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Abstract

Let J be a set of types of subspaces of a polar space. A collineation (which is a
type-preserving automorphism) of a polar space is called J-domestic if it maps no
flag of type J to an opposite one.

In this paper we investigate certain J-domestic collineations of polar spaces. We
describe in detail the fixed point structures of collineations that are i-domestic and
at the same time (i+1)-domestic, for all suitable types i. We also show that {point,
line}-domestic collineations are either point-domestic or line-domestic, and then we
nail down the structure of the fixed elements of point-domestic collineations and of
line-domestic collineations. We also show that {i, i + 1}-domestic collineations are
either i-domestic or (i + 1)-domestic (under the assumption that i + 1 is not the
type of the maximal subspaces if i is even). For polar spaces of rank 3, we obtain a
full classification of all chamber-domestic collineations. All our results hold in the
general case (finite or infinite) and generalize the full classification of all domestic
collineations of polar spaces of rank 2 performed in [8].

1 Introduction

In this paper, we investigate collineations of polar spaces that have “restricted displace-
ment”. That means that for some type set J , the collineation in question does not map
any flag of type J onto an opposite one. Such a collineation is then called J-domestic. If
J is the full type set, then we briefly talk about domestic collineations. The eventual goal
would be to describe all domestic collineations. However, this goal is not attained here.
Instead, we obtain results about collineations that are i-domestic and (i + 1)-domestic
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at the same time. As we will see, this already generates some beautiful geometry. In
particular, a kind of “geometric Tits diagram” turns up.

Where does this problem come from? In [2] it is shown that every automorphism of a non-
spherical building has infinite displacement (with respect to chambers). This means that,
in a (thick) non-spherical building, the identity is characterized among all automorphisms
ϕ by the existence of a positive constant d such that the numerical distance between any
chamber C and its image Cϕ is at most d. For spherical buildings, where the displacement
is automatically finite and bounded, it still makes sense to look for the maximal value of
d, with d having the property stated in the previous sentence. In fact, one could think
that d = D − 1, with D the diameter of the chamber graph of the building. But this is
false in general, as [2] contains some counterexamples. However, we have taken a closer
look at these counterexamples in [7] and [8] and could classify the automorphisms of
projective spaces and generalized quadrangles which map no chamber to an opposite one.
The bounds d then follow easily. An observation that can be made is that, if d #= D − 1,
then d diverges polynomially from D with growing rank. Related to this, it seems that
domestic automorphisms have a rather large fixed element structure.

In the present paper, we want to extend this theory to polar spaces. However, a full
classification of domestic collineations of polar spaces seems out of reach for now. We
develop some methods to handle certain special cases, showing that the problem is inter-
esting and rich. In particular, we solve the problem completely for polar spaces of rank
3. For general rank, we content ourselves with collineations that are point-domestic or
line-domestic, and with collineations that are both i-domestic and (i + 1)-domestic. For
instance, in the latter case, the collineation does not only map no i-space to an opposite
one, it always fixes at least one point in every i-space and so it maps any i-space to a
non-disjoint one. This is in accordance with the general philosophy that, if a collineation
does not map any flag of certain type to an opposite one, then the maximal distance
between a flag of that type and its image is much smaller than opposition.

Let us remark that in any thick spherical building, there is always some flag that is
mapped onto an opposite, i.e., no collineation is J-domestic for all J , except the identity.
This is a general characterization of the identity in spherical buildings which follows from
[4]. As a byproduct, we obtain a slightly stronger characterization of the identity in polar
spaces: it is the only collineation that does not map any point to an opposite one and at
the same time no line to any opposite one.

Also, in classifying point-domestic collineations, Tits-diagrams will turn up. Hence, cer-
tain fixed point buildings of non-quasi-split type relate to domestic automorphisms. This
brings us to our second main motivation. When dealing with collineation groups, or,
more generally, with permutation groups, it often helps to look at the fixed point struc-
ture. Here, we want to slightly wider that horizon: we take into account all distances and
instead of asking ourselves which collineations have large fixed point structures, we ask
ourselves which collineations do not map elements too far away. We hope our analysis
will prove useful in the future, and that it will help to solve the problem of determining
all domestic collineations of any polar space.

The paper is structured as follows. First we show that {point,line}-domestic collineations
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are either point-domestic or line-domestic. Also, a point-domestic collineation which
is also line-domestic is necessarily the identity. Then we take a closer look at point-
domestic collineations and show that these relate to Tits-diagrams in the non-symplectic
case. For line-domestic collineations we show that they always fix a geometric hyperplane
pointwise (and vice versa). Then, we consider i-domestic collineations which are also
(i+1)-domestic, for i > 1, and we also show that, roughly, {i, i+1}-domestic collineations
are either i-domestic or (i + 1)-domestic. Finally we treat domesticity in full generality
for polar spaces of rank 3.

We repeat that, with a collineation of a polar space we mean a collineation of the ge-
ometry. Hence, from the point of view of buildings, this includes non-type preserving
automorphisms of buildings of type Dn+1. Indeed, we also allow for polar spaces whose
Bn+1-diagram is thin on the last node. One can translate the results of the present paper
to buildings of type Dn+1 by reading (n− 1)-domesticity in the polar space as {n+, n−}-
domesticity in the oriflamme complex, and n-domesticity in the polar space as n+- and
n−-domesticity in the oriflamme complex (also considering dualities).

Throughout, Γ will denote a polar space of finite rank, furnished with all its projective
subspaces. Usually we will assume that the rank of Γ is equal to n + 1, so that the
projective dimension of the maximal subspaces is n. This convention will exceptionally
be interrupted in Section 4, where rank n gives better formulations of the results in the
statements and in the proofs. In any case, the type of an element (a subspace) will always
be its projective dimension.

Finally, we mention that we assume the rank of Γ to be larger than 2 since we have treated
the generalized quadrangles in [8], where we basically show that all domestic collineations
are either point-domestic or line-domestic, or one of three exceptional cases occuring in
small quadrangles.

2 Preliminaries and main results

We begin with defining domesticity in the general context of spherical buildings, but we
will only be concerned with a specific class of buildings, namely, polar spaces. Hence we
do not define a building in full generality, but refer to the literature.

Let Ω be a spherical building, and let θ be an automorphism of Ω. We emphasize that θ
need not be type-preserving. Then we call θ domestic if no chamber of Ω is mapped onto
an opposite chamber. More in particular, for a subset J of the type set of Ω, we say that θ
is J-domestic, if θ does not map any flag of type J onto an opposite one. The main result
of Section 5 of [2], also proved earlier by Leeb [4], using entirely different methods, asserts
that every automorphism of any (thick) spherical building is not J-domestic, for some
type subset J . Hence being not J-domestic seems to be the rule, and so it is worthwhile
to look at automorphisms which are J-domestic, for some J .

We now specialize to polar spaces.

A polar space Γ of rank n+1, n ≥ 1, is a geometry of rank n+1 with type set {0, 1, . . . , n}
satisfying the following axioms (see Chapter 7 of [10] or [12]), where we call the elements
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of type 0 points. In the following, a projective space of dimension −1 is the empty set, of
dimension 0 is a singleton and of dimension 1 is a set of at least 3 points.

(PS1) The elements of type < i incident with any element of type i form naturally a
projective space of dimension i in which the type of an element in Γ is precisely the
dimension of the corresponding subspace in that projective space.

(PS2) Every element of Γ is determined by the set of points incident with it and the point
sets of two elements of Γ intersect in a subspace of each.

(PS3) For every point x and every element M of type n not incident with x, there exists
a unique element M ′ through x of type n whose point set intersects the point set
of M in the point set of an element of type n − 1. Also, no element of type 1 is
incident with x and a point of M unless it is incident with M ′ or coincides with M ′.

(PS4) There exist two elements of type n not incident with any common point.

