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Abstract

A combinatorial characterization of the Veronese variety of all quadrics in
PG(n, q) by means of its intersection properties with respect to subspaces is
obtained. The result relies on a similar combinatorial result on the Veronesean
of all conics in the plane PG(2, q) by Ferri [2], Hirschfeld and Thas [4], and
Thas and Van Maldeghem [7], and a structural characterization of the quadric
Veronesean by Thas and Van Maldeghem [6].

1 Introduction

An important branch in combinatorics is the characterization of algebraically defined
objects in a combinatorial way. In several situations, it might occur that one has
information about the intersection numbers with subspaces of a certain point set K,
but no structural information. In such cases, characterization results classifying the
possible structures having these properties can be very useful. In this paper, we
characterize the finite Veronese variety by means of such intersection properties. For
the smallest Veronesean, the conic, this was already done (in the odd case) by Segre,
in his celebrated characterization of conics (“every set of q + 1 points in PG(2, q), q
odd, no three of which are collinear, is a conic”) [5]. This was in fact the starting
point of this kind of results. For the Veronese surface of all conics in PG(2, q), it was
already done Ferri [2], Hirschfeld and Thas [4], and Thas and Van Maldeghem [7].

Definition The Veronese variety V2n

n of all quadrics of PG(n, q), n ≥ 1 is the variety

V2n

n = {p(x2
0, x

2
1, · · · , x2

n, x0x1, x0x2, · · · , xn−1xn)|(x0, · · · , xn) is a point of PG(n, q)}

of PG(n(n+3)
2

, q); this variety has dimension n and order 2n. The natural number n is
called the index of V2n

n .
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For the basic properties of Veroneseans we refer to [4]. Here we only mention the
following, stating that one can also consider the Veronesean from a matrix point of
view.

Theorem 1.1 The quadric Veronesean V2n

n of PG(n, q) consists of all points p(y0,0, · · · , yn−1,n)
of PG(N, q) for which rank [yij] = 1.

In [6] the following characterization of the finite quadric Veroneseans V2n

n was proved.

Theorem 1.2 Let F be a set of qn+1−1
q−1

n-dimensional spaces in PG(n(n+3)
2

, q), n ≥ 2,
with the following properties:

(VS1) Each two elements of F intersect in a point.

(VS2) Each three elements of F are skew.

(VS3) The elements of F span PG(n(n+3)
2

, q).

(VS4) Any proper subspace of PG(n(n+3)
2

, q) that is spanned by a collection of elements

of F is a subspace of dimension i(2n−i+3)
2

− 1 for some i ∈ {0, . . . , n}.

(VS5) If q is even, at least one space spanned by two elements of F contains more than
two elements.

Then either F is the set of tangent spaces of a quadric Veronesean V2n

n or q is even,
there are two members Ω1,Ω2 ∈ F such that the 2n-dimensional space 〈Ω1, Ω2〉 only
contains 2 elements of F and there is a unique subspace Ω of dimension n such that
Ω ∪ F is the set of tangent subspaces together with the nucleus subspace of a quadric
Veronesean V2n

n . In particular, if n = 2, then the statement holds under the weaker
hypothesis of F satisfying (VS1), (VS2), (VS3) and (VS5).

For n = 1 and q even every dual oval satisfies (VS1)− (VS5). For n = 2 one
can classify all examples that do not satisfy (VS5) by a result of [1], and the only
possibilities are q = 2 and q = 4. This classification remains open for n ≥ 3, although
an infinite class of examples is known for q = 2, see [6].

In particular for n = 2, this result generalizes Theorem 25.2.14 of [4] to q even, and
allows to generalize Theorem 25.3.14 of [4] to q even, and so we obtain

Theorem 1.3 If K is a set of k points of PG(5, q), q 6= 2, 4, which satisfies the
following conditions

(i) |Π4 ∩K| = 1, q + 1, 2q + 1 for every hyperplane Π4 of PG(5, q) and there exists
a hyperplane Π4 for which |Π4 ∩ K| = 2q + 1.

(ii) Any plane of PG(5, q) with four points in K has at least q + 1 points in K.
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Then K is the point set of a Veronesean V4
2 .

A theorem by Zanella [8] gives an upper bound for the intersection of k-dimensional
subspaces with the quadric Veronese variety, so for the intersections Πk ∩ Vn.

Theorem 1.4 Consider the Veronesean surface defined by the mapping

ζ : PG(n, q)→ PG(
n(n+ 3)

2
, q),

(x0, x1, · · · , xn)→ (x2
0, x

2
1, · · · , xn−1xn).

If k, a are natural numbers such that k+ 1 ≤ (a+3)(a+2)
2

, then the intersections Πk ∩Vn

contain at most
qa+1 − 1

q − 1
+ qk− (a+2)(a+1)

2

points.

Applying this for small dimensions yields the upper bounds q + 1, q + 2, 2q + 1 and
q2 + q + 1 for k = 2, k = 3, k = 4 and k = 5 respectively.

A result of the second and third author [7] of this paper characterizes Veronese varieties
in terms of ovals.

