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Abstract

Let (W, S) be a Coxeter system with I ⊆ S such that the parabolic subgroup WI is
finite. Associated to this data there is a Hecke algebra H and a parabolic Hecke algebra
H I = 1IH 1I (over a ring Z[qs]s∈S). We give a complete classification of the commutative
parabolic Hecke algebras across all Coxeter types.

Introduction

Parabolic Hecke algebras H I arise naturally as algebras of PI bi-invariant functions on semisim-
ple Lie (or Kac-Moody) groups G defined over finite fields, where PI is a type I parabolic sub-
group. As such they play an important role in the representation of these groups, in particular in
studying the representations which have a PI -fixed vector. If H I is commutative then (G, PI) is
a Gelfand pair. In this case the representation theory of H I is considerably simplified, and this
leads to powerful results about representations of the group G. See, for example, [3], [19] and
[20] for the affine case. Thus it is a natural question to ask when these algebras are commutative.

Hecke algebras can be defined more generally, without reference to Kac-Moody groups as
follows. Let (W, S) be a Coxeter system, and let (qs)s∈S be a family of commuting indeterminants
with qs = qt if and only if s and t are conjugate in W . The Hecke algebra is the associative
Z[qs]s∈S algebra H with free basis {Tw | w ∈ W} and relations given by equations (1.1) in
Section 1.2. Suppose that I ⊆ S is such that the parabolic subgroup WI = 〈{s | s ∈ I}〉 is finite.
The I-parabolic Hecke algebra H I is

H I = 1IH 1I , where 1I =
∑

w∈WI

Tw.

It is these algebras (and their specialisations with qs ≥ 1) that we study here. We give a complete
classification of the pairs (W, I) with W irreducible such that H I is commutative.

Let us put this result into perspective by surveying known results on the commutativity of
parabolic Hecke algebras. Assume throughout that W is irreducible. Consider the spherical case
(that is, |W | < ∞). The case |S\I| = 1 (that is, WI is a maximal parabolic subgroup of W ) is
classical, dating back to Iwahori [13] with proofs appearing in [8] (see also [6, Theorem 10.4.11]).
It turns out that the statement is very neat in this case: H I is commutative if and only if each
minimal length WI double coset representative is an involution. This statement does not hold in
general (however we obtain a similar equivalence in Theorem 2.2). The proof in [8] uses elegant
representation theory of the Coxeter group W , along with counting arguments, semisimplicity of
the Hecke algebra, and Tits’ Deformation Theorem. These techniques do not readily generalise
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to the infinite case, as we lose the counting arguments, semisimplicity, and the Deformation
Theorem.

The spherical case with |S\I| = 1 is also analysed in [17] via incidence structures and
permutation representations. In particular [17, Section 4] gives a thorough analysis of the
classical types, and in [17, Section 6] the question of studying the spherical case with |S\I| > 1
is raised. It is shown in [14, Lemma III.3.5] that if W is of type An and |S\I| > 1 then H I is
noncommutative. The main result in [2] extends this to show that if W is spherical and |S\I| > 1
then H I is noncommutative. We give a very short proof of this fact across all Coxeter types in
Section 3 (it appears to have been previously known only for the spherical types via a case by
case argument involving computer calculations for the exceptional types).

Now suppose that W is affine (see Section 1.1). If I = S\{i} with i a special vertex then it
is well known that H I is commutative. This result is important in the representation theory of
semisimple Lie groups defined over local fields such as the p-adics (see [19], [20]). The question
of whether commutative parabolic Hecke algebras exist in the affine case with i not a special
vertex is natural, yet to our knowledge has not been treated in the literature. It follows from
our classification that there are in fact no such commutative parabolic Hecke algebras.

Now consider the case that W is non-affine and infinite. In [16, Theorem 3.5] it is shown that
maximal parabolic Hecke algebras arising from group actions on locally finite thick buildings
of type W are noncommutative. (However there is a mistake in the proof which needs to be
fixed. Lécureux’s Lemma 3.4 only holds for simple reflections, but is used for general reflections
in the proof of his Theorem 3.5.) Such buildings can only exist if mst ∈ {2, 3, 4, 6, 8,∞} for
each s, t ∈ S because the Feit-Higman Theorem restricts the possible rank 2 residues. If W is
crystallographic (that is, mst ∈ {2, 3, 4, 6,∞}, cf. [15, p.25]) then existence of such a building is
guaranteed via Kac-Moody theory.

In summary, it appears that the following cases are not treated in the literature: (i) |S\I| > 1
(for general Coxeter types), (ii) the affine case with I = S\{i} and i non-special, and (iii) the
non-crystallographic non-affine infinite cases. It also appears that the existing techniques do
not readily generalise to treat these cases. In this paper we give a systematic and complete
classification of commutative parabolic Hecke algebras. Our proof uses a uniform technique to
cover all cases (including the known cases). As a consequence it turns out that the three cases
listed above give noncommutative parabolic Hecke algebras.

Let us briefly outline the structure of this paper. Section 1 gives standard definitions and
background on Coxeter groups and Hecke algebras, and in Section 2 we state our classification
theorem (Theorem 2.1). We also develop some elementary tests for commutativity and noncom-
mutativity that will be used in Section 3, where we give the proof of the classification theorem.
The proof has two parts. First we prove that those cases listed in Theorem 2.1 give rise to
commutative parabolic Hecke algebras. This is achieved using Lemma 2.5, which is inspired by
the statement of [8, Theorem 3.1]. Next we show that all remaining cases are noncommutative.
This involves some Coxeter graph combinatorics to reduce the analysis to a finite number of
cases. In each of these cases a word in the Coxeter group is exhibited, which when fed into
our noncommutativity test (Proposition 2.8) proves that the parabolic Hecke algebra is non-
commutative. We note that in order to apply our word arguments and diagram combinatorics
to the general infinite cases, it is in fact necessary to give our elementary proof of the known
noncommutative spherical cases. In the appendix we make some comments on the structure of
double cosets, and list the words we used to deduce noncommutativity.

The majority of the research presented in this paper was conducted in Ghent, Belgium, where
the first two authors visited the third author on two occasions. We thank Ghent University for
its hospitality. The second author thanks the Australian Research Council for its support under
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the ARC discovery grant DP110103205. Finally we would like to thank Bob Howlett for useful
conversations regarding the results in [8] and for his help using his Coxeter group magma package
which was useful in our investigations (however note that our proof does not require computer
calculations).

1 Definitions

This section recalls some standard definitions and results on Coxeter groups, Hecke algebras,
and specialisations of Hecke algebras. Standard references include [1], [4], [12], and [18].

1.1 Coxeter groups

A Coxeter system (W, S) is a group W generated by a set S with relations

(st)mst = 1 for all s, t ∈ S,

where mss = 1 and mst ∈ Z≥2 ∪ {∞} for all s (= t. If mst = ∞ then it is understood that there
is no relation between s and t. We will always assume that |S| is finite. The Coxeter matrix of
(W, S) is M = (mst). Let M ′ = (cst) be the matrix with cst = − cos(π/mst).

The length "(w) of w ∈ W is

"(w) = min{n ∈ N | w = s1 · · · sn with s1, . . . , sn ∈ S}.

An expression w = s1 · · · sn with n = "(w) is called a reduced expression for w.
The Coxeter graph (or Coxeter diagram) of (W, S) is the graph with vertex set S and with

s, t ∈ S joined by an edge if and only if mst ≥ 3. If mst ≥ 4 then the corresponding edge is
labelled by mst. A Coxeter system (W, S) is irreducible if its Coxeter graph is connected.

Finite Coxeter groups are called spherical Coxeter groups. These are precisely the Cox-
eter groups whose matrix M ′ is positive definite. The irreducible spherical Coxeter groups are
classified (see [7], [4], [12]).