Axiom (PS1) justifies the following terminology: we call elements of type i i-dimensional
subspaces. Also, 1-dimensional subspaces are simply called lines, 2-dimensional ones
planes and n-dimensional ones maximal subspaces. The codimension of an i-dimensional
subspace is by definition equal to n− 1− i. Two points that are incident with a unique
common line will be called collinear, and we will thus also use the notation x⊥ for the set
of points collinear to the point x completed with x itself. In such a way we can consider a
polar space as a point-line geometry by “forgetting” the i-dimensional subspaces for i ≥ 2.
These can always be reconstructed merely using the points and lines. In this setting, it is
natural to see the subspaces as sets of points, and we will indeed take this point of view.
This way we can talk about the intersection of subspaces.

We call Γ thick if every subspace of type n− 1 is contained in at least three subspaces of
type n.

If x is a point and L is a line of a polar space Γ, x not on L, then considering a maximal
subspace M incident with L (we also say through L), and applying Axiom (PS3), we see
that

(BS) either all points on L are collinear with x, or exactly one point on L is collinear
with x.

A major result of Beukenhout & Shult [3] is that this observation—known as the Bueken-
hout-Shult one-or-all axiom—along with some nondegeneracy conditions such as (1) every
line contains at least three points, (2) no point is collinear with all other points, and under
a suitable condition that bounds the rank, characterizes the class of polar spaces. The
simplicity of Axiom (BS) played a major role in the success of studying polar spaces and,
in fact, we will also use that axiom as a central property of polar spaces. Moreover, the
above motivates the notion of a degenerate polar space as a point-line geometry in which
Axiom (BS) holds, but which is not the restriction to points and lines of a polar space.
With “polar space” we will never include the degenerate ones, except when explicitly
mentioned (for example, we sometimes say “possibly degenerate polar space”).
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Polar spaces of rank 2 are just thick generalized quadrangles or generalized quadrangles
with 2 lines through every point (the so-called grids). As soon as the rank is at least 3,
then there is a classification due to Tits [10]. Roughly, this classification says that a polar
space of rank at least 4 arises from a bilinear, sesquilinear or pseudo-quadratic form in
some vector space. In the rank 3 case there is one other class of (thick, i.e., there are
at least three planes through every line) polar spaces parametrized by octonion division
rings (here, the planes of the polar space are projective planes over alternative division
rings).

A chamber of a polar space is a set of nested projective subspaces of dimension 0 up to
n. A flag is a subset of a chamber. The type of a flag is the set of types of its elements.

A geometric subspace of a polar space is a set of points such that, if two collinear points
x and y belong to that set, then all points of the line xy belong to it. We often view
geometric subspaces as substructures endowed with all subspaces completely contained in
it. In order to explicitly distinguish between geometric subspaces and ordinary subspaces,
we sometimes call the latter projective subspaces. A geometric hyperplane is a geometric
subspace with the property that every line contains at least one point of it, and at least
one line contains exactly one point of it. It is easy to show that geometric subspaces are
(possibly degenerate) polar spaces. The corank of a geometric subspace equals i if every
i-dimensional (projective) subspace meets it in at least one point, and there exists an
i-dimensional subspace meeting it in exactly one point. Hence, geometric hyperpanes are
the geometric subspaces of corank 1.

If we understand with distance between two elements the graph-theoretical distance be-
tween them in the incidence graph, then this notion does not fully cover all the possible
mutual positions of two elements (by which we mean the isomorphism classes of the
substructures induced by all shortest paths between them in the incidence graph). For
instance, for two lines, there are six possible mutual positions given by (1) equality, (2)
being contained in a common plane, (3) intersecting in a unique point but not contained
in a plane, (4) being disjoint but some plane contains one of them and intersects the
other in a point, (5) being disjoint and no plane containing one of them intersects the
other in a point, (6) both contained in a common projective subspace, but not in a plane.
Clearly, in the cases (2), (3) and (6) the lines are at distance two from each other. But
for points, it does. Two points can have only three possible mutual positions, given by
the distances 0, 2, 4 in the incidence graph. A special mutual position is opposition given
by the maximum distance between two elements of the same type. It is characterized as
follows: two subspaces U and U ′ of dimension i are opposite if and only if no point of U
is collinear with all points of U ′. It follows that this relation is symmetric.

We now define the notion of “projection” in polar spaces. Our definition is in conformity
with the definition of projection in buildings, where the projection of a flag F onto another
flag F ′ is the intersection of all chambers appearing as last chamber in a minimal gallery
connecting F with F ′ (i.e., the first chamber contains F and the last one F ′). Since F ′ is,
however, always in that final chamber, one usually does not mention it. Let U and V be
two projective subspaces of a polar space Γ, and suppose that they are neither opposite
nor incident (otherwise the projection onto U is empty or U , respectively). Then projUV
is the set (a flag) of the following subspaces: the intersection V ∩ U , if not empty; the
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set of points of U collinear with all points of V , if not empty and if it does not coincide
with U ; the unique minimal subspace containing all points of U and all points of V that
are collinear with all points of U , if it does not coincide with U . At least one of these
subspaces is well defined. In the generic case, all these subspaces are distinct and hence
projUV is a set of three subspaces: two contained in U and one containing U . We will
make the following agreement: with proj⊆UV we mean the set of points of U collinear
with all points of V (and this time it could coincide with U , with V ∩U or with the empty
set) and with proj⊇UV we shall denote the subspace generated by U and the set of points
of V that are collinear with all points of U (and this time, this could also coincide with
U).

For a subspace U of Γ, the notation ResΓ(U) denotes the polar space obtained from Γ
and U by considering all subspaces properly containing U . It is called the residue of U .
Strictly speaking, the residue is the direct product of the aforementioned polar space,
with the projective space defined by U (considering all subspaces properly contained in
U), but we will not need this.

A collineation is a type preserving permutation that preserves incidence. According to
the terminology introduced above for spherical buildings, we will call a collineation which
maps no flag of type J to an opposite one J-domestic. We sometimes substitute the type
by the name, e.g., point-domestic for 0-domestic. If J = {0, 1, . . . , n}, then we talk about
domestic collineations.

Our main results could be briefly stated as follows.

• A point- and line-domestic collineation is the identity.

• A line-domestic collineation fixes a hyperplane pointwise.

• A point-domestic collineation in a polar space different from a symplectic one admits
a Tits-diagram

• An i- and (i+1)-domestic collineation which is not (i−1)-domestic fixes a geometric
subspace of codimension i pointwise.

• A domestic collineation of a thick polar space of rank 3 is either an involution fixing
a Baer sub polar space, or a collineation that fixes pointwise a geometric subspace
of corank at most 2.

For the definition of Baer sub polar space of a polar space of rank 3, we refer to Section 7.
More detailed statements are given in the next sections.

We have chosen not to interrupt our exposition with examples. We content ourselves with
mentioning that for all situations we will encounter, there exist examples of appropriate
J-domestic collineations. But to describe these examples in detail, one needs to introduce
additional notions, and this would make the paper too long, without adding essential
knowledge. However, we will briefly mention how to construct examples, without going
into details.
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3 {point,line}-Domestic collineations

The following lemma will turn out to be very useful. We provide two proofs. One proof
uses the result of Leeb [4], the other is independent and somewhat longer but introduces
a technique that we shall use later.

Lemma 3.1 Suppose that Γ is a polar space of rank n + 1 and θ is a point-domestic and
line-domestic collineation, then θ is the identity.

