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1 Introduction

In 1974, Jacques Tits [13] classified spherical buildings of rank at least 3, thereby treating
all polar spaces as introduced and studied by Veldkamp [16]. Veldkamp also classified
large classes of polar spaces, in particular, he classified all polar spaces of rank at least
3 for which the planes are Desarguesian and are constructed over a field of characteristic
different from 2. In order to treat the missing cases, Jacques Tits introduced pseudo-
quadratic forms, defined groups of mixed type, and proved the existence of the Tits
index E28

7,3 in algebraic groups of type E7 such that the field E of definition is included
in a Cayley-Dickson division algebra over a subfield K of E, and E is a quadratic Galois
extension of K. In the latter case, the associated polar space is then constructed using
the parabolic subgroups of the algebraic group in question. This polar space cannot be
embedded in a projective space, as its planes are non-Desarguesian Moufang planes. For
this reason, these polar spaces are called non-embeddable polar spaces. There is also a
class of non-embeddable non-thick polar spaces in rank 3, but these are well understood
and we will not be concerned with these in the present paper (the non-thick polar spaces
of rank 3 are the line Grassmannians of projective spaces of rank 3).

In 1987, Ronan and Tits [9] presented a general construction of buildings with no sub-
diagram of type H3, providing all spherical buildings. In particular, this applies to the
non-embeddable polar spaces (see Condition (b) of Section 5 of [?]). Some more details
of this construction can be found in Chapter 40 of Tits and Weiss [14], in particular
Statements (40.54) and (40.55) treat the case of non-embeddable polar spaces stated in
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(40.25)(iii). In 1990, Bernhard Mühlherr [8] constructed the thick non-embeddable polar
spaces as fixed point sets of involutions in buildings of type E7 (although this construction
is also apparent on page 89 of [12]). In the present paper, we will provide a coordinate
construction of the thick non-embeddable polar spaces, in the spirit of the coordinatiza-
tion of the non-Desarguesian Moufang planes. An advantage of the latter over the former
constructions is that it is the most explicit and allows for some applications that were
apparently out of reach before. We mention two examples.

In [3], we explicitly construct an embedding of the corresponding dual polar space in a
projective space of dimension 55, and we show that this embedding is the universal one.
The universality of that embedding, which is the embedding deduced from the highest
weight module for groups of type E7, was an open question since the early 90’s (see
e.g. [11, p. 229]), and the introduced coordinatization plays a crucial role in the proof.
Another application is given in [4], where the authors use the coordinates to show that
the geometry in a non-embeddable polar space opposite a chamber is simply connected.
The latter was open since 1996, see [1, p. 66].

We note that our approach allows to uniformly construct all polar spaces related to a
quadratic alternative division algebra. That is exactly the way we will proceed. Note
that, in [3], we also establish universality of a certain explicitly defined embedding of the
corresponding dual polar space for arbitrary quadratic alternative division algebras.

The non-embeddable polar spaces are intimately related to the Cayley-Dickson division
algebras. Hence, we will need to recall some basic results about such algebras. This will be
done in Section 2 and in the beginning of Section 4. In Section 3, we introduce coordinates
for some classical polar spaces, and we extend this coordinatization in Section 4 to obtain
the non-embeddable (or non-classical) polar spaces of rank 3. Hence our approach is
rather indirect: we do not start from a known description (using algebraic groups, for
instance) and derive ours, but we simply construct from scratch a geometry (by analogy
with the other polar spaces in the family) and prove it is a polar space either isomorphic
to one of the classical examples of Section 3, or with non-Desarguesian Moufang planes;
it then follows from the classification by Jacques Tits [13] that in the latter case the polar
space in question is the unique non-embeddable one related to the given Cayley-Dickson
division algebra.

Our treatment requires a lot of computations in Cayley-Dickson division algebras. We
have written down the most intricate cases, leaving the easier ones to the interested reader.
In fact, in most cases that we left out, the non-associativity is not a burden as it does not
happen that one has to multiply three general elements (e.g., in the definition of planes,
only Type VIII contains an expression which requires parentheses). Note that we did not
perform any computation on a computer; everything has been checked only by hand.
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2 Alternative division rings and Moufang planes

An alternative division ring is a set D of size at least 2 which is endowed with two binary
operations, an addition + and a multiplication ·, satisfying the following properties:

• the structure (D,+) is a commutative group;

• the multiplication is left- and right-distributive with respect to the addition;

• there exists a (necessarily unique) neutral element 1 for the multiplication;

• if 0 denotes the neutral element for the addition, then for every a ∈ D\{0}, there exists
a (necessarily unique) element a−1 ∈ D such that a−1 · a = 1 = a · a−1;

• for every a ∈ D \ {0} and every b ∈ D, we have a−1 · (a · b) = b = (b · a) · a−1.

It is a costume to denote the product a ·b of two elements a, b ∈ D by ab. In the literature,
one can find alternative but equivalent definitions for the notion of alternative division
ring, see e.g. Tits and Weiss [14].

The alternative division rings with associative multiplication are precisely the skew fields.
An important class of (non-associative) alternative division rings are the so-called Cayley-
Dickson division algebras. Explicit constructions of such alternative division rings can be
found in Jacobson [6, p. 426] (for characteristic distinct from 2), Schafer [10, p. 5] (for
characteristic distinct from 2), Tits and Weiss [14, Section 9.8] and Van Maldeghem [15,
Appendix B]. We describe the construction given in [15].

Suppose K is a field and l1, l2, l3 ∈ K such that the equation X2
0 − l1X2

1 +X0X1− l2X2
2 +

l1l2X
2
4−l2X2X4−l3X2

3 +l1l3X
2
7−l3X3X7+l2l3X

2
5−l1l2l3X2

6 +l2l3X5X6 = 0 has no solutions
for (X0, X1, . . . , X7) ∈ K8 distinct from (0, 0, . . . , 0). Then let O be an 8-dimensional
vector space over K with basis {1, e1, e2, e3, e4, e5, e6, e7} such that 1 ∈ K. Then O can be
given the structure of an alternative division ring if we define the multiplication in the
following way:

· 1 e1 e2 e3 e4 e5 e6 e7

1 1 e1 e2 e3 e4 e5 e6 e7
e1 e1 l1 + e1 e2 − e4 e3 − e7 −l1e2 e6 l1e5 + e6 −l1e3
e2 e2 e4 l2 −e5 l2e1 −l2e3 −l2e7 −e6
e3 e3 e7 e5 l3 e6 l3e2 l3e4 l3e1
e4 e4 l1e2 + e4 l2 − l2e1 −e6 −l1l2 −l2e3 + l2e7 l1l2e3 −l1e5 − e6
e5 e5 e5 − e6 l2e3 −l3e2 l2e3 − l2e7 −l2l3 −l2l3 + l2l3e1 −l3e2 + l3e4
e6 e6 −l1e5 l2e7 −l3e4 −l1l2e3 −l2l3e1 l1l2l3 l1l3e2
e7 e7 l1e3 + e7 e6 l3 − l3e1 l1e5 + e6 l3e2 − l3e4 −l1l3e2 −l1l3

The Cayley-Dickson division algebras are precisely the alternative division rings which can
be obtained in the above-described way. The field K consists of those elements of O which
commute with every element of O. The Cayley-Dickson division algebra O has a so-called
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standard involution which maps X0 +X1e1 +X2e2 +X3e3 +X4e4 +X5e5 +X6e6 +X7e7

to X0 +X1 −X1e1 −X2e2 −X3e3 −X4e4 −X5e5 −X6e6 −X7e7, (X0, X1, . . . , X7) ∈ K8.

The multiplication in a Cayley-Dickson division algebra is not associative. In fact, it
is a result due to Bruck and Kleinfeld [2] and Kleinfeld [7] that the Cayley-Dickson
division algebras are the only alternative division rings in which the multiplication is not
associative. A proof of that result can also be found in Tits and Weiss [14, Chapter 20]
and Van Maldeghem [15, Appendix B]. The proof given in [15] is attributed to Jacques
Tits.

In this paper, we will also meet a class of alternative division rings in which the multi-
plication is associative, but not commutative. Suppose K is a field and l1, l2 ∈ K such
that the equation X2

0 − l1X2
1 + X0X1 − l2X2

2 + l1l2X
2
3 − l2X2X3 = 0 has no solutions for

(X0, X1, X2, X3) ∈ K4 distinct from (0, 0, 0, 0). Let H be a fourdimensional vector space
over K with basis {1, i, j, k} such that 1 ∈ K. Then H can be given the structure of a
skew field if we define the multiplication in the following way:

· 1 i j k

1 1 i j k
i i l2 k l2j
j j i− k l1 + j −l1i
k k l2 − l2j l1i+ k −l1l2

The quaternion division algebras are precisely the skew fields which can be obtained in
the above described way. The field K consists of those elements of H which commute with
every element of H. The quaternion division algebra H has a unique involution which only
fixes each element of K. The involution is called the standard involution of H and maps
X0 +X1i+X2j+X3k to X0 +X2−X1i−X2j−X3k, (X0, X1, X2, X3) ∈ K4. Every Cayley-
Dickson division algebra has subalgebras that are quaternion division algebras. In fact,
it can be seen that the multiplication table above for the quaternion division algebras
is a ‘sub-table’ of the multiplication table for the Cayley-Dickson division algebras by
identifying i with e2, j with e1 and k with e4.

With every alternative division ring D, we can associate a point-line geometry πD in the
following way. There are three types of points:

• a symbol (∞), where ∞ 6∈ D;

• symbols (s), where s ∈ D;

• symbols (a, b), where a, b ∈ D.

There are also three types of lines:

• the set [∞] := {(∞)} ∪ {(λ) : λ ∈ D};

• the sets [k] := {(∞)} ∪ {(k, λ) : λ ∈ D};
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• the sets [m, k] := {(m)} ∪ {(λ,mλ+ k) : λ ∈ D}.

It is well-known (and straightforward to verify) that πD is a projective plane. In fact,
πD is a Moufang plane which means that every line is a so-called translation line. It is
also known that every Moufang plane can be coordinatized by an alternative division
ring in the above described way. More background information on the coordinatization
of (Moufang) projective planes can be found in the monograph [5] by Hughes and Piper.

3 A common coordinatization of some families of po-

lar spaces

In this section, we present a common coordinatization of some families of polar spaces of
rank 3. In the following section, we will show that one other class of polar spaces (namely
the thick non-embeddable polar spaces of rank 3) can be coordinatized in a similar way.
We need the description below in order to identify the polar spaces we will construct
merely using coordinates.

(i) Let O = K be a field and let σ be the identical map on the set O = K. Let ζ
be a symplectic polarity of PG(5,O) and let W (5,O) denote the symplectic polar space
associated with ζ. The points of W (5,O) are the points of PG(5,O) and the singular
subspaces of W (5,O) are those subspaces α of PG(5,O) for which α ⊆ αζ . We can
choose a reference system in PG(5,O) such that two distinct points (X0, X1, . . . , X5) and
(Y0, Y1, . . . , Y5) of PG(5,O) determine a singular line of W (5,O) if and only if

X0Y5+X1Y4+X2Y3−X3Y2−X4Y1−X5Y0 = Xσ
0 Y5+Xσ

1 Y4+Xσ
2 Y3−Xσ

3 Y2−Xσ
4 Y1−Xσ

5 Y0 = 0.

A point (X0, X1, . . . , X5) of PG(5,O) is a point of W (5,O) if and only if

Xσ
0X5 +Xσ

1X4 +Xσ
2X3 ∈ K.

The last condition looks somewhat weird since it is always satisfied (also, every point of
PG(5,O) is also a point of W (5,O)). It will however soon become clear why we have
introduced this “superfluous condition”.