Coxeter groups which are not finite but contain a normal abelian subgroup such that the
corresponding quotient group is finite are called affine Coxeter groups. These are precisely
the Coxeter groups whose matrix M ′ is positive semidefinite but not positive definite. The
irreducible affine Coxeter groups are classified (see [4], [12]). In each case the Coxeter graph
of an irreducible affine Coxeter group is obtained from the Coxeter matrix of an irreducible
spherical Coxeter graph by adding one extra vertex (usually labelled 0). The vertices of the
affine Coxeter graph which are in the orbit of 0 under the action of the group of diagram
automorphisms are called the special vertices.

When it is necessary to fix a labelling of the generators of a spherical or affine Coxeter group
we will adopt the conventions from [4]. The Bruhat partial order ≤ on a Coxeter system (W, S)
can be described as follows. If v, w ∈ W then v ≤ w if and only if there is a reduced expression
w = s1 · · · sn such that v is equal to a subexpression of s1 · · · sn (that is, an expression obtained
by deleting factors). If v ≤ w then v is equal to a subexpression of every reduced expression
of w. The deletion condition says that if w = s1 · · · sn with n > "(w) then there exists indices
i < j such that w = s1 · · · ŝi · · · ŝj · · · sn, where ŝ indicates that the factor s is omitted. The
deletion condition holds for Coxeter groups (in fact it characterises them).

For I ⊆ S let WI be the subgroup of W generated by I. Each double coset WIwWI has
a unique minimal length representative [1, Proposition 2.23]. This representative is called I-
reduced, and we let

RI = {w ∈ W | w is I-reduced}.
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Thus RI indexes the decomposition of W into WIwWI double cosets. It is useful to note that a
reduced expression for w ∈ RI cannot start or end with a letter in I. In particular, if S\I = {s}
then every reduced expression for w ∈ RI must start and end with s.

A subset I ⊆ S is spherical if the group WI is finite. Coxeter systems (W, S) such that there
exists a spherical subset I = S\{i} are called nearly finite Coxeter groups in [10]. This class
includes the spherical and irreducible affine groups, but also many more Coxeter groups.

1.2 Hecke algebras

Let (W, S) be a Coxeter system, and let qs, s ∈ S, be commuting indeterminants such that
qs = qt if and only if s and t are conjugate in W . Let R = Z[qs]s∈S be the polynomial ring in
qs, s ∈ S, with integer coefficients. The condition on the parameters implies that the expression
qw = qs1 · · · qs! ∈ R does not depend on the particular choice of reduced expression w = s1 · · · s!.

The Hecke algebra H = H (W, S) is the associative R-algebra with free basis {Tw | w ∈ W}
(as an R-module) and multiplication laws

TwTs =

{
Tws if "(ws) = "(w) + 1
qsTws + (qs − 1)Tw if "(ws) = "(w)− 1.

(1.1)

If I is a spherical subset of S then the element

1I =
∑

w∈WI

Tw

is in H (since the sum is finite). This element has the following attractive properties, where for
finite subsets X ⊆ W the Poincaré polynomial of X is X(q) =

∑
w∈X qw.

Lemma 1.1. The element 1I satisfies Tw1I = 1ITw = qw1I for all w ∈ WI , and 12
I = WI(q)1I .

Proof. By induction it suffices to show that Ts1I = 1ITs = qs1I for each s ∈ I. We have

1ITs =
∑

w∈WI

TwTs.

Split the sum into two parts, over the sets W±
I = {w ∈ WI | "(ws) = "(w) ± 1}. Using the

defining relations (1.1) and the fact that W+
I s = W−

I shows that 1ITs = qs1I . The Ts1I case is
similar, using the formula TsTw = qsTsw + (qs − 1)Tw if "(sw) = "(w) − 1 (which follows from
(1.1)). The fact that 12

I = WI(q)1I follows immediately.

The structure constants cu,v;w ∈ Z[qs]s∈S of H relative to the basis {Tw | w ∈ W} are
defined by the equations

TuTv =
∑

w∈W

cu,v;wTw for all u, v ∈ W. (1.2)

Lemma 1.2. The structure constants cu,v;w are polynomials in {qs−1 | s ∈ S} with nonnegative
integer coefficients.

Proof. Induction on "(v), with "(v) = 0 trivial. If "(vs) = "(v) + 1 then TuTvs = (TuTv)Ts.
Expanding the left hand side of this equation using (1.2) and the right hand side using (1.2)
and (1.1) gives

cu,vs;w =

{
cu,v;wsqs if "(ws) = "(w) + 1
cu,v;ws + cu,v;w(qs − 1) if "(ws) = "(w)− 1.

By the induction hypothesis cu,v;w and cu,v;ws are polynomials in {qs−1 | s ∈ S} with nonnegative
integer coefficients, and so cu,vs;w is too (since qs = 1 + (qs − 1)).
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1.3 Parabolic Hecke algebras

Let H be the Hecke algebra with Coxeter system (W, S) and let I ⊆ S be spherical. The
I-parabolic Hecke algebra is

H I = 1IH 1I .

We note that in general H I is not unital (as WI(q) is not an invertible element of Z[qs]s∈S).
Let I be spherical and let w ∈ RI be I-reduced. We define

T I
w =

WI(q)
WI∩wIw−1(q)

1ITw1I .

The Poincaré polynomial WI(q) is divisible by WI∩wIw−1(q) (this follows from equation (1.3)
below and statement (a) immediately following (1.3)), and so the quotient is really an element
of the coefficient ring R = Z[qs]s∈S .

The set {T I
w | w ∈ RI} is a linear basis for H I (Proposition 1.3). Let cI

u,v;w, u, v, w ∈ RI ,
be the structure constants of H I relative to this basis, defined by the equations

T I
uT I

v =
∑

w∈RI

cI
u,v;wT I

w for u, v ∈ RI .

If I = ∅ then 1I = 1 (the identity in H ), and so T I
w = Tw and H I = H . Thus c∅u,v;w = cu,v;w

are the structure constants appearing in (1.2). Part (ii) of the following proposition relates the
structure constants cI

u,v;w to the more elementary structure constants cu,v;w.

Proposition 1.3. Let I ⊆ S be spherical.

(i) For w ∈ RI we have
T I

w = WI(q)
∑

z∈WIwWI

Tz,

and {T I
w | w ∈ RI} is a linear basis for H I .

(ii) Let u, v, w ∈ RI . For any z ∈ WIwWI we have

cI
u,v;w = WI(q)

∑

x∈WIuWI
y∈WIvWI

cx,y;z.

Proof. Let WI,w be the subgroup of WI stabilising wWI under left multiplication, and let MI,w

be a fixed set of minimal length representatives of cosets in WI/WI,w. Notice that s ∈ S ∩WI,w

if and only if s ∈ WI and s ∈ wWIw−1, and hence (see [1, Lemma 2.25])

WI,w = WI ∩ wWIw
−1 = WI∩wIw−1 . (1.3)

If w ∈ RI then (see [1, §2.3.2])

(a) Each u ∈ WI can be written in exactly one way as u = xy with x ∈ MI,w and y ∈ WI,w.
Moreover "(u) = "(x) + "(y) for any such expression.

(b) Each v ∈ WIwWI can be written in exactly one way as v = xwy with x ∈ MI,w and
y ∈ WI . Moreover "(v) = "(x) + "(w) + "(y) for any such expression.
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Using (a) we have

1ITw1I =
∑

u∈WI

TuTw1I =
∑

x∈MI,w

∑

y∈WI,w

TxTyTw1I .

Since w is I-reduced we have "(yw) = "(y) + "(w) for each y ∈ WI,w, and yw = wy′ for some
y′ ∈ WI with "(wy′) = "(w) + "(y′). This implies that qy′ = qy, and (1.1) and Lemma 1.1 give

TyTw1I = Tyw1I = Twy′1I = TwTy′1I = qyTw1I .