Proof We will first prove that there are no i-dimensional spaces which are mapped to
an opposite i-dimensional space, 2 ≤ i ≤ n. Suppose, by way of contradiction, that there
exists such a space Ω. Take an arbitrary point x in Ω; this point is mapped to the point xθ

in Ωθ which is not opposite x. Consider the projection Hx = proj⊆Ωxθ of xθ into Ω; this
is an (i − 1)-dimensional space containing x. The mapping x '→ Hx is clearly a duality
of Ω (since it is the composition of the collineation Ω → Ωθ : x '→ xθ and the duality
Ωθ → Ω : y '→ y⊥ ∩ Ω), and since x ∈ Hx, it is a domestic duality. By the main result of
[7], this duality is a symplectic polarity. Hence, if i is even, we obtain a contradiction. If
i is odd (with i > 1), then there exists a non-isotropic line L in Ω which is mapped to an
opposite (i − 2)-dimensional space of Ω under the symplectic polarity. It follows that L
is mapped to an opposite line under θ, again a contradiction.

First proof. We will now prove that every n-dimensional space is fixed. Suppose, by
way of contradiction, that there is an n-dimensional space Ω′ which is not fixed. Then
the intersection of Ω′ with Ω′θ is an i-dimensional space, with 0 ≤ i ≤ n − 1. Take an
(n − i − 1)-dimensional subspace U of Ω′ disjoint from Ω′ ∩ Ω′θ and also disjoint from
the pre-image (under θ) of Ω′ ∩ Ω′θ. Because of the previous part of this proof U cannot
be mapped to an opposite subspace. Hence there exists a point u ∈ U which is collinear
with every point of U θ. But u is also collinear with every point of Ω′ ∩ Ω′θ. Since U θ is
disjoint from Ω′ ∩Ω′θ by the above conditions on U , we see that U θ and Ω′ ∩Ω′θ generate
Ω′θ, and it follows that u is collinear with all points of Ω′θ. Hence u ∈ Ω′θ, contradicting
u ∈ U and U disjoint from Ω′θ.

Second proof. We have proved above that θ is i-domestic, for every type i. This means
that no flag whatsoever can be mapped onto an opposite flag, which contradicts the result
of Klein & Leeb [4] if θ is not the identity, see also Abramenko & Brown [1]. !

Theorem 3.2 Suppose that Γ is a polar space of rank n + 1 > 2 and θ is a {point,
line}-domestic collineation. Then θ is either point-domestic or line-domestic.

Proof Suppose θ is not point-domestic and consider a point x which is mapped to
an opposite point xθ. Take a line L through x and consider the unique line Lϕ through
x intersecting Lθ in a point. Because θ is {point, line}-domestic, L and Lθ can not be
opposite lines. Hence there exists a point y on Lθ which is collinear to all points of L
(here collinearity also includes equality). This point should be the intersection of Lθ and
Lϕ, because it is the only point on Lθ collinear with x. Hence L and Lϕ are not opposite
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in ResΓ(x), which means that the collineation in the residue of x corresponding with ϕ is
point-domestic.

Consider a plane α of Γ through x. Suppose that α and αθ are opposite. Take a flag
{y, M} in α. This flag can not be opposite its image {yθ, M θ}. Consider the projection
{proj⊆αM θ, proj⊆αyθ} of {yθ, M θ} into α, this is a flag which is not opposite in α to the
flag {y, M}. Hence we obtain a {point, line}-domestic duality in α, a contradiction to
Theorem 3.1 in [7]. Hence α and αθ are not opposite. This means that there exists a
point z in αθ which is collinear to all points of α. Similarly as above, the point z should
be in the intersection of αθ and the unique plane αϕ through x intersecting αθ in a line.
Hence α and αϕ are not opposite in the residue of x, which means that the collineation
in the residue of x corresponding with ϕ is line-domestic. Because of Lemma 3.1, this
collineation is the identity.

Let z be an arbitrary point in x⊥ ∩ (xθ)⊥ and let π be an arbitrary plane containing x
and z. Also, let x′ be a point of π not on the line xz and not collinear with xθ. By the
foregoing, the line xz is mapped under ϕ to itself, which means that θ maps xz to xθz.
Our choice of x′ implies that x′ is opposite x′θ, and hence z also belongs to x′⊥ ∩ (x′θ)⊥.
Consequently, letting x′ play the role of x above, we also have that θ maps x′z to x′θz.
Hence the intersection z of xz and x′z is mapped to the intersection z of xθz and x′θz.
We have shown that z is fixed under θ. Hence θ fixes x ∩ xθ pointwise.

Now consider an arbitrary line K. If K intersects x⊥ ∩ (xθ)⊥, then it contains at least
one fixed point and hence is not mapped onto an opposite line. If K does not intersect
x⊥ ∩ (xθ)⊥, then there exists a line N through x which intersects K in a point y. Since
xy is mapped to xθy′, with y′ = proj⊆xyx

θ, we see that y and yθ are opposite. Hence we
can let y play the role of x above and conclude that K has a fixed point and consequently
cannot be mapped onto an opposite line. So θ is line-domestic. !

4 Point-domestic collineations

In this section we assume that θ is a point-domestic collineation of the polar space Γ of
rank n, with n > 2.

Lemma 4.1 The orbit of a point x under the collineation θ is contained in a projective
subspace of Γ.

Proof We first show by induction on % that the set {x, xθ, xθ2
, . . . , xθ!} is contained

in a subspace. For % = 1, this is by definition of point-domestic. Now suppose that
{x, xθ, xθ2

, . . . , xθ!−1} is contained in some subspace X, and we may assume that X is
generated by x, xθ, xθ2

, . . . , xθ!−1
. Applying θ, we see that also {xθ, xθ2

, . . . , xθ!} is con-
tained in some subspace, namely, Xθ. Consider the line L := xxθ!−1

, which is mapped
onto the line Lθ = xθxθ!

. Consider a point z on L distinct from x and from xθ!−1
. Then

z is collinear to zθ on Lθ. Since z is also collinear with xθ (as both points belong to X),
we see that z is collinear to xθ!

. Since xθ!
is also collinear to xθ!−1

, it is collinear with all
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points of L and hence also with x. This shows that X and Xθ are contained in a common
subspace.

This already proves the lemma for θ of finite order. Now suppose the order of θ is infinite.
Since the rank of Γ is finite, there exists some natural number k such that xθk

is contained
in the subspace Y generated by x, xθ, . . . , xθk−1

. It is now clear that θ stabilizes Y , as
xθ, xθ2

, . . . , xθk
generates a subspace Y θ contained in Y and of the same dimension as Y

(hence coinciding with Y ). Consequently the orbit of x generates Y . !
We have now reduced the problem to a geometric one: classify closed configurations of
polar spaces whose union is the whole point set. With closed configuration, we here
understand a set of subspaces closed under projection. Note that this implies closedness
of intersection (of intersecting subspaces) and generation (of two subspaces contained in
a common subspace).

Usually, such configurations can be rather wild (for instance, one can take any flag),
unless every member has an opposite in the configuration, in which case the configuration
forms a building itself. In this case, there is a Tits diagram, and so the types of the
elements of the configuration behave rather well. But if some member has no opposite in
the configuration, then there is no reason to believe that these types follow certain rules
(think of the example of an arbitrary flag). However, the extra condition that every point
is contained in some member of the configuration forces the types of elements to obey the
same rules as the Tits diagrams, at least when Γ is not a symplectic polar space, i.e. when
Γ is not of type Cn.

Before stating an proving the theorem, we explain our remarks above about the Tits
diagrams. We only mention the geometric relevant part. The diagram of a polar space Γ
of rank n has type Bn, i.e.

0 1 2 3 n-1n-2n-3

Now, if we have a closed configuration Ω, then we can encircle the nodes on the diagram
that correspond to the types of the members contained in Ω. In our case, it will turn
out that the last node is always encircled, in which case the general rules of the Tits
diagrams (see [9]) say that there is a natural number k such that the encircled nodes
occur precisely every k nodes. For example, for k = 3, we obtain the diagram (where l
nodes are encircled)

3 4 5 6 lk-1lk-20 1 2 lk lk+1 lk+2

The existence of a Tits diagram for closed configurations for polar spaces not of symplectic
type—a result that is clearly worthwhile in its own right—is precisely the content of the
next theorem.