(ii) Suppose O and K are two fields such that O is a quadratic separable extension of K.
Let σ denote the unique nontrivial automorphism of O fixing each element of K. Let Ω
be a nonsingular Hermitian variety of PG(5,O) whose equation with respect to a suitable
reference system is given by Xσ

0X5 −Xσ
5X0 +Xσ

1X4 −Xσ
4X1 +Xσ

2X3 −Xσ
3X2 = 0. This

equation is equivalent with the following condition:

Xσ
0X5 +Xσ

1X4 +Xσ
2X3 ∈ K.
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Two distinct points (X0, X1, . . . , X5) and (Y0, Y1, . . . , Y5) of Ω are contained in a line of
PG(5,O) which is completely contained in Ω if and only if

Xσ
0 Y5 +Xσ

1 Y4 +Xσ
2 Y3 −Xσ

3 Y2 −Xσ
4 Y1 −Xσ

5 Y0 = 0.

The points and subspaces of PG(5,O) which are contained in Ω define a Hermitian polar
space PΩ.

(iii) Suppose O and K are two fields such that K ⊆ O, charK = charO = 2 and O2 :=
{λ2 : λ ∈ O} ⊆ K. Let σ be the identity map of O. Let Ω denote the set of all points
(X0, X1, . . . , X5) of PG(5,O) for which

X0X5 +X1X4 +X2X3 = Xσ
0X5 +Xσ

1X4 +Xσ
2X3 ∈ K.

Two distinct points (X0, X1, . . . , X5) and (Y0, Y1, . . . , Y5) of Ω are contained in a line of
PG(5,O) which is completely contained in Ω if and only if

X0Y5+X1Y4+X2Y3−X3Y2−X4Y1−X5Y0 = Xσ
0 Y5+Xσ

1 Y4+Xσ
2 Y3−Xσ

3 Y2−Xσ
4 Y1−Xσ

5 Y0 = 0.

The points and subspaces of PG(5,O) which are contained in Ω define a polar space PΩ.
Observe that PΩ is a subspace of W (5,O). If K = O, then PΩ

∼= W (5,O). If K = O2,
then PΩ is isomorphic to the polar space Q(6,O) of rank 3 associated to a nonsingular
quadric of Witt index 3 of PG(6,O). If K 6= O, then we call PΩ the polar space of rank 3 of
mixed type associated with (O,K). Polar spaces, and more generally, spherical buildings
of mixed type were introduced in Chapter 10 of [13] through the notion of ‘groups of
mixed type’.

(iv) Suppose that O is a quaternion division algebra, that K is the center of O and
that σ is the standard involution of O. Let U be a 6-dimensional right vector space
over O and let PG(5,O) denote the 5-dimensional projective space associated with U .
Suppose we have fixed a basis of U . Then the points of PG(5,O) can be represented by
6-tuples (X0, X1, . . . , X5), where X0, X1, . . . , X5 ∈ O. Let Ω denote the set of all points
(X0, X1, . . . , X5) of PG(5,O) for which

Xσ
0X5 +Xσ

1X4 +Xσ
2X3 ∈ K.

Two distinct points (X0, X1, . . . , X5) and (Y0, Y1, . . . , Y5) of Ω are contained in a line of
PG(5,O) which is completely contained in Ω if and only if

Xσ
0 Y5 +Xσ

1 Y4 +Xσ
2 Y3 −Xσ

3 Y2 −Xσ
4 Y1 −Xσ

5 Y0 = 0.

The points and subspaces of PG(5,O) which are completely contained in Ω define a polar
space PΩ which we call a quaternionic polar space. Observe also that the map q from U
to the quotient group O/K which maps the vector with coordinates (X0, X1, . . . , X5) to
(Xσ

0X5 +Xσ
1X4 +Xσ

2X4) +K is a (σ,−1)-pseudo-quadratic form and that PΩ is the polar
space associated with this pseudo-quadratic form.
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Now, let (O,K, σ) be as in (i), (ii), (iii) or (iv) above, and let P be the polar space of rank
3 associated with (O,K, σ). A point (X0, X1, . . . , X5) of PG(5,O) is a point of P if and
only if Xσ

0X5 +Xσ
1X4 +Xσ

2X3 ∈ K. This condition allows us to give explicit coordinates
to the points of P . We can divide the points of P into the following six classes.

• Type 0: The point (∞) := (0, 0, 0, 0, 0, 1).

• Type 1: The points (x) := (0, 0, 0, 0, 1, x) where x ∈ O.

• Type 2: The points (x1, x2) := (0, 0, 0, 1, x1, x2), where x1, x2 ∈ O.

• Type 3: The points (x1, x2; k) := (0, 0, 1, k, x1, x2), where x1, x2 ∈ O and k ∈ K.

• Type 4: The points (x1, x2, x3; k) := (0, 1, x1, x2, k − xσ1x2, x3), where x1, x2, x3 ∈ O
and k ∈ K.

• Type 5: The points (x1, x2, x3, x4; k) := (1, x1, x2, x3, x4, k − xσ1x4 − xσ2x3), where
x1, x2, x3, x4 ∈ O and k ∈ K.

Two points (X0, X1, . . . , X5) and (Y0, Y1, . . . , Y5) of P are collinear (as points of P) if and
only if Xσ

0 Y5 + Xσ
1 Y4 + Xσ

2 Y3 −Xσ
3 Y2 −Xσ

4 Y1 −Xσ
5 Y0 = 0. This condition easily allows

us to verify the following proposition.

Proposition 3.1 Let x1, x2, x3, x4, y1, y2, y3, y4 ∈ O and k, l ∈ K.

• The point (∞) is collinear with all points of Type 1, all points of Type 2, all points of
Type 3 and all points of Type 4. The point (∞) is collinear with no point of Type 5.

• The point (x1) is collinear with all points of Type 1, all points of Type 2 and all points
of Type 3. The point (x1) is collinear with no point of Type 4. The point (x1) is collinear
with the point (y1, y2, y3, y4; l) of Type 5 if and only if x1 + yσ1 = 0.

• The point (x1, x2) is collinear with all points of Type 2 and no point of Type 3. The
point (x1, x2) is collinear with the point (y1, y2, y3; l) if and only if x1 + yσ1 = 0. The point
(x1, x2) is collinear with the point (y1, y2, y3, y4; l) if and only if y2 + xσ1y1 + xσ2 = 0.

• The point (x1, x2; k) is collinear with the point (y1, y2; l) if and only if k = l. The point
(x1, x2; k) is collinear with the point (y1, y2, y3; l) if and only if y2−ky1−xσ1 = 0. The point
(x1, x2; k) is collinear with the point (y1, y2, y3, y4; l) if and only if y3−ky2−xσ1y1−xσ2 = 0.

• The point (x1, x2, x3; k) is collinear with the point (y1, y2, y3; l) if and only if l − k =
yσ1 y2+xσ2y1−xσ1y2−xσ2x1. The point (x1, x2, x3; k) is collinear with the point (y1, y2, y3, y4; l)
if and only if y4 + xσ1y3 − xσ2y2 − (k − xσ2x1)y1 − xσ3 = 0.

• The points (x1, x2, x3, x4; k) and (y1, y2, y3, y4; l) are collinear if and only if l − k =
yσ1 y4 + yσ2 y3 + xσ3y2 + xσ4y1 − xσ1y4 − xσ2y3 − xσ4x1 − xσ3x2.
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Since a polar space of finite rank is completely determined by its point set and the
collinearity relation defined on this point set, Proposition 3.1 can be used to give explicit
descriptions of the lines and planes of P . We have done this and these explicit descriptions
can be found in the next section.

The primary goal of this paper was to give a coordinatization of the nonclassical polar
spaces which are associated with Cayley-Dickson division algebras. We tried to achieve
this goal by altering the above-alluded descriptions of the lines and planes so that they also
would give rise to a polar space in the case that O is a Cayley-Dickson division algebra,
K is the center of O and σ is the standard involution of O. An important obstacle toward
that goal was the fact that the multiplication in a Cayley-Dickson division algebra is not
commutative nor associative, implying that in the descriptions of the lines and planes,
the order in which the various multiplications should be carried out needs to be explicitly
indicated. We were successful in doing that. As we will see, with the descriptions of the
lines and planes given in the next section we also obtain a polar space if one starts with
a Cayley-Dickson division algebra.

In the following section, we will not repeat the explicit computations that allowed us to
obtain explicit expressions for the lines and planes. We will rather follow another path1.
We will give the descriptions for the lines right from the start. Then we will prove that
this structure is a polar space, which we will be able to identify in case our alternative
division ring is associative. If not, then we need to prove some extra properties such as
the fact that the planes are projective planes over our non-associative alternative division
ring. There are several ways to do this, and here we choose not to do it in the most
economical way, but to present coordinates for all planes. The advantage of this approach
is that it provides an alternative way of defining the polar spaces with coordinates, by
giving only the coordinates of the points and the planes. In fact, the lines can easily be
deduced from the description of the planes. Indeed, the parameters s, a and b that are
mentioned in the description of each plane also occur in the description of the Moufang
plane at the end of Section 2, and identifying the corresponding points (those having the
same values for s, a and b) in both descriptions gives rise to an explicit isomorphism
between the two planes (see proof of Proposition 4.15). The explicit description of the
planes shall also be used in the applications in [3] and [4].

4 A common construction of some families of polar

spaces of rank 3

Throughout this section, O is an alternative division ring. The center Z(O) of O is defined
to be the set of all a ∈ O such that ab = ba, a(bc) = (ab)c, (ba)c = b(ac) and (bc)a = b(ca)

1It seems we have to follow this alternative path anyway in case we deal with a Cayley-Dickson division
algebra. In that case, the associated polar space is not embeddable in a projective space and so there
seems to be no natural way to attribute homogeneous coordinates to its points as it was the case in each
of the four above-discussed cases.
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for all b, c ∈ O. Clearly, Z(O) is a field and O can be regarded as an algebra over Z(O).

4.1 Quadratic alternative division rings

Suppose F is a subfield of Z(O). We say that O is quadratic over F if there exist (neces-
sarily unique) functions T : O→ F and N : O→ F such that:

• a2 − T (a)a+N(a) = 0 for any a ∈ O;

• T (a) = 2a and N(a) = a2 for any a ∈ F.

The following proposition is precisely Theorem 20.3 of Tits and Weiss [14].

Proposition 4.1 ([14]) Suppose O is an alternative division ring which is quadratic
over some subfield K of its center Z(O). Let T : O → K and N : O → K be the unique
functions as defined above and put aσ := T (a)− a for all a ∈ O. Then exactly one of the
following holds:

(a) O = K is a field and σ = 1;

(b) O and K are fields, O is a separable quadratic extension of K and σ is the nontrivial
element of the Galois group Gal(O/K);

(c) O is a field of characteristic 2, σ = 1 and O2 ⊆ K 6= O;

(d) O is a quaternion division algebra, K = Z(O) and σ is the standard involution of O;

(e) O is a Cayley-Dickson division algebra over K = Z(O) and σ is the standard involution
of O.

In each case, σ is an involution of O and N(a) = aσa ∈ K for all a ∈ O.

In the sequel of this section, we suppose that O is an alternative division ring which
is quadratic over some subfield K of its center Z(O). By Proposition 4.1, there are
five possibilities for the pair T := (O,K). Let σ be the involution of O as defined in
Proposition 4.1. For each a ∈ O, the elements a + aσ and aσ+1 := aσa = aaσ belong to
K. If a ∈ K, then aσ = a. If a 6= 0, then, since aσ = aσ+1 · a−1 with aσ+1 ∈ K, we have
(aσ)−1 = (a−1)σ = a

aσ+1 . We denote (aσ)−1 = (a−1)σ also by a−σ.

We prove in this section that with the pair T there is associated a polar space PT . We
also determine which kind of polar space PT is. In several proofs, we will invoke some
properties of alternative division rings. In Propositions 4.2 and 4.3 below, we state some
results which we will need later.

For all a, b, c ∈ O, we define the commutator [a, b] of a and b as the number ab − ba and
the associator [a, b, c] of a, b and c as the number (ab)c− a(bc). Since O is an alternative
division ring, we have [a, b] = 0 for all a, b ∈ O for which {a, b} ∩ K 6= ∅, [a, b, c] = 0 for
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all a, b, c ∈ O for which {a, b, c} ∩ K 6= ∅ and [a−1, a, b] = [b, a, a−1] = 0 for all a, b ∈ O
for which a 6= 0. The commutator can be regarded as a map from O2 to O and the
associator can be regarded as a map from O3 to O. These maps are K-linear in each of
their components.