Theorem 1.5 Let X be a set of points in Π := PG(M, q), M > 2, spanning Π, and
let P be a collection of planes such that for any π ∈ P, the intersection X ∩ π is an
oval in π. For π ∈ P and x ∈ X ∩ π, we denote by Tx(π) the tangent line to X ∩ π at
x in π. We assume the following three properties.

(i) Any two points x, y ∈ X lie in a unique member of P which we denote by [x, y].

(ii) If π1, π2 ∈ P and π1 ∩ π2 is non-empty then π1 ∩ π2 ⊂ X.

(iii) If x ∈ X and π ∈ P with x /∈ π, then each of the lines Tx([x, y]), y ∈ X ∩ π, is
contained in a plane of Π, denoted by T (x, π).

Then there exists a natural number n ≥ 2 (called the index of X), a projective space

Π′ := PG(n(n+3)
2

, q) containing Π, a subspace R of Π′ skew to Π, and a quadric
Veronesean Vn of index n in Π′, with R ∩ Vn = ∅, such that X is the (bijective)
projection of Vn from R onto Π. The subspace R can be empty, in which case X is
projectively equivalent to Vn.

To conclude this introduction, we define k-arcs in PG(3, q).

Definition A k-arc of PG(3, q), k ≥ 4 is a set of k points, no 4 of which are coplanar.

If q ≥ 5, by Theorem 21.2.4 and Theorem 21.3.8 of [3] we know that k ≤ q + 1.
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2 First characterization

We want to use the following set of conditions to characterize the quadric Veronesean.
Consider a set K of qn+1−1

q−1
points spanning PG(n(n+3)

2
, q), with n ≥ 2, such that

(P) If a plane intersects K in more than three points then it contains exactly q + 1
points of K. Furthermore, any two points p1, p2 of K are contained in a plane
containing q + 1 points of K.

(S) If a 3-space Π3 intersects K in more than 4 points then there are four points of K
contained in a plane of Π3. In particular, by (i), this implies that if |Π3∩K| > 4,
then |Π3 ∩ K| ≥ q + 1.

(V) If a 5-space Π5 intersects K in more than 2q + 2 points then it intersects K in
exactly q2 + q + 1 points.

Remark. Planes intersecting K in q+1 points and 5-spaces intersecting K in q2+q+1
points will be called big planes and big 5-spaces respectively. Assume q ≥ 5 in the
following.

We will prove the following main theorem.

Theorem 2.1 If q ≥ 5, then the set K is the point set of the Veronese variety of all
quadrics of PG(n, q).

Remark.

A counterexample for q = 2 to the previous theorem is given by destructing a Veronese
variety by removing one point of it and replacing it by a point in projective space which
corresponds with a matrix of maximal rank, see Theorem 1.1.

A counterexample for q = 3, n = 2 is given by the point set formed by the points of an
elliptic quadric E lying in a space Π3 and 3 points on a line l which does not intersect
Π3.

First of all we have to prove that these conditions are well-chosen, meaning the object
we want to characterize satisfies them.

Theorem 2.2 The Conditions (P), (S) and (V) above hold for the Veronesean V2n

n .

Proof For Condition (P), we cannot use Lemma 25.3.1 of [4] directly, since we don’t
know a priori that every plane is contained in a 5-space intersecting K in a V4

2 but a
slight adaptation of the argument works. Suppose that the plane π contains at least
four distinct points q1, q2, q3, q4 of V2n

n . By Corollary 1 of Theorem 25.1.9 of [4], the
points qi, qj, with i 6= j, are contained in a unique conic of V2n

n . Let C ′, in the plane
π′, be the conic defined by q1 and q2, and, let C ′′, in the plane π′′, be the conic defined
by q2 and q3. Suppose that C ′ 6= C ′′. By Theorem 1.4 the conic planes π′ and π′′

generate a 4-space Π4 such that |Π4 ∩ K| ≤ 2q + 1. But besides the 2q + 1 points in
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C ′ ∪ C ′′, the point q4 would also be contained in this 4-space, a contradiction. Hence
|Π ∩K| ≥ q + 1 and by Theorem 1.4, |Π ∩K| = q + 1. Conditions (S) and (V) can be
proved using a coordinatization and checking the different possibilities for the position
of the inverse images of the points in PG(n, q). �

We prove some upper bounds for the number of points ofK contained in low-dimensional
spaces.

Lemma 2.3 If n > 2, every 4-space contains at most 2q + 2 points of K.

Proof Let Π be a 4-space. By Condition (V), it follows directly that |Π∩K| ≤ q2+q+1
and clearly |Π ∩ K| = q2 + q + 1 also yields a contradiction.

Suppose that 2q + 2 < |Π ∩ K| < q2 + q + 1. Again by Condition (V), every 5-space
through Π contains exactly q2 + q+ 1 points. The number of 5-spaces through a fixed

4-space in PG(n(n+3)
2

, q) is equal to q
n(n+3)

2 −4−1
q−1

. Hence, we get at least

q
n(n+3)

2
−4 − 1

q − 1
+ 2q + 2 >

qn+1 − 1

q − 1

points in |K|, a contradiction since n > 2. �

Lemma 2.4 Any line l meets K in at most 2 points. Hence, a plane π with |π∩K| =
q + 1 intersects K in an oval.