Theorem 4.2 Let Ω be a set of subspaces of a polar space Γ closed under projection and
such that every point is contained in some member of Ω. Assume that Γ is not symplectic.
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Then there exists a unique natural number i such that the type of each member of Ω is
equal to mi − 1, for some integer m, with i a divisor of n, and m ranging from 1 to n/i
(included). Also, for every m with 1 ≤ m ≤ n/i, there exists at least one subspace of type
mi− 1 belonging to Ω, and for every member U of Ω, say of type ti− 1, and for every m,
1 ≤ m ≤ n/i, there exists a subspace of type mi− 1 belonging to Ω and incident with U .

Proof We prove the assertions by induction on n. Despite the fact that we assume
that Γ has rank at least 3, we can include the case n = 2 and start the induction with
n = 2. For n = 2, all assertions follow from the fact that we are dealing with a dual
geometric hyperplane as follows from [8].

So we may assume n > 2. We define i as the smallest positive integer for which there
exists a member of Ω of type i − 1, and we let U ∈ Ω be of type i − 1. If i = n, then
our assumptions readily imply that Ω consists of a spread and all assertions follow. So
we may assume from now on that i ≤ n − 1. Now let ΩU be the set of all members of
Ω containing U . Then clearly ΩU is closed under projection. We now show that every
point of ResΓ(U) is contained in a member of ΩU . Hence let W be a subspace of type
i containing U . Pick a point x in W \ U . By assumption, there is some member U ′ of
Ω containing x. Then the subspace proj⊇UU ′ belongs to Ω and contains both U and x,
hence W .

Note that the same argument can be applied to any element of Ω, and in particular, by
repeated application, it proves that every element of Ω is contained in a maximal subspace
belonging to Ω.

Consequently, for i ≤ n − 2, we can apply induction in ResΓ(U) and obtain a natural
number j such that the type of each member of ΩU (in Γ) is equal to i+mj− 1, for some
integer m, with j a divisor of n− i, and m ranging from 1 to (n− i)/j (included). Also,
for every m with 1 ≤ m ≤ (n− i)/j, there exists at least one subspace of type i + mj − 1
belonging to ΩU , and for every member W of ΩU , say of type i + tj − 1, and for every
m, 1 ≤ m ≤ (n − i)/j, there exists a subspace of type i + mj − 1 belonging to ΩU and
incident with W .

If i = n − 1, then the first assertion in the previous paragraph still holds setting j = 1.
The second assertion is trivially true. Hence, for now, we do not need to consider the case
i = n− 1 separately.

Consider a point x of Γ not collinear to at least one point of U , and let Ux be a member
of Ω containing x (guaranteed to exist by assumption on Ω). By a previous note above,
we may assume that Ux has dimension n − 1. We note that Ux cannot contain U , as x
is not collinear to all points of U . Also, Ux is disjoint from U by minimality of i. Hence,
as i ≤ n − 1, the subspace proj⊆Ux

U is a proper nonempty subspace of Ux disjoint from
U and belonging to Ω (nonempty, because the dimension of U is strictly smaller then
the dimension of Ux). So the subspace U ′ := proj⊇UUx belongs to ΩU . The induction
hypothesis implies that there exists some subspace U ′′ of (minimal) type i+j−1 belonging
to ΩU and incident with (hence contained in) U ′. The intersection V := U ′′ ∩ proj⊆Ux

U
has minimal dimension j − 1 and belongs to Ω. Minimal here means that every subspace
of Ω, all of whose points are collinear with all points of U , has dimension at least j − 1.
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1. First we assume i + j < n. Note that the minimal dimension of a subspace of Ω,
all of whose points are collinear to all points of U ′′, is i − 1. Indeed, U is such
a subspace and the minimality follows from the minimality of i. Consequently, if
we interchange the roles of U and V , we also interchange the roles of i and j (the
minimality of i is responsible for the fact that the previous paragraphs also hold
for j).Hence, looking from both points of view, the subspace of minimal dimension
at least i + j (which exists due to i + j < n) containing both U and V must have
dimension i + 2j − 1 and at the same time j + 2i− 1. This implies i = j and there
only remains to prove the last assertion.

We first show that any element W of Ω contains a member of Ω of dimension i− 1.
Indeed, let U be the above member of Ω of type i − 1. We may suppose that U
is not contained in W and so U and W are disjoint, by minimality of i. We may
also assume that the dimension of W is larger than i − 1. Then W ′ = proj⊆W U is
nonempty (again because the dimension of U is strictly smaller than the dimension
of W ) and belongs to Ω. It suffices to show that W ′ contains an element of type
i − 1 of Ω. But this now follows from the induction hypothesis by considering a
subspace of dimension 2i− 1 of ΩU contained in the subspace generated by U and
W ′.

Next we show that every subspace of dimension i− 1 belonging to Ω is contained in
a subspace of dimension 2i− 1 belonging to Ω. Indeed, let U ′ ∈ Ω be a subspace of
dimension i− 1, distinct from U (and hence disjoint from it, too). If U and U ′ are
contained in a common subspace, then 〈U,U ′〉 meets the requirement. Otherwise,
let H ∈ Ω be a maximal subspace through U ′. Then the induction hypothesis
ensures that there exists a subspace W ∈ ΩU of dimension 2i − 1 contained in the
subspace proj⊇UH. The intersection W ∩H has dimension i−1 and so 〈U ′, W ∩H〉
meets our requirement (indeed, U ′ is not contained in W because otherwise U and
U ′ would be contained in a common subspace; U ′ is disjoint from W by minimality
of i).

It now follows that we can interchange the roles of U with any member V of Ω of
type i− 1. In particular, ΩV satisfies the assumptions of our theorem and contains
elements of type mi − 1, for every m ∈ {2, 3, . . . , n/i}. Hence the last assertion of
the theorem follows from first constructing a member V ∈ Ω of type i− 1 inside a
given member W of Ω, and then apply the induction hypothesis to ΩV to obtain a
member of any dimension mi − 1, m ∈ {2, 3, . . . , n/i}, incident with both V and
W , but in particular W .

2. Next we suppose that i + j = n (and so U ′ = U ′′ is a maximal subspace). Then
proj⊆Ux

U already has dimension j − 1, and so, by minimality of i, we have i ≤ j. If
i = j, there is nothing left to prove. If i < j, then consider a point z not collinear
to all points of U , and not collinear to all points of V (z can be obtained by using
any hyperplane of U ′′ that does neither contain U nor V ). As before, we know that
there is a maximal subspace H of Ω containing z. Since by our choice of z, the
subspace H can neither contain U nor V , it is disjoint from both U and V . We
claim that H is disjoint from U ′. Indeed, suppose H meets U ′ in some subspace S.
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By minimality of j, S is disjoint from V and has dimension at least j−1. But since
j > n−j, this is a contradiction. Our claim follows. Projecting U and V into H, we
obtain two complementary subspaces UH and VH in H of dimension j− 1 and i− 1,
respectively, belonging to Ω. It is clear that these are the only proper subspaces of
H that belong to Ω, as otherwise the projection (with the operator proj⊆U ′) into U ′

produces a contradiction just like in the proof of our last claim above. Now let H ′

be any maximal subspace of Γ which belongs to Ω. Then H ′ meets U ′ and/or H
either in one of the proper subspaces of U and H belonging to Ω, or H ′ coincides
with one of H or U ′, or it is disjoint from both. If H ′ is disjoint from one of U ′

or H, then it contains exactly two proper subspaces belonging to Ω, and they have
again dimensions i−1 and j−1. If H ′ meets U ′ in U , and if it meets H nontrivially,
then it must meet H in UH (it can clearly not meet H in VH because 2j > n). Also,
if H ′ meets U ′ in V , then it must meet H in VH (granted it meets H nontrivially)
because no point of UH is collinear to all points of V . So in any case, H ′ properly
contains two members of Ω, of dimensions i − 1 and j − 1. Moreover, the above
arguments also show that any member of Ω of dimension i− 1 and any member of
Ω of dimension j − 1 lie together in a joined maximal subspace of Γ.