Thus by (1.3) we have
∑

y∈WI,w
TxTyTw1I = WI∩wIw−1(q)TxTw1I , and hence by (b) we compute

T I
w = WI(q)

∑

x∈MI,w

TxTw1I = WI(q)
∑

x∈MI,w

∑

y∈WI

TxTwTy = WI(q)
∑

z∈WIwWI

Tz.

This formula shows that {T I
w | w ∈ RI} is a linearly independent set (since double cosets

are either equal or disjoint, and {Tw | w ∈ W} is a basis for H ). It also spans H I , for if
z ∈ W then z ∈ WIwWI for some w ∈ RI , and since w is I-reduced we have z = xwy with
x ∈ WI , y ∈ WI , and "(z) = "(x) + "(w) + "(y). Then using (1.1) and Lemma 1.1 we have
1ITz1I = 1ITxTwTy1I = qxqy1ITw1I . This completes the proof of (i).

To prove (ii) we use (i) and the expansion TxTy =
∑

z cx,y;zTz to write

T I
uT I

v = WI(q)2
∑

x∈WIuWI
y∈WIvWI

TxTy = WI(q)2
∑

z∈W

(
∑

x∈WIuWI
y∈WIvWI

cx,y;z

)
Tz.

On the other hand we have

T I
uT I

v =
∑

w∈RI

cI
u,v;wT I

w = WI(q)
∑

w∈RI

(
cI
u,v;w

∑

z∈WIwWI

Tz

)
.

The result follows by comparing coefficients of Tz in these expressions.

Remark 1.4. The structure constants cI
u,v;w in the spherical case are studied in [5] and [11]. In

the affine case formulae are available using positively folded alcove walks (see [22]).

1.4 Specialisations of the Hecke algebra

One is often interested in specialisations of the Hecke algebra, where the parameters qs, s ∈ S,
are chosen to be specific complex numbers. Let us briefly describe this construction. Let
τ = (τs)s∈S be a sequence of complex numbers with τs = τt whenever s and t are conjugate
in W . Let ψ : R → C be the ring homomorphism given by ψ(qs) = τs for each s ∈ S. Then C
becomes a (C,R)-bimodule via (λ, µ, x) .→ λµψ(x) for all λ, µ ∈ C and x ∈ R. The specialised
Hecke algebra is Hτ = C⊗R H . This is an algebra over C with basis {1⊗ Tw | w ∈ W}. Note
that the specialisation of H with τs = 1 for all s ∈ S is equal to the group algebra of W .

Let H I
τ be the specialisation of H I with parameters τ = (τs). Our classification of commu-

tative parabolic Hecke algebras applies to the ‘generic’ parabolic Hecke algebras H I (defined
over Z[qs]s∈S) and to the specialisations H I

τ with τs ∈ R and τs ≥ 1 for all s ∈ S. Poten-
tial problems arise for other values of τs, since our argument in Corollary 2.7, which relies on
Corollary 1.5 below, breaks down.

The structure constants of the specialised algebra H I
τ are obtained by applying the evalua-

tion homomorphism ψ : Z[qs]s∈S → C with ψ(qs) = τs to the structure constants of the generic
algebra H I .
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Corollary 1.5. If τs ≥ 1 for all s ∈ S then ψ(cI
u,v;w) ≥ 0, and if the constant term of cu,v;w

when written as a polynomial in the variables qs − 1 is nonzero then ψ(cI
u,v;w) > 0.

Proof. By Lemma 1.2 the claim is true for I = ∅ (where cI
u,v;w = cu,v;w), and by Proposition 1.3

we see that the claim holds for general (spherical) I, since WI(τ ) > 0 if τs ≥ 1 for all s ∈ S.

Remark 1.6. If τs = pn for all s ∈ S with p a prime then Hτ
∼= Cc(B\G/B). Here G is

a Kac-Moody group of type W over the finite field Fpn (see [23]), B is the standard Borel
subgroup of G, and Cc(B\G/B) is the convolution algebra of B bi-invariant functions f : G → C
supported on finitely many B double cosets. For such a Kac-Moody group to exist it is necessary
and sufficient that mst ∈ {2, 3, 4, 6,∞} for each s, t ∈ S (see [15, Proposition 1.3.21]). Similarly
H I

τ
∼= Cc(PI\G/PI) where PI is the standard I-parabolic subgroup PI =

⊔
w∈WI

BwB.

Remark 1.7. Suppose that τs = τ for all s ∈ S. If W is spherical then Hτ is isomorphic to the
group algebra of W for all values of τ ∈ C× except for roots of the Poincaré polynomial W (τ)
[9, §68A]. This statement is usually not true for infinite Coxeter groups W (see [24, §11.7]).

2 Commutativity of H I

2.1 Statement of results

The following classification theorem is the main result of this paper. The proof is given in the
next section after giving some preliminary observations in this section. We use Bourbaki [4]
conventions for the labelling of the nodes of spherical and affine Coxeter systems. In the H3 and
H4 cases (where there is no explicit labelling given in [4]) we take m12 = 3 and m23 = 5 in the
H3 case, and m12 = m23 = 3 and m34 = 5 in the H4 case.

If Xn is a spherical Coxeter diagram and if i is a vertex of Xn then we write Xn,i to denote
the case where (W, S) has type Xn and I = S\{i}. Similarly if X̃n is an affine diagram then the
notation X̃n,i means that (W, S) has type X̃n and I = S\{i}.

Theorem 2.1. Let (W, S) be irreducible, let I ⊆ S be spherical, and let τ = (τs) with τs ≥ 1
for each s ∈ S. The I-parabolic Hecke algebras H I and H I

τ are noncommutative if |S\I| > 1.
If I = S\{i} then H I and H I

τ are commutative in the cases

• An,i (1 ≤ i ≤ n), Bn,i (1 ≤ i ≤ n), Dn,i (1 ≤ i ≤ n/2 or i = n − 1, n), E6,1, E6,2, E6,6,
E7,1, E7,2, E7,7, E8,1, E8,8, F4,1, F4,4, H3,1, H3,3, H4,1, I2(p)i (i = 1, 2), and

• all affine cases X̃n,i with i a special type,

and noncommutative otherwise.

As a consequence of this classification it turns out that we have the following uniform state-
ment which has the same flavour as [8, Theorem 3.1]. The proof of Theorem 2.2 is given at the
end of Section 3.

Theorem 2.2. With the hypothesis of Theorem 2.1, the algebras H I and H I
τ are commutative

if and only if there is an automorphism π of the Coxeter diagram such that

(a) π(I) = I,

(b) π(w) = w−1 for all w ∈ RI , and

(c) qπ(s) = qs for all s ∈ S.
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Remark 2.3. Suppose that the Coxeter system (W, S) is not irreducible. Let S = S1 ∪ · · ·∪Sn

be the decomposition of the nodes of the Coxeter graph into connected components, and let
Wj = 〈Sj〉 for each j = 1, . . . , n. It is elementary that

H (W, S) ∼= H (W1, S1)⊕ · · ·⊕H (Wn, Sn).

Let I ⊆ S be spherical, and let Ij = I ∩ Sj . Then 1I = 1I1 · · ·1In , and it follows that

H I(W, S) ∼= H I1(W1, S1)⊕ · · ·⊕H In(Wn, Sn).

Thus H I(W, S) is commutative if and only if each H Ij (Wj , Sj) is commutative. Thus we will
henceforth assume that the (W, S) is irreducible.

Remark 2.4. In the spherical case (except for H3 and H4) commutativity of Xn,i is dealt with
in [8, Theorem 3.1] (see also [6, Theorem 10.4.11]). We give a different elementary proof here.
In fact our proof technique for the general case makes it crucial for us to give our proof of the
spherical case.

