Generalized Veronesean embeddings of projective spaces, Part II. The lax case.

Z. Akça
A. Bayar
S. Ekmekçi
R. Kaya

J. A. Thas
H. Van Maldeghem*

Abstract

We classify all embeddings $\theta: \mathrm{PG}(n, \mathbb{K}) \longrightarrow \mathrm{PG}(d, \mathbb{F})$, with $d \geq$ $\frac{n(n+3)}{2}$ and \mathbb{K}, \mathbb{F} skew fields with $|\mathbb{K}|>2$, such that θ maps the set of points of each line of $\operatorname{PG}(n, \mathbb{K})$ to a set of coplanar points of $\operatorname{PG}(d, \mathbb{F})$, and such that the image of θ generates $\mathrm{PG}(d, \mathbb{F})$. It turns out that $d=\frac{1}{2} n(n+3)$ and all examples "essentially" arise from a similar "full" embedding $\theta^{\prime}: \mathrm{PG}(n, \mathbb{K}) \longrightarrow \mathrm{PG}(d, \mathbb{K})$ by identifying \mathbb{K} with subfields of \mathbb{F} and embedding $\operatorname{PG}(d, \mathbb{K})$ into $\operatorname{PG}(d, \mathbb{F})$ by several ordinary field extensions. These "full" embeddings satisfy one more property and are classified in [5]. They relate to the quadric Veronesean of $\operatorname{PG}(n, \mathbb{K})$ in $\operatorname{PG}(d, \mathbb{K})$ and its projections from subspaces of $\mathrm{PG}(d, \mathbb{K})$ generated by sub-Veroneseans (the point sets corresponding to subspaces of $\operatorname{PG}(n, \mathbb{K}))$, if \mathbb{K} is commutative, and to a degenerate analogue of this, if \mathbb{K} is noncommutative.

1 Introduction

This paper is a continuation of the paper [5]. We here use the results of the latter to improve and strengthen the main result of Thas \& Van Maldeghem [5], by relaxing the main conditions. It concerns a classification of lax generalized Veronesean embeddings of projective spaces, which, as the name suggests, relate strongly to the quadric Veroneseans of these projective spaces. Given the importance of these objects in classical algebraic geometry and finite geometry, it is a worthwhile job to do (and we give two easy but rather strong corollaries at the end of the paper).

[^0]But besides being pretty and treating important objects, there is a more compelling motivation. Indeed, the question of determining the finite (full) generalized Veronesean embeddings came up in the classification of certain embeddings of classical split Cayley generalized hexagons (in characteristic 2), see [1]. In the latter paper, new embeddings of these hexagons were found. Now, if one wants to investigate the analogous (full!) embeddings for the triality hexagons, then one needs to consider (lax!) embeddings of the split Cayley subhexagons (as these hexagons are not full subhexagons!), and hence one needs a classification of lax generalized Veronesean embeddings of projective planes, since these occur in this context. Hence it may be clear that the current paper has a clear aim and provides groundwork for ongoing work on an important questions fitting in the framework of determining the absolute embeddings of Lie-type geometries (here, the classical generalized hexagons, for which this question is still wide open).
Let us sketch the situation now. It is convenient and natural to first describe the situation in the finite case, and then to see what is needed to treat the infinite case.

According to [5], a (finite) "full" generalized Veronesean embedding is an embedding $\theta: \mathrm{PG}(n, q) \longrightarrow \mathrm{PG}(d, q)$, with $d \geq \frac{n(n+3)}{2}$, such that θ maps the set of points of each line of $\mathrm{PG}(n, q)$ to a set of coplanar points of $\mathrm{PG}(d, q)$ and such that the image of θ generates $\mathrm{PG}(d, q)$. The image in $\mathrm{PG}(d, q)$ is then called a (full) generalized Veronesean. The space $\operatorname{PG}(n, q)$ is the embedded projective space, whereas the space $\operatorname{PG}(d, q)$ will be called the embedding projective space. It is shown in [5] that $d=\frac{n(n+3)}{2}$ and that each such embedding θ is constructed as follows. We use induction on n. For $n=0$, a 0 -Veronesean map is trivial and equal to the classical Veronesean map. For $n=1$, a 0 -Veronesean embedding is any injective map from $\operatorname{PG}(1, q)$ to $\operatorname{PG}(2, q)$ such that the image spans $\operatorname{PG}(2, q)$. Now let $\max \{n, i+2\}>1,-1 \leq i \leq n-1$. Let U be an i-dimensional subspace of PG (n, q). Put $d^{\prime}=\frac{i(i+3)}{2}$. Let α be the ordinary quadric Veronesean map from $\operatorname{PG}(n, q)$ to $\operatorname{PG}(d, q)$. Then the image of U under α spans a $d^{\prime}-$ dimensional subspace V of $\operatorname{PG}(d, q)$. Let W be a $\left(d-d^{\prime}-1\right)$-dimensional subspace of $\operatorname{PG}(d, q)$ skew to V and let $\theta^{\prime}: U \rightarrow V$ be a j-Veronesean embedding of U (defined inductively), for some j, with $0 \leq j \leq i$. Then define $\theta: \mathrm{PG}(n, q) \longrightarrow \mathrm{PG}(d, q)$ as $\theta(x)=\theta^{\prime}(x)$ for $x \in U$, and $\theta(x)=$ $\langle\alpha(x), V\rangle \cap W$ for $x \in \mathrm{PG}(n, q) \backslash U$. The latter means the projection of $\alpha(x)$ from V onto W.

This embedding is called a (full) $(i+1)$-Veronesean embedding, and the subspace U will be referred to as the lid of the embedding. Hence, for $n>1$, a (full) 0 -Veronesean embedding is an ordinary quadric Veronesean embedding and has empty lid.

The inductive definition implies that we can look at the lid of the lid, i.e., the lid of the embedding induced by the lid, and we can refer to this as the second order lid. Similarly, we can now define the ℓ th order lid, for any positive integer ℓ. It is clear that there is a unique positive integer ℓ_{0} such that the $\left(\ell_{0}+1\right)$ st order lid is empty. Then we call the ℓ_{0} th order lid the ultimate lid of the embedding, and ℓ_{0} is called the depth of the embedding (0 for a 0 -Veronesean). The $\left(\ell_{0}-1\right.$)st order lid is called the pre-ultimate lid. For an i-Veronesean embedding, the depth is at most equal to i.