Now choose a subspace X in U ′ of dimension n−3 and intersecting U in a subspace
of dimension i − 2 (remember that dimension −1 means the empty subspace) and
intersecting V in a subspace of dimension j−2 (this is never −1). If we now consider
the residue Q := ResΓ(X), which is a generalized quadrangle, then we see that the
projection proj⊇XΩ of Ω onto X is a dual grid in Q, with the extra property that
every point of that generalized quadrangle is incident with some line of the dual grid.
The latter implies that there are two opposite points x, y in Q with the property
that for all points z in Q opposite x the sets x⊥ ∩ y⊥ and x⊥ ∩ z⊥ have exactly
one point in common. Since Q is a Moufang quadrangle; and in particular has the
BN-pair property, we see that this property holds for all opposite points x and y.
Hence, by [6], Q is a symplectic quadrangle and so Γ is a symplectic polar space.
This contradicts our assumptions.

The proof of the theorem is complete. !
In the symplectic case there are plenty of counterexamples to the above theorem. An
obvious counterexample is the situation at the end of the proof of the previous theorem,
when we take i = 1, j = 3 and hence n = 4.

Note that in the symplectic case we can use the structure of the underlying projective space
when looking for the fixed structure of a collineation. In particular an inductive process
can be used if two non-maximal opposite subspaces of Γ are fixed: the subspace of the
surrounding projective space generated by these two subspaces induces a nondegenerate
symplectic polar space of lower rank which is also fixed. Nevertheless, this extra tool
seems not to be enough to explicitly classify all possibilities, or to at least give a general
and uniform description, as in the non-symplectic case.

Examples can be found using the theory of Galois descent in algebraic groups of type Bn,
see [9].
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5 Line-domestic collineations

In this section we assume that n ≥ 2 and we will prove the following theorem:

Theorem 5.1 Suppose that Γ is a polar space of rank n + 1 and θ is a nontrivial line-
domestic collineation, then θ fixes pointwise a geometric hyperplane.

For n = 1 this is included in [8]. We will prove this theorem by using the following
lemmas.

Lemma 5.2 Suppose that Γ is a polar space of rank n + 1 and θ is a line-domestic
collineation which is not point-domestic. Suppose that the point x is mapped to an opposite
point xθ. Then x⊥ ∩ (xθ)⊥ is fixed pointwise.

Proof Consider the mapping ϕ which maps a line L through x to the unique line Lϕ

through x intersecting Lθ in a point. This mapping is the composition of the restriction to
ResΓ(x) of θ and the projection from ResΓ(xθ) to ResΓ(x) using the operator proj⊇x. So,
ϕ can be conceived as a collineation of the polar space ResΓ(x) of rank n. If some line L
through x were opposite Lϕ in ResΓ(x), then clearly L would be opposite Lθ, contradicting
the fact that θ is line-domestic. Hence L and Lϕ are not opposite in ResΓ(x), which means
that the collineation in the residue of x corresponding with ϕ is point-domestic.

Now take a plane α through x and consider again the collineation ϕ which maps α to
the unique plane αϕ through x intersecting αθ in a line. Suppose that α and αθ are
opposite. Then the duality of α which maps a line L in α to the projection proj⊆αLθ is
point-domestic. This is a contradiction, since by [7] the only such dualities are symplectic
polarities and there are no such polarities in a projective plane. Hence the planes α and
αθ are not opposite and hence there exists a point y in αθ which is collinear to all points
of α. This point should be in αϕ ∩ αθ. Hence the collineation corresponding to ϕ in the
residue of x is line-domestic.

Analogously to the third paragraph of the proof of Lemma 3.2, we can now prove that
x⊥ ∩ (xθ)⊥ is fixed pointwise (but we leave the details to the interested reader).

This completes the proof of Lemma 5.2. !

Lemma 5.3 Suppose that Γ is a polar space of rank n + 1 and θ is a line-domestic
collineation. Then every line of Γ contains at least one fixed point.

Proof If θ is point-domestic, then the assertion trivially follows from Lemma 3.1, so we
can assume that θ is not point-domestic. Take a point x which is mapped to an opposite
point xθ. If a line intersects x⊥ ∩ (xθ)⊥, then because of Lemma 5.2, it contains at least
one fixed point. Hence we consider a line L which does not intersect x⊥ ∩ (xθ)⊥. There
exists a line M through x which intersects L in a point y. Since by Lemma 5.2 xy is
mapped to xθy′, with y′ = proj⊆xyx

θ, we see that y and yθ are opposite. Hence they can
play the same role as x and xθ and so the lines L and Lθ intersect each other in a fixed
point. !
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Lemma 5.4 Suppose that Γ is a polar space of rank n + 1 and θ is a line-domestic
collineation. If an i-dimensional subspace Ω in Γ, with 0 ≤ i ≤ n, is fixed by θ, then Ω is
fixed pointwise.

Proof Suppose first that Ω is n-dimensional and fixed. If all (n − 1)-spaces in Ω are
fixed, then Ω is fixed pointwise. Hence we may assume that there exists an (n − 1)-
dimensional space H in Ω which is not fixed. Take an n-dimensional space Ω′ through H
different from Ω and consider a line L in Ω′, but not in Ω, intersecting H in a point of
H \(Hθ∪Hθ−1

). Because θ is line-domestic, there exists a point x on Lθ which is collinear
to all points of L (and note that x obviously does not belong to Ω). But this point is also
collinear to all points of the (n− 2)-dimensional space H ∩Hθ. Since L and H ∩Hθ are
skew, they generate Ω′, and so x ∈ Ω′ \ Ω. Hence Lθ ⊆ Ω′ and so L intersects H in a
point of H ∩Hθ−1

, a contradiction.

Secondly, suppose Ω is (n − 1)-dimensional and fixed. If Ω is contained in a fixed n-
dimensional space, we are already done because of the first paragraph of this proof. So
we may assume that there does not exist any fixed n-dimensional space containing Ω.
Consider an n-dimensional space Σ containing Ω and take a point x in Ω \ Σ. The point
x is mapped to a point opposite x under θ. The (n− 1)-dimensional space Ω is contained
in x⊥ ∩ (xθ)⊥. Hence, by Lemma 5.2, Ω is fixed pointwise.

Now in general take an i-dimensional space Ω, with i < n − 1, which is fixed by θ.
Consider an (i + 2)-dimensional space through Ω. Take a line in this space skew to Ω to
have a line in ResΓ(Ω). This line is not opposite its image, hence the corresponding line
in ResΓ(Ω) cannot be mapped to an opposite line. Hence the collineation in the residue
of Ω which corresponds to θ is line-domestic. By Lemma 5.3 and the corresponding result
for generalized quadrangles (see [8]), it follows that there exists at least one (i + 1)-
dimensional space containing Ω which is fixed. We can go on like this until we obtain a
fixed (n − 1)-dimensional space Σ. By the foregoing paragraph, Σ, and hence also Ω, is
fixed pointwise.

This completes the proof of the lemma. !
Theorem 5.1 now follows from the last two lemmas; indeed, Lemma 5.4 says that the set
of fixed points is a geometric subspace while Lemma 5.3 implies that this subspace is a
geometric hyperplane.