2.2 Initial observations

By induction on "(y) we see that cx,y;z = cy−1,x−1;z−1 , and so by Proposition 1.3 we see that

cI
v−1,u−1;w−1 = WI(q)

∑

x∈WIvWI
y∈WIuWI

cx−1,y−1;z−1 = WI(q)
∑

y∈WIuWI
x∈WIvWI

cy,x;z = cI
u,v;w, (2.1)

where z is any element of the double coset WIw−1WI . Thus if each w ∈ RI is an involution then
cI
u,v;w = cI

v,u;w, and so the algebra H I is commutative. It turns out that in the spherical case
this is an equivalence: H I is commutative if and only if each element of RI is an involution (see
[8, Theorem 3.1] and Claim 1 in Section 3 below). However it is not an equivalence in arbitrary
type (as the affine cases with special vertices show).

The following lemma is modeled on [21, Theorem 5.21 and Theorem 5.24].

Lemma 2.5. Suppose that there is an automorphism π of the Coxeter graph satisfying conditions
(a), (b) and (c) of Theorem 2.2. Then the algebras H I and H I

τ (for any specialisation τs ∈ C)
are commutative.

Proof. We claim that the property qπ(s) = qs implies that

cx,y;z = cπ(x),π(y);π(z) for all x, y, z ∈ W. (2.2)

We argue by induction on "(y), with "(y) = 0 trivial. If "(sy) > "(y), then expanding TxTsy =
(TxTs)Ty in two ways using (1.1) gives

cx,sy;z =

{
cxs,y;z if "(xs) > "(x)
qscxs,y;z + (qs − 1)cx,y;z if "(xs) < "(x).

By the induction hypothesis and property (c) we have cx,sy;z = cπ(x),π(sy);π(z), hence (2.2).
By properties (a) and (b) if w is I-reduced then π(WIwWI) = WIw−1WI = (WIwWI)−1.

Using this observation, by Proposition 1.3 and (2.2) we have cI
π(u),π(v);π(w) = cI

u,v;w.
On the other hand, by (b) and (2.1) we have cI

π(u),π(v);π(w) = cI
u−1,v−1;w−1 = cI

v,u;w. Thus
cI
u,v;w = cI

v,u;w. So H I is commutative, and hence H I
τ is commutative for each specialisation.

8



Lemma 2.6. Let u, v, w ∈ RI . If cI
u,v;w (= 0 then there exists u′ ≤ u, v′ ≤ v, and y ∈ WI such

that w = u′yv′ and "(w) = "(u′) + "(y) + "(v′).

Proof. Recall that T I
u is a scalar times 1ITu1I . Thus T I

uT I
v =

∑
cI
u,v;wT I

w is a scalar times

1ITu1I · 1ITv1I = WI(q)1ITu1ITv1I = WI(q)
∑

z∈WI

1ITuTzTv1I . (2.3)

Since v ∈ RI we have TzTv = Tzv for each z ∈ WI . An induction on "(u) using (1.1) shows that
TuTzv is a linear combination of terms Tu′zv with u′ ≤ u. Therefore the right hand side of (2.3)
is a linear combination of terms {1ITx1I | x ∈ u′WIv, u′ ≤ u}. It follows from Lemma 1.1 that
for each x ∈ W , 1ITx1I is a nonzero scalar multiple of 1ITx′1I , where x′ is the unique I-reduced
element of WIxWI (see the proof of Proposition 1.3). Therefore the right hand side of (2.3) is
a linear combination of terms 1ITx′1I with x′ being the I-reduced element of a double coset of
the form WIu′WIvWI with u′ ≤ u.

Hence if cI
u,v;w (= 0 then w ∈ WIu′WIvWI for some u′ ≤ u, and so w = w1u′w2vw3 with

w1, w2, w3 ∈ WI . By repeated applications of the deletion condition we obtain a reduced word
w = w′

1u
′′w′

2v
′w′

3 with w′
1, w

′
2, w

′
3 ∈ WI and u′′ ≤ u and v′ ≤ v. But every reduced expression

for an I-reduced word starts and ends with elements from S\I. Thus w′
1 = w′

3 = 1, and so
w = u′′w′

2v
′ with "(w) = "(u′′) + "(w′

2) + "(v′), completing the proof.

Thus we obtain the following general test for noncommutativity.

Corollary 2.7. Let u, v, w ∈ RI . Suppose that w = uzv with "(w) = "(u) + "(z) + "(v) and
z ∈ WI . If there does not exist u′, v′, z′ with u′ ≤ u, v′ ≤ v, and z′ ∈ WI such that w = v′z′u′

and "(w) = "(v′) + "(z′) + "(u′), then H I and H I
τ (with τs ≥ 1) are noncommutative.

Proof. Let ψ : Z[qs]s∈S → C be the evaluation homomorphism with ψ(qs) = τs ≥ 1 for each
s ∈ S. We claim that if w = uzv with z ∈ WI and "(w) = "(u) + "(z) + "(v) then cI

u,v;w (= 0 and
ψ(cI

u,v;w) > 0. To see this, note that by Proposition 1.3 and the defining relations (1.1) we have

cI
u,v;uzv = WI(q)

(
cuz,v;uzv + positive linear combination of other cx,x′;x′′ terms

)

= WI(q)
(
1 + positive linear combination of other cx,x′;x′′ terms

)
,

from which the result follows (see Lemma 1.2 and Corollary 1.5).
On the other hand, by Lemma 2.6 and the assumptions of the corollary we have cI

v,u;w = 0
(and hence ψ(cI

u,v;w) = 0 too), and so the algebras H I and H I
τ are noncommutative.

The following more specific test for noncommutativity will be used frequently.

Proposition 2.8. Let I = S\{i}. Suppose that there is an element w ∈ RI such that w = uwIi
with u ∈ RI , wI ∈ WI , and "(w) = "(u) + "(wI) + 1. Fix reduced expressions for u and wI , and
suppose that:

(1) the induced decomposition w = uwIi has the minimal number of i factors amongst all
possible reduced expressions for w, and

(2) there is a generator k ∈ I that appears in wI but not in u, and that in every reduced
expression for w with the minimal number of i factors no occurrence of this k generator
appears between the first two i generators of the expression.

Then H I and H I
τ (with τs ≥ 1) are noncommutative.
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Proof. By Corollary 2.7 it is sufficient to show that w cannot be written as w = i′z′u′ with
i′ ∈ {id, i}, u′ ≤ u, z′ ∈ WI , and "(w) = "(i′) + "(z′) + "(u′). Suppose we have such an
expression. By (1) we see that i′ = i, and that u′ has the same number of i factors as u does. In
particular, u′ starts and ends with an i. Since u′ contains no k factors we see that z′ must contain
some k factors. Then these factors are between the first two i generators, contradicting (2).

3 Proof of Theorem 2.1

We use the following notation. If Xn is a spherical Coxeter type with nodes 1, 2, . . . , n then Xi
n

is the Coxeter graph obtained by attaching a new node (labelled 0) to the i node of Xn by a
single bond. Similarly, Xij

n with i (= j indicates that this new node is connected to i and j by
single bonds, and Xii

n indicates that 0 is joined to i by a double bond. This notation naturally
extends, and, for example, F 1,1

4 ×E2,5,6
7 indicates that a new node 0 is connected to the 1 node

of an F4 diagram by a double bond, and to the 2, 5 and 6 nodes of an E7 diagram by single
bonds. Also, recall the notation Xn,i and X̃n,i from the beginning of Section 2.1.

Recall that we assume throughout that (W, S) is irreducible. The proof of Theorem 2.1
is achieved via the following 6 claims. The first claim shows that if |S\I| > 1 then H I is
noncommutative, allowing us to focus on the maximal parabolic case I = S\{i}. The second
and third claims deal with the commutative spherical and affine cases. In claim 4 we produce
a list of noncommutative cases. This library of noncommutative cases is used in claims 5 and 6
to show that all cases other than those listed in Theorem 2.1 are noncommutative.