The main result of [5] says that any (full) generalized Veronesean embedding is a (full) i-Veronesean embedding, for some suitable i. The adjective "full" refers to the fact that, apart from the lines of the pre-ultimate or ultimate lid (in case one of these lids is a plane), every line of $\mathrm{PG}(n, q)$ is in $\mathrm{PG}(d, q)$ either a full affine line union a point, or a full planar conic in some plane.
In the proof, one encounters lines L of $\operatorname{PG}(d, q)$ containing the image of all points of some line of $\mathrm{PG}(n, q)$ but one. By finiteness it then follows that exactly one point z of L does not belong to the embedding. The set of such points is shown to be a subspace and the proof then continues, heavily relying on this observation. The question is: what happens if we do not have uniqueness of the point z above. This occurs if we substitute $\mathrm{PG}(d, q)$ with $\mathrm{PG}(d, r)$ in the above definitions to obtain a "lax" generalized Veronesean embedding. In principle, we have the inequality $q \leq r$ in mind, and expect $\mathrm{GF}(q)$ to be a subfield of $\mathrm{GF}(r)$, but our curiosity asks to also allow for the case $q>r$ and see what happens. Of course, if $r \neq q$, then we do not have a full embedding anymore.
Hence, the fullness of the embedding is forced by taking the field of the embedded projective space equal to the field of the embedding projective space. In the infinite case, a field might contain a proper copy of itself. Hence we need an additional axiom to ensure fullness. This additional axiom is the following. Suppose we consider a generalized Veronesean embedding $\theta: \mathrm{PG}(n, \mathbb{K}) \longrightarrow \mathrm{PG}(d, \mathbb{K})$, with $d \geq \frac{n(n+3)}{2}$, such that θ maps the set of points of each line of $\mathrm{PG}(n, \mathbb{K})$ to a set of coplanar points of $\mathrm{PG}(d, \mathbb{K})$ and such that the image of θ generates $\mathrm{PG}(d, \mathbb{K})$. Then we additionally require the following axiom.
(*) For each line L of $\operatorname{PG}(n, \mathbb{K})$, and each point $x \in \theta(L)$, whenever the map $y \mapsto\langle x, y\rangle, y \in \theta(L) \backslash\{x\}$, is injective, then there is a unique line T of $\mathrm{PG}(d, \mathbb{K})$ in $\langle\theta(L)\rangle$ through x such that $T \cap \theta(L)=\{x\}$.

Under these conditions, it is proved in [5] that θ is an i-Veronesean embedding, where the reader will have no difficulty in generalizing the above
definition of finite i-Veronesean to the case of an infinite field \mathbb{K}. For \mathbb{K} noncommutative, though, there is no notion of a Veronesean, and in this case only a (full) n-Veronesean embedding of $\mathrm{PG}(n, \mathbb{K})$ exists, which is defined directly but again inductively as follows. The induction starts with $n=1$, where a 1 -Veronesean embedding of $\operatorname{PG}(1, \mathbb{K})$ in $\operatorname{PG}(2, \mathbb{K})$ is just an injective mapping θ satisfying $\left(^{*}\right)$, for $L=\operatorname{PG}(1, \mathbb{K})$. Now let $n>1$. Choose an affine space $\mathrm{AG}(n, \mathbb{K})$ in $\mathrm{PG}(n, \mathbb{K})$, embed it in a natural way in a new n-dimensional projective space over \mathbb{K}, and take the direct sum of the latter with a (full) $(n-1)$-Veronesean embedding of the $(n-1)$ dimensional projective space $\operatorname{PG}(n, \mathbb{K}) \backslash \mathrm{AG}(n, \mathbb{K}))$. In particular, in the noncommutative case there is at most one line of $\operatorname{PG}(n, \mathbb{K})$ which contains three noncollinear points of $\operatorname{PG}(d, \mathbb{K})$.

Hence, a natural problem is to remove the condition (*). This permits to consider different fields in the finite case, and to treat the infinite case in full generality. That is exactly what we do in the present paper. So, we consider maps $\theta: \mathrm{PG}(n, \mathbb{K}) \longrightarrow \mathrm{PG}(d, \mathbb{F})$, with \mathbb{K} and \mathbb{F} (skew) fields, such that collinear points are mapped onto coplanar ones, and such that the whole image generates $\mathrm{PG}(d, \mathbb{F})$. These are called lax generalized Veronesean embeddings. For a given embedding $\theta: \mathrm{PG}(n, \mathbb{K}) \longrightarrow \mathrm{PG}(d, \mathbb{F})$, we will identify from now on each point of $\operatorname{PG}(n, \mathbb{K})$ with its image under θ. For θ a lax generalized Veronesean embedding we call the image under θ a lax generalized Veronesean in the projective space $\mathrm{PG}(d, \mathbb{F})$, but also in the generalized projective space generated by the image (and which consists of the direct sum of $\ell+1$ proper subspaces, with ℓ the depth of the embedding). We can then formulate our main result as follows.

Main Result. Let $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \in)$ be isomorphic to the geometry of points and lines of $\mathrm{PG}(n, \mathbb{K}), n \geq 2,|\mathbb{K}|>2$, with $\mathcal{P} \subseteq \operatorname{PG}(d, \mathbb{F}),\langle\mathcal{P}\rangle=\mathrm{PG}(d, \mathbb{F})$, $d \geq \frac{n(n+3)}{2}$, and such that every member L of \mathcal{L} is a subset of points of a plane in $\mathrm{PG}(d, \mathbb{F})$. Then $d=\frac{1}{2} n(n+3)$ and there are three possibilities.
(i) \mathbb{K} is isomorphic to a subfield of \mathbb{F} and there exist ℓ pairwise disjoint subspaces $\mathrm{PG}\left(d_{j}, \mathbb{K}_{j}\right)$ of $\mathrm{PG}(d, \mathbb{F})$, with $\mathbb{K}_{j} \cong \mathbb{K}$ a subfield of $\mathbb{F}, 1 \leq$ $j \leq \ell \leq n+1$, such that \mathcal{P} is an i-Veronesean in the direct sum of all subspaces $\operatorname{PG}\left(d_{j}, \mathbb{K}_{j}\right)$, for j running through $\{1,2, \ldots, \ell\}$ (for some i, $0 \leq i \leq n$).
(ii) \mathbb{K} is isomorphic to a subfield of \mathbb{F} and there exist ℓ pairwise disjoint subspaces $\operatorname{PG}\left(d_{j}, \mathbb{K}_{j}\right)$ of $\operatorname{PG}(d, \mathbb{F})$, with $\mathbb{K}_{j} \cong \mathbb{K}$ a subfield of $\mathbb{F}, 1 \leq j \leq \ell \leq n+1$, and with $d_{\ell}=2$, and an i-Veronesean Θ in the direct sum of all subspaces $\mathrm{PG}\left(d_{j}, \mathbb{K}_{j}\right)$, for j running through $\{1,2, \ldots, \ell\}$ (for some $i, 0 \leq i \leq n$) such that the following hold. The ultimate lid of Θ is a line L of $\mathrm{PG}(n, \mathbb{K})$, which is contained in
$\pi=\mathrm{PG}\left(d_{\ell}, \mathbb{K}_{\ell}\right)=\mathrm{PG}\left(2, \mathbb{K}_{\ell}\right)$. Then \mathcal{P} consists of the points of Θ contained in the union of all $\mathrm{PG}\left(d_{j}, \mathbb{K}_{j}\right)$, for $j \in\{1,2, \ldots, \ell-1\}$, together with a set L^{\prime} of points (representing the points of the line L) spanning the full subplane $\mathrm{PG}(2, \mathbb{F})$ of $\mathrm{PG}(d, \mathbb{F})$, which is the unique plane of $\mathrm{PG}(d, \mathbb{F})$ containing π. Also, L^{\prime} is not contained in any subplane of $\mathrm{PG}(2, \mathbb{F})$ defined over a subfield of \mathbb{F} isomorphic to \mathbb{K}.
(iii) $|\mathbb{K}|=3, n=2$, there is a line L of \mathcal{S} spanning some plane π of $\mathrm{PG}(5, \mathbb{F})$, and the points of \mathcal{S} not on L are contained in a subplane π^{\prime} of $\mathrm{PG}(5, \mathbb{F})$ defined over a (commutative) subfield \mathbb{K}^{\prime} of \mathbb{F}, with \mathbb{K}^{\prime} containing nontrivial cubic roots of unity. Also, π and π^{\prime} together span (over \mathbb{F}) the whole space $\operatorname{PG}(5, \mathbb{F})$.