The following properties of alternative division rings are well-known, see e.g. Bruck and
Kleinfeld [2], Tits and Weiss [14, Chapter 9] and Van Maldeghem [15, Appendix B].

Proposition 4.2 (1) If a, b, c ∈ O, then [a, b, c] = 0 if a, b and c are not mutually
distinct2.

(2) We have [b, a] = −[a, b] for all a, b ∈ O.

(3) If a1, a2, a3 ∈ O, then [aπ(1), aπ(2), aπ(3)] = sgn(π) · [a1, a2, a3] for any permutation π of
{1, 2, 3}.

(4) The Moufang identities hold in O. This means that a(b(ac)) = (aba)c, ((ab)c)b =
a(bcb) and (ac)(ba) = a(cb)a for all a, b, c ∈ O.

(5) For all a, b, c ∈ O, we have a · [a, b, c] = [a, ba, c] = [a, b, ca] and [a, b, c] ·a = [a, ab, c] =
[a, b, ac].

(6) The subring generated by two distinct elements of O is associative.

The following properties can be derived from Proposition 4.2.

Proposition 4.3 (1) For all a, b, c ∈ O, we have aσ · [a, b, c] = [a, baσ, c] = [a, b, caσ] and
[a, b, c] · aσ = [a, aσb, c] = [a, b, aσc].

(2) For all a, b, c ∈ O with a 6= 0, we have a−1 · [a, b, c] = [a, ba−1, c] = [a, b, ca−1] and
[a, b, c] · a−1 = [a, a−1b, c] = [a, b, a−1c].

(3) For all a, b, c ∈ O, we have [aσ, b] = [a, bσ] = −[a, b] and [aσ, b, c] = [a, bσ, c] =
[a, b, cσ] = −[a, b, c].

(4) For all a, b, c ∈ O, we have [a, b]σ = −[a, b] and [a, b, c]σ = −[a, b, c].

(5) For all a, b ∈ O, we have (ab)σ+1 = aσ+1bσ+1.

(6) Let a, b, c ∈ O. Then T (ab) = T (ba) and T ((ab)c) = T (a(bc)). Hence, T (a(bc)) =
T ((ab)c) = T (b(ca)) = T ((bc)a) = T (c(ab)) = T ((ca)b).

(7) For all a, b, c ∈ O, we have aσ+1(bσc + cσb) = (aσbσ)(ca) + (aσcσ)(ba) = (bσaσ)(ac) +
(cσaσ)(ab).

(8) For all a, b, c, d ∈ O, we have aσ((bc)d) + bσ((ac)d) = (c(daσ))b+ (c(dbσ))a.

2So, (ab)a = a(ba) for all a, b ∈ O. We denote this number also by aba.
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Proof. (1)+(2) Claim (2) follows from Proposition 4.2(5). Claim (1) follows from (2)
and the fact that aσ = aσ+1a−1 with aσ+1 ∈ K. Alternatively, Claim (1) follows from
Proposition 4.2(5) if one takes into account that aσ = T (a)− a with T (a) ∈ K and Claim
(2) follows from (1) and the fact that a−1 = aσ

aσ+1 with aσ+1 ∈ K.

(3) We have [aσ, b] = [T (a) − a, b] = [T (a), b] − [a, b] = −[a, b] and [aσ, b, c] = [T (a) −
a, b, c] = [T (a), b, c]− [a, b, c] = −[a, b, c]. The other claims are proved in a similar way.

(4) We have [a, b]σ = (ab − ba)σ = −aσbσ + bσaσ = −[aσ, bσ] = −[a, b] and [a, b, c]σ =
((ab)c− a(bc))σ = −(cσbσ)aσ + cσ(bσaσ) = −[cσ, bσ, aσ] = [c, b, a] = −[a, b, c].

(5) This follows from Proposition 4.2(6).

(6) We have T (ab) = ab+bσaσ = ba+aσbσ+[a, b]+[bσ, aσ] = T (ba)+[a, b]+[b, a] = T (ba)
and T ((ab)c) = (ab)c + cσ(bσaσ) = a(bc) + (cσbσ)aσ + [a, b, c] − [cσ, bσ, aσ] = T (a(bc)) +
[a, b, c] + [c, b, a] = T (a(bc)).

(7) Using (6), we have (aσbσ)(ca) + (aσcσ)(ba) = T ((aσbσ)(ca)) = T ((ca)(aσbσ)) =
T (c(a(aσbσ))) = T (c(aσ+1bσ)) = aσ+1 · T (cbσ) = aσ+1 · T (bσc) = aσ+1(bσc + cσb) and
(bσaσ)(ac)+(cσaσ)(ab) = T ((bσaσ)(ac)) = T (bσ(aσ(ac))) = T (bσ(aσ+1c)) = aσ+1 ·T (bσc) =
aσ+1(bσc+ cσb).

(8) It suffices to show that aσ((ac)d) = (c(daσ))a, because then the result will follow by
substituting a + b for a. Now we have aσ((ac)d) = aσ([a, c, d] + a(cd)) = [a, caσ, d] +
aσ+1(cd), where we have used (1). By (1) and (3), this equals [aσ, acσ, d] + (cd)aσ+1 =
−[aσ, c, d]a+ ((cd)aσ)a = (−[c, d, aσ] + (cd)aσ)a = (c(daσ))a. �

4.2 A point-line approach

We are now ready to describe our polar space. Let ∞ be a symbol not belonging to O
and let Ω be the following set:

{(∞), (x1), (x1, x2), (x1, x2; k), (x1, x2, x3; k), (x1, x2, x3, x4; k) : x1, x2, x3, x4 ∈ O, k ∈ K}.

We call the elements of Ω points. The point (∞) is called the point of Type 0. If
x1, x2, x3, x4 ∈ O and k ∈ K, then (x1) is called a point of Type 1, (x1, x2) is called a
point of Type 2, (x1, x2; k) is called a point of Type 3, (x1, x2, x3; k) is called a point of
Type 4 and (x1, x2, x3, x4; k) is called a point of Type 5. We now define twelve families of
subsets of Ω which we call lines.

(A) Let L1 be the following set of points:

{(∞)} ∪ {(λ) : λ ∈ O}.

We call L1 the line of Type A.
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(B) For every x ∈ O, let L2(x) denote the following set of points:

{(∞)} ∪ {(x, λ) : λ ∈ O}.

We call L2(x) a line of Type B.

(C) For every x ∈ O and every k ∈ K, let L3(x, k) denote the following set of points:

{(∞)} ∪ {(x, λ; k) : λ ∈ O}.

We call L3(x, k) a line of Type C.

(D) For all x, y ∈ O and every k ∈ K, let L4(x, y, k) denote the following set of points:

{(∞)} ∪ {(x, y, λ; k) : λ ∈ O}.

We call L4(x, y, k) a line of Type D.

(E) For all x, y, z ∈ O, let L5(x, y, z) denote the following set of points:

{(x)} ∪ {(λ, z + x(λ− y)) : λ ∈ O}.

We call L5(x, y, z) a line of Type E. The set L5(x, y, z) contains the points (x) and (y, z).

(F) For all x, y, z ∈ O and every k ∈ K, let L6(x, y, z, k) be the following set of points:

{(x)} ∪ {(λ, z + x(λ− y); k) : λ ∈ O}.

We call L6(x, y, z, k) a line of Type F. The set L6(x, y, z, k) contains the points (x) and
(y, z; k).

(G) For all x, y, z, u ∈ O and every k ∈ K satisfying x = −yσ, let L7(x, y, z, u, k) denote
the following set of points:

{(x)} ∪ {(y, z, u, λ; k) : λ ∈ O}.

We call L7(x, y, z, u, k) a line of Type G.

(H) For all x, y, u, v, w ∈ O and every k ∈ K satisfying u = −xσ, let L8(x, y, u, v, w, k)
be the following set of points:

{(x, y)} ∪ {(u, λ, w + y(λ− v); k) : λ ∈ O}.

We call L8(x, y, u, v, w, k) a line of Type H. The set L8(x, y, u, v, w, k) contains the points
(x, y) and (u, v, w; k).

(I) For all x, y, z, u, v, w ∈ O and every k ∈ K satisfying y = −uσ−zσx, let L9(x, y, z, u, v, w,
k) be the following set of points:

{(x, y)} ∪ {(z, u, λ, w + x(λ− v); k) : λ ∈ O}.
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We call L9(x, y, z, u, v, w, k) a line of Type I. The set L9(x, y, z, u, v, w, k) contains the
points (x, y) and (z, u, v, w; k).

(J) For all k1, k2 ∈ K and all x, y, u, v, w ∈ O satisfying v = xσ+k1u, let L10(x, y, u, v, w, k1,
k2) be the following set of points:

{(x, y; k1)}∪{(λ, v+k1(λ−u), w+y(λ−u); k2+x(λ−u)+(λ−u)σxσ+k1(λσ+1−uσ+1)) : λ ∈ O}

= {(x, y; k1)}∪{(λ, v+k1(λ−u), w+y(λ−u); k2+vσ(λ−u)+(λ−u)σv+k1(λ−u)σ+1) : λ ∈ O}.

We call L10(x, y, u, v, w, k1, k2) a line of Type J. The set L10(x, y, u, v, w, k1, k2) contains
the points (x, y; k1) and (u, v, w; k2).

(K) For all x, y, z, u, v, w ∈ O and all k1, k2 ∈ K satisfying v = xσz + yσ + k1u, let
L11(x, y, z, u, v, w, k1, k2) be the following set of points:

{(x, y; k1)}∪{(z, λ, v+k1(λ−u), w+x(λ−u); k2 +(y+zσx)(λ−u)+(λ−u)σ(yσ +xσz)+

k1(λσ+1 − uσ+1)) : λ ∈ O}

= {(x, y; k1)}∪{(z, λ, v+k1(λ−u), w+x(λ−u); k2+vσ(λ−u)+(λ−u)σv+k1(λ−u)σ+1) : λ ∈ O}.

We call L11(x, y, z, u, v, w, k1, k2) a line of Type K. The set L11(x, y, z, u, v, w, k1, k2) con-
tains the points (x, y; k1) and (z, u, v, w; k2).

(L) For all x, y, z, u, v, w, r ∈ O and all k1, k2 ∈ K satisfying r = zσ−yσ(xu−v)+k1u−xσw,
let L12(x, y, z, u, v, w, r, k1, k2) be the following set of points:

{(x, y, z; k1)}∪{(λ, v+x(λ−u), w+y(λ−u), r+k1(λ−u)−xσ(y(λ−u)); k2+(z−(xu−v)σy)(λ−u)

+(λ− u)σ(zσ − yσ(xu− v)) + k1(λσ+1 − uσ+1)) : λ ∈ O}

= {(x, y, z; k1)}∪{(λ, v+x(λ−u), w+y(λ−u), r+k1(λ−u)−xσ(y(λ−u)); k2+(rσ+wσx)(λ−u)

+(λ− u)σ(r + xσw) + k1(λ− u)σ+1) : λ ∈ O}.

We call L12(x, y, z, u, v, w, r, k1, k2) a line of Type L. The set L12(x, y, z, u, v, w, r, k1, k2)
contains the points (x, y, z; k1) and (u, v, w, r; k2).

Two (not necessarily distinct) points are said to be X-collinear, X ∈ {A,B, . . . ,L}, if
they are contained in some line of Type X. Two (not necessarily distinct) points are
said to be collinear if they are X-collinear for some X ∈ {A,B, . . . ,L}. With each
X ∈ {A,B, . . . ,L}, we associate the parameters iX and jX as in Table 1.