Claim 1: If |S\I| > 1 then H I and H I
τ (with τs ≥ 1) are noncommutative.

Proof. Choose vertices s, t ∈ S\I with s (= t at minimal length in the (connected) Coxeter graph
of W . Then s, t ∈ RI , and if s, s1, · · · , sn, t is a minimal length path in the Coxeter diagram then
s1, . . . , sn ∈ WI . The I-reduced element w = ss1 · · · snt satisfies "(w) = "(s) + "(s1 · · · sn) + "(t).
But w cannot be written as w = t′z′s′ with t′ ≤ t, s′ ≤ s, z′ ∈ WI , and "(w) = "(t′)+"(z′)+"(s′),
for there is exactly one reduced expression for w, and this reduced expression has one s, and one t,
and the t is to the right of the s. Thus by Corollary 2.7 the algebra H I (and its specialisations
with τs ≥ 1) is noncommutative. (Compare with [2]).

Claim 2: The spherical cases listed in Theorem 2.1 are commutative.

Proof. It is well-known that in each case listed the minimal length double coset representatives
are involutions (see Proposition A.1 for the E8,1 example). Thus Lemma 2.5 applies (with π
being trivial), and so the algebras are commutative.

Claim 3: If I = S\{i} with i a special node of an affine diagram then H I is commutative.

Proof. Let (W, S) be an irreducible Coxeter system of affine type, and let I = S\{i}, where i is
a special type. Then H I (and hence Hτ for all specialisations) is commutative by Lemma 2.5
with the diagram automorphism π from that lemma being opposition in the spherical residue.
In more detail: We may assume that i = 0. Let Q be the coroot lattice of the associated root
system, and let P be the coweight lattice, with dominant cone P+. Let W0 = WS\{0}. Then
W ∼= Q ! W0, and {tλ | λ ∈ Q ∩ P+} is a set of W0\W/W0 representatives, where tλ is the
translation by λ. So the double cosets satisfy (W0tλW0)−1 = W0t

−1
λ W0 = W0t−λW0 = W0tλ∗W0,

where λ∗ = −w0λ, with w0 being the longest element of W0. It follows that the minimal length
element mλ of W0tλW0 satisfies m−1

λ = mλ∗ . Hence the automorphism π of the Coxeter diagram
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given by π(0) = 0 and απ(j) = −w0αj for j = 1, . . . , n satisfies π(mλ) = m−1
λ for all λ ∈ Q∩P+.

By construction we have π(I) = I, and considering the connected affine diagrams we have
qπ(s) = qs for all s ∈ S. Thus by Lemma 2.5 H I is commutative (and hence H I

τ is too).

Claim 4: All of the cases listed in the tables in the appendix are noncommutative.

Proof. We say that an element w ∈ W has an essentially unique expression if every reduced
expression for w is obtained from a given reduced expression of w by a sequence of ‘commutations’
(that is, Coxeter moves of the form st = ts). It is routine to check that all of the words
in the tables in the appendix have essentially unique expressions, except for the H4,4, F̃4,4,
Ẽ8,1 and H1

4 words. These words will be dealt with below. For those words with essentially
unique expressions it is easy to check that the triple (u, wI , k) provided in the table satisfies the
hypothesis of Proposition 2.8, except for the B1,2

2 , B3
4 , E1

8 , H1,1
3 , I2(5)1,1 and I2(7)1 words, and

so the associated algebras are noncommutative. For example, consider the D3
5 word w = uwI0

with u = 03243120, wI = 3543 and k = 5. To see that there are no 131 .→ 313 Coxeter moves
available one considers each triple (1, 3, 1) in the given reduced decomposition for w and verifies
that there is no sequence of commutations that make these three generators adjacent. One
such triple is w = 03 1 24 3 1 2035430, and it is clear that it is impossible to make the first 1
adjacent to the 3 using commutations. Continuing in this fashion one verifies that this word
has an essentially unique expression. It is now clear that the word is reduced and I-reduced,
and that every reduced expression for w has the property that the k = 5 generator does not
appear between the first two 0 generators. Thus Proposition 2.8 applies, and so the algebra is
noncommutative.

It remains to deal with the H4,4, F̃4,4, Ẽ8,1, H1
4 , B1,2

2 , B3
4 , H1,1

3 , I2(5)1,1 and I2(7)1 words
(these are marked with a ∗ in the appendix). The H4,4 word w = uwI4 with u = 434323434 and
wI = 123 has only one possible Coxeter move (323 .→ 232). The only Coxeter move available
in the resulting expression w = 4342324341234 is the move 232 .→ 323 taking us back to the
original expression. Therefore every reduced expression for w is obtained from one of

4343234341234
4342324341234

by using only commutations. Hence it is clear that the k = 1 generator can never appear in
between the first two 4 generators of a reduced expression for w, and so Proposition 2.8 applies.

The F̃4,4 word w = uwI4 with u = 43231234 and wI = 3231230123 has exactly one possible
Coxeter move (343 .→ 434). The only Coxeter move in the resulting expression is the one return-
ing us to the original expression. Thus, as in the H4,4 case, we readily see that Proposition 2.8
(with k = 0) applies.

Consider the Ẽ8,1 word w = 1345624534132456768054324567813456724563452431. The only
Coxeter move possible initially is the 676 .→ 767 move. After making this move we get w =
1345624534132457678054324567813456724563452431. The only new Coxeter move available is
the 565 .→ 656 move, giving w = 1345624534132476567804324567813456724563452431. There
are now no new Coxeter moves, and so every reduced expression for w is obtained from one of

1345624534132456768054324567813456724563452431
1345624534132457678054324567813456724563452431
1345624534132476567804324567813456724563452431

using commutations alone. Thus it is clear that the 0 generator can never be between the first
two 1 generators, and so Proposition 2.8 applies.
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The details for the H1
4 word w = uwI0 with u = 012343210 and wI = 43423412324341234321

are as follows. Arguing as above one sees that every reduced expression for w is obtained from
one of the following three expression by commuting generators:

012343210434234123243412343210
012343210434234132343412343210
012343210434234321234342343210.

It follows that every reduced expression for w has at least three 4s between the last two 0
generators. Thus there is no reduced expression w = 0zu′ with u′ ≤ u and z ∈ WI because
such an expression has at most one 4 between the last two 0s. Thus Corollary 2.7 proves
noncommutativity.

Consider the B1,2
2 word w = uwI0 with u = 01210 and wI = 212. This word has exactly one

reduced expression, and this expression has exactly two 2s in between the last two 0 generators.
Hence there is no reduced expression of the form w = 0zu′ with z ∈ WI and u′ ≤ u, for
each such expression has at most one 2 between the last two 0s. Thus Corollary 2.7 proves
noncommutativity.

Consider the B3
4 word w = uwI0 with u = 03430 and wI = 234123. It is clear that every

reduced expression for w has at least one 2 in between the last two 0 generators. Thus there
is no reduced expression of the form w = 0zu′ with z ∈ WI and u′ ≤ u (since such expressions
have no 2s in between the last two 0 generators) and so Corollary 2.7 proves noncommutativity.

Consider the E1
8 word w = uwI0 with u = 0134254310, wI = 654234567813425436542765431.

This word has an essentially unique expression, and so it is clear that every reduced expression
for w has at least two 2s in between the last two 0 generators. Hence there is no reduced
expression of the form w = 0zu′ with z ∈ WI and u′ ≤ u, for each such expression has either
zero or one 2s between the last two 0s.