Remark 1 The condition that L^{\prime} is not contained in any subplane of $\mathrm{PG}(2, \mathbb{F})$ defined over a subfield of \mathbb{F} isomorphic to \mathbb{K} in (ii) is added precisely to make the Case (ii) disjoint from the Case (i).

Remark 2 As in the full case, the case $|\mathbb{K}|=2$ is a true exception, since every injective mapping from $\operatorname{PG}(n, 2)$ into $\mathrm{PG}(d, \mathbb{F})$, with $d \geq \frac{1}{2} n(n+3)$, is a lax generalized Veronesean embedding as soon as the image set generates $\mathrm{PG}(d, \mathbb{F})$. And this can be achieved whenever $\mathrm{PG}(d, \mathbb{F})$ has at least $2^{n+1}-1$ points and $d \leq 2^{n+1}-2$.
But notice that, unlike the full case, also the case $|\mathbb{K}|=3$ and $n=2$ is a special case now with an unusual behaviour. This is due to the fact that affine planes of order 3 can be embedded in projective spaces over fields with characteristic unequal to 3 admitting nontrivial cubic roots of unity, see Section 2.

The remainder of the paper is devoted to the proof of the Main Result. A lot of arguments of Part I of this paper (the full case) can be used in the lax case, but there are two main obstacles that have no analogue in the full case. Firstly, we must identify appropriate subfields of \mathbb{F} isomorphic to \mathbb{K} and define suitable subspaces over these subfields the direct sum of which contains "almost all" points of \mathcal{S}. Secondly, we must prove that the embedding in that direct sum is full, i.e., we must verify the additional condition $\left({ }^{*}\right)$ for all lines of \mathcal{S}.

For the sake of convenience, we will call a generalized Veronesean embedding of \mathcal{S} in $\mathrm{PG}(d, \mathbb{F}), d=\frac{1}{2} n(n+3)$, as explained in the statement of the Main Result, but distinct from the last case $|\mathbb{K}|=3$ and $n=2$, a lax i-Veronesean.

The proof of the Main Result is by induction on n, and in Section 3 we start with the case $n=2$. But first we prove a lemma on lax embeddings of affine planes (spaces) in Desarguesian projective planes (spaces).

2 Affine spaces in projective spaces

Embeddings of affine planes in projective planes have been investigated by Limbos [3] in her PhD thesis. Since these results are not published elsewhere, we provide a short argument for the following lemma.

Lemma 3 Let $\mathcal{A}=(\mathcal{P}, \mathcal{L}, \in)$ be an affine plane with $\mathcal{P} \subseteq \operatorname{PG}(2, \mathbb{F}), \mathbb{F} a$ skew field, such that every member L of \mathcal{L} is a subset of a line of $\mathrm{PG}(2, \mathbb{F})$, and such that different members of \mathcal{L} define different lines of $\mathrm{PG}(2, \mathbb{F})$. Then \mathcal{A} is Desarguesian and either the lines of $\mathrm{PG}(2, \mathbb{F})$ corresponding to all lines of \mathcal{A} belonging to an arbitrary parallel class meet in a unique point of $\mathrm{PG}(2, \mathbb{F})$ and then the projective closure of \mathcal{A} is canonically embedded in $\mathrm{PG}(2, \mathbb{F})$ (consequently there is a subfield \mathbb{K} of \mathbb{F} such that \mathcal{A} is an affine plane arising from some subplane $\mathrm{PG}(2, \mathbb{K})$ of $\mathrm{PG}(2, \mathbb{F})$), or \mathcal{A} has order 2 , or \mathcal{A} has order 3 and \mathbb{F} contains nontrivial cubic roots of unity.

Proof If \mathcal{A} is not Desarguesian, then with a standard argument one can find a non-closing Desargues configuration in \mathcal{A}, contradicting the fact that this configuration should close inside $\operatorname{PG}(2, \mathbb{F})$. Now let \mathcal{A} be different from the projective planes of order 2 or 3 . Choose three parallel lines L_{1}, L_{2}, L_{3} in \mathcal{A} and a line $M \in \mathcal{L}$ meeting all three of these in points of \mathcal{A}, say, x_{1}, x_{2}, x_{3}, respectively. For any pair of points $\left(z_{1}, z_{2}\right)$ on $L_{1}, z_{1} \neq x_{1} \neq z_{2}$, we can find a point y on L_{2} such that none of the lines $y z_{1}$ and $y z_{2}$ of \mathcal{A} is parallel to M in \mathcal{A}. Say they meet M in y_{1}, y_{2}, respectively. Then the self-projectivity σ_{2} of L_{1} defined by first projecting L_{1} onto L_{2} from y_{1} followed by projecting L_{2} onto L_{1} from y_{2} fixes x_{1} and maps z_{1} onto z_{2}. It can be easily checked with an elementary calculation that σ_{2} is given by left multiplication with respect to a suitable coordinate system (putting x_{1} in the origin). Likewise, there is such a projectivity σ_{3} similarly defined by considering L_{3} instead of L_{2}. We may assume that for both projectivities a common coordinate system on L_{1} was chosen. The projectivity $\sigma_{2} \sigma_{3}^{-1}$ fixes x_{1}, z_{1} and z_{2}, and since it is given by left multiplication, it fixes all points of L_{1}. Hence the extension of $\sigma_{2} \sigma_{3}^{-1}$ to $\mathrm{PG}(2, \mathbb{F})$ must also fix all points of the line L^{\prime} containing all points of L. This now easily implies that $L_{1}^{\prime} \cap L_{2}^{\prime}=L_{1}^{\prime} \cap L_{3}^{\prime}$, with L_{i}^{\prime} the line of $\mathrm{PG}(2, \mathbb{F})$ containing all points of $L_{i}, i=1,2,3$, and so each point at infinity of \mathcal{A} defines a unique point of $\mathrm{PG}(2, \mathbb{F})$. It remains to show that all such points at infinity are collinear in $\mathrm{PG}(2, \mathbb{F})$. But this follows directly by the dual argument, or, alternatively, by a standard argument using Desargues' theorem. This implies the lemma for \mathcal{A} not of order 2 or 3 .

If \mathcal{A} has order 3 , then a straightforward calculation yields the result.
We also observe:

Lemma 4 Let $\mathcal{A}=(\mathcal{P}, \mathcal{L}, \in)$ be the point-line geometry of an affine space of dimension $n \geq 3$ with $\mathcal{P} \subseteq \operatorname{PG}(n, \mathbb{F}), \mathbb{F}$ a skew field with at least 3 elements, such that every member L of \mathcal{L} is a subset of a line of $\mathrm{PG}(n, \mathbb{F})$, such that different members of \mathcal{L} define different lines of $\mathrm{PG}(n, \mathbb{F})$, and such that \mathcal{P} generates $\mathrm{PG}(n, \mathbb{F})$. Then the lines of $\mathrm{PG}(n, \mathbb{F})$ corresponding to all lines of \mathcal{A} belonging to an arbitrary parallel class meet in a unique point of $\mathrm{PG}(n, \mathbb{F})$ and then the projective closure of \mathcal{A} is canonically embedded in $\mathrm{PG}(n, \mathbb{F})$; consequently there is a subfield \mathbb{K} of \mathbb{F} such that \mathcal{A} is an affine space arising from some subspace $\mathrm{PG}(n, \mathbb{K})$ of $\mathrm{PG}(n, \mathbb{F}))$.