Figure 1 pictures the incidence of the different types of points, lines and also planes (to be
defined in Subsection 4.3) on an octahedron, which is an apartment in the corresponding
building.
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X iX jX X iX jX

A 0 1 G 1 5
B 0 2 H 2 4
C 0 3 I 2 5
D 0 4 J 3 4
E 1 2 K 3 5
F 1 3 L 4 5

Table 1: The parameters iX and jX .
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Figure 1: Incidence for types of points, lines and planes

Proposition 4.4 Let X ∈ {A,B, . . . ,L}.

(1) Let L be a line of Type X. Then L contains a unique point of Type iX and all the
remaining points of L have Type jX > iX .

(2) If a point of Type iX and a point of Type jX are X-collinear, then they are contained
in a unique line of Type X.

(3) If p and p′ are two distinct points of Type jX which are contained in some line L of
Type X, then the unique point of Type iX of L is uniquely determined by p and p′. As a
consequence, two distinct points of Type jX are contained in at most one line of Type X.

Proof. Obviously, Claim (1) holds.

As for Claim (2), we will only give a sketch in the case X = L. The other cases are similar.
Consider the line M = L12(x, y, z, u, v, w, r, k1, k2) as described above. We can regard M
as the line of Type L defined by a point (x, y, z; k1) of Type 4 and a point (u, v, w, r; k2)
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of Type 5 which satisfy the compatibility condition r = zσ − yσ(xu− v) + k1u− xσw. If
(u′, v′, w′, r′; k′2) = (λ, v + x(λ− u), w + y(λ− u), r + k1(λ− u)− xσ(y(λ− u)); k2 + (z −
(xu−v)σy)(λ−u)+(λ−u)σ(zσ−yσ(xu−v))+k1(λσ+1−uσ+1)) is another point of Type
5 of M , then one can easily verify that also the points (x, y, z; k1) and (u′, v′, w′, r′; k′2)
satisfy the compatibility condition. Moreover, the line of Type L defined by (x, y, z; k1)
and (u′, v′, w′, r′; k′2) coincides with M . This information is sufficient to conclude that a
point of Type 4 and a point of Type 5 are contained in at most one line of Type L.

As for Claim (3), we only treat the case X = L. The other cases are similar (and even
easier). We must show that (x, y, z; k1) is uniquely determined by (u1, v1, w1, r1; l1) =
(λ1, v+x(λ1−u), w+ y(λ1−u), r+ k1(λ1−u)−xσ(y(λ1−u)); k2 + (rσ +wσx)(λ1−u) +
(λ1−u)σ(r+xσw)+k1(λ1−u)σ+1) and (u2, v2, w2, r2; l2) = (λ2, v+x(λ2−u), w+y(λ2−u), r+
k1(λ2−u)−xσ(y(λ2−u)); k2 + (rσ +wσx)(λ2−u) + (λ2−u)σ(r+xσw) + k1(λ2−u)σ+1).
Here, x, y, z, u, v, w, r, λ1, λ2 are elements of O and k1, k2 are elements of K such that
λ1 6= λ2 and r = zσ − yσ(xu− v) + k1u− xσw. We have

x = (v2 − v1)(u2 − u1)−1,

y = (w2 − w1)(u2 − u1)−1,

k1 = (r2 − r1 + xσ(w2 − w1))(u2 − u1)−1,

r + xσw − k1u = r1 + xσw1 − k1u1,

xu− v = xu1 − v1,

z = (r + xσw − k1u+ yσ(xu− v))σ.

So, (x, y, z; k1) is indeed uniquely determined by (u1, v1, w1, r1; l1) and (u2, v2, w2, r2; l2). �

The following proposition gives necessary and sufficient conditions for two distinct points
to be X-collinear (X ∈ {A,B, . . . ,L}).

Proposition 4.5 Let x1, x2, x3, x4, y1, y2, y3, y4 ∈ O and k, l ∈ K.

• Let p be a point of Type i ∈ {0, 1, . . . , 5} and p′ 6= p a point of Type i′ ∈ {0, 1, . . . , 5}.
Let X ∈ {A,B, . . . ,L}. If (i, i′) 6∈ {(iX , jX), (jX , jX)}, then p and p′ are not X-collinear.

• The point (∞) is A-collinear with all points of Type 1, B-collinear with all points of
Type 2, C-collinear with all points of Type 3 and D-collinear with all points of Type 4.

• The point (x1) is A-collinear with all points of Type 1, E-collinear with all points of
Type 2 and F-collinear with all points of Type 3. The point (x1) is G-collinear with the
point (y1, y2, y3, y4; l) if and only if x1 + yσ1 = 0.

• The point (x1, x2) is B-collinear with the point (y1, y2) if and only if x1 = y1. The point
(x1, x2) is E-collinear with the point (y1, y2) 6= (x1, x2) if and only if x1 6= y1. The point
(x1, x2) is H-collinear with the point (y1, y2, y3; l) if and only if x1 + yσ1 = 0. The point
(x1, x2) is I-collinear with the point (y1, y2, y3, y4; l) if and only if y2 + xσ1y1 + xσ2 = 0.

• The point (x1, x2; k) is C-collinear with the point (y1, y2; l) if and only if (x1, k) = (y1, l).
The point (x1, x2; k) is F-collinear with the point (y1, y2; l) 6= (x1, x2; k) if and only if
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x1 6= y1 and k = l. The point (x1, x2; k) is J-collinear with the point (y1, y2, y3; l) if and
only if y2−ky1−xσ1 = 0. The point (x1, x2; k) is K-collinear with the point (y1, y2, y3, y4; l)
if and only if y3 − ky2 − xσ1y1 − xσ2 = 0.

• The point (x1, x2, x3; k) is D-collinear with the point (y1, y2, y3; l) if and only if (x1, x2, k) =
(y1, y2, l). The point (x1, x2, x3; k) is H-collinear with the point (y1, y2, y3; l) 6= (x1, x2, x3; k)
if and only if (x1, k) = (y1, l) and x2 6= y2. The point (x1, x2, x3; k) is J-collinear with the
point (y1, y2, y3; l) 6= (x1, x2, x3; k) if and only if x1 6= y1 and l− k = yσ1 y2 + xσ2y1− xσ1y2−
xσ2x1. The point (x1, x2, x3; k) is L-collinear with the point (y1, y2, y3, y4; l) if and only if
y4 + xσ1y3 − xσ2y2 − ky1 + xσ2 (x1y1)− xσ3 = 0.

• Suppose (x1, x2, x3, x4; k) 6= (y1, y2, y3, y4; l). The points (x1, x2, x3, x4; k) and (y1, y2,
y3, y4; l) are G-collinear if and only if (x1, x2, x3, k) = (y1, y2, y3, l). The points (x1, x2, x3,
x4; k) and (y1, y2, y3, y4; l) are I-collinear if and only if (x1, x2, k) = (y1, y2, l) and x3 6= y3.
The points (x1, x2, x3, x4; k) and (y1, y2, y3, y4; l) are K-collinear if and only if x1 = y1, x2 6=
y2 and l−k = yσ2 y3 +xσ3y2−xσ2y3−xσ3x2. The points (x1, x2, x3, x4; k) and (y1, y2, y3, y4; l)
are L-collinear if and only if x1 6= y1 and l − k = yσ1 y4 + yσ2 y3 + xσ3y2 + xσ4y1 − xσ1y4 −
xσ2y3 − xσ4x1 − xσ3x2 − [y1 − x1, y2 − x2, y3 − x3] · (y1 − x1)−σ.

Proof. The verification of these conditions is straightforward, except (perhaps) in the
three cases discussed below.

(i) Two points (x1, x2, x3; k) and (y1, y2, y3; l) 6= (x1, x2, x3; k) are J-collinear if and only
if there exist x, y, u, v, w, λ ∈ O and k1, k2 ∈ K such that v = xσ + k1u, (u, v, w; k2) =
(x1, x2, x3; k) and (λ, v+k1(λ−u), w+y(λ−u); k2 +vσ(λ−u)+(λ−u)σv+k1(λ−u)σ+1) =
(y1, y2, y3; l). The condition (y1, y2, y3; l) 6= (x1, x2, x3; l) is equivalent with y1 6= x1. The
above conditions yield u = x1, v = x2, w = x3, k2 = k, λ = y1,

k1 = (y2 − x2)(y1 − x1)−1,

y = (y3 − x3)(y1 − x1)−1,

x = (v − k1u)σ = (x2 − ((y2 − x2)(y1 − x1)−1)x1)σ,

l − k = vσ(λ− u) + (λ− u)σv + k1(λ− u)σ+1

= xσ2 (y1 − x1) + (y1 − x1)σx2 + (y1 − x1)σ+1(y2 − x2)(y1 − x1)−1.

So, we see that the points (x1, x2, x3; k) and (y1, y2, y3; l) are distinct and J-collinear if
and only if y1 6= x1, (y2 − x2)(y1 − x1)−1 ∈ K and l − k = xσ2 (y1 − x1) + (y1 − x1)σx2 +
(y1 − x1)σ+1(y2 − x2)(y1 − x1)−1.

Suppose that these three conditions hold. Then (y2−x2)(y1−x1)−1 = (y1−x1)−1(y2−x2)
and hence l−k = xσ2 (y1−x1)+(y1−x1)σx2+(y1−x1)σ(y2−x2) = yσ1 y2+xσ2y1−xσ1y2−xσ2x1.

Conversely, suppose that l − k = yσ1 y2 + xσ2y1 − xσ1y2 − xσ2x1 and y1 6= x1. Then (y1 −
x1)σ(y2 − x2) = yσ1 y2 + xσ2y1 − xσ1y2 − xσ2x1 − (xσ2y1 + yσ1x2) + (xσ2x1 + xσ1x2) = (l − k) −
(xσ2y1 + yσ1x2) + (xσ2x1 + xσ1x2) ∈ K and hence k1 = (y2 − x2)(y1 − x1)−1 ∈ K.

We conclude that the points (x1, x2, x3; k) and (y1, y2, y3; l) are distinct and J-collinear if
and only if x1 6= y1 and l − k = yσ1 y2 + xσ2y1 − xσ1y2 − xσ2x1.
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(ii) Two points (x1, x2, x3, x4; k) and (y1, y2, y3, y4; l) 6= (x1, x2, x3, x4; k) are K-collinear if
and only if there exist x, y, z, u, v, w, λ ∈ O and k1, k2 ∈ K such that v = xσz + yσ + k1u,
(z, u, v, w; k2) = (x1, x2, x3, x4; k) and (z, λ, v + k1(λ− u), w + x(λ− u); k2 + vσ(λ− u) +
(λ−u)σv+k1(λ−u)σ+1) = (y1, y2, y3, y4; l). If this is the case, then x1 = z = y1 and so the
fact that (y1, y2, y3, y4; l) 6= (x1, x2, x3, x4; k) implies that x2 6= y2. The above conditions
yield that z = x1 = y1, u = x2, v = x3, w = x4, k2 = k, λ = y2,

k1 = (y3 − x3)(y2 − x2)−1,

x = (y4 − x4)(y2 − x2)−1,

y = (v − xσz − k1u)σ,

l − k = vσ(λ− u) + (λ− u)σv + k1(λ− u)σ+1

= xσ3 (y2 − x2) + (y2 − x2)σx3 + (y2 − x2)σ+1(y3 − x3)(y2 − x2)−1.

So, we see that the points (x1, x2, x3, x4; k) and (y1, y2, y3, y4; l) are distinct and K-collinear
if and only if y1 = x1, y2 6= x2, (y3 − x3)(y2 − x2)−1 ∈ K and l − k = xσ3 (y2 − x2) +
(y2 − x2)σx3 + (y2 − x2)σ+1(y3 − x3)σ(y2 − x2)−1. With a reasoning completely similar
to the one of Case (I), we see that this is the case precisely when y1 = x1, y2 6= x2 and
l − k = yσ2 y3 + xσ3y2 − xσ2y3 − xσ3x2.