Proof First suppose that |l ∩ K| = 3. If n > 2, then consider 3 planes π1, π2, π3

through l containing more than 3 points of K and hence by Condition (P) q+ 1 points
of K. Then dim〈π1, π2, π3〉 ≤ 4. For q > 5, this yields a contradiction by Lemma 2.3.
If q = 5, then consider a 3-space Π3 through l containing at least 9 points of K inside
a big 5-space Π5. But then considering all 4-spaces through Π3 inside Π5, by Lemma
2.3, we get at most 6 · 3 + 9 = 27 points in Π5 ∩ K, a contradiction.

If n = 2 then we get the following equation for the number α of planes through l which
contain exactly q + 1 points of K:

α(q − 2) + 3 = q2 + q + 1.

This yields a contradiction if q ≥ 5. Next, suppose that |l∩K| = x, with 3 < x < q+1.
Consider all planes through l. Then clearly, we get too many points for our set K, a
contradiction. Finally, if |l ∩ K| = q + 1, we also get a contradiction as planes can
contain at most q + 1 points of K. �

The previous lemma allows us for n = 2 to prove the same upper bound as in Lemma
2.3.

Lemma 2.5 Every 4-space intersects K in at most 2q+2 points. Hence, every 3-space
contained in a big 5-space intersects K in at most q + 3 points.
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Proof For n > 2 this is Lemma 2.3. Next let n = 2.

Suppose there exists a 3-space Π3 which contains two planes π1 and π2 which intersect
K in ovals O1 and O2 respectively which have two points p1, p2 of K in common.
Consider two points r1 and r2, different from p1 and p2, which lie on O1 and O2

respectively. Then there are most 4 planes through the line 〈r1, r2〉 which are not
(q + 1)-planes, namely the planes containing either the point p1 or p2 or those which
intersect πi in a tangent line to Oi at ri for i = 1 or i = 2.

Hence, we get at least

2 + (q − 3)(q − 1) + 4 = q2 − 4q + 9

points in Π3 ∩ K.

The bound above is already sufficient for the rest of the proof if q > 5. But since we
now know there is a point in Π3 ∩ K not contained in O1 ∪ O2 we can consider all
planes through the line 〈p, p1〉 inside Π3. In this case we only get three exceptions
hence we get at least

2 + 3 + (q − 2)(q − 1) = q2 − 3q + 7

points in Π3 ∩ K.

If one would carry out this argument a bit more carefully one can get up to q2 + 1
points in Π3∩K, and hence this intersection is an ovoid. However this thus not shorten
the reasonings made in the rest of this proof.

Hence if there are three such 3-spaces we distinguish the following cases.

Case (i): Any two of them only intersect in a line. Then the union of the 3-spaces
contains at least 3(q2 − 3q + 7)− 3 · 2 points of K, a contradiction since q ≥ 5.

Case (ii): There are two of them which intersect in a plane. Then we get a 4-space Π4

containing at least 2(q2 − 3q + 7) − (q + 1) = 2q2 − 7q + 13 points of K. Consider a
point p in K not contained in Π4. Through p and any point r in Π4 ∩ K there passes
an oval of K by Condition (P). If none of these ovals have two points of K in common,
we get too many points, a contradiction. If two of these ovals have two points of K
in common then the 3-space spanned by these two ovals contains at least q2 − 3q + 7
points of K. Hence, we get at least

2q2 − 7q + 13 + q2 − 3q + 7− (q + 1)

points in K, a contradiction since q ≥ 5.

If there are exactly one or two such 3-spaces we consider a 4-space Π4 containing such
a 3-space and a point p in K not contained in Π4. Through p and each point r in
Π4∩K there passes an oval by Condition (P). For each such point r we choose exactly
one such oval. It can occur at most q + 1 times that these ovals have two points of K
in common. Hence, we clearly get too many points in K, a contradiction.

Now consider a 4-space Π4 which intersects K in x points. Consider a point p of K
not in Π4. By Condition (P) through every 2 points there passes an oval. Consider
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all ovals through p and a point r of Π4 ∩K. Any two of these ovals can intersect in at
most one point, hence we get the following equation,

x

2
(q − 2) + x+ 1 ≤ q2 + q + 1.

This yields x ≤ 2q + 2.

Consider a 3-space Π3 in a big 5-space Π5 which intersects K in q + 3 + y points.
Since all 4-spaces through Π3 inside Π5 intersect K in at most 2q+ 2 points we get the
following inequality

(q + 1)(q − 1− y) + q + 3 + y ≥ q2 + q + 1.

This implies y ≤ 0. �

Now we are able to lower the bound of Lemma 2.5.

Lemma 2.6 (i) Every 4-space Π4 intersecting K in more than q+1 points contains
a plane which intersects K in an oval.