Proof It suffices to show that the three lines $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$ of $\mathrm{PG}(n, \mathbb{F})$ containing the points of three parallel non-coplanar lines L_{1}, L_{2}, L_{3}, respectively, of \mathcal{A} meet in a point x of $\mathrm{PG}(n, \mathbb{F})$. But this follows immediately since $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$ are not coplanar (by a dimension argument), but they are pairwise coplanar, and hence x is the intersection of the three planes of $\operatorname{PG}(n, \mathbb{F})$ spanned by the respective pairs $\left\{L_{1}^{\prime}, L_{2}^{\prime}\right\},\left\{L_{2}^{\prime}, L_{3}^{\prime}\right\},\left\{L_{1}^{\prime}, L_{3}^{\prime}\right\}$.

3 Lax generalized Veronesean embeddings of projective planes

In the present section, we assume that $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \in)$ is isomorphic to $\mathrm{PG}(2, \mathbb{K})$ with $\mathcal{P} \subseteq \mathrm{PG}(d, \mathbb{F}),\langle\mathcal{P}\rangle=\mathrm{PG}(d, \mathbb{F}), d \geq 5$, and such that every member L of \mathcal{L} is a subset of points of a plane in $\operatorname{PG}(d, \mathbb{F})$, which we denote by π_{L} if it is unique; if it is not unique, then π_{L} is the intersection of all such planes (and so π_{L} is the line of $\mathrm{PG}(d, \mathbb{F})$ containing all points of L).

We denote the line of $\mathrm{PG}(d, \mathbb{F})$ spanned by two points $a, b \in \mathcal{P}$ by $\langle a, b\rangle$, while the line of \mathcal{S} through a, b is denoted by $a b$. More generally, we use the symbol $\langle A\rangle$ to denote the subspace of $\mathrm{PG}(d, \mathbb{F})$ generated by the elements of A.

We will assume that $|\mathbb{K}|>3$.
Recall the following lemma from [5].
Lemma 5 Let S_{1}, S_{2}, S_{3} be three sets, of at least three lines each, in $\mathrm{PG}(m, \mathbb{F})$, $m \geq 3$, such that each member of S_{i} meets every member of S_{j} in a unique point, for $i \neq j$, for all $i, j \in\{1,2,3\}$. Then there are distinct indices $i, j \in\{1,2,3\}$ such that either all lines of $S_{i} \cup S_{j}$ are contained in a plane, or they contain a common point.

Also, the proof of the next lemma can be taken over from [5] (and is elementary anyway).

Lemma 6 If L, M are two distinct lines of \mathcal{S}, meeting in the point $z \in \mathcal{P}$, and $x \in \mathcal{P}$ is a point off $L \cup M$ not contained in $\left\langle\pi_{L}, \pi_{M}\right\rangle$, then every point $y \in \mathcal{P}$ off $x z$ is contained in the space $W:=\left\langle\pi_{L}, \pi_{M}, x\right\rangle$.

