.
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