Consider the H1,1
3 word w = uwI0 with u = 010 and wI = 232132321. Every reduced

expression for w has at least two 2s in between the last two 0 generators. Thus there is no
reduced expression of the form w = 0zu′ with z ∈ WI and u′ ≤ u, and so Corollary 2.7 proves
noncommutativity. Similarly, for the I2(5)1,1 word w = uwI0 with u = 010 and wI = 2121 every
reduced expression for this word has at least one 2 in between the last two 0 generators. So
Corollary 2.7 proves noncommutativity. Finally, every reduced expression for the I2(7)1 word
w = uwI0 with u = 012120 and wI = 12121 has exactly three 1s in between the last two 0
generators, and as above, Corollary 2.7 proves noncommutativity.

Claim 5: All spherical and affine cases other than those listed in Theorem 2.1 are noncommu-
tative.

Proof. Claim 4 above has provided us with a library of noncommutative examples. We use this
library to deal with the remaining cases via the following obvious fact: If I ⊆ S is spherical, and
if S′ is such that I ⊆ S′ ⊆ S, and if the parabolic Hecke algebra H I(WS′ , S′) is noncommutative,
then H I(W, S) is noncommutative too (and the same holds for specialisations with τs ≥ 1).
This is clear, since the former algebra is a subalgebra of the latter.

It is now straightforward to show that all remaining spherical and affine cases are noncom-
mutative. For example E7,5 is noncommutative since the 5 node of E7 plays the role of the
5 node in an E6 residue, and E6,5 is noncommutative by our library. Similarly Ẽ8,2 is non-
commutative since the 2 node of Ẽ8 plays the role of the 2 node in an E8 residue, and E8,2 is
noncommutative.
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Claim 6: All infinite non-affine cases are noncommutative.

Proof. The reduction arguments in this proof rely on the following fact. If Proposition 2.8 (or
Corollary 2.7) has been used to prove noncommutativity for an I-parabolic Hecke algebra with
Coxeter data mst, then the I-parabolic Hecke algebras with Coxeter data mst ≥ mst for all
s, t ∈ S are also noncommutative. This fact is proved formally in the following lemma.

Lemma 3.1. Let (W, S) be a Coxeter system with Coxeter matrix M = (mst). Let I ⊆ S.
Suppose there exist w, u, v, z ∈ W such that w = uzv, u, v, w ∈ RI , z ∈ WI , and "(w) =
"(u)+ "(z)+ "(v), and that there exist no u′, v′, z′ ∈ W with w = v′z′u′, u′ ≤ u, v′ ≤ v, z′ ∈ WI ,
and "(w) = "(v′) + "(z′) + "(u′).

Let (W, S) be a Coxeter system with Coxeter matrix M = (mst). Suppose that I ⊆ S is
spherical (for W ), and let H

I = H I(W, S) be the associated I-parabolic Hecke algebra. If
mst ≥ mst for all s, t ∈ S then the algebras H

I and H
I
τ (with τs ≥ 1) are noncommutative.

Proof. Let w = uzv be a reduced expression in W with u, v, w ∈ RI , z ∈ WI , and "(w) =
"(u) + "(z) + "(v). We claim that the corresponding conditions hold when the expression for
w is read in W . Since uzv is reduced in W , it cannot contain a subword in two letters i, j of
length larger than mij . Hence any elementary transformation of uzv in W involves a subword
in i, j of length mij = mij , and thus can also be carried out in W . Since we cannot produce
a subword of the form ss by carrying out elementary transformations in W , uzv must also be
reduced in W , and so the expression for w is reduced when read in W . Since z is a word with
letters in I, it is in W I when read in W . Next we claim that the words u, v, w, when read in W ,
are still I-reduced: Suppose for instance that w is not I-reduced when read in W . Then ws or
sw is not reduced in W for some s ∈ I. By the exchange condition, w can be rewritten (in W )
as a reduced word starting or ending in s. But as before, all the elementary transformations
which transform w into some w′s (or sw′) in W (with the word w′ of smaller length than w)
can also be carried out in W , contradicting that w is I-reduced in W .

Now assume, by way of contradiction, that in W the word w = uzv can also be written as
v′z′u′ with v′ ≤ v, u′ ≤ u, z′ ∈ W I , and "(w) = "(v′) + "(z′) + "(u′). Note first that, with
the same argument as before, the transformation uzv .→ v′z′u′ can be carried out in W as well
(and the result v′z′u′ is of course still reduced in W ). The word z′ has all letters in I, and so
represents an element of WI when read in W . Finally we claim that if u′ ≤ u in W then also
u′ ≤ u in W (and similarly for v and v′). Since u′ ≤ u in W there exists a subword u′′ of u
which, when read in W , is equal to u′. Applying the deletion condition if necessary, we may
assume that u′′ is reduced in W . Hence there exist elementary transformations u′ .→ u′′ in W .
But u′ is reduced in W , and so all these elementary transformations can be carried out in W as
well, proving that u′ ≤ u in W also. This completes the proof that our assumptions on u, v, w, z
in W are violated. So u′, v′, z′ as described cannot exist in W , which implies by Corollary 2.7
that the Hecke algebras H

I and H
I
τ (with τs ≥ 1) are noncommutative.

Suppose that W is neither spherical nor affine. Let I ⊆ S be spherical, and suppose that
H I is commutative and not in the tables in the appendix. By Claim 1 we see that |S\I| = 1,
and so by relabelling nodes if necessary we may assume that I = S\{0}.

We will prove the following reductions based on the neighbourhood of 0 in the Coxeter graph:
• The valency of 0 is at most 2, and so the diagram I = S\{0} has 1 or 2 connected components.
• If 0 has valency 1 then the bond number p is either 3 or 4.
• If 0 has valency 2 then the bond numbers p ≤ q are (p, q) = (3, 3) or (3, 4).
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For the first claim, suppose that 0 has valency 4 with bond numbers 3 ≤ p ≤ q ≤ r ≤ s. If
(p, q, r, s) = (3, 3, 3, 3) then 0 is noncommutative in a D̃4 residue, and if the bond numbers are
different from (3, 3, 3, 3) then we can use Lemma 3.1 to deduce noncommutativity. Thus 0 has
valency at most 3. Suppose that 0 has valency 3 with bond numbers 3 ≤ p ≤ q ≤ r. If there
is at least one vertex not connected to 0 then 0 is noncommutative in either a D5 residue, or is
noncommutative by Lemma 3.1 and comparison to a D5 residue. Thus if 0 has valency 3 then S
has exactly 4 vertices. Suppose that there are nodes i, j (= 0 which are connected. The ‘minimal’
case is A1

1×A1,2
2 (which is in the table in the appendix), and all other bond number possibilities

are noncommutative by Lemma 3.1. So suppose that S has exactly 4 nodes, and that there
are no other bonds other than those which involve the 0 node. If (p, q, r) = (3, 3, 3) then we
have a D4 diagram (contradicting the assumption that W is neither spherical nor affine). If
(p, q, r) = (3, 3, 4) then the 0 node is noncommutative in B̃3, and Lemma 3.1 shows that all
higher bond numbers also lead to noncommutative algebras. This completes the proof of the
first statement.

To prove the second statement, if 0 has valency 1 with bond number at least 5, then we can
compare a suitable residue with either B̃3,0 (if 0 is not connected to an end vertex), or with
B1,1,1

2 (if 0 is connected with an end vertex and there are only three vertices), or with H4,4 (if 0 is
connected with an end vertex and there are at least four vertices) to deduce noncommutativity
(applying Lemma 3.1).

To prove the third statement, suppose that the valency of 0 is 2 with bond numbers (3, n),
n ≥ 5, or (m, 4), m ≥ 4. Then we can compare an appropriate residue with H3,2 or C̃2,1 to
deduce noncommutativity (applying Lemma 3.1).

The three bullet points above place severe restrictions on the Coxeter diagram S = I ∪ {0}.
We now eliminate each possibility using our noncommutative examples from the library in the
appendix. We will give examples of the arguments used.