We now prove the Main Result for $n=2$ and $|\mathbb{K}|>3$. As in [5], we distinguish two cases.
(i) First suppose that for every line L of \mathcal{S}, the set of points $\mathcal{P} \backslash L$ generates $\operatorname{PG}(d, \mathbb{F})$. This, combined with Lemma 6, implies that $d=5$ and every pair of lines of \mathcal{S} generates a 4 -space of $\operatorname{PG}(5, \mathbb{F})$. This, in turn, implies that the projection of $\mathcal{P} \backslash x y$ from the line $\langle x, y\rangle$, $x, y \in \mathcal{P}$, onto a 3 -space of $\operatorname{PG}(5, \mathbb{F})$ skew to $\langle x, y\rangle$, is injective on the set of lines of \mathcal{S} through x or y. Hence, if $\langle x, y\rangle$ contained a third point z of \mathcal{S}, then Lemma 5 would lead to a contradiction. Hence, \mathcal{P} is a cap and every line is a plane arc. This, in turn, implies that the projection of $\mathcal{P} \backslash x y$ from $\pi_{x y}$ onto a suitable plane π is injective, and since this projection forms an affine plane, and since $|\mathbb{K}|>3$, we see that there is a subfield \mathbb{K}^{\prime} of \mathbb{F} isomorphic to \mathbb{K} such that this projection coincides with all points of a projective subplane over \mathbb{K}^{\prime} of π except for one line. Note that, naturally, the subfield \mathbb{K}^{\prime} is independent of the chosen line $x y$ as all projections from planes are projectively equivalent (choosing π skew to two given planes $\pi_{x y}$ and $\pi_{u v}, u, v \in \mathcal{P}, u \neq v$, the pencil of 3 -spaces of $\operatorname{PG}(5, \mathbb{F})$ with vertex $\pi_{x y}$ and base the point set of a line K of \mathcal{S} incident with the intersection of $x y$ and $u v$, except for that intersection point, is in natural projective correspondence to the similar pencil with vertex $\left.\pi_{u v}\right)$. Hence, for every line $K \in \mathcal{L}$ and for every point $z \in \mathcal{P}$ on K, the lines $\langle z, u\rangle$, with $u \in K \backslash\{z\}$ form an affine line pencil over the subfield \mathbb{K}^{\prime} of \mathbb{F}. If we do this for two different points z_{1}, z_{2} of K, then the unique projective subplane π^{\prime} containing the respective affine line pencils contains K, and there are unique tangents of K in π^{\prime} at z_{1} and z_{2}. Varying z_{1} and z_{2} in K we obtain the same projective plane, and unique tangent lines in π^{\prime} at every point of K; hence K is an oval in π^{\prime}. Note also that π^{\prime} is isomorphic to $\operatorname{PG}(2, \mathbb{K})$ and defined over the subfield \mathbb{K}^{\prime} of \mathbb{F}. Now choose three lines $L_{1}, L_{2}, L_{3} \in \mathcal{L}$ not incident with a common point of \mathcal{S} and set $y_{j}=L_{j} \cap L_{3}, j=1,2$. Let π_{i}^{\prime} be the plane over \mathbb{K}^{\prime} containing L_{i} as an oval, $i=1,2,3$. Since $\left\langle L_{1}, L_{2}\right\rangle$ is 4 -dimensional, the planes π_{1}^{\prime} and π_{2}^{\prime} generate a unique 4 -dimensional subspace ξ^{\prime} over \mathbb{K}^{\prime}. Choose an arbitrary point $y_{3} \in L_{3} \backslash\left\{y_{1}, y_{2}\right\}$ and let K_{0} be a line of \mathcal{S} containing y_{3}, but distinct from L_{3}, and assume also that K_{0} meets L_{1} and L_{2} in two distinct points, say u_{1} and u_{2}, respectively. Let L_{i}^{\prime} be the projection of L_{i} from $\left\langle K_{0}\right\rangle$ onto a plane π_{0} skew to $\left\langle K_{0}\right\rangle, i=1,2,3$;
we may assume that π_{0} is contained in $\left\langle\xi^{\prime}\right\rangle$. Then L_{3}^{\prime} is contained in the subplane π_{0}^{\prime} of π_{0} over \mathbb{K}^{\prime} defined by the point set $L_{1}^{\prime} \cup L_{2}^{\prime}$ (use Lemma 3). Also, the projection of ξ^{\prime} from $\left\langle K_{0}\right\rangle$ is contained in π_{0}^{\prime} as our assumptions imply that this projection coincides with the projection of ξ^{\prime} onto π_{0} from $\left\langle u_{1}, u_{2}\right\rangle$. It easily follows now that each secant line of L_{3} containing y_{3} also contains a point of the line $\left\langle y_{1}, y_{2}\right\rangle_{\mathbb{K}^{\prime}}$ of ξ^{\prime}, and hence such a point is contained in π_{3}^{\prime}. Hence $\pi_{3}^{\prime} \cap \xi^{\prime}$ is a line in both ξ^{\prime} and π_{3}^{\prime}. Consequently L_{1}, L_{2}, L_{3} are contained in a unique subspace $\mathrm{PG}\left(5, \mathbb{K}^{\prime}\right)$, generated by $\pi_{1}^{\prime} \cup \pi_{2}^{\prime} \cup \pi_{3}^{\prime}$. Since $|\mathbb{K}|>3$, every point v of $\mathcal{S} \backslash\left(L_{1} \cup L_{2} \cup L_{3}\right)$ is the intersection of two planes $\pi_{M_{1}}$ and $\pi_{M_{2}}, M_{1}, M_{2} \in \mathcal{L}$, each of which intersects $L_{1} \cup L_{2} \cup L_{3}$ in three distinct noncollinear points, and hence belongs to $\mathrm{PG}\left(5, \mathbb{K}^{\prime}\right)$. Consequently v belongs to $\mathrm{PG}\left(5, \mathbb{K}^{\prime}\right)$ and so $\mathcal{P} \subseteq \operatorname{PG}\left(5, \mathbb{K}^{\prime}\right)$. Since the same space $\operatorname{PG}\left(5, \mathbb{K}^{\prime}\right)$ is obtained starting from three other lines, we see that all lines are plane ovals in $\operatorname{PG}\left(5, \mathbb{K}^{\prime}\right)$ and hence Condition $\left(^{*}\right)$ is satisfied and we can apply the Main Result-General Version of [5] to conclude that \mathcal{P} is a Veronesean embedding of $\operatorname{PG}(2, \mathbb{K})$ in $\operatorname{PG}\left(5, \mathbb{K}^{\prime}\right)$; in fact, \mathcal{P} is a 0 -Veronesean in $\operatorname{PG}\left(5, \mathbb{K}^{\prime}\right)$. Clearly, this forces \mathbb{K} to be commutative.
(ii) Now suppose that for some line L of \mathcal{S}, the set of points $\mathcal{P} \backslash L$ generates a proper subspace W of $\operatorname{PG}(d, \mathbb{F})$. Since $U:=\langle L\rangle$ is at most 2dimensional, the codimension c of W is at most 3 .
(a) Suppose $c=3$. Then $W \cap U=\emptyset$, and for every line $M \neq L$ of \mathcal{S} the plane π_{M} meets W in a line L_{M}, and only one point of M does not belong to L_{M}. Hence the set of lines L_{M}, for $M \neq L$, forms the affine plane arising from \mathcal{S} by deleting L. It follows that W is 2-dimensional and $d=5$. Since $|\mathbb{K}|>3$, there is a subfield \mathbb{K}^{\prime} of \mathbb{F} and a unique subplane $\mathrm{PG}\left(2, \mathbb{K}^{\prime}\right)$ of W such that all lines of $\mathrm{PG}\left(2, \mathbb{K}^{\prime}\right)$ but one are of the form $L_{M}, M \in \mathcal{L}$. Hence, in this case, the Main Result follows.
(b) Suppose $c=2$. Then $W \cap U$ is a point x, and if x does not belong to \mathcal{P}, then all lines of \mathcal{S} distinct from L again meet W in a line, and arguing as in (a) we deduce $d=4$, a contradiction. Hence $x \in \mathcal{P}$. We can choose three points z_{1}, z_{2}, z_{3} on L distinct from x (this is also possible if $|\mathbb{K}|=3$), and considering the intersection with W of the nine planes π_{M} obtained by choosing three lines $M \in \mathcal{L}, M \neq L$, through each of z_{1}, z_{2}, z_{3}, we see that Lemma 5 implies that W is a plane, and so $d=4$, a contradiction. Hence Case (b) does not occur.
(c) Suppose $c=1$. If $U \backslash W$ contains two points y, z of \mathcal{S}, then the planes corresponding to the lines of \mathcal{S} through y, z (distinct
from L) meet W in lines which contain all points of \mathcal{S} not on L. It easily follows that W has at most dimension 3, hence $d \leq 4$, a contradiction. Hence there is a unique point $x \in \mathcal{P}$ not contained in W. For every line $M \in \mathcal{L}$ through x we have that $\pi_{M} \cap W$ is a line. Let $y \in \mathcal{P} \backslash\{x\}$. Let K_{1}, K_{2} be two lines of \mathcal{S} through y different from $x y$. Suppose $X:=\left\langle\pi_{K_{1}}, \pi_{K_{2}}\right\rangle$ is at most 3 -dimensional. Then $\langle X, x\rangle$ is a proper subspace of $\mathrm{PG}(d, \mathbb{F})$, and Lemma 6 ensures that it contains all points of \mathcal{S} except possibly those of the line $x y$. Hence $\langle X, x\rangle \cap W$, which has dimension at most 3 , contains all points of \mathcal{S} except possibly those of $x y$, hence we are in a previous case. So we may assume that X has dimension 4 , for arbitrary K_{1}, K_{2}. If we project $\mathcal{P} \backslash x y$ from y onto some suitable hyperplane of W, then the projections of the lines of \mathcal{S} through x and y are part of two complementary reguli (since the dimension of that hyperplane is at least 3), and so $d=5$. Also, if we consider a line $K \in \mathcal{L}$ neither through x nor y, then the projection of its points not on $x y$ lie on the intersection of a plane and a hyperbolic quadric, hence the points of $K \backslash x y$ form an arc. It follows easily that K is an arc in π_{K} (by re-choosing y). This now implies that the projection of $\mathcal{P} \backslash x y$ from $\pi_{x y}$ onto a suitable plane of W is injective. As before, this projection is an affine plane isomorphic to $\mathrm{AG}(2, \mathbb{K})$. It follows easily that, for every line M of \mathcal{S} through x, the intersection $W \cap \pi_{M}$ is an affine line over a subfield \mathbb{K}^{\prime} isomorphic to \mathbb{K}. Likewise, for every line $K \in \mathcal{L}$ not through x, and for every point $z \in \mathcal{P}$ on K, the lines $\langle z, u\rangle$, with $u \in K \backslash\{z\}$, form an affine line pencil over the very same subfield \mathbb{K}^{\prime} of \mathbb{F}. As in (i) above, this implies that K is an oval (even a conic, as its points not on $x y$ are projected on points of a conic) in a subplane of π_{K} over \mathbb{K}^{\prime}. It is clear that this implies that $\mathbb{K} \equiv \mathbb{K}^{\prime}$ is commutative. Considering now the affine lines over \mathbb{K}^{\prime} arising from two lines of \mathcal{S} through x, and the plane over \mathbb{K}^{\prime} corresponding with some line of \mathcal{S} not through x, we can construct, similarly as in (i), a projective subspace $\mathrm{PG}\left(4, \mathbb{K}^{\prime}\right)$ of W containing $\mathcal{P} \backslash\{x\}$. Adding x, there is a subspace $\mathrm{PG}\left(5, \mathbb{K}^{\prime}\right)$ containing \mathcal{P} such that Condition (*) is satisfied. We can now apply the Main Result-General Version of [5].