(iii) Two points (x1, x2, x3, x4; k) and (y1, y2, y3, y4; l) 6= (x1, x2, x3, x4; l) are L-collinear if
and only if there exist x, y, z, u, v, w, r, λ ∈ O and k1, k2 ∈ K such that r = zσ − yσ(xu−
v)+k1u−xσw, (u, v, w, r, k2) = (x1, x2, x3, x4; k) and (λ, v+x(λ−u), w+y(λ−u), r+k1(λ−
u)−xσ(y(λ−u)); k2+(rσ+wσx)(λ−u)+(λ−u)σ(r+xσw)+k1(λ−u)σ+1) = (y1, y2, y3, y4; l).
The condition (y1, y2, y3, y4; l) 6= (x1, x2, x3, x4; k) is equivalent with y1 6= x1. The above
conditions yield u = x1, v = x2, w = x3, r = x4, k2 = k, λ = y1,

x = (y2 − x2)(y1 − x1)−1,

y = (y3 − x3)(y1 − x1)−1,

k1 =
(

(y4 − x4) + xσ(y(y1 − x1))
)

(y1 − x1)−1,

z = (r + yσ(xu− v)− k1u+ xσw)σ,

l − k = (rσ + wσx)(λ− u) + (λ− u)σ(r + xσw) + k1(λ− u)σ+1.

So, we see that (x1, x2, x3, x4; k) and (y1, y2, y3, y4; l) are distinct and L-collinear if and

only if y1 6= x1,
(

(y4 − x4) + xσ(y(y1 − x1))
)

(y1 − x1)−1 ∈ K and l − k = (rσ + wσx)(λ−
u) + (λ− u)σ(r + xσw) + k1(λ− u)σ+1.

Suppose that these three conditions hold. Since k1 =
(

(y4 − x4) + xσ(y(y1 − x1))
)

(y1 −

x1)−1 ∈ K, we also have k1 = (y1 − x1)−1
(

(y4 − x4) + xσ(y(y1 − x1))
)

and hence k1(λ−

u)σ+1 = k1(y1−x1)σ+1 = (y1−x1)σ(y4−x4)+(y1−x1)−1
(

((y1−x1)(y2−x2)σ)(y(y1−x1))
)

=

(y1− x1)σ(y4− x4) + (y1− x1)−1
(

(y1− x1)((y2− x2)σy)(y1− x1)
)

= (y1− x1)σ(y4− x4) +
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((y2−x2)σy)(y1−x1) = (y1−x1)σ(y4−x4)+
(

(y2−x2)σ((y3−x3)(y1−x1)−1)
)

(y1−x1) =

(y1−x1)σ(y4−x4)+
(

((y2−x2)σ(y3−x3))(y1−x1)−1
)

(y1−x1)− [(y2−x2)σ, y3−x3, (y1−
x1)−1] ·(y1−x1) = (y1−x1)σ(y4−x4)+(y2−x2)σ(y3−x3)− [(y2−x2)σ, y3−x3, (y1−x1)σ] ·
(y1−x1)−σ = (y1−x1)σ(y4−x4)+(y2−x2)σ(y3−x3)− [y1−x1, y2−x2, y3−x3] ·(y1−x1)−σ.
We have

(wσx)(λ− u) =
(
xσ3 ((y2 − x2)(y1 − x1)−1)

)
(y1 − x1)

=
(

(xσ3 (y2 − x2))(y1 − x1)−1 − [xσ3 , y2 − x2, (y1 − x1)−1]
)
· (y1 − x1)

= xσ3 (y2 − x2)− [xσ3 , y2 − x2, (y1 − x1)−1] · (y1 − x1)

= xσ3 (y2 − x2)− [xσ3 , y2 − x2, (y1 − x1)σ] · (y1 − x1)−σ

= xσ3 (y2 − x2) + [y1 − x1, y2 − x2, x3] · (y1 − x1)−σ.

Hence,

(λ− u)σ(xσw) = (y2 − x2)σx3 − (y1 − x1)−1 · [y1 − x1, y2 − x2, x3]

= (y2 − x2)σx3 − [y1 − x1, (y2 − x2)(y1 − x1)−1, x3]

= (y2 − x2)σx3 + [y1 − x1, (y1 − x1)−σ(y2 − x2)σ, x3]

= (y2 − x2)σx3 + [y1 − x1, (y2 − x2)σ, x3] · (y1 − x1)−σ

= (y2 − x2)σx3 − [y1 − x1, y2 − x2, x3] · (y1 − x1)−σ.

It follows that (wσx)(λ − u) + (λ − u)σ(xσw) = xσ3 (y2 − x2) + (y2 − x2)σx3. We also
have l − k = rσ(λ − u) + (λ − u)σr + (wσx)(λ − u) + (λ − u)σ(xσw) + k1(λ − u)σ+1 =
xσ4 (y1−x1)+(y1−x1)σx4 +(y1−x1)σ(y4−x4)+xσ3 (y2−x2)+(y2−x2)σx3 +(y2−x2)σ(y3−
x3)− [y1 − x1, y2 − x2, y3 − x3] · (y1 − x1)−σ = yσ1 y4 + yσ2 y3 + xσ3y2 + xσ4y1 − xσ1y4 − xσ2y3 −
xσ4x1 − xσ3x2 − [y1 − x1, y2 − x2, y3 − x3] · (y1 − x1)−σ.

Conversely, suppose that y1 6= x1 and l − k = yσ1 y4 + yσ2 y3 + xσ3y2 + xσ4y1 − xσ1y4 − xσ2y3 −
xσ4x1 − xσ3x2 − [y1 − x1, y2 − x2, y3 − x3] · (y1 − x1)−σ. Then one has that k′1(λ− u)σ+1 =
l − k − rσ(λ − u) − (λ − u)σr − (wσx)(λ − u) − (λ − u)σ(xσw) ∈ K, where λ = y1,
u = x1, r = x4, w = x3, x = (y2 − x2)(y1 − x1)−1, y = (y3 − x3)(y1 − x1)−1 and

k′1 = (y1 − x1)−1
(

(y4 − x4) + xσ(y(y1 − x1))
)

. It follows that k′1 ∈ K and hence also that

k1 =
(

(y4 − x4) + xσ(y(y1 − x1))
)

(y1 − x1)−1 ∈ K.

We conclude that the points (x1, x2, x3, x4; k) and (y1, y2, y3, y4; l) are distinct and L-
collinear if and only if y1 6= x1 and l − k = yσ1 y4 + yσ2 y3 + xσ3y2 + xσ4y1 − xσ1y4 − xσ2y3 −
xσ4x1 − xσ3x2 − [y1 − x1, y2 − x2, y3 − x3] · (y1 − x1)−σ. �

The following is a corollary of Proposition 4.4(2)+(3) and Proposition 4.5.

Corollary 4.6 If p and p′ are two distinct collinear points, then they are X-collinear for
a unique X ∈ {A,B, . . . ,L}. As a consequence, two distinct collinear points are contained
in a unique line.
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The following corollary is also a consequence of Proposition 4.5. It gives necessary and
sufficient conditions for two (not necessarily distinct) points to be collinear.

Corollary 4.7 Let x1, x2, x3, x4, y1, y2, y3, y4 ∈ O and k, l ∈ K.

• The point (∞) is collinear with all points of Type 1, all points of Type 2, all points of
Type 3 and all points of Type 4. The point (∞) is collinear with no point of Type 5.

• The point (x1) is collinear with all points of Type 1, all points of Type 2 and all points
of Type 3. The point (x1) is collinear with no point of Type 4. The point (x1) is collinear
with the point (y1, y2, y3, y4; l) of Type 5 if and only if x1 + yσ1 = 0.

• The point (x1, x2) is collinear with all points of Type 2 and no point of Type 3. The
point (x1, x2) is collinear with the point (y1, y2, y3; l) if and only if x1 + yσ1 = 0. The point
(x1, x2) is collinear with the point (y1, y2, y3, y4; l) if and only if y2 + xσ1y1 + xσ2 = 0.

• The point (x1, x2; k) is collinear with the point (y1, y2; l) if and only if k = l. The point
(x1, x2; k) is collinear with the point (y1, y2, y3; l) if and only if y2−ky1−xσ1 = 0. The point
(x1, x2; k) is collinear with the point (y1, y2, y3, y4; l) if and only if y3−ky2−xσ1y1−xσ2 = 0.

• The point (x1, x2, x3; k) is collinear with the point (y1, y2, y3; l) if and only if l − k =
yσ1 y2+xσ2y1−xσ1y2−xσ2x1. The point (x1, x2, x3; k) is collinear with the point (y1, y2, y3, y4; l)
if and only if y4 + xσ1y3 − xσ2y2 − ky1 + xσ2 (x1y1)− xσ3 = 0.

• The points (x1, x2, x3, x4; k) and (y1, y2, y3, y4; l) are collinear if and only if either x1 = y1

and l− k = yσ2 y3 +xσ3y2−xσ2y3−xσ3x2 or x1 6= y1 and l− k = yσ1 y4 + yσ2 y3 +xσ3y2 +xσ4y1−
xσ1y4 − xσ2y3 − xσ4x1 − xσ3x2 − [y1 − x1, y2 − x2, y3 − x3] · (y1 − x1)−σ.

The above-defined points and lines define a point-line geometry which we will denote by
PT . By Corollary 4.6, PT is a so-called partial linear space. Our next goal will be to show
that PT is a polar space.

Proposition 4.8 For every point p of PT , there exists a point p′ of PT which is not
collinear with p.

Proof. Let (i, i′) ∈ {(0, 5), (1, 4), (2, 3)}. Then, by Corollary 4.7, no point of Type i is
collinear with a point of Type i′. �

In the following five propositions, we list a number of automorphisms of the point-line
geometry PT . The proof that the stated permutations of Ω actually define automorphisms
is straightforward and involves no special difficulties. We will therefore omit the proofs.
Notice that each of the listed automorphism preserves the types of the points and lines.
All automorphisms we list are so-called root-elations, in particular unipotent elements
in the corresponding algebraic group or group of mixed type. The set of all automor-
phisms defined in each proposition is a root group. Together, the five groups generate the
unipotent radical of (∞).
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Proposition 4.9 For every η ∈ O, the permutation of Ω defined by

(x1, x2, x3, x4; k) 7→ (x1 + η, x2, x3, x4; k),

(x1, x2, x3; k) 7→ (x1, x2, x3 − ησk + (ησxσ1 )x2; k),

(x1, x2; k) 7→ (x1, x2 − ησx1; k),

(x1, x2) 7→ (x1, x2 − ησx1),

(x1) 7→ (x1 − ησ),

(∞) 7→ (∞),

is an automorphism of PT .

Proposition 4.10 For every η ∈ O, the permutation of Ω defined by

(x1, x2, x3, x4; k) 7→ (x1, x2 + η, x3, x4; k),

(x1, x2, x3; k) 7→ (x1, x2, x3 − ησx2; k),

(x1, x2; k) 7→ (x1, x2 − kησ; k),

(x1, x2) 7→ (x1, x2 − ησ),

(x1) 7→ (x1),

(∞) 7→ (∞),

is an automorphism of PT .

Proposition 4.11 For every η ∈ O, the permutation of Ω defined by

(x1, x2, x3, x4; k) 7→ (x1, x2, x3 + η, x4; k + ησx2 + xσ2η),

(x1, x2, x3; k) 7→ (x1, x2, x3 + ησx1; k),

(x1, x2; k) 7→ (x1, x2 + ησ; k),

(x1, x2) 7→ (x1, x2),

(x1) 7→ (x1),

(∞) 7→ (∞),

is an automorphism of PT .

Proposition 4.12 For every η ∈ O, the permutation of Ω defined by

(x1, x2, x3, x4; k) 7→ (x1, x2, x3, x4 + η; k + ησx1 + xσ1η),

(x1, x2, x3; k) 7→ (x1, x2, x3 + ησ; k),

(x1, x2; k) 7→ (x1, x2; k),

(x1, x2) 7→ (x1, x2),

(x1) 7→ (x1),

(∞) 7→ (∞),

is an automorphism of PT .
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Proposition 4.13 For every k∗ ∈ K, the permutation of Ω defined by

(x1, x2, x3, x4; k) 7→ (x1, x2, x3, x4; k + k∗),

(x1, x2, x3; k) 7→ (x1, x2, x3; k),

(x1, x2; k) 7→ (x1, x2; k),

(x1, x2) 7→ (x1, x2),

(x1) 7→ (x1),

(∞) 7→ (∞),

is an automorphism of PT .