Examples of line-domestic collineations can be constructed for embeddable polar spaces
by constructing collineations of the surrounding projective space stabilizing the polar
space and fixing a hyperplane (for instance, central collineations).

6 Collineations that are i-domestic and (i + 1)-dom-
estic

In general, it seems difficult to nail down the fixed point structure of an i-domestic
collineation of a polar space, with i ≥ 2 even. For example, we claim that every point-
domestic collineation is i-domestic for all even i. Indeed, if a space U of even positive
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dimension were mapped onto an opposite one, then the duality of U obtained by first
applying θ and then proj⊆U is point-domestic. Lemma 3.2 in [7] implies that this is a
symplectic polarity, contradicting the fact that the dimension of U is even. Hence, in this
case, in view of Theorem 4.2, there should not even be a fixed point! But if i is odd, and
θ is an i-domestic collineation, then it is automatically also (i + 1)-domestic. Indeed, this
follows similarly to the second paragraph of the proof of Theorem 3.2. Hence, in reality,
we classified in the previous section the collineations which are both line-domestic and
plane-domestic! In this section, we will generalize this to collineations which are both
i-domestic and (i + 1)-domestic, for i ≥ 2. It does not matter whether i is odd or even,
but we will assume that i is minimal with respect to the property of θ being both i- and
(i + 1)-domestic. Note that we also already treated this question for i = 0. Indeed, this
is Lemma 3.1.

We have the following theorem, which is somehow the counterpart of Theorem 4.3 in [7]
for polar spaces.

Theorem 6.1 Suppose that Γ is a polar space of rank n + 1 and suppose that θ is an
i-domestic and (i+1)-domestic collineation, with n > i ≥ 0, which is not (i−1)-domestic
if i > 0. Then θ fixes pointwise a geometric subspace of corank i. In particular, every
i-dimensional space contains at least one fixed point.

Proof We will prove this by induction on i. For i = 0, 1 we already proved this in
Lemma 3.1 and Theorem 5.1. Hence we may assume from now on that i > 1. In particular,
n + 1 > 3 and so Γ is an embeddable polar space (meaning, it arises from a form in a
vector space and so it can be viewed as a substructure of a projective space). Since by
assumption θ is not (i−1)-domestic, there exists a projective subspace X of type i−1 which
is opposite its image Xθ. Consider an i-dimensional space U through X and consider the
mapping ϕ which maps the i-dimensional space U to the unique i-dimensional space Uϕ

through X which is the projection proj⊇XU θ of U θ onto X. Because θ is i-domestic, it
follows that U and U θ are not opposite and one verifies easily that this implies that U
and Uϕ are not opposite in ResΓ(X). This means that the collineation—which we also
denote by ϕ—in the residue of X corresponding with ϕ is point-domestic. Similarly, ϕ is
also line-domestic. By induction, or just by Lemma 3.1, it follows that ϕ is the identity.
Hence, with U as above, we know that U and U θ meet in a point x.

We now claim that x is fixed under θ. Indeed, consider an (i+1)-dimensional subspace V
through U ; then V θ intersects V in a line L through x. Suppose, by way of contradiction,
that x is not fixed. Then xθ is contained in U θ \ U . It is easy to find an i-dimensional
subspace U ′ in V containing x but neither containing L nor xθ−1

. Then U ′ and its image
are clearly disjoint. Let y be the intersection of U ′ with Lθ−1

. Choose an (i−1)-dimensional
subspace Y in U ′ not through x and not through y. Then Y θ has no point in common
with L (and notice that this is also true for Y ). If some point z of Y θ were collinear to all
points of Y , then, since it is also collinear with all points of L it would be collinear with
all points of V . Since z /∈ L, this implies that all points of X are collinear to all points of
the plane spanned by L and z, and hence to at least one point of Xθ, contradicting the
fact that X and Xθ are opposite. This contradiction shows that Y and Y θ are opposite.
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Replacing X by Y in the first paragraph of this proof, we deduce that U ′ meets its image
in a point, a contradiction. This now proves our claim.

Hence we have shown that X⊥ ∩ (Xθ)⊥ is fixed pointwise.

Let M be any maximal subspace of Γ incident with X and consider an arbitrary (i− 1)-
space Z contained in M and not incident with any point of M θ. The foregoing shows
that M ∩M θ has dimension n − i in M . Hence Z is complementary in M with respect
to that intersection. It follows that no point of Zθ is collinear with every point of Z,
as otherwise that point would be collinear with all points of M , contradicting the fact
that it is not contained in M . So we have shown that Z is opposite its image Zθ. We
can now play the same game with Z and obtain that Z⊥ ∩ (Zθ)⊥ is fixed pointwise. We
claim that the set S := (X⊥ ∩ (Xθ)⊥) ∪ (Z⊥ ∩ (Zθ)⊥) is connected (meaning that, in the
incidence graph, one can walk from any vertex corresponding to a point of this set S to
any another such vertex only using subspaces all of whose points belong to S). Indeed,
both X⊥∩ (Xθ)⊥ and Z⊥∩ (Zθ)⊥ are connected, and their intersection contains M ∩M θ.
The claim follows. This implies the following. We know that the rank of Γ is at least 4,
so Γ is embeddable. Let Γ live in the projective space Σ (of possibly infinite dimension).
Then θ can be extended to Σ and the subspace of Σ spanned by S is pointwise fixed under
this extension of θ.

Let X be the set of al (i−1)-dimensional subspaces of Γ which can be obtained from X by
a finite number of steps, where in each step the next subspace is contained in a common
maximal subspace with the previous one, and is mapped onto an opposite subspace under
θ. It then follows from the previous paragraph that the projective subspace S of Σ
generated by X is pointwise fixed under θ. Hence the intersection G of S with Γ is a
geometric subspace. Since clearly X is disjoint from G, the corank of G is at most i.

Left to prove is the assertion that every i-space has at least one point in common with
G. Let W be any i-dimensional subspace of Γ. For every Z ∈ X, define kZ to be the
dimension of proj⊆W Z. Let k be the maximum of all kZ , with Z running through X. If
i− k = 0, the assertion is clear since, if Z ∈ X, and W and Z are contained in a common
subspace M , then M ∩M θ has codimension i − 1. Now suppose that i − k > 0 and let
Z ∈ X be such that kZ = k. Define Z = proj⊇ZW . Suppose that W does not meet

Z∗ := Z
⊥ ∩ (Z

θ
)⊥. Note that every (i− 1)-dimensional subspace of Z that does not meet

Z∗ belongs to X. Indeed, otherwise some point of Z
θ \ Z∗ would be collinear with all

points of Z, and so all points of Z would be collinear to at least one point of Zθ (using

the fact that Z∗ and Zθ are complementary subspaces of Z
θ
), contradicting the fact that

Z and Zθ are opposite. Now choose Z ′ ∈ X such that it is contained in Z, it contains
proj⊆W Z and it is disjoint from Z∗ (this is easy). Then Z ′ ∩ W is a k-space, and since
the dimension of Z ′ is smaller than the dimension of W , there are points in W outside Z ′

collinear to all points of Z ′. In other words, kZ′ > k. This contradicts the maximality of
k.

Hence W meets Z∗ in at least a point, and the assertion follows. !
This now has the following interesting corollaries.
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Corollary 6.2 Suppose that Γ is a polar space of rank n+1 with an underlying skewfield
which is not commutative. Then a collineation θ is i-domestic for some i, with 0 ≤ i < n,
if and only if θ pointwise fixes some geometric subspace of corank at most n− 1.

Proof Let θ be i-domestic, with i < n. If a k-subspace U , with k > i, is mapped onto
an opposite k-space, then the composition of the restriction to U of θ with the projection
(using the operator proj⊂U) onto U is an i-domestic duality of a k-dimensional projective
space, hence a symplectic polarity by Theorem 3.1 in [7], contradicting our assumption
on the underlying skew field. Hence θ is in particular (i+1)-domestic. The assertion now
follows from Theorem 6.1. !