4 Lax generalized Veronesean embeddings of $P G(2,3)$

In this section, we consider the case $\mathbb{K}=\mathrm{GF}(3)$ and $n=2$. It is easy to check that the arguments in the previous section lead here, too, to the following three cases; we also remark that $d=5$.

Case I. For every line L of \mathcal{S}, the set of points $\mathcal{P} \backslash L$ generates $\operatorname{PG}(5, \mathbb{F})$.
In this case, which corresponds to Case (i) of Section 3, the lines of \mathcal{S} are plane arcs in $\mathrm{PG}(5, \mathbb{F})$. We use coordinates which are determined up to right multiples, and we consider indices modulo 13 . Let $\left\{p_{1}, p_{2}, \ldots, p_{13}\right\}$ be the set of points of $\operatorname{PG}(2,3)$, with line set $\left\{\left\{p_{i}, p_{i+1}, p_{i+3}, p_{i+9}\right\}: i=\right.$ $1,2, \ldots, 13\}$. Without loss of generality, we can assign the following coordinates:

$$
\begin{array}{lll}
p_{1}(1,0,0,0,0,0), & p_{3}(0,0,0,0,0,1), & p_{13}(1,1,0,0,0,1), \\
p_{9}(0,1,0,0,0,0), & p_{2}(0,0,0,0,1,0), & p_{4}(1,0,1,0,1,0), \\
p_{10}(0,0,1,0,0,0), & p_{12}(0,0,0,1,0,0), & p_{5}(0,1, a, 1,0,0)
\end{array}
$$

with $a \in \mathbb{F}$. Since p_{11} is collinear with p_{2}, p_{3} and p_{5}, there are constants $b, c \in \mathbb{F}$ so that the coordinates of p_{11} are $(0,1, a, 1, b, c)$. Likewise, using the line $\left\{p_{3}, p_{4}, p_{6}, p_{12}\right\}$, there are constants $d, e \in \mathbb{F}$ so that the coordinates of p_{6} are ($1,0,1, d, 1, e$), and using $\left\{p_{2}, p_{8}, p_{12}, p_{13}\right\}$, there are constants $f, g \in \mathbb{F}$ so that p_{8} has the coordinates $(1,1,0, f, g, 1)$.

Expressing that $p_{4}, p_{8}, p_{9}, p_{11}$ are collinear gives the equivalent conditions $c=-a, f=-a^{-1}$ and $a-g a=b$. Similarly, $p_{6}, p_{10}, p_{11}, p_{13}$ collinear implies $d=b=-1$ and $c+e=1$, and $p_{1}, p_{5}, p_{6}, p_{8}$ collinear means $f=$ $1-d a, g=-a$ and $e a=-1$. All this implies

$$
\begin{array}{lll}
b=-1, & d=-1, & f=1+a \\
c=-a, & e=1+a, & g=-a
\end{array}
$$

with $1+a+a^{2}=0$. But expressing that p_{7} is the intersection of the planes $\left\langle p_{2}, p_{6}, p_{9}\right\rangle$ and $\left\langle p_{3}, p_{8}, p_{10}\right\rangle$ we obtain $f=d=-1$, hence $a=-2$ and so $3=0$. It follows easily that \mathcal{P} lies in a 5 -dimensional subspace $\operatorname{PG}(5,3)$ over the prime field of \mathbb{F} (of order 3). Hence \mathcal{P} is a 0 -Veronesean in the subspace $\operatorname{PG}(5,3)$ of $\operatorname{PG}(5, \mathbb{F})$.

Case II. There are three lines $L_{1}, L_{2}, L_{3} \in \mathcal{L}$ not containing a common point such that $\left(L_{1} \cup L_{2} \cup L_{3}\right) \backslash\left(L_{1} \cap L_{2}\right)$ is contained in a 4 -space $\mathrm{PG}(4, \mathbb{F})$, such that $L_{i} \backslash\left(L_{1} \cap L_{2}\right), i=1,2$, is contained in a line of $\mathrm{PG}(4, \mathbb{F})$, and such that L_{3} is an arc in $\pi_{L_{3}}$, which is entirely contained in $\mathrm{PG}(4, \mathbb{F})$.

This case corresponds to Case (ii)(c) of Section 3.
With the same notation as above, we can take without loss of generality,

$p_{1}(0,0,0,0,0,1)$,	$p_{2}(0,0,0,1,0,0)$,	$p_{3}(1,0,0,0,0,0)$,
$p_{4}(0,0,1,1,0,0)$,	$p_{5}(0,0,0,0,1,0)$,	$p_{9}(0,1,0,0,0,0)$,
$p_{10}(0,0,1,0,0,0)$,	$p_{12}(0,1,1,0,1,0)$,	$p_{13}(1,1,0,0,0,0)$.

Expressing that p_{7} belongs to the plane $\left\langle p_{4}, p_{5}, p_{13}\right\rangle, p_{11}$ belongs to the plane $\left\langle p_{2}, p_{3}, p_{5}\right\rangle$, and p_{12} belongs to the line $\left\langle p_{7}, p_{11}\right\rangle$, there exists a constant a such that p_{7} has coordinates $(1,1,1,1, a, 0)$ and p_{11} has coordinates $(1,0,0,1, a-1,0)$. Also, one calculates that p_{8} has coordinates $(1, a, a-1, a, a-1,0)$, as the intersection of $\left\langle p_{4}, p_{9}, p_{11}\right\rangle$ and $\left\langle p_{2}, p_{12}, p_{13}\right\rangle$. Expressing that p_{8} belongs to $\left\langle p_{3}, p_{7}, p_{10}\right\rangle$, we see that $a^{2}-a+1=0$. Expressing that p_{6} is the intersection of the plane $\left\langle p_{2}, p_{7}, p_{9}\right\rangle$ with the line $\left\langle p_{5}, p_{8}\right\rangle$, we obtain $a=2$. This now implies that \mathbb{F} has characteristic 3 , that all points of \mathcal{S} are contained in a subspace $\operatorname{PG}(5,3)$ over the prime field of \mathbb{F} (of order 3) and that \mathcal{P} is a 1 -Veronesean in $\operatorname{PG}(5,3)$.

Case III. There is a unique line $L \in \mathcal{L}$ all points of which lie outside a certain plane π of $\operatorname{PG}(5, \mathbb{F})$, while π contains all other points of \mathcal{S}.

This case corresponds to Case (ii)(a) of Section 3.
The affine plane of order 3 arising from \mathcal{S} by deleting L is embedded in π, and so the last case of the Main Result follows from Lemma 3.

This takes care of the case $\mathbb{F}=G F(3)$ and $n=2$, which we will also need in the next section for the induction argument.

5 Lax generalized Veronesean embeddings of projective spaces of dimension at least 3

Here we assume that $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \in)$ is isomorphic to $\operatorname{PG}(n, \mathbb{K}), n>2$, with $\mathcal{P} \subseteq \mathrm{PG}(d, \mathbb{F}),\langle\mathcal{P}\rangle=\mathrm{PG}(d, \mathbb{F}), d \geq \frac{1}{2} n(n+3)$, and such that every member L of \mathcal{L} is a subset of points of a plane in $\operatorname{PG}(d, \mathbb{F})$, which we again denote by π_{L} if it is unique; if it is not unique, then π_{L} is again the line of $\mathrm{PG}(d, \mathbb{F})$ containing all points of L.