Case 1: The valency of 0 is 1 with p = 3. We consider each possible connected spherical
diagram I = S\{0} and each possible way of connecting 0 with a single bond to make S. For
example, suppose that I = Bn with n ≥ 2. The possible diagrams are Bi

n with i = 1, . . . , n. If
n = 2 then B1

2 and B2
2 both give B3 diagrams, a contradiction, so assume that n ≥ 3. We have

B1
n = Bn+1 and B2

n = B̃n (a contradiction). Each diagram Bi
n with 2 < i < n < i + 4 has 0 as

a noncomutative node in a B3
n−i+3 (and these are all in our table). If n ≥ i + 4, then we have a

B3
7 residue, which is noncommutative by Lemma 3.1 and comparison with E8,2. In Bn

n , n ≥ 4,
the node 0 is noncommutative in an F̃4 residue. Thus I = Bn is excluded.

Case 2: The valency of 0 is 1 with p = 4. Again we consider each diagram. For example,
suppose that I = H3. The diagram H1,1

3 is in our table, and H2,2
3 and H3,3

3 both have 0 as a
noncommutative node in an I2(5)1,1 residue.

Case 3: The valency of 0 is 2 with (p, q) = (3, 3), and I has one connected component. For
example suppose that I = An with n ≥ 2. The possibilities are Ai,j

n with 1 ≤ i < j ≤ n.
The case i = 1 and j = n is excluded, for it gives an Ãn diagram. By looking in a residue it
suffices to show that the 0 node is noncommutative in A1,k−1

k for each k ≥ 3. The diagrams
A1,2

3 and A1,3
4 are in the table in the appendix. The diagram A1,4

5 is excluded by comparing it
to an E6 diagram and using Lemma 3.1. Specifically, if we decrease the bond m12 = 3 in A1,4

5
to m12 = 2 then we get an E6 diagram with 0 playing the role of the (noncommutative) 3 node.
The diagram A1,5

6 is excluded since it has 0 as a noncommutative node in an E6 residue, and for
k ≥ 7 the A1,k−1

k diagram is excluded since it has 0 as the noncommutative k − 3 node in a Dk

residue.
Case 4: The valency of 0 is 2 with (p, q) = (3, 4), and I has one connected component.
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Suppose that 0 is connected to i ∈ I by a single bond, and to j ∈ I by a double bond (with
i (= j). The case where i and j are connected is excluded by Lemma 3.1 and the fact that 0 is
noncommutative in A1,1,2

2 . So suppose that i and j are not connected. Since I is connected, j is
connected to some k ∈ I with k (= i. Then 0 is noncommutative in an F4 residue (incorporating
i, 0, j and k) or by comparison to an F4 diagram (using Lemma 3.1).

Case 5: The valency of 0 is 2 with (p, q) = (3, 3), and I has two connected components.
Let the connected components be I1 and I2. Suppose that 0 is connected to i1 ∈ I1 and
i2 ∈ I2. If there are nodes j1, k1 ∈ I1 connected to i1 and j2, k2 ∈ I2 connected to i2 then 0 is
a noncommutative node in a D̃6 residue, or can be compared to such a vertex by Lemma 3.1.
Therefore either i1 or i2 is an end node.

Suppose that i1 is an end node of I1, and that i1 is connected to j1 ∈ I1. Assume that there
exists neighbours j2, k2 ∈ I2 of i2. Then the 0 node is noncommutative by comparison with a
D7,4 diagram, using Lemma 3.1.

Suppose that there exist j2, k2 ∈ I2 distinct neighbours of i2, and that j2 has a neighbour
m2 (= k2. Then the 0 node is noncommutative by comparison with an E6,3 diagram.

There are now 2 possibilities remaining: (i) I1 = {i1} = A1 and I2 is a ‘star’ with 0 connected
to the central node, or (ii) i1 is an end node of I1 and i2 is an end node of I2. (By a ‘star’ we
mean a central node with other nodes hanging off it. None of these outer nodes are connected to
other outer nodes, because the diagram I2 cannot have a triangle since it is spherical). Consider
case (i). If any bond number of I2 is ≥ 4 then we compare with an A1

1×B2
3 diagram. So suppose

that all bonds in I2 are 3-bonds. If I2 has at least four vertices then 0 is the noncommutative
in an A1

1×D2
4 diagram. If I2 has exactly three vertices then we have D5, and if it has exactly 2

vertices then we have A4. Thus case (i) is excluded.
We are left to consider the case when i1 is an end node of I1 and i2 is an end node of I2. We

consider these case by case. For example, suppose that I1 = An and I2 = Em for m = 6, 7, 8.
By symmetry we can suppose that 0 is connected to the node 1 of An, and 0 is not connected
to the node 6 of E6. So the possibilities are A1

n×Ek
m, with k = 1, 2, m. In A1

n×E1
m, the 0 node

is noncommutative in an E8,2 residue. In A1
n × E2

m, the 0 node is noncommutative in an E7,6

residue. Finally, in A1
n × Em

m , m = 7, 8, the 0 node is noncommutative in an A1
1 × Em

m residue,
which for both values of m is in the table.

Suppose that I1 = An and I2 = E8. By symmetry we can suppose that 0 is connected to
the 1 node of An, and so the possibilities are A1

n × Ek
8 with k = 1, 2, 8. In A1

n × E1
8 the 0 node

is noncommutative in an E8 residue, and in A1
n × E2

8 the 0 node is noncommutative in an E7

residue. In A1
n × E8

8 the 0 node is noncommutative in an A1
1 × E8

8 residue.
Case 6: The valency of 0 is two with (p, q) = (3, 4), and I has 2 connected components. Let

I1 and I2 be the connected components. Suppose that 0 is connected to i ∈ I1 by a single bond,
and to j ∈ I2 by a double bond. If |I2| > 1 then 0 is noncommutative in an F4,2 residue (or
can be compared to such a vertex using Lemma 3.1). Thus I2 = {j}. If i is not an end node
of I1 then 0 is noncommutative in a B̃4,2 residue (or can be compared to such a vertex). Thus
I2 = {j} and i is an end node of I1. So we need to consider each diagram A1,1

1 ×Xk
n for each

spherical type Xn and end vertex k of Xn.
If Xn contains a bond with bond number ≥ 4, then 0 is noncommutative in a C̃k residue

(for appropriate k). If Xn contains a vertex with degree ≥ 3, then 0 is noncommutative in a B̃k

residue (for appropriate k). Hence Xn = An and we get a Bn+2 diagram.
Thus all infinite non-affine cases are noncommutative, and the proof of Theorem 2.1 is

complete.

Proof of Theorem 2.2. The ‘if’ part is Lemma 2.5, and the ‘only if’ part is because, as we have
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seen, there are no other commutative cases other than the listed spherical cases (in which case
π = id) and the listed affine cases (in which case π is opposition in the spherical residue).

A Appendix

The appendix has 2 sections. The first section illustrates a technique that can be used to
determine if the minimal length double coset representatives of a spherical Coxeter group are
involutions (this was used in Claim 2 of the proof of Theorem 2.1). The second section gives
the tables of words that were used in the text to prove noncommutativity.

A.1 Involutions

There are various ways to determine whether the minimal length double coset representatives of
a spherical Coxeter group are involutions. For example [8, Theorem 3.1] gives a method using
the representation theory of the Coxeter group. It is also possible to determine if the double
coset representatives are involutions by a direct, elementary argument. Let us outline this in
the most involved example E8,1.

Proposition A.1. Let (W, S) be the Coxeter system of type E8 and let I = S\{1}. Each
element of RI is an involution.