(ii) Every 4-space Π contains at most 2q + 1 points of K.

Proof (i) Suppose that |Π4 ∩ K| > q + 1. Since q ≥ 5, by a result on arcs, namely
Theorem 27.6.3 of [4], there are 5 points which are contained in a 3-space. By Condition
(S), it follows that there are 4 of them which are contained in a plane π. Hence, by
Lemma 2.4, π intersects K in an oval.

(ii) Suppose that |Π4 ∩ K| = 2q + 2. Consider a plane π in Π4 intersecting K in an
oval O. Such a plane always exists by (i).

Consider 2 points a and b in Π4 ∩ K but not in π such that 〈a, b〉 ∩ π = ∅. Note that
this is always possible, otherwise all 2q + 2 points of K are contained in a 3-space, a
contradiction by Lemma 2.5. In fact, since Π4 is contained in a big 5-space Π5 at most
q + 3 points of K ∩ Π4 can be contained in a 3-space by Lemma 2.5.

Consider a third point c in Π4 ∩ K, and let p be the intersection point of π and
π′ = 〈a, b, c〉.
We distinguish the following cases.

Case (i): p ∈ O.

Since π′ contains at least 4 points of K it contains at least q + 1 points of K by
Condition (P). The planes π and π′ both intersect K in an oval, O and O′. Denote the
remaining point in Π4 ∩K by p′. Consider a plane π′′ spanned by p′ and two points a′

and b′ belonging to O\{p}. The planes π′ and π′′ intersect in a point r. If r belongs
to K then π′′ contains at least 4 and hence by Condition (P) q + 1 points of K. If
r does not belong to K we may assume it is not the nucleus of O′, otherwise we can
restart the reasoning with two other points of O. Then the 3-space spanned by π′′

and a bisecant to O′ through r, but not through p, contains at least 5 and hence by

7



Condition (S) at least q+ 1 points. Since q ≥ 5, in both cases we get more than 2q+ 2
points in Π4 ∩ K, a contradiction by Lemma 2.5.

Case (ii): p /∈ O.

First of all, we assume that not all points in Π4 ∩K are contained in π ∪ π′. Since not
all points in Π4∩K are contained in π∪π′, we may assume that p is not the nucleus of
O. Indeed, if p would be the nucleus we consider a point c′ of Π4∩K not in π′∪π and
the plane π′′ = 〈a, b, c′〉 which then intersects π in a point p′, with p′ not the nucleus
of O. So in that case we continue the reasonings with π′′ instead of π′. Consider two
secants of O through p, say l and l′. The 3-spaces 〈π′, l〉 and 〈π′, l′〉 both contain at
least 5 points of K, hence they both contain a plane intersecting K in an oval. These
planes have to coincide, otherwise we get too many points in Π4∩K. Hence, the plane
π′ intersects K in an oval O′. This yields a contradiction with the assumption at the
beginning of this paragraph. Note that as a byproduct we proved that if a 4-space
contains at least q+ 5 points of K, it contains two planes which intersect K in an oval,
hence |Π4 ∩ K| ≥ 2q + 1. Indeed we only used 4 points a, b, c and c′ in K but not in
π to find the second oval O′. Furthermore, these ovals can have at most one point in
common, otherwise they only span a 3-space, but a 3-space inside Π5 intersects K in
at most q + 3 points by Lemma 2.5.

Next, we may suppose that Π4 ∩ K is a union of two ovals O and O′ contained in
planes π and π′ which intersect in a point p.

If p is the nucleus of neither O or O′, then consider a secant t of O and a secant t′ of
O′ through p. The plane spanned by t and t′ contains 4 and hence q + 1 points of K,
and so |Π4 ∩ K| > 2q + 2, a contradiction.

If p is the nucleus ofO, but not the nucleus ofO′, then consider a 5-space Π5 containing
Π4 which intersects K in q2 + q+ 1 elements. Since p is not the nucleus of O′, there is
a secant l′ of O′ through p. The 3-space Π3 spanned by O and l′ contains exactly q+3
elements of K since all 4-spaces through Π3 inside Π5 contain at most 2q+ 2 elements
of K. It follows that exactly one of the 4-spaces containing Π3 in Π5 intersects K in
2q + 1 points, while all the other 4-spaces through Π3 in Π5 contain 2q + 2 points of
K.

By the foregoing there is a 4-space Π′4 6= Π4 containing Π3 inside Π5 which intersects
K in 2q+ 2 elements on two ovals O and O′′, where the planes of O′ and O′′ intersect
in l′. Hence the 3-space Π′3 spanned by O and O′′ contains at least 2q elements
of K. Consider all 4-spaces through Π′3 inside Π5. By Lemma 2.5 we get at most
2q + 2(q + 1) = 4q + 2 points in Π5 ∩ K, a contradiction since q ≥ 5.