Corollary 6.3 Suppose that Γ is a polar space of rank n + 1. Then a collineation θ is
i-domestic for some odd i, with 0 ≤ i < n, if and only if θ pointwise fixes some geometric
subspace of corank at most n− 1.

Proof The proof is totally analogous to the proof of Corollary 6.2, noting that no
projective space of even dimension i + 1 admits a symplectic polarity. !
Despite the fact that we are not able to handle the cases of i-domestic collineations for
even i > 0, we mention the following reduction, which is the analogue of Theorem 3.2.

Corollary 6.4 Let θ be an {i, i+1}-domestic collineation of a polar space Γ of rank n+1,
with 0 ≤ i < n, with i < n−1 if i is even. Then θ is either i-domestic or (i+1)-domestic.
In particular, if i is odd, then it is (i + 1)-domestic, and if i is even, then θ is either
i-domestic, or (i + 1)-domestic, but always (i + 2)-domestic.

Proof Suppose first that i is odd. Let U be a subspace of dimension i + 1 and assume
that U is mapped onto an opposite subspace. Then our assumption implies that the
composition of the restriction to U of θ with the projection (using proj⊇U) onto U is an
i-domestic duality, hence a symplectic polarity, contradicting i + 1 even. So θ is (i + 1)-
domestic.

Suppose now that i is even. Then i < n − 1 and so we can consider (i + 2)-dimensional
subspaces. If such a subspace U were mapped onto an opposite one, then, as in the
previous paragraph, we would have a symplectic polarity in U , contradicting i + 2 is
even. Now, if θ is not i-domestic, we can consider an i-space X mapped onto an opposite
one. Completely similar as in the proof of Theorem 6.1, one shows that every (i + 1)-
dimensional subspace contains a fixed point, hence cannot be mapped onto an opposite
one, and so θ is (i + 1)-domestic. !
We are still far from a complete understanding of all chamber-domestic collineations, but
the above is, in our opinion, a good start.

Examples of i-domestic collineations, which are also (i + 1)-domestic can be found in
embeddable polar spaces using collineations of the surrounding projective space stabilizing
the polar space and fixing a projective subspace of the appropriate dimension.
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7 Polar spaces of rank 3

In this section we classify all domestic collineations of polar spaces of rank 3. Before we
can state the main result, we introduce some additional notions.

Let Γ be a polar space of rank 3, all of whose planes are nondegenerate. If Γ is not thick,
then it arises from a 3-dimensional projective space PG(3, K), with K a not necessarily
commutative field, by taking as points the lines of PG(3, K), and collinearity corresponds
with intersecting lines. This projective space is called the thick frame of the polar space
Γ, see e.g. [5]. It is clear that every type-preserving collineation of PG(3, K) induces a
domestic collineation of Γ, since opposite planes of Γ have different type.

A Baer subplane of a projective plane P is a (non-degenerate) sub projective plane P′

with the property that every line of P is incident with at least one point of P′ and every
point of P is on some line of P′.

Let Γ′ be a rank 3 sub polar space of Γ with the following properties.

(Pr1) Every plane of Γ′ is a Baer subplane of some plane of Γ.

(Pr2) Every plane of Γ containing a line of Γ′ belongs to Γ′.

Then we call Γ′ an ideal Baer sub polar space of Γ. The adjective “ideal” refers to (Pr2);
the name “Baer” to (Pr1) of course. An involution that fixes an ideal Baer sub polar
space of Γ and nothing more is called an ideal Baer involution.

We will now show that, with the above notation, every plane of Γ meets Γ′ in at least one
point.

Lemma 7.1 If Γ′ is an ideal Baer sub polar space of Γ, then every plane of Γ has a point
in common with Γ′.

Proof Let π be an arbitrary plane of Γ, and let x be an arbitrary point of Γ′. We may
assume that x /∈ π. Consider a line L of Γ′ through x. Then α := proj⊇Lπ is a plane of
Γ through L. Since all planes through L belong to Γ′, we see that α belongs to Γ′, and it
meets π nontrivially (within Γ). Since the points of Γ′ in α form a Baer subplane, there
is a line M in α belonging to Γ′ and intersecting π (intersection point in Γ). Now, since
all planes through M belong to Γ′, there is at least one such plane meeting π in a line of
Γ. But since planes of Γ′ are Baer subplanes of planes of Γ, that line contains a point of
Γ′ and the proof is complete. !
We already defined a geometric hyperplane. Here, we will call a subspace a geometric
subhyperplane if it is a geometric hyperplane of a geometric hyperplane. It follows that
every plane of Γ meets a geometric subhyperplane in at least one point. Hence a geometric
subhyperplane is a particular example of a subspace of corank 2.

We will show the following theorem.
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Theorem 7.2 Let Γ be a polar space of rank 3 and let θ be a domestic collineation. Then
one of the following holds.

Case 1 Γ is not thick and then either θ is an arbitrary type-preserving collineation in the
thick frame PG(3, K) of Γ (with K a not necessarily commutative field), or θ induces
a symplectic polarity in PG(3, K) (and hence K is commutative);

Case 2 Γ is thick and θ is an ideal Baer involution;

Case 3 Γ is thick, at least one plane is fixed, and the fixed points that are incident with
pointwise fixed lines form a polar subspace which is either a geometric hyperplane,
or a geometric subhyperplane.

Case 4 Γ is thick, no plane is fixed, and the fixed points form a subspace of corank 1 or 2.

Examples for Case 1 are obvious. An example for Case 2 includes every thick non-
embeddable polar space where the involution is induced by a non-standard involution of
the octonion division ring. Finally, Cases 3 and 4 also arose in the previous sections.

For the rest of this section, we assume that Γ is a polar space of rank 3 and θ is a domestic
collineation of Γ. We start by noting that this is equivalent with requiring that θ is plane-
domestic. Indeed, plane-domesticity clearly implies chamber-domesticity. Conversely, if a
plane π were mapped onto an opposite plane πθ, then the duality of π that maps a point
x of π onto the line π∩ (xθ)⊥ must be domestic and hence would be a symplectic polarity,
using once again Lemma 3.2 of [7]. But there are no symplecic polarities in a plane, so
we conclude that θ is indeed plane-domestic.

Let us first settle the non-thick case. Let PG(3, K) be the thick frame of Γ. We have
to show that no duality of PG(3, K) gives rise to a domestic collineation θ of Γ, except
for a symplectic duality. Since θ is automatically plane-domestic, we see that each point
of PG(3, K) is mapped onto an incident plane. Hence, as a duality of PG(3, K), θ is
domestic, and hence is a symplectic polarity, by Lemma 3.2 of [7]. This gives us Case 1
of Theorem 7.2.

Hence from now on we may assume that Γ is thick. First we prove a lemma that basically
shows that every plane contains at least one fixed point (heading for geometric subhyper-
planes or ideal Baer subspaces, which both have the property that every plane contains
at least one point of that structure).

Lemma 7.3 If π is a plane of Γ not fixed under θ, then every point of π ∩ πθ is fixed.

Proof Assume that π is not fixed, and that some point x of π ∩ πθ is not fixed. Then
we can choose a line L in π through x such that Lθ is not incident with x. There is at
most one plane through L which meets Lθ (exactly one if π ∩ πθ is a point, none if it is a
line). By thickness, we can choose a plane α through L not meeting Lθ and distinct from
π. By domesticity, α and αθ share some point z which, by assumption, does not lie in

19



πθ. Then z is collinear with x and all points of Lθ, implying that it is collinear with all
points of πθ. This contradicts z /∈ πθ.

The lemma is proved. !
We can now deduce Case 4 of Theorem 7.2.