Proof. Let Σ be the Coxeter complex of (W, S) with usual W -distance function δ(u, v) = u−1v.
Let X be the set of vertices of type 1 in Σ. If x ∈ X let C(x) denote the set of all chambers of Σ
containing x. For x, y ∈ X the set δ(C(x), C(y)) is a double coset WIzWI , and the W -distance
δ(x, y) between x and y is defined to be the minimal length representative of this double coset.
If w ∈ RI then (see the proof of Proposition 1.3)

#{y ∈ X | δ(x, y) = w} =
|WIwWI |

|WI |
=

|MI,w||WI |
|WI |

=
|WI |

|WI∩wIw−1 |
. (A.1)

It is known that there are exactly 10 double cosets WIwWI in E8 (see [6, Table 10.5]).
Let w0, w1 . . . , w9 be the minimal length double coset representatives. Fix the vertex x0 ∈ X
of type 1 contained in the chamber of Σ corresponding to the identity element of W . Let
i ∈ {0, 1, . . . , 9} be arbitrary. Put Si = I ∩ wiSw−1

i , and let Wi = WSi = 〈Si〉. By (A.1) the
number of vertices x ∈ X with δ(x0, x) = wi is equal to the quotient |WI |/|Wi|. The total
number of vertices of type 1 is equal to |X| = |W |/|WI | = 2160. Denote by Xi the set of vertices
x ∈ X with δ(x0, x) = wi. Thus |X0| + |X1| + · · · + |X9| = |X| = 2160.

Let w be the longest element in W . Since the opposition relation in Σ induces the trivial
permutation on S (and this permutation is given by conjugation with w), w is central in W .
Hence if wi is an involution, then so is wwi, and it interchanges x0 with the unique vertex x′i
opposite xi, where xi = wix0 is the image of x0 under wi. Consequently if wi is an involution
and if δ(x0, x′i) = wj then wj is also an involution. In this case we say that wj is complementary
to wi. Of course it could happen that i = j. In this case, xi and x′i are contained in opposite
chambers, and so the longest element w of W belongs to wiWIwiWI . Since the length of the
longest element in WI is 42 and since "(w) = 120 this implies that "(wi) ≥ 18.

We now apply the above to some specific values of wi. We take w0 = e, the identity, and
w1 = s1 = 1. Thus |X0| = 1 and |X1| = |W (D7)|/|W (A6)| = 64, and since "(w0), "(w1) < 18
we obtain complementary involutions w9 and w8, respectively, with |X9| = 1 and |X8| = 64.
Now put w2 = 13425431 (which is obtained by considering the residue of a vertex of type 6).
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The element w2 maps the generators (3, 4, 2, 5, 7, 8) to (3, 4, 5, 2, 7, 8), and so one calculates that
|X2| = |W (D7)|/|W (D4×A2)| = 280. Since "(w2) = 8 < 18 we have a complementary involution
w7 (= w2 with |X7| = 280. So far we have accounted for 2(1 + 64 + 280) = 690 of the total 2160
type 1 vertices.

In the residue of an element of type 8 (which is a Coxeter system of type E7) we find the
involutive minimal length double coset representative w3 = 13425463576452431, which maps
the generators (2, 4, 5, 6, 7) to (7, 6, 5, 4, 2). Consequently |X3| = |W (D7)|/|W (A5)| = 448. As
"(w3) = 17 < 18 we have another involution w6 with |X6| = 448, accounting for 690 + 2× 448 =
1586 of the 2160 vertices. Finally we can consider, in each of the 14 residues of type E7

through x0, the element of type 1 opposite x0. This gives rise to another involutive double coset
representative w4, with |X4| = |W (D7)|/|W (D6)| = 14. This one must be self-complementary,
as otherwise the unique missing class X5 would also contain 14 elements and the total number
of vertices does not add up to 2160. Indeed we calculate that |X5| = 560. Hence w5 is also
self-complementary. But what is more important, it must also be an involution as otherwise
w−1

5 is a different minimal double coset representative, contradicting the fact that we only have
10 of these. Hence all minimal coset representatives are involutions.

A.2 Tables of words to prove noncommutativity

Conventions: We use standard Bourbaki labelling for the spherical and affine types [4, Plates
I–IX]. The cases H3 and H4 are not given an explicit labelling in Bourbaki. We adopt the
labelling of H3 with m12 = 3 and m23 = 5, and of H4 with m12 = m23 = 3 and m34 = 5.

Each word is of the form w = uwIsi, where I = S\{i}. We also list the index k used in
the argument of Proposition 2.8. The cases where a slight modification of Proposition 2.8 is
required are labelled by (∗). The precise details for these cases are given in Claim 4 of Section 3.

Spherical cases u wI k

Dn,i,
n
2 < i < n− 1 see below see below n

E6,5 542345 1634 6
E7,6 65423456 17345 7
E8,7 7654234567 183456 8
E8,2 245678345672 456345134 1
F4,2 232 431 1
H3,2 232 31 1
H4,2 23432 431 1
H4,4 434323434 123 1(∗)

The Dn,i word (with n/2 < i < n− 1) is

u = [i(i− 1) · · · (2i− n + 1)][(i + 1)i · · · (2i− n + 2)] · · · [(n− 1)(n− 2) · · · i]

wI =

{
[n(n− 2)(n− 3) · · · (i + 1)][12 · · · (i− 1)] if i/2 < i < n− 2
n12 · · · (n− 3) if i = n− 2.
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Affine cases u wI k

B̃n,i, 1 < i < n− 1 i · · · 320123 · · · i (i + 1) · · ·n(n− 1) · · · (i + 1) i + 1
B̃n,n [n · · · 1][n · · · 2] · · · [n(n− 1)][n] 023 · · · (n− 2)(n− 1) 0

C̃n,i, 1 ≤ i < n i · · · 3210123 · · · i (i + 1) · · ·n(n− 1) · · · (i + 1) i + 1
D̃n,i, 1 < i < n− 1 i · · · 320123 · · · i (i + 1) · · ·n(n− 2) · · · (i + 1) i + 1

Ẽ7,2 245341031245342 65764534 7
Ẽ8,1 134562453413245676805432456781 345672456345243 0(∗)
Ẽ8,8 876542345678 1034567 0
F̃4,1 12321 4320 0
F̃4,4 43231234 3231230123 0(∗)
G̃2,1 212 01 0
G̃2,2 12121 02 0
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Infinite non- u wI k
affine cases

A1,1,2
2 010 21 2

A1,2
3 0210 2312 3

A1,3
4 032430 123 1

B1,2
2 01210 212 2(∗)

B1,1,1
2 010 121 2

B1,3
3 03230 12321 1

B3,3
3 0323032303230 1323 1

B3
4 03430 234123 1(∗)

B3
5 032430 1234543 5

B3
6 032430 123456543 5

D1,4
4 01240 123421 3

D3
5 03243120 3543 5

D1,5
5 05342350 12345321 1

D3
6 03243120 346543 6

D1,6
6 06453460 1234564321 1

D3
7 03243120 34576543 7

E3
6 0345243013452430 61345243 6

E2
7 02435420 65431243524654376542 7

E6
7 06543245607654324560 1765432456 1

E1
8 0134254310 654234567813425436542765431 2(∗)

E7
8 076543245670876543245670 187654324567 1

F 2
4 02320 1234232 4

F 1,1
4 0123210123210 412321 4

F 1,4
4 0432340 12321 1

H2
3 02320 32132 1

H3
3 03230 2321323 1

H1,1
3 010 232132321 2(∗)

H1
4 012343210 43423412324341234321 4(∗)

H2
4 0234320 4342312 1

I2(5)1,1 010 2121 2(∗)
I2(7)1 012120 12121 1(∗)

A1
1 ×A1,2

2 0120 11′ 1′

A1
1 × F 1

4 0123210 1′4321 1′

A1
1 ×H1

3 0123210 1′321 1′

A1
1 ×B2

3 02320 121′ 1′

A1
1 ×D2

4 023420 1′12 1′

A1
1 × E7

7 076542345670 11′34567 1′

A1
1 × E8

8 08765423456780 11′345678 1′

(The node of the A1 component in the final 7 composite cases is labelled by 1′).
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