Finally, if p is the nucleus of both O and O′, then consider a 3-space Π3 spanned by O
and a tangent l to O′ through p. Consider a big 5-space Π5 through Π4. Consider all
4-spaces through Π3 inside Π5. No 4-space through Π3 inside Π5 different from Π4 can
intersect K in 2q + 2 points as well. Indeed, by Case (i) and the previous subcases of
Case (ii) such a 4-space Π′4 again has to intersect K in two ovals O and O′′, contained
in planes π and π′′ respectively. The planes π′ and π′′ have to intersect in the tangent
line l, and p again has to be the nucleus of both the ovals O and O′′.
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But then the 3-space Π′′3 spanned by O′ and O′′ contains at least 2q + 1 points of
K. Consider all 4-spaces through Π′′3 inside Π5. Then by Lemma 2.5 |Π ∩ K| ≤
2q + 1 + q + 1 = 3q + 2, a contradiction since q ≥ 5.

Consider now all 4-spaces through Π3 inside Π5. Exactly one of them intersects K in
2q + 2 points by the previous and all the others intersect K in at most 2q + 1 points.
Hence, by an easy inspection, there has to be a 4-space through Π3 in Π5 containing
exactly 2q points of K, but this yields a contradiction by the remark made at the end
of the first paragraph of Case (ii). �

Remark. A 4-space intersecting K in 2q + 1 points will be called a big 4-space.

Lemma 2.7 (i) Inside a big 5-space Π5 all 3-spaces contain at most q + 2 points.
Furthermore, all 4-spaces inside Π5 through a 3-space intersecting K in q + 2
points are big ones.

(ii) A big 4-space Π4 contained in a big 5-space Π5 intersects K in two ovals O1,O2

with O1 ∩ O2 = {P}, P ∈ K.

Proof (i) Suppose a 3-space Π3 of the big 5-space Π5 intersects K in q + 2 + x
points, with x ≥ 0. Then considering all 4-spaces in Π5 through Π3, we get at most
(2q+ 1− (q+ 2 + x))(q+ 1) + q+ 2 + x = q2 + q+ 1− xq points in Π5 ∩K by Lemma
2.6, a contradiction if x > 0. The second part follows directly if x = 0.

(ii) By (i) there is a plane π in Π4 which intersects K in an oval. We claim we can
find a second plane in Π4 which intersects K in an oval. Take 3 points contained in
Π4 ∩K not lying in π. These points span a plane π′. The space < π, π′ > is a 4-space,
otherwise we get a 3-space intersecting K in more than q+ 2 points, contradicting (ii).

If π′ contains exactly 3 points then consider all 3-spaces through π′ in Π4. If none of
them contains at least 5 points we get at most q+1+3 = q+4 points, a contradiction.
So there is a 3-space Π3 through π′ in Π4 containing more than 4 points, hence by
Conditions (P) and (S) we find a plane π′′ containing q + 1 points of K inside Π3.
Clearly π and π′′ are different since π and π′ span a 4-space.

If the two different planes π and π′′ which intersect K in an oval intersect in a point,
then we are done by Lemma 2.6. Suppose that π and π′′ intersect in a line. Then the
3-space Π′3 = 〈π, π′′〉 intersects K in more than q + 2 points, contradicting (ii). �

Lemma 2.8 Every 4-space contained in a big 5-space Π5 intersects K in 1, q + 1 or
2q + 1 points and each such 5-space contains at least one 4-space intersecting K in
exactly 2q + 1 points. Hence, each big 5-space intersects K in a V4

2 .

Proof Denote the number of points belonging to K contained in a 4-space Πi ⊂ Π5

by xi; here Π5 is a big 5-space. In the following sum and all the others below, i runs
over all 4-spaces Πi contained in Π5. We have∑

i

(xi − 1)(xi − (q + 1))(xi − (2q + 1)) = 0 (1)
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Indeed, by a standard counting technique counting in two different ways respectively
the number of pairs (p,Π) in Π5, where p ∈ K and Π is a 4-space in Π5, the number
of triples (p1, p2,Π), p1 6= p2 ∈ Π ∩ K and Π a 4-space in Π5, and the quadruples
(p1, p2, p3,Π), pi ∈ Π ∩K, where the points pi are all distinct and Π is a 4-space in Π5

yields ∑
i

xi =
(q2 + q + 1) (q5 − 1)

q − 1
,

∑
i

xi(xi − 1) =
(q2 + q + 1) (q2 + q) (q4 − 1)

q − 1

, ∑
i

xi(xi − 1)(xi − 2) =
(q2 + q + 1) (q2 + q) (q2 + q − 1) (q3 − 1)

q − 1
.

If a 4-space Π4 inside a big 5-space contains more than q + 1 points of K, then it is a
big one. Indeed, by Lemma 2.6 there is a plane in Π4 intersecting K in an oval. Hence
we can find a 3-space in Π4 which intersects K in q + 2 points. The claim now follows
from (i) of Lemma 2.7.

Suppose |Π4 ∩ K| = x, Π4 ⊂ Π5, with 4 ≤ x < q + 1. Let Π3 be a 3-space containing
4 points p1, p2, p3, p4 in Π4 ∩K. Hence, by Condition (S), |Π3 ∩K| = 4. Consider all
4-spaces through Π3 inside Π5. If there are less than 4 big ones among them, we get
less than

3(2q − 3) + (q − 2)(q − 3) + 4 = q2 + q + 1

points in Π5 ∩ K, a contradiction.