Proposition 7.4 If θ does not fix any plane, then the set of fixed points forms a subspace
of corank at most 2.

Proof If two collinear points x and y are fixed by θ, then an arbitrary plane π containing
x and y is mapped onto a different plane πθ intersecting π in the line xy. Lemma 7.3
implies that every point of xy is fixed. Hence the set of fixed points is a subspace. Since
every plane contains at least one fixed point, by our assumption of domesticity, by our
assumption that no plane is fixed, and by Lemma 7.3, we see that the subspace of fixed
points has corank at most 2. !
We now look at planes that are fixed under θ.

Lemma 7.5 Let π be a plane of Γ with πθ = π. Then the fixed point structure of θ in π
is one of the following.

(i) Every point of π.

(ii) A Baer subplane of π.

(iii) All points of a certain line of π.

(iv) All points of a certain line of π, and one additional point.

Proof First we remark that the set of fixed elements in π is a closed configuration C
in π. If a line L of π is not fixed by θ, then, by considering a plane α through L, with
α #= π, we see that L∩Lθ is fixed. Hence, if C is a thick subplane, then it must be either
the whole plane, or a Baer subplane. Now assume C is not thick. Then an easy exercise
shows that either (iii) or (iv) occurs. !
We now consider each possibility in turn. We start with the case of a Baer subplane.

Proposition 7.6 If θ fixes some plane in which the fixed point structure is a Baer sub-
plane, then θ is an ideal Baer involution.

Proof Let π be a fixed plane and assume that the set of fixed points in π forms a Baer
subplane of π. Let x be any fixed point, not contained in π. Then the projection of x onto
π is a line L, which must be fixed, and hence the plane π′ containing x and L is fixed, and
since the fixed points on L form a Baer subline, the set of fixed points in π′ forms a Baer
subplane. Now every plane through every fixed line in π and in π′ is fixed and the fixed
points form a Baer subplane. It is now easy to see that, continuing with another line in
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π′, considering a plane through it, and doing this one more time, we obtain a fixed plane
opposite π. It now follows that the set of fixed points forms a Baer sub polar space.

Left to prove is that θ2 is the identity. Let z be any point of Γ not fixed under θ. If z lies
in π, then it is fixed under θ2, as θ induces a Baer involution in each fixed plane. If z is not
in π, then it is collinear to some fixed point x of π. The fixed lines and planes through x
form an ideal subquadrangle of the residue of x. But it is also clear that the fixed element
quadrangle of θ2 of the residue at x is a full and ideal subquadrangle, and hence coincides
with the residue itself. So the line xz is fixed under θ2. Considering another fixed point
x′ with which z is collinear (obtained by looking at a fixed plane disjoint from π), we see
that z must be fixed under θ2 (whether or not x and x′ are collinear). !
We now treat the case where in some fixed plane a line is fixed pointwise, and an additional
point is fixed. Hence, θ induces a non-trivial homology in such a plane.

Proposition 7.7 If θ induces a non-trivial homology in some fixed plane, then the set of
fixed points that are incident with a pointwise fixed line forms a generalized quadrangle in
the perp of some (other) fixed point x in such a way that every line through x contains a
unique point of that quadrangle.

Proof Suppose some plane π is fixed under θ such that the fixed points in π form a
line L plus an additional point x. Note that this automatically implies that each plane
has order > 2. Lemma 7.3 implies that all planes through x intersecting L are fixed. Let
α be such a plane. Then α contains two fixed points x and y, with y on L, such that the
line xy contains no further fixed points. Hence, in view of Lemma 7.5, there is a line M
in α fixed pointwise, and either x ∈ M or y ∈ M . If x ∈ M , then, on the one hand we
have that θ does not induce the identity in ResΓ(x) since the lines in α through x and
distinct from M and from xy are not fixed, but on the other hand, since ResΓ(x) is a thick
generalized quadrangle, and θ fixes all lines intersecting a given line in ResΓ(x), plus an
additional point, Theorem 4.4.2(v) of [11] implies that θ induces the identity in ResΓ(x).
This contradiction shows that M contains y. But then θ fixes all lines though x in α and
is the identity in ResΓ(x) after all.

Hence the situation is that all lines through x are fixed, but none is fixed pointwise. Each
line through x contains exactly two fixed points. Let F be the set of fixed points collinear
with x, but x not included. Then each point of F is contained in a pointwise fixed line.
Also, F is a geometric hyperplane of x⊥, which is a geometric hyperpane of Γ. Hence, if
there are no further fixed points in Γ besides x and those in F, then we are in Case 3 of
Theorem 7.2.

Suppose now that there is a fixed point y not in x⊥. Then x⊥ ∩ y⊥ is fixed pointwise.
Hence x⊥ ∩ y⊥ = F. If y were contained in a pointwise fixed line of the polar space, then
for every point u /∈ x⊥ on that line, we would have u⊥∩x⊥ = F, a contradiction. Hence no
fixed point outside F is contained in a pointwise fixed line and the proposition is proved.

!
So we again obtain Case 3 of Theorem 7.2.
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Proposition 7.8 If θ induces an elation in some fixed plane, then the set of fixed points is
contained in the perp of some point x, for every fixed point y the line xy is fixed pointwise,
and the pointwise fixed lines form an ovoid in ResΓ(x).

Proof Suppose θ fixes the plane π and induces an elation in π with center x and
axis L. Then all planes through x not containing L, but meeting π in a line, are fixed
by Lemma 7.3. Since every such plane contains a fixed line with only one fixed point
(namely, x), we deduce from Lemma 7.5 that θ induces an elation with center x in every
such plane. Hence θ fixes all lines through x which are contained in a plane meeting π in
a line distinct from L. It easily follows that θ fixes ResΓ(x) pointwise, and that in every
plane through x, an elation with center x is induced by θ. Since every elation has an
axis, the proposition follows, if we just show that there are no further fixed points, i.e., no
point opposite x is fixed. But if some point y opposite x were fixed, then x⊥ ∩ y⊥ would
be fixed, and this contradicts the fact that not all lines through x are fixed pointwise. !
So from now one we may assume that every fixed plane is fixed pointwise, and that there
is at least one such plane.

Let π be a pointwise fixed plane. Let α be an arbitrary plane disjoint from π. Then
α ∩ αθ is fixed pointwise, and hence we have a fixed point x not in π. The unique plane
πx through x meeting π in a line, say L, is fixed pointwise. If all fixed points are collinear
with all points of L, then all planes through L must be fixed (indeed, for each plane
through L, we can find a plane β meeting it in exactly one point not on L, and then this
point must be fixed as it is the only point of β collinear with all points of L and hence
coincide with the fixed point β ∩ βθ). Hence we obtain the geometric hyperplane L⊥ in
the geometric hyperplane z⊥, with z ∈ L arbitrary.

Now suppose that some fixed point y is not collinear to all points of L. Then y is collinear
with a unique point z of L. Suppose first that all fixed points are collinear with z. Then
the set of fixed lines and planes through z forms a full subquadrangle in ResΓ(z) which
is also a geometric hyperplane of ResΓ(z). It follows easily that the fixed points form a
geometric hyperplane of z⊥.

Finally, suppose that not all fixed points are collinear with z. Then we find an apartment
all of whose planes are fixed pointwise, and so the fixed point structure is a non-degenerate
full polar subspace Γ′ of rank 3. Noting that it follows from Proposition 5.9.6 of [11] that
the thick non-embeddable polar spaces do not admit full polar subspaces of rank 3, we
may assume that Γ is embeddable. It now follows easily that Γ′ is obtained from either a
hyperplane section, or a section of a subspace of codimension 2 of the ambient projective
space. In the second case, considering a hyperplane containing that codimension 2 space,
we again obtain Case 3 of Theorem 7.2.

Now Theorem 7.2 is completely proved.
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