We use the same notation as before to distinguish lines of \mathcal{S} from lines of $\mathrm{PG}(d, \mathbb{F})$: we denote the line of $\mathrm{PG}(d, \mathbb{F})$ spanned by two points $a, b \in \mathcal{P}$ by $\langle a, b\rangle$, while the line of \mathcal{S} through a, b is denoted by $a b$. More generally, we
use the symbol $\langle A\rangle$ to denote the subspace of $\mathrm{PG}(d, \mathbb{F})$ generated by the elements of A, and we use $\langle A\rangle_{\mathcal{S}}$ to denote the subspace of \mathcal{S} spanned by A.

We will assume that $|\mathbb{K}|>2$ as for $\mathbb{K}=G F(2)$ every injective map from \mathcal{S} to $\mathrm{PG}(d, \mathbb{F})$ such that the image of \mathcal{S} spans $\mathrm{PG}(d, \mathbb{F})$ is a lax generalized Veronesean embedding, for every d.

Our proof proceeds by induction on n. The result for $n=2$ has been proved in Section 3, and we assume that the result is true for any generalized Veronesean embedding of $\operatorname{PG}\left(n^{\prime}, \mathbb{K}\right)$ in $\operatorname{PG}\left(d^{\prime}, \mathbb{F}\right)$, with $n^{\prime}<n$ and $d^{\prime} \geq$ $\frac{1}{2} n^{\prime}\left(n^{\prime}+3\right)$. For $|\mathbb{K}|=3$, we of course only assume what we have proved in Section 4.

We first state some facts from [5] the proof of which can be taken over verbatim in our lax case.

Proposition 1 If $d \geq \frac{1}{2} n(n+3)$, then $d=\frac{1}{2} n(n+3)$ and every i dimensional subspace U of $\mathcal{S}, i \leq n-1$, generates in $\mathrm{PG}(d, \mathbb{F})$ a subspace of dimension $\frac{1}{2} i(i+3)$. Hence the induction hypothesis implies that U is a lax ℓ-Veronesean, for some nonnegative integer $\ell \leq i$. In particular, for every line $L \in \mathcal{L}$ holds that π_{L} is 2 -dimensional.

Now, as in the full case, we introduce the following notions. Let $L \in \mathcal{L}$ be arbitrary. Then we say that L is a semiaffine line if there is a unique point x on L such that $\langle L \backslash\{x\}\rangle$ is 1-dimensional. The point x is called a lid point, or the lid of L. The line L is called a box for x. Clearly, the lid of a semiaffine line is unique, but a lid point can have several boxes. The lid of \mathcal{S} is the set of the lid points of all semiaffine lines.

We will denote by \mathfrak{L} the lid of \mathcal{S}. The following proposition is proved in [5] for the full case, but the proof easily holds without this restriction.

Proposition 2 The set \mathfrak{L} is a proper subspace of \mathcal{S}. Also, if a line $L \in \mathcal{L}$ intersects \mathfrak{L} in a unique point x, then L is a box for x.

Note that every line $L \in \mathcal{L}$ disjoint from \mathfrak{L} is an arc in π_{L}; this follows from the case $n=2$.

We now first treat a special case.

Proposition 3 If \mathfrak{L} is a hyperplane, then \mathcal{S} is a lax n-Veronesean.
Proof By Proposition 1, the space $\langle\mathfrak{L}\rangle$ has dimension $\frac{1}{2}(n-1)(n+2)$, and by induction, \mathfrak{L} is a lax i-Veronesean, $0 \leq i \leq n-1$, say in a generalized
subspace W of dimension $\frac{1}{2}(n-1)(n+2)$. Also, Proposition 2 combined with the lax 2 -Veronesean structure of any plane of \mathcal{S} not contained in \mathfrak{L}, and Lemma 4, imply that the inclusion map $\iota: \mathcal{S} \backslash \mathfrak{L} \subseteq \mathrm{PG}(d, \mathbb{F})$ induces an isomorphism between affine spaces. Since $\frac{1}{2} n(n+3)=1+\frac{1}{2}(n-1)(n+2)+n$, we see that the subspace of $\operatorname{PG}(d, \mathbb{F})$ generated by the image of ι and the one generated by \mathfrak{L} are disjoint. Hence the result follows now from the induction hypothesis (note that this also holds for $|\mathbb{K}|=3$ as in this case the characteristic of \mathbb{F} is 3 by the property of the inclusion map ι above inducing an isomorphism).
We can now finish the proof of our Main Result.
In view of the previous proposition, we may assume $0 \leq m<n-1$, with $m=\operatorname{dim} \mathfrak{L}$. If we consider a plane of \mathcal{S} meeting \mathfrak{L} in at most one point (this is possible in view of $m<n-1$), then we see that, by Sections 3 and 4, the characteristics of \mathbb{K} and \mathbb{F} are equal, and \mathbb{K} is commutative. Now let H_{1} and H_{2} be two hyperplanes of \mathcal{S} containing \mathfrak{L}. The previous remark and the induction hypothesis imply that H_{1} and H_{2} are both lax $(m+1)$ Veroneseans. Note that $\left\langle H_{1}\right\rangle$ and $\left\langle H_{2}\right\rangle$ both have dimension $\frac{1}{2}(n-1)(n+2)$, and the dimension of $\left\langle H_{1} \cap H_{2}\right\rangle$ is $\frac{1}{2}(n-2)(n+1)$. It follows that the dimension of $\left\langle H_{1}, H_{2}\right\rangle$ is at most $\frac{1}{2} n(n+3)-1$. So we can choose a point $x \in \mathcal{P}$ outside $H_{1} \cup H_{2}$ which does not belong to $\left\langle H_{1}, H_{2}\right\rangle$. Since every line L not meeting \mathfrak{L} is an arc in π_{L}, we see that all points of \mathcal{P}, except possibly those lying in the hyperplane H_{3} of \mathcal{S} generated by x and $H_{1} \cap H_{2}$, are contained in $\left\langle H_{1}, H_{2}, x\right\rangle$. Since there are at least four hyperplanes of \mathcal{S} through $H_{1} \cap H_{2}$, we can interchange the roles of x and a point $y \in \mathcal{P}$ not contained in $H_{1} \cup H_{2} \cup H_{3}$ and obtain that $\mathcal{P} \subseteq\left\langle H_{1}, H_{2}, x\right\rangle$. This also implies that $\operatorname{dim}\left\langle H_{1}, H_{2}\right\rangle=\frac{1}{2} n(n+3)-1$ and $\left\langle H_{1}\right\rangle \cap\left\langle H_{2}\right\rangle=\left\langle H_{1} \cap H_{2}\right\rangle$ has dimension $\frac{1}{2}(n-2)(n+1)$.