By Part (ii) of Lemma 2.7, in each of the at least 4 big 4-spaces inside Π5 containing
Π3 the points p1, p2, p3, p4 are contained in 2 ovals. Hence either there is an oval
containing 3 of them, which yields a contradiction, or there is a pair pi, pj contained
in two different ovals. But the latter yields a contradiction by Part (i) of Lemma 2.7.

Suppose now that |Π4 ∩ K| = 3. Consider a 3-space Π3 in Π4 containing the 3 points
p1, p2, p3 of Π4 ∩ K and all 4-spaces inside Π5 containing Π3. By the previous these
intersect K in 3, q + 1 or 2q + 1 points. Denote the number of them intersecting K in
q + 1 and 2q + 1 points by α and β respectively. This yields the following equation,

α(q − 2) + β(2q − 2) + 3 = q2 + q + 1.

We deduce that α is a multiple of q− 1. If α = q− 1, then we get at most (q− 1)(q−
2) + 2q + 1 points in Π5 ∩ K, a contradiction.

Hence, we find that α = 0 and β = q+2
2

. This already yields a contradiction if q is odd.
As q > 2, the points p1, p2, p3 are contained in 2 ovals in each of the at least 3 different
big 4-spaces of Π5 containing Π3 by (ii) of Lemma 2.7. This yields a contradiction.

Finally, suppose that |Π4 ∩ K| = 2. Consider a 3-space Π3 in Π4 containing the 2
points p1, p2 of Π4∩K and all 4-spaces inside Π5 containing Π3. By the previous these
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all intersect K in 2, q+ 1 or 2q+ 1 points. Denote the number of them intersecting K
in q+ 1 and 2q+ 1 points by α and β respectively. This yields the following equation,

α(q − 1) + β(2q − 1) + 2 = q2 + q + 1.

This yields that β − 1 is a multiple of q− 1. If β = 1, we get at most (q− 1)(q− 1) +
2q+ 1 = q2 + 2 points of K in Π5, a contradiction. If β = q, we get exactly 2q2− q+ 2
points, also a contradiction.

In the previous paragraphs we proved that if a 4-space contains at least 2 points of K,
then it contains at least q+ 1 points of K. By (i) of Lemma 2.7 and (ii) of Lemma 2.6
the only possibilities in this case are q + 1 and 2q + 1. By Equation (1), this implies
that there are no 4-spaces which have an empty intersection with K.

Hence, every 4-space contained in Π5 intersects K in 1, q + 1 or 2q + 1 points.

We prove there is a 4-space contained in Π5 which intersects K in 2q + 1 points. If
this is not the case, then consider a 3-space in Π5 containing x > 1 points of K. We
get the following equality:

(q + 1)(q + 1− x) + x = q2 + q + 1,

hence x = 1, a contradiction.

Hence by Theorem 1.3, Π5 intersects K in a Veronese variety V4
2 . �

Theorem 2.9 The set K is a Veronese variety V2n

n .

Proof We check the conditions of Theorem 1.5. The set P consists of all planes
intersecting K in an oval.

Any two points of K are contained in at least one oval of K by Condition (P) and
Lemma 2.4. If two points p1, p2 are contained in two ovals, namely O1 in the plane π1

and O2 in the plane π2, then these ovals span a 3-space Π3 containing too much points
of K, a contradiction. Indeed, consider a point r on the intersection line l of π1 and
π2 which is not the nucleus of O1 neither of O2 and two bisecants l1 and l2 through
r to O1 and O2 respectively. Then the plane spanned by l1 and l2 contains at least 4
points of K and hence by Condition (P) q+ 1 points of K. In this way we get at least
2q+ q− 3 = 3q− 3 ≥ 2q+ 2 (since q ≥ 5) points in Π3∩K, a contradiction by Lemma
2.5.

To prove Property (ii), consider two planes π1 and π2 which intersect K in an oval. If
π1 ∩ π2 is a point then the property follows directly from Lemma 2.6. If π1 ∩ π2 is a
line then we get a 3-space Π3 containing 2q + 1 points. But then there are 4-spaces
through Π3 containing more than 2q + 1 points of K, a contradiction.

For Property (iii), take a point p not contained in a plane π which intersects K in
an oval O1. Consider two points r and s on O1 and the ovals O2 and O3 which are
uniquely determined by p and r and p and s respectively. The point set of the ovals
O1, O2 and O3 are contained in a 5-space Π5 intersecting K in more than 2q+2 points.
Hence, by Lemma 2.8 Π5∩K is a Veronesean V4

2 . Take an arbitrary point t on O1 and
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consider the oval determined by p and t. Since Π5 ∩ K is a V4
2 , this oval is contained

in Π5. For each of these ovals there is a tangent at p to these ovals. By Lemma 25.4.2
of [4] the union of these tangents forms a plane. �

3 Second characterization

In this section, we show that for n > 2, we can replace the set of conditions of Section
2 by the following set of conditions. Furthermore, we provide a counterexample for
the case n = 2.