We are now ready to prove that PT is a polar space.

Proposition 4.14 For every point p and every line L, the point p is collinear with one
or all points of L.

Proof. There are 6 possible types for the point p and 12 possible types for the line L.
This leads to 72 cases which we need to consider. Corollary 4.7 can be used to deal with
each of these cases. Observe also that if p is a point of Type 5, then by Propositions 4.9,
4.10, 4.11, 4.12 and 4.13, we may assume that p = (0, 0, 0, 0; 0). This observation can
simplify the verification in some cases.

The verification of the proposition is straightforward (and often immediate) in many of
the 72 cases. In fact, there are only four cases where some difficulty seems to occur.
Before we discuss these four cases in detail, we treat a typical example among the 68
other cases.

Consider the point (x1, x2, x3; k1) of Type 4 and the line L = L8(x, y, u, v, w, k) of Type
H. Here, x1, x2, x3, x, y, u, v, w ∈ O and k, k1 ∈ K such that u = −xσ. The line
L8(x, y, u, v, w, k) contains the points (x, y) and (u, λ, w + y(λ− v); k), λ ∈ O. We have

(x1, x2, x3; k1) ∼ (x, y) ⇔ x+ xσ1 = 0,

(x1, x2, x3; k1) ∼ (u, λ, w + y(λ− v); k) ⇔ k − k1 = uσλ+ xσ2u− xσ1λ− xσ2x1

⇔ (x+ xσ1 )λ = xσ2u− xσ2x1 − k + k1.

If x+ xσ1 6= 0, then (x1, x2, x3; k1) is collinear with a unique point of L, namely the point
(u, λ, w + y(λ − v); k) where λ = (x + xσ1 )−1(xσ2u − xσ2x1 − k + k1). If x + xσ1 = 0 =
xσ2u − xσ2x1 − k + k1, then (x1, x2, x3; k1) is collinear with all points of L. Finally, if
x+ xσ1 = 0 6= xσ2u− xσ2x1 − k + k1, then (x1, x2, x3; k1) is collinear with a unique point of
L, namely the point (x, y).

We now deal with the four cases where some difficulty is involved. With “some difficulty”
we mean that after writing down the conditions for collinearity as given in Corollary 4.7,
we still need to manipulate the obtained expressions before we can make the necessary
conclusions.
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(i) Consider the point (x1, x2, x3; k) of Type 4 and the line L = L12(x, y, z, u, v, w, r, k1, k2)
of Type L. Here, x1, x2, x3, x, y, z, u, v, w, r ∈ O and k, k1, k2 ∈ K such that r = zσ −
yσ(xu−v)+k1u−xσw. The line L12(x, y, z, u, v, w, r, k1, k2) contains the points (x, y, z; k1)
and p(λ) := (λ, v+x(λ−u), w+y(λ−u), r+k1(λ−u)−xσ(y(λ−u)); k2 +(rσ +wσx)(λ−
u) + (λ− u)σ(r + xσw) + k1(λ− u)σ+1), λ ∈ O. The points (x1, x2, x3; k) and (x, y, z; k1)
are collinear if and only if

k1 − k = η := xσy + xσ2x− xσ1y − xσ2x1.

The points (x1, x2, x3; k) and p(λ) are collinear if and only if r + k1(λ − u) − xσ(y(λ −
u)) + xσ1 (w + y(λ − u)) − xσ2 (v + x(λ − u)) − kλ + xσ2 (x1λ) − xσ3 = 0, i.e. if and only if
η′ := r − k1u+ xσ(yu) + xσ1w − xσ1 (yu)− xσ2v + xσ2 (xu)− xσ3 is equal to

xσ(yλ)− xσ1 (yλ) + xσ2 (xλ)− xσ2 (x1λ)− k1λ+ kλ.

If x = x1, then η = 0. In that case, the points (x1, x2, x3; k) and (x, y, z; k1) are collinear
if and only if k1 = k. Also, the points (x1, x2, x3; k) and p(λ) are collinear if and only if
(k − k1)λ = η′. It is now easy to see that (x1, x2, x3; k) is collinear with one of all points
of L.

In the sequel, we will suppose that x 6= x1. We then have that xσ(yλ)−xσ1 (yλ)+xσ2 (xλ)−
xσ2 (x1λ) is equal to

(x− x1)σ(yλ) + xσ2 ((x− x1)λ)

= ((x− x1)σy + xσ2 (x− x1)) · λ− [(x− x1)σ, y, λ]− [xσ2 , x− x1, λ]

= ηλ+ [x− x1, y, λ]− [x− x1, x2, λ]

= ηλ+ [x− x1, y − x2, λ]

= ηλ+ [x− x1, (x− x1)σ(y − x2), λ] · (x− x1)−σ

= ηλ+
(

[x− x1, η, λ]− [x− x1, x
σ
2 (x− x1) + (x− x1)σx2, λ]

)
· (x− x1)−σ

= ηλ+ [x− x1, η, λ] · (x− x1)−σ

= ηλ− [(x− x1)σ, η, λ] · (x− x1)−σ

= ηλ− [(x− x1)σ, (x− x1)−ση, λ]

= (x− x1)σ(((x− x1)−ση)λ).

So, the points (x1, x2, x3; k) and p(λ) are collinear if and only if

(x− x1)σ(((x− x1)−σ(η − k1 + k))λ) = η′.

If η 6= k1 − k, then there is a unique solution for λ and hence the point (x1, x2, x3; k) is
collinear with a unique point of L. If η = k1−k and η′ = 0, then (x1, x2, x3; k) is collinear
with all points of L. Finally, if η = k1− k and η′ 6= 0, then (x, y, z; k1) is the unique point
of L collinear with (x1, x2, x3; k).
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(ii) Consider the point (0, 0, 0, 0; 0) of Type 5 and the line L = L9(x, y, z, u, v, w, k)
of Type I. Here, x, y, z, u, v, w ∈ O and k ∈ K such that y = −uσ − zσx. The line
L9(x, y, z, u, v, w, k) contains the points (x, y) and (z, u, λ, w + x(λ− v); k), λ ∈ O.

The points (0, 0, 0, 0; 0) and (x, y) are collinear if and only if y = 0. The points (0, 0, 0, 0; 0)
and (z, u, λ, w+ x(λ− v); k) are collinear if and only if either z = 0 and k = uσλ or z 6= 0
and k = zσ(w + x(λ− v)) + uσλ− [z, u, λ] · z−σ.

If z = 0, then y = −uσ and in that case it is easily seen that (0, 0, 0, 0; 0) is collinear with
one or all points of L. So, we may suppose that z 6= 0. The condition k = zσ(w + x(λ−
v)) + uσλ− [z, u, λ] · z−σ can then be rewritten as

k = zσw − zσ(xv) + zσ(xλ) + uσλ− [zσ, uσ, λ] · z−σ

k = zσw − zσ(xv) + zσ(xλ) + uσλ− [zσ, z−σuσ, λ]

k = zσw − zσ(xv) + zσ((x+ z−σuσ)λ)

k = zσw − zσ(xv)− zσ((z−σy)λ).

So, depending on which of the values y and k − zσw + zσ(xv) are equal to 0, the point
(0, 0, 0, 0; 0) is collinear with one or all points of L.

(iii) Consider the point (0, 0, 0, 0; 0) of Type 5 and the line L = L11(x, y, z, u, v, w, k1, k2)
of Type K. Here, x, y, z, u, v, w ∈ O and k1, k2 ∈ K such that v = xσz + yσ + k1u. The
line L11(x, y, z, u, v, w, k1, k2) contains the points (x, y; k1) and p(λ) := (z, λ, v + k1(λ −
u), w+x(λ−u); k2 + vσ(λ−u) + (λ−u)σv+k1(λ−u)σ+1). The point (z, u, v, w; k2) on L
can be chosen in such a way that u = 0. Then v = xσz+ yσ and p(λ) = (z, λ, v+k1λ,w+
xλ; k2 + vσλ+ λσv + k1λ

σ+1).

The points (0, 0, 0, 0; 0) and (x, y; k1) are collinear if and only if y = 0. The points
(0, 0, 0, 0; 0) and p(λ) are collinear if and only if either z = 0 and k2 +vσλ+λσv+k1λ

σ+1 =
λσ(v+ k1λ) or z 6= 0 and k2 + vσλ+ λσv+ k1λ

σ+1 = zσ(w+ xλ) + λσ(v+ k1λ)− [z, λ, v+
k1λ] · z−σ.

Suppose z = 0. The condition k2 + vσλ + λσv + k1λ
σ+1 = λσ(v + k1λ) then becomes

k2 + vσλ = k2 + yλ = 0. So, depending on which of the values y and k2 are equal to 0,
the point (0, 0, 0, 0; 0) is collinear with one or all points of L.

Suppose z 6= 0. The condition k2 + vσλ + λσv + k1λ
σ+1 = zσ(w + xλ) + λσ(v + k1λ) −

[z, λ, v + k1λ] · z−σ then becomes

k2 + vσλ = zσw + zσ(xλ)− [z, λ, v] · z−σ

k2 + vσλ = zσw + zσ(xλ) + [zσ, vσ, λ] · z−σ

k2 + vσλ = zσw + zσ(xλ) + [zσ, z−σvσ, λ]

k2 + vσλ = zσw + zσ(xλ) + vσλ− zσ((z−σvσ)λ)

k2 − zσw = zσ((x− z−σvσ)λ)

k2 − zσw = −zσ((z−σy)λ).
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So, depending on which of the values k2−zσw and y are equal to 0, the point (0, 0, 0, 0; 0)
is collinear with one or all points of L.

(iv) Suppose p is a point of Type 5 and L = L12(x, y, z, u, v, w, r, k1, k2) is a line of Type
L. Here, x, y, z, u, v, w, r ∈ O and k1, k2 ∈ K such that r = zσ − yσ(xu− v) + k1u− xσw.
We can choose the point (u, v, w, r; k2) of L in such a way that u is equal to the first
coordinate of p. By Propositions 4.9, 4.10, 4.11, 4.12 and 4.13, we may suppose that
p = (0, 0, x1, x2; 0) and (u, v, w, r; k2) = (0, v, 0, 0; k2). We then have zσ + yσv = 0. The
line L contains the points (x, y, z; k1) and p(λ) := (λ, v+xλ, yλ, k1λ−xσ(yλ); k2+k1λ

σ+1),
λ ∈ O.

The point p = (0, 0, x1, x2; 0) is collinear with (x, y, z; k1) if and only if

x2 = zσ − xσx1.

The point (0, 0, x1, x2; 0) is collinear with the point p(0) = (0, v, 0, 0; k2) if and only if

xσ1v = k2.

Suppose λ 6= 0. Then the point (0, 0, x1, x2; 0) is collinear with the point p(λ) if and only
if

(v+xλ)σ(yλ)+λσ(k1λ−xσ(yλ))+xσ1 (v+xλ)+xσ2λ−[λ, v+xλ, yλ−x1]·λ−σ = k2+k1λ
σ+1.

This simplifies to

vσ(yλ) + (λσxσ)(yλ)− λσ(xσ(yλ)) + xσ1v + xσ1 (xλ) + xσ2λ− [λ, v + xλ, yλ− x1] · λ−σ = k2.

This can be rewritten as

(vσy)λ+(xσ1x)λ+xσ2λ−[vσ, y, λ]+[λσ, xσ, yλ]−[xσ1 , x, λ]−[λ, v+xλ, yλ−x1]·λ−σ = k2−xσ1v.