Note that a similar argument (used inductively) as in the previous paragraph shows that $\mathrm{PG}(d, \mathbb{F})$ is generated by $\left\langle H_{1}\right\rangle$ and $n+1$ points of \mathcal{S} outside H_{1}, in general position viewed as points of \mathcal{S}. Similarly for H_{2}.
The induction hypothesis implies that $H_{i} \backslash \mathfrak{L}, i=1,2$, is contained in a subspace W_{i} of $\operatorname{PG}(d, \mathbb{F})$ of dimension $\frac{1}{2}(n-1)(n+2)-\frac{1}{2} m(m+3)-1$ defined over some subfield \mathbb{K}_{i} of \mathbb{F} isomorphic to \mathbb{K}, and such that this embedding is isomorphic to the projection from a subspace U_{i} (generated by a sub-Veronesean induced by an m-dimensional subspace of PG $(n-1, \mathbb{K})$) of the full Veronesean embedding of $\mathrm{PG}(n-1, \mathbb{K})$ minus the subspace U_{i}. Moreover, the intersection $W_{1} \cap W_{2}$ has dimension $\frac{1}{2}(n-2)(n+1)-\frac{1}{2} m(m+$ 3) - 1 , implying W_{1} and W_{2} generate (over \mathbb{F}) a subspace of dimension $\frac{1}{2} n(n+3)-\frac{1}{2} m(m+3)-2$. Now consider an arbitrary plane π of \mathcal{S} through x meeting $H_{1} \cap H_{2}$ in a point (which might or might not belong to \mathfrak{L}). Then our arguments in Section 3 (especially those leading to the lax

0 - and 1 -Veronesean) imply that π is contained in a unique 5 -dimensional subspace $\operatorname{PG}\left(5, \mathbb{K}^{\prime}\right)$ of $\operatorname{PG}(d, \mathbb{F})$ defined over a subfield \mathbb{K}^{\prime} of \mathbb{F} isomorphic to \mathbb{K} (use the fact that there is a line $L \in \mathcal{L}$ through x in π skew to \mathfrak{L} and that $\operatorname{PG}\left(5, \mathbb{K}^{\prime}\right)$ is determined by L and the intersections of π with the $H_{i}, i=1,2$). Moreover, we see that $\langle\pi\rangle \cap\left\langle H_{i}\right\rangle$ is 2-dimensional (indeed, this follows immediately from the fact that, by the previous paragraph, $\langle\pi\rangle,\left\langle H_{i}\right\rangle$ and $n-2$ well-chosen additional points of \mathcal{S} generate $\left.\operatorname{PG}(d, \mathbb{F})\right)$ and the points of \mathcal{S} in this plane are contained in a subplane over both \mathbb{K}^{\prime} and \mathbb{K}_{i}. We infer from the fullness of the embedding that $\mathbb{K}_{1}=\mathbb{K}^{\prime}=\mathbb{K}_{2}$. Also, the intersection $\left(H_{1} \backslash \mathfrak{L}\right) \cap\left(H_{2} \backslash \mathfrak{L}\right)$ is an embedding in $W_{1} \cap W_{2}$ isomorphic to an appropriate projection of a full Veronesean of $H_{1} \cap H_{2}$. Hence $\left(\pi \cup H_{1} \cup H_{2}\right) \backslash \mathfrak{L}$ is contained in a unique subspace $\operatorname{PG}\left(d^{\prime}, \mathbb{K}^{\prime}\right)$, with $d^{\prime}=\frac{1}{2} n(n+3)-\frac{1}{2} m(m+3)-1$.
But now every point z of $\mathcal{P} \backslash\left(H_{1} \cup H_{2}\right)$ is contained in $\mathrm{PG}\left(d^{\prime}, \mathbb{K}^{\prime}\right)$ since we can include it in a plane π^{\prime} of \mathcal{S} which contains L; as π^{\prime} contains L it is defined over the subfield \mathbb{K}^{\prime}. Then the argument above leading to the uniqueness of $\operatorname{PG}\left(5, \mathbb{K}^{\prime}\right)$ can now be recycled to show that π^{\prime} is entirely contained in PG $\left(d^{\prime}, \mathbb{K}^{\prime}\right)$.
This concludes the proof of our Main Result.

6 Two corollaries

To illustrate the strength of our Main Result, we provide two applications.
Corollary 7 Let $\mathbb{K}, \mathbb{F} \in\{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$ (the (skew) fields of real, complex and Hamiltonian numbers). Let $\theta: \mathrm{PG}(n, \mathbb{K}) \longrightarrow \mathrm{PG}(d, \mathbb{F})$, with $d \geq \frac{n(n+3)}{2}$ and $n \geq 2$, be a continuous map such that θ maps the set of points of each line of $\mathrm{PG}(n, \mathbb{K})$ to a set of coplanar points of $\mathrm{PG}(d, \mathbb{F})$ and such that the image of θ generates $\mathrm{PG}(d, \mathbb{F})$. Then $d=\frac{n(n+3)}{2}$ and either $\mathbb{K}=\mathbb{R}$ and the image of θ is the real quadric Veronesean in a subspace over \mathbb{R}, or $\mathbb{K}=\mathbb{C}$, $\mathbb{F} \neq \mathbb{R}$ and the image of θ is the complex quadric Veronesean in a subspace over \mathbb{C}.

This follows from our Main Result by noting that only 0-Veroneseans are connected.

Another straightforward consequence is the following. Here, \mathbb{K} and \mathbb{F} are again two arbitrary skew fields.

Corollary 8 Let $\theta: \mathrm{PG}(n, \mathbb{K}) \longrightarrow \mathrm{PG}(d, \mathbb{F})$, with $d \geq \frac{n(n+3)}{2}, n \geq 2$ and $|\mathbb{K}| \geq 3$, be a map such that θ maps the set of points of each line of $\mathrm{PG}(n, \mathbb{K})$
to a set of coplanar points of $\mathrm{PG}(d, \mathbb{F})$ and such that the image of θ is a cap and generates $\mathrm{PG}(d, \mathbb{F})$. Then $d=\frac{n(n+3)}{2}, \mathbb{K}$ is a field and the image of θ is a quadratic Veronesean in a subspace over a subfield of \mathbb{F} isomorphic to \mathbb{K}.

Acknowledgment. The authors would like to thank the referee for some valuable remarks.

References

[1] A. De Wispelaere, J. A. Thas \& H. Van Maldeghem, A characterization of the Grassmann embedding of $\mathrm{H}(q)$, with q even, Des. Codes Cryptogr. 55 (2010), 212-130.
[2] J. W. P. Hirschfeld \& J. A.Thas, General Galois Geometries, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1991.
[3] M. Limbos, Plongement et Arcs Projectifs, PhD Thesis, Université Libre de Bruxelles (ULB), 1981.
[4] J. A. Thas \& H. Van Maldeghem, Characterizations of the finite quadric Veroneseans $\mathcal{V}_{n}^{2^{n}}$, Quart. J. Math. 55 (2004), 99-113.
[5] J. A. Thas \& H. Van Maldeghem, Generalized Veronesean embeddings of projective spaces, to appear in Combinatorica (Until appearance available online http://cage.ugent.be/geometry/preprints.php).

Addresses of the authors

Z. Akça, A. Bayar, S. Ekmekçi and R. Kaya

Eskisehir Osmangazi University,
Department of Mathematics and Computer Science,
26480, Eskisehir
TURKEY
\{zakca, akorkmaz,sekmekci,rkaya\}@ogu.edu.tr
J. A. Thas and H. Van Maldeghem

Department of Mathematics,
Ghent University,
Krijgslaan 281-S22,
9000 Ghent,
BELGIUM
\{jat,hvm\}@cage. ugent.be

[^0]: *The last two authors are partly supported by the Fund for Scientific ResearchFlanders (FWO-Vlaanderen)
 ${ }^{\dagger}$ This work is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under the project number 108T340