Consider a set K of qn+1−1
q−1

points spanning PG(n(n+3)
2

, q), with n > 2, such that

(P’) If π is a plane then the intersection π ∩ K contains at most q + 1 points of K.

(S’) If a 3-space Π3 intersects K in more than 4 points, then |Π3 ∩ K| ≥ q + 1 and
Π3 ∩ K is not a (q + 1)-arc.

(V’) If a 5-space Π5 intersects K in more than 2q + 2 points then it intersects K in
exactly q2 + q+ 1 points. Furthermore, any two points p1, p2 of K are contained
in a 5-space containing q2 + q + 1 points of K.

Lemma 3.1 Every 4-space contains at most 2q + 2 points of K. Hence, a 3-space
contained in a big 5-space contains at most q + 3 points.

Proof Exactly the same as the proof of Lemma 2.5 using Condition (V’), since we
only used there that part of Condition (V). �

Lemma 3.2 For n > 2 , q > 5, if a plane π contains at least 4 points of K then it
contains exactly q + 1 points of K.

Proof First suppose that 4 < |π∩K| < q+ 1. Then all 3-spaces through π contain at

least q+ 1 points. This yields at least q
n(n+3)

2 −2−1
q−1

points for the set K, a contradiction
since n > 2.

Next, suppose that |π∩K| = 4. Consider points a, b and c of K such that 〈π, a〉, 〈π, b〉
and 〈π, c〉 are three different 3-spaces. By Condition (S’) each of these three 3-spaces
intersects K in at least q + 1 points. Then the space 〈π, a, b, c〉 contains at least
3(q− 3) + 4 points of K. Hence, if q > 7, by Lemma 3.1 and Condition (V’) it is a big
5-space Π5.

If q = 7, we can always find a 3-space containing at least 9 points of K. Indeed other-
wise inside a big 5-space containing π, which always exists by the previous paragraph,
we get the following equality: 4 + 4α = 57, a contradiction.

Consider a 3-space Π3 in Π5 which contains π and at least q + 1 points of K or at
least 9 in the case q = 7. We show that |Π3 ∩ K| ≤ q + 5. Indeed, consider a second
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3-space Π′3 in Π5 which contains π and at least q+1 points of K. The 4-space 〈Π3,Π
′
3〉

intersects K in at least |Π3 ∩ K| + |Π′3 ∩ K| − 4 points. Since any 4-space contains at
most 2q + 2 points of K by Lemma 3.1 the claim follows.

From the previous paragraph it follows that we get the following inequality for the
number x of 3-spaces Πi

3 through π inside Π5 containing at least q + 1 points of K.

x(q + 1) + 4 ≥ q2 + q + 1.

Hence we get x ≥ q − 3
q+1

, this implies x ≥ q if q > 2.

Now consider a 3-space Π′′3 containing π and at least q + 1 points of K which is not
contained in Π5 and consider also the 6-space Π6 = 〈Π5,Π

′′
3〉. Take one fixed 3-space

Π1
3 and consider the 5-spaces 〈Π1

3, Π′′3, Πi
3〉 with i 6= 1. Each of these 5-spaces intersects

K in more than 2q+2 points if q > 7 and hence is a big 5-space. It follows that Π6∩K
contains at least (q − 1)(q2 − q − 1) + 2q + 2 = q3 − 2q2 + 2q + 3 points.

Repeating this reasoning yields inductively the following recursion formula for the
number of points φk+1 in Πk+1 ∩ K where Π̃3 is a 3-space containing π and at least
q + 1 points of K which is not contained in Πk and where Πk+1 = 〈Πk, Π̃3〉, where
φ5 = q2 + q + 1.

φk+1 = (
φk − 4

q + 1
− 1)(q2 − q − 1) + 2q + 2.

We will adapt the recursion formula to a recursion formula for numbers ψk such that
ψk ≤ φk for all k ≥ 5.

First we rewrite the recursion formula for φk as follows.

φk+1 = (φk − q − 5)
q2 − q − 1

q + 1
+ 2q + 2.

Since q2−q−1
q+1

> q − 2 we get after a little calculation

φk+1 > (q − 2)φk − q2 − q + 8.

Since φ5 = q2 + q + 1 we can even write for all integers k ≥ 5

φk+1 > (q − 3)φk.

Now we set ψ5 = φ5 and ψk+1 = (q− 3)ψk. Hence we get ψN = (q− 3)N−5(q2 + q+ 1)
for all N ≥ 5. This yields the following inequality

(q − 3)
n(n+3)

2
−5(q2 + q + 1) ≤ qn+1 − 1

q − 1
.

This is an equality if n = 2 and the left hand side increases faster than the right hand
side if n increases, hence this yields a contradiction for n > 2. �

The case remaining is q = 5.
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Lemma 3.3 For q = 5 a plane π intersecting K in exactly 4 points is never contained
in a big 5-space Π5.

