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1 Introduction

In 1996, Peter Abramenko [1] showed that the geometry ∆0(C) induced by the set of
chambers opposite a given chamber C in “most” rank 3 polar spaces ∆ is simply con-
nected. Besides some polar spaces with small parameters, the main rather annoying open
case was the family of so-called non-embeddable polar spaces. Due to lack of an efficient,
explicit and suitable description, this case remained open ever since. In this paper, we
will prove that ∆0(C) is simply connected, for any chamber C of a non-embeddable polar
space ∆, using the recent coordinate description by De Bruyn & Van Maldeghem [4].
Also, we settle the cases of classical polar spaces with small parameters, which are not
covered by Abramenko’s result, and we determine the covering degree. For the small
cases, we use computer computations.

The simple connectivity of ∆0(C) is used in a number of different situations and results.
All these results excluded, up to now, the non-embeddable polar spaces and some small
polar spaces of rank 3. As a corollary to Theorems 2.1 and 2.2 below, all those results
now also hold for the non-embeddable polar spaces, and some small classical polar spaces.
Let us mention three examples.

1. Abramenko’s original motivation. From the simple connectivity of ∆0(C) for
a rank 3 building ∆ and a chamber C in ∆, or, more generally, from the (n − 1)-
sphericity of ∆0(C) if ∆ has rank n, Abramenko deduces in [1] finiteness properties
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of certain S-arithmetic groups related to locally finite function fields, say with local
field Fq. The results in [1] now also hold for some smaller values of q than mentioned
there.

2. Group amalgamations. In [14], Tits wants to determine when the unipotent
subgroup of a group with a (split) spherical BN-pair is the amalgamated sum of its
“rank two subsystems” (the subgroups generated by two root groups in U). This is
precisely the case when ∆0(C) is simply connected, where ∆ is the corresponding
(Moufang) building, and C is the chamber fixed by U , see Proposition 6 of [14].
Our results imply that this condition is satisfied for the building corresponding
to the thick non-embeddable polar spaces. Similarly, but using different methods,
Devillers & Mühlherr [5] prove that, the (positive or negative) Borel subgroup of
every Kac-Moody group defined over a finite field with at least 16 elements is
finitely presented. This bound can now be sharpened to “at least 5 elements”.

3. A rank 3 criterion for extending a twinning to a twin building. In [6],
Devillers, Mühlherr & Van Maldeghem prove a rank 3 criterion for a twinning of
a chamber with a (2-spherical) building ∆ to extend to a full twin building. This
criterion contains the condition that for all spherical rank 3 residues ∆ and every
chamber in ∆, the geometry ∆0(C) is simply connected. Our results imply that this
is fine for rank 3 residues isomorphic to buildings corresponding to non-embeddable
polar spaces, and for some small polar spaces of rank 3. More precisely, the con-
ditions mentioned in Corollary 1 of [6] saying that “the planes of the polar space
must be Desarguesian and every panel must be contained in at least 17 chambers”
can be changed to “every panel must be contained in at least 6 chambers”.

2 Main Results

A polar space ∆ of rank n+1, n ≥ 1, is a geometry of rank n+1 with type set {0, 1, . . . , n}
(this is just an (n+1)-partite graph where the classes are labeled 0 up to n) satisfying the
following axioms (see [13, Chapter 7] or [15]), where we call the elements of type 0 points.
In the following, a projective space of dimension −1 is the empty set, of dimension 0 is
a singleton and of dimension 1 is a set of at least 3 points.

(PS1) The elements of type < i incident with any element of type i form naturally a
projective space of dimension i in which the type of an element in ∆ is precisely
the dimension of the corresponding subspace in that projective space.

(PS2) Every element of ∆ is determined by the set of points incident with it and the
point sets of two elements of ∆ intersect in a subspace of each.

(PS3) For every point x and every element M of type n not incident with x, there exists
a unique element M ′ through x of type n whose point set intersects the point set
of M in the point set of an element of type n − 1. Also, no element of type 1 is
incident with x and a point of M unless it is incident with M ′ or coincides with
M ′.
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(PS4) There exist two elements of type n not incident with any common point.

A polar space of rank n+ 1 is called thick if every element of type n− 1 is incident with
at least three elements of type n; it is called non-thick otherwise. Usually, we view the
elements of type i as subsets of the set of points, and we call them singular i-spaces.
Singular n-spaces are maximal singular subspaces. We call two points collinear when
they are contained in a common 1-space. A generalized quadrangle is a polar space of
rank 2 or the dual of it. A thick generalized quadrangle is a thick polar space of rank 2
and its dual is always again a thick polar space of rank 2.

The incidence relation of a polar space coincides with the adjacency of the corresponding
(n + 1)-partite graph, which we call the incidence graph of the polar space. We will
use both notions. By the geometry induced by a subset S of ∆, we mean the induced
subgraph. We will identify S with the geometry it induces and, in particular, talk about
the connectivity of S (which means the connectivity of the graph induced by S in the
incidence graph). The distance between two elements is the distance measured in the
incidence graph. The distance between elements x and y is denoted by d(x, y). For an
element x of ∆ we denote by ∆x the set (or induced subgraph on the set