Now,
[λ, v + xλ, yλ− x1] = [λ, v, yλ] + [λ, xλ, yλ]− [λ, v, x1]− [λ, xλ, x1]

with
[λ, v, yλ] · λ−σ = −[λ, v, λσyσ] · λ−σ = −[λ, v, yσ] = −[vσ, y, λ],

[λ, xλ, yλ] · λ−σ = −[λ, λσxσ, yλ] · λ−σ = −[λ, xσ, yλ] = [λσ, xσ, yλ],

[λ, xλ, x1] · λ−σ = −[λ, λσxσ, x1] · λ−σ = −[λ, xσ, x1] = [xσ1 , x, λ].

So, the point (0, 0, x1, x2; 0) is collinear with the point p(λ), λ 6= 0, if and only if

(xσ2 − z + xσ1x)λ = k2 − xσ1v − [λ, v, x1] · λ−σ.

• Suppose x1 = 0. Then the latter condition becomes (xσ2 − z)λ = k2. So, depending on
which of the values xσ2 − z and y are equal to 0, the point (0, 0, x1, x2; 0) = (0, 0, 0, x2; 0)
is collinear with one or all points of L.
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• Suppose x1 6= 0 and put α := k2 − xσ1v. Then the above condition becomes

(xσ2 − z + xσ1x)λ = α− [λ, x−σ1 (k2 − α), x1] · λ−σ

(xσ2 − z + xσ1x)λ = α−
(

[λ, k2 − α, x1] · x−σ1

)
· λ−σ

(xσ2 − z + xσ1x)λ = α +
(

[λ, α, x1] · x−σ1

)
· λ−σ

(xσ2 − z + xσ1x)λ = α−
(

[α, λσ, xσ1 ] · x−σ1

)
· λ−σ

(xσ2 − z + xσ1x)λ = α− α + ((α(λσxσ1 ))x−σ1 )λ−σ

(xσ2 − z + xσ1x)λ = ((α(λ−1xσ1 ))x−σ1 )λ

xσ2 − z + xσ1x = (α(λ−1xσ1 ))x−σ1 .

If xσ2−z+xσ1x = 0 = α, then (0, 0, x1x2; 0) is collinear with all points of L. If xσ2−z+xσ1x =
0 6= α, then (x, y, z; k1) is the unique point of L which is collinear with (0, 0, x1, x2; 0). If
xσ2 − z + xσ1x 6= 0 = α, then p(0) is the unique point of L collinear with (0, 0, x1, x2; 0). If
xσ2 − z + xσ1x 6= 0 6= α, then p(λ) is the unique point of L collinear with (0, 0, x1, x2; 0),
where λ ∈ O \ {0} is the unique solution of the equation xσ2 − z + xσ1x = (α(λ−1xσ1 ))x−σ1 .
�

4.3 The explicit description of the planes

We define eight families of subsets of Ω which we call planes.

(I) We denote by [∞] the set consisting of the points

p1(a, b) := (a, b),

p2(s) := (s),

p∗3 := (∞),

where a, b, s ∈ O. We call [∞] the plane of Type I.

(II) For every k ∈ K, we denote by [k] the set consisting of the points

p1(a, b) := (a, b; k),

p2(s) := (s),

p∗3 := (∞),

where a, b, s ∈ O. We call [k] a plane of Type II.

(III) For every x ∈ O and every k ∈ K, we denote by [x; k] the set consisting of the points

p1(a, b) := (x, a, b; k),

p2(s) := (−xσ, s),
p∗3 := (∞),
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where a, b, s ∈ O. We call [x; k] a plane of Type III.

(IV) For every x ∈ O and all k, l ∈ K, we denote by [x; k, l] the set consisting of the
points

p1(a, b) := (a, x+ la, b; k + xσa+ aσx+ laσ+1),

p2(s) := (xσ, s; l),

p∗3 := (∞),

where a, b, s ∈ O. We call [x; k, l] a plane of Type IV.

(V) For all x1, x2 ∈ O and every k ∈ K, we denote by [x1, x2; k] the set consisting of the
points

p1(a, b) := (−xσ2 ,−xσ1 , a, b; k),

p2(s) := (s, x1 + x2s),

p∗3 := (x2),

where a, b, s ∈ O. We call [x1, x2; k] a plane of Type V.

(VI) For all x1, x2 ∈ O and all k, l ∈ K, we denote by [x1, x2; k, l] the set consisting of
the points

p1(a, b) := (−xσ2 , a, xσ1 + ka, b; l + x1a+ aσxσ1 + kaσ+1),

p2(s) := (s, x1 + x2s; k),

p∗3 := (x2),

where a, b, s ∈ O. We call [x1, x2; k, l] a plane of Type VI.

(VII) For all x1, x2, x3 ∈ O and all k, l ∈ K, we denote by [x1, x2, x3; k, l] the set consisting
of the points

p1(a, b) := (a,−xσ3 + x1a, b, x
σ
2 + ka− xσ1b; l + x2a+ aσxσ2 + kaσ+1),

p2(s) := (x1, s, x2 + x3s; k),

p∗3 := (−xσ1 , x3),

where a, b, s ∈ O. We call [x1, x2, x3; k, l] a plane of Type VII.

(VIII) For all x1, x2, x3 ∈ O and all k, l,m ∈ K, we denote by [x1, x2, x3; k, l,m] the set
consisting of the points

p1(a, b) := (a, b, x3
σ + lb+ x1a, x2

σ + ka+ xσ1b;

m+ x2a+ aσxσ2 + x3b+ bσx3
σ + kaσ+1 + lbσ+1 + (aσxσ1 )b+ bσ(x1a)),

p2(s) := (s, x1 + ls, x2 + x3s; k + xσ1s+ sσx1 + lsσ+1),

p∗3 := (xσ1 , x3; l),
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where a, b, s ∈ O. We call [x1, x2, x3; k, l,m] a plane of Type VIII.

Recall that Figure 1 pictures the incidences between the different types of points, lines
ad planes.

Proposition 4.15 The following holds for a plane α.

(1) If p and p′ are two distinct points contained in α, then p and p′ are collinear and the
unique line through them is contained in α.

(2) The points and lines contained in α define a point-line geometry α̃ which is isomorphic
to the Moufang projective plane PG(2,O).

Proof. We give a scheme that can be used to prove the proposition. After that we will
apply it to the most difficult case, namely the case where α is a plane of Type VIII. The
verification of the other cases is straightforward. In fact, in the case that α is a plane of
Type VIII, we need to rely on some properties (of associators) mentioned in Propositions
4.2 and 4.3. This is not the case for the other seven cases.

(1) Consider a plane (depending on some parameters) corresponding to one of the eight
types considered above.

(2) Consider the points p∗3 and p2(s) of that plane, where s is some arbitrary element of
O. Corollary 4.7 can be used to prove that these points are collinear and Proposition 4.5
provides the unique value of X ∈ {A,B, . . . ,L} such that p∗3 and p2(s) are X-collinear.
An explicit description of the unique line of Type X containing p∗3 and p2(s) easily follows
from the information provided when we defined the twelve types of lines. This unique
line of Type X is equal to {p∗3} ∪ {p2(λ) : λ ∈ O} and hence is contained in α.

(3) Consider the points p∗3 and p1(a, b) where a and b are arbitrary elements of O. With
a similar method as in (2), one can verify that these points are X-collinear for a unique
X ∈ {A,B, . . . ,L}. Again, the unique line of Type X through p∗3 and p1(a, b) can easily
be determined. This line is equal to {p∗3} ∪ {p1(a, λ) : λ ∈ O} and hence is completely
contained in α.

(4) Consider the points p2(s) and p1(a, b), where a, b, s are arbitrary elements of O. With
a similar method as explained in (2), one can verify that these points are X-collinear for a
unique X ∈ {A,B, . . . ,L}. Again, the unique line of Type X containing p2(s) and p1(a, b)
can easily be determined. This line is equal to {p2(s)} ∪ {p1(λ, b + s(λ − a)) : λ ∈ O}
and hence is completely contained in α.

(5) Consider the points p2(s) and p2(s′) where s and s′ are two distinct elements of O.
By (2), these points are contained in the line {p∗3} ∪ {p2(λ) : λ ∈ O} which is completely
contained in α.

(6) Consider the points p1(a, b) and p1(a, b′) where a, b, b′ ∈ O with b 6= b′. By (3), these
points are contained in the unique line through the points p∗3 and p1(a, b). Hence, the
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points p1(a, b) and p1(a, b′) are collinear and the unique line through them is contained in
α.

(7) Consider the points p1(a, b) and p1(a′, b′) where a, b, a′, b′ ∈ O with a 6= a′. By (4),
these points are contained in the unique line through the points p2((b′− b)(a′− a)−1) and
p1(a, b). Hence, the points p1(a, b) and p1(a′, b′) are collinear and the unique line through
them is contained in α.

(8) By (2), (3), . . ., (7) above, we know that the lines contained in α are precisely the
lines described in (2), (3) and (4) above. From these descriptions, it immediately follows
that the map p1(a, b) 7→ (a, b), p2(s) 7→ (s), p∗3 7→ (∞) defines an isomorphism between α̃
and the projective plane PG(2,O) which is coordinatized by the alternative division ring
O as explained in Section 2.

We will now apply the above scheme to the case where α is the plane [x1, x2, x3; k, l,m]
of Type VIII (x1, x2, x3 ∈ O and k, l,m ∈ K). We need to verify the claims mentioned in
the paragraphs (2), (3) and (4).

(i) Consider the points p∗3 = (xσ1 , x3; l) and p2(s) = (s, x1 + ls, x2 + x3s; k + xσ1s+ sσx1 +
lsσ+1). These points are J-collinear by Proposition 4.5. The unique line through them
contains the points p∗3 = (xσ1 , x3; l) and

p(λ) := (λ, x1 + ls+ l(λ− s), x2 + x3s+ x3(λ− s);
k + xσ1s+ sσx1 + lsσ+1 + xσ1 (λ− s) + (λ− s)σx1 + l(λσ+1 − sσ+1))

= (λ, x1 + lλ, x2 + x3λ, k + xσ1λ+ λσx1 + lλσ+1)

= p2(λ)

for every λ ∈ O.

(ii) Consider the points p∗3 = (xσ1 , x3; l) and p1(a, b) = (a, b, xσ3 + lb+x1a, x
σ
2 +ka+xσ1b;m+

x2a+aσxσ2 +x3b+ bσxσ3 +kaσ+1 + lbσ+1 + (aσxσ1 )b+ bσ(x1a)). These points are K-collinear
by Proposition 4.5. The unique line through them contains the points p∗3 = (xσ1 , x3; l) and
p′(λ), λ ∈ O, where p′(λ) is the following point:

(a, λ, xσ3 + lb+ x1a+ l(λ− b), xσ2 + ka+ xσ1b+ xσ1 (λ− b);m+ x2a+ aσxσ2 + x3b+ bσxσ3

+kaσ+1+lbσ+1+(aσxσ1 )b+bσ(x1a)+(x3+aσxσ1 )(λ−b)+(λ−b)σ(xσ3 +x1a)+l(λσ+1−bσ+1)).

We have

p′(λ) = (a, λ, xσ3 + lλ+ x1a, x
σ
2 + ka+ xσ1λ;

m+ x2a+ aσxσ2 + x3λ+ λσxσ3 + kaσ+1 + lλσ+1 + (aσxσ1 )λ+ λσ(x1a))

= p1(a, λ).
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(iii) Consider the points p2(s) = (s, x1 + ls, x2 +x3s; k+xσ1s+sσx1 + lsσ+1) and p1(a, b) =
(a, b, xσ3 + lb+x1a, x

σ
2 + ka+xσ1b;m+x2a+ aσxσ2 +x3b+ bσxσ3 + kaσ+1 + lbσ+1 + (aσxσ1 )b+

bσ(x1a)). Since xσ2 +ka+xσ1b−xσ2 −sσxσ3 +(xσ1 + lsσ)(sa− b)− (k+xσ1s+sσx1 + lsσ+1)a+
sσ(xσ3 + lb + x1a) = xσ1 (sa) − (xσ1s)a − (sσx1)a + sσ(x1a) = −[xσ1 , s, a] − [sσ, x1, a] =
[x1, s, a] + [s, x1, a] = 0, these points are L-collinear by Proposition 4.5. The unique line
through them contains the points p2(s) = (s, x1 + ls, x2 +x3s; k+xσ1s+ sσx1 + lsσ+1) and
p′′(λ) = (f1(λ), f2(λ), f3(λ), f4(λ); f5(λ)), λ ∈ O, where

f1(λ) = λ,

f2(λ) = b+ s(λ− a),

f3(λ) = xσ3 + lb+ x1a+ (x1 + ls)(λ− a)

= xσ3 + l(b+ s(λ− a)) + x1λ,

f4(λ) = xσ2 + ka+ xσ1b+ (k + xσ1s+ sσx1 + lsσ+1)(λ− a)− sσ((x1 + ls)(λ− a))

= xσ2 + kλ+ xσ1b+ (xσ1s+ sσx1)(λ− a)− sσ(x1(λ− a))

= xσ2 + kλ+ xσ1b+ xσ1 (s(λ− a)) + [xσ1 , s, λ− a] + [sσ, x1, λ− a]

= xσ2 + kλ+ xσ1 (b+ s(λ− a))− [x1, s, λ− a]− [s, x1, λ− a]

= xσ2 + kλ+ xσ1 (b+ s(λ− a)),

f5(λ) = m+ x2a+ aσxσ2 + x3b+ bσxσ3 + kaσ+1 + lbσ+1 + (aσxσ1 )b+ bσ(x1a)

+(x2 + kaσ + bσx1 + x3s+ lbσs+ (aσxσ1 )s)(λ− a)

+(λ− a)σ(xσ2 + ka+ xσ1b+ sσxσ3 + lsσb+ sσ(x1a))

+(k + xσ1s+ sσx1 + lsσ+1)(λ− a)σ+1.

In order to prove that p′′(λ) = p1(λ, b + s(λ− a)), it suffices to prove that f5(λ) is equal
to

m+ x2λ+ λσxσ2 + x3(b+ s(λ− a)) + (bσ + (λ− a)σsσ)xσ3 + kλσ+1 + l(b+ s(λ− a))σ+1

+(λσxσ1 )(b+ s(λ− a)) + (bσ + (λ− a)σsσ)(x1λ),

i.e., equal to

m+x2a+x2(λ−a)+(λ−a)σxσ2 +aσxσ2 +x3(b+s(λ−a))+(bσ+(λ−a)σsσ)xσ3 +k(λ−a)σ+1

+kaσ+1 +kaσ(λ−a)+k(λ−a)σa+ lbσ+1 + lbσ(s(λ−a))+ l((s(λ−a))σb)+ l(λ−a)σ+1sσ+1

+((λ− a)σxσ1 )(b+ s(λ− a)) + (aσxσ1 )(b+ s(λ− a)) + (bσ + (λ− a)σsσ)(x1(λ− a))

+(bσ + (λ− a)σsσ)(x1a).

If we subtract the latter expression from f5(λ) and cancel the equal terms, we see that
we need to prove that the following expression is equal to 0:

[bσ, x1, λ−a]+[x3, s, λ−a]+l·[bσ, s, λ−a]+[aσxσ1 , s, λ−a]−[(λ−a)σ, xσ1 , b]−[(λ−a)σ, sσ, xσ3 ]

−l · [(λ− a)σ, sσ, b]− [(λ− a)σ, sσ, x1a] + (xσ1s+ sσx1)(λ− a)σ+1 − ((λ− a)σxσ1 )(s(λ− a))
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−((λ− a)σsσ)(x1(λ− a)).

Since
[bσ, x1, λ− a] = −[b, xσ1 , (λ− a)σ] = [(λ− a)σ, xσ1 , b],

[x3, s, λ− a] = −[xσ3 , s
σ, (λ− a)σ] = [(λ− a)σ, sσ, xσ3 ],

[bσ, s, λ− a] = −[b, sσ, (λ− a)σ] = [(λ− a)σ, sσ, b],

[aσxσ1 , s, λ− a] = −[x1a, s
σ, (λ− a)σ] = [(λ− a)σ, sσ, x1a],

we need to prove that

((λ− a)σxσ1 )(s(λ− a)) + ((λ− a)σsσ)(x1(λ− a)) = (xσ1s+ sσx1)(λ− a)σ+1.

Now,

((λ− a)σxσ1 )(s(λ− a)) = (((λ− a)σxσ1 )s)(λ− a)− [(λ− a)σxσ1 , s, λ− a]

= ((λ− a)σ(xσ1s))(λ− a) + [(λ− a)σ, xσ1 , s] · (λ− a)− [xσ1 , s, λ− a] · (λ− a)σ.

In a similar way, one proves that ((λ− a)σsσ)(x1(λ− a)) is equal to

((λ− a)σ(sσx1))(λ− a) + [(λ− a)σ, sσ, x1] · (λ− a)− [sσ, x1, λ− a] · (λ− a)σ.

Since

[(λ− a)σ, xσ1 , s] = −[(λ− a)σ, x1, s] = [(λ− a)σ, s, x1] = −[(λ− a)σ, sσ, x1],

[xσ1 , s, λ− a] = −[x1, s, λ− a] = [s, x1, λ− a] = −[sσ, x1, λ− a],

xσ1s+ sσx1 ∈ K,

we have ((λ− a)σxσ1 )(s(λ− a)) + ((λ− a)σsσ)(x1(λ− a)) = ((λ− a)σ(xσ1s))(λ− a) + ((λ−
a)σ(sσx1))(λ− a) = ((λ− a)σ(xσ1s + sσx1))(λ− a) = (xσ1s + sσx1)(λ− a)σ+1, and this is
precisely what we needed to prove. �

In case O is non-associative, this proposition implies that PT contains non-Desarguesian
planes and hence is a non-embeddable polar space. At this point, we have already collected
sufficient information to identify the constructed polar spaces. However, we still want to
show that we have all planes. This fact is implied by the next proposition.

Proposition 4.16 Let p1, p2 and p3 be three mutually collinear points which are not
contained in a line. Then p1, p2 and p3 are contained in a unique plane.

Proof. Let i1, i2 and i3 be the types of the respective points p1, p2 and p3. Without loss
of generality, we may suppose that i1 ≥ i2 ≥ i3.

(I) We prove that there exist three points p′1, p′2 and p′3 such that: • p′1, p′2 and p′3 are
mutually collinear; • the subspaces of PT containing {p′1, p′2, p′3} are precisely the subspaces
of PT containing {p1, p2, p3}; • the types of the points p′1, p′2 and p′3 are mutually distinct.
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(a) Suppose that i1 > i2 > i3. Then there is nothing to prove. Just take p′1 := p1, p′2 := p2

and p′3 := p3.

(b) Suppose that i1 > i2 = i3. Let p′3 be the unique point of smallest type on the line p2p3

and put p′1 := p1, p′2 := p2. Then {p′1, p′2, p′3} satisfies the required conditions. Observe
that p′1, p′2 and p′3 are mutually collinear by Proposition 4.14.

(c) Suppose i1 = i2 > i3. Let p′′2 be the unique point of smallest type contained in the
line p1p2. Then p1, p′′2 and p3 are mutually collinear and the subspaces of PT containing
{p1, p2, p3} are precisely the subspaces of PT containing {p1, p

′′
2, p3}. Now, by either (a)

or (b), there exist 3 mutually collinear points p′1, p′2 and p′3 whose types are mutually
distinct such that the subspaces of PT containing {p′1, p′2, p′3} are precisely the subspaces
of PT containing {p1, p

′′
2, p3}, i.e. the subspaces of PT containing {p1, p2, p3}.

(d) Suppose i1 = i2 = i3. Let p′′3 be the unique point of smallest type contained in the
line p2p3. Then p1, p2 and p′′3 are mutually collinear and the subspaces of PT containing
{p1, p2, p

′′
3} are precisely the subspaces of PT containing {p1, p2, p3}. Now, by (c), there

exist three mutually collinear points p′1, p′2 and p′3 whose types are mutually distinct
such that the subspaces of PT containing {p′1, p′2, p′3} are precisely the subspaces of PT
containing {p1, p2, p

′′
3}, i.e. the subspaces of PT containing {p1, p2, p3}.

(II) By (I), we may suppose that i1 > i2 > i3. Since no point of Type i ∈ {0, 1, 2} is
collinear with a point of Type 5−i, we have (i1, i2, i3) ∈ {(2, 1, 0), (3, 1, 0), (4, 2, 0), (4, 3, 0),
(5, 2, 1), (5, 3, 1), (5, 4, 2), (5, 4, 3)}, If (i1, i2, i3) = (3, 1, 0), then we put Y := II, x̄ = k
and A := K. If (i1, i2, i3) = (4, 2, 0), then we put Y := III, x̄ = (x, k) and A := O × K.
If (i1, i2, i3) = (4, 3, 0), then we put Y := IV , x̄ = (x, k, l) and A := O × K × K. If
(i1, i2, i3) = (5, 2, 1), then we put Y := V , x̄ = (x1, x2, k) and A := O × O × K. If
(i1, i2, i3) = (5, 3, 1), then we put Y := V I, x̄ = (x1, x2, k, l) and A := O × O × K × K.
If (i1, i2, i3) = (5, 4, 2), then we put Y := V II, x̄ = (x1, x2, x3, k, l) and A := O × O ×
O × K × K. If (i1, i2, i3) = (5, 4, 3), then we put Y := V III, x̄ = (x1, x2, x3, k, l,m) and
A := O×O×O×K×K×K.

If (i1, i2, i3) = (2, 1, 0), then there exists a unique plane containing the points p1, p2 and
p3, namely the plane [∞].

If (i1, i2, i3) 6= (2, 1, 0), then every plane containing p1, p2 and p3 necessarily has Type Y .
Using Corollary 4.7, it is straightforward to verify that there exists a unique x̄ ∈ A and a
unique (a, b, s) ∈ O3 such that p1 = p1(a, b), p2 = p2(s) and p3 = p∗3, where p1(a, b), p2(s)
and p∗3 are the points which we defined when we gave an explicit description of the plane
of Type Y with parameters x̄. This shows that there exists a unique plane containing p1,
p2 and p3, namely the plane of Type Y with parameters x̄. �

The following theorem identifies the constructed polar spaces with known ones.

Theorem 4.17 (1) If O = K is a field, then PT is isomorphic to the symplectic polar
space of rank 3 defined over the field K.
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(2) If O and K are fields such that O is a separable quadratic extension of K, then PT is
isomorphic to the Hermitian polar space of rank 3 associated with (O,K).

(3) If O is a field of characteristic 2 and O2 ⊆ K 6= O, then PT is isomorphic to the polar
space of rank 3 of mixed type associated with (O,K).

(4) If O is a quaternion division algebra and K = Z(O), then PT is isomorphic to the
quaternionic polar space of rank 3 associated with O.

(5) If O is a Cayley-Dickson division algebra and K = Z(O), then PT is isomorphic to
the nonclassical polar space of rank 3 associated with the Cayley-Dickson division algebra
O.

Proof. As PT contains planes, its rank r is at least 3. If r ≥ 4, then Proposition
4.4(1) would imply that each maximal singular subspace contains points of (at least)
four different types. But this is impossible. Indeed, we already know that if (i, i′) ∈
{(0, 5), (1, 4), (2, 3)}, then no point of Type i is collinear with a point of Type i′. So,
r = 3.

Now, a polar space of rank 3 is completely determined by its point set and the collinearity
relation defined on this point set. So, Claims (1), (2), (3) and (4) of the theorem are
immediate consequences of Proposition 3.1 and Corollary 4.7. As for Claim (5), this
follows from Tits’ classification of polar spaces [13] and the fact that PT is a polar space
of rank 3 all whose planes are isomorphic to the Moufang plane PG(2,O), where O is a
Cayley-Dickson division algebra. �
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