Proof First of all, a 3-space in Π5 contains at most 8 points of K by Lemma 3.1.

Project everything from π onto a plane π′ which is skew to π in Π5. With the 3-spaces
through π which contain 6, 7 or 8 points of K, we associate a point in π′ with weight
2, 3 or 4 respectively.

First suppose there is a 3-space Π3 in Π5 which contains π and which intersects K in 8
points. Then five 4-spaces through Π3 in Π5 intersect K in 12 points and one 4-space
through Π3 in Π5 intersects K in 11 points. This implies that inside a big 5-space
through Π3 there is exactly one 3-space Π′3 which contains π and which intersects K
in 7 points.

But a 4-space Π4 through Π3 intersecting K in 12 points has to be contained in at least
one other big 5-space Π̃5. Inside Π̃5 we also find a 3-space Π̃3 containing 7 points of
K. But now the big 5-space spanned by Π3,Π

′
3 and Π̃3 contains Π3 and two 3-spaces

which contain π and which intersect K in 7 points, a contradiction by the previous
paragraph.

Hence, from now on, we may assume that each 3-space through π inside a big 5-space
which contains more than 4 points of K contains 6 or 7 points of K. Hence if we denote
the number of 3-spaces through π inside Π5 which intersect K in 6 points by α and
those which intersect K in 7 points by β, we get the following equation,

4 + 2α + 3β = 31.

The rest of the proof is case-by-case analysis.

(A) β ≥ 7 :

In this case we have a set P of 7 points with weight 3 in π′. Since an oval in PG(2, 5)
contains at most 6 points, three points of P will be contained in the same line L. But
this implies that the 4-space spanned by L and π intersects K in more than 12 points,
a contradiction by Lemma 3.1.

(B) α = 6, β = 5 :

Consider a point p of weight 3 in π′ and all lines through it. On four of these lines
we have exactly one other point which has weight 3 otherwise we get a 4-space with
more than 12 points. But then the 6 points of weight 2 have to be distributed over
the remaining 2 lines, which again yields a too big 4-space.

(C) α = 9, β = 3 :

Consider a point p of weight 3 in π′ and all lines through it. On two of these lines
we have exactly one other point which has weight 3 otherwise we get a 4-space with
more than 12 points. But then the 9 points of weight 2 have to be distributed over
the remaining 4 lines, which again yields a too big 4-space.

(D) α = 12, β = 1 :

14



Denote the 3-space through π inside Π5 which intersects K in 7 points by Π3. We have
a set P of 13 points in π′. We claim that there has to be a line L containing 4 points
of P .

Indeed, consider an arbitrary point p contained in P and all lines through it. If there
is no line among them which intersects P in 4 points then they all intersect K in 3
points. Since p was arbitrary this implies that all lines in π′ intersect P in 0 or 3
points. But now consider a point r in π′ not contained in P and all lines through it.
Then we get a contradiction, since 3 does not divide 13.

Hence, the fourspace spanned by L and π intersects K in 12 points. It has to be
contained in another big 5-space otherwise we don’t get enough points in K. There
again there has to be at least one 3-space, say Π′3, through π which intersects K in 7
points.

But now consider a space Π̂ spanned by Π3, Π′3 and another 3-space which contains
at least 6 of K through π.

Then Π̂ is certainly contained in a big 5-space, otherwise we don’t have enough points
in the set K but this is a contradiction since in any big 5-space we already excluded
all cases with β > 1. �

Lemma 3.4 Any line l meets K in at most 2 points. Hence, a plane π with |π∩K| =
q + 1 intersects K in an oval.

Proof Similar to the proof of Lemma 2.4; use Lemma 3.1 and Lemma 3.2. �

Theorem 3.5 If q ≥ 5 and n > 2, then the set K is the point set of the Veronese
variety of all quadrics of PG(n, q).

Proof We check Conditions (P), (S) and (V) of Theorem 2.1. Conditions (S) and
(V) are trivially implied by Conditions (S’) and (V’) respectively. The first part of
Condition (P) was proved in Lemma 3.2 for q > 5.

Furthermore, for q = 5 we proved Condition (P) for all planes which are contained
in a big 5-space. In fact, we did only use Condition (P) for these plane in our first
characterization.

The second part of Condition (P), namely that every 2 points of K are contained in an
oval of K, is never used to obtain Lemma 2.8 if n > 2. If n = 2, we did use Condition
(P) for the proof of Lemma 2.5. Since every two points are contained in a big 5-space
Π5 by Condition (V), and since Π5 ∩ K is a Veronesean surface V4

2 the second part of
Condition (P) is proved. The proof is finished by Theorem 2.1. �

The counterexample for the case n = 2 is the following. Consider in PG(5, q) a point
p on an ovoid O in PG(3, q) and a tangent line L to O at p. Furthermore, consider
a second 3-space Π′3 intersecting Π3 exactly in L and containing an oval O′ which
intersects L in p. Then the set O ∪ O′ fulfills Conditions (P’), (S’) and (V’) but it is
not a Veronesean V4

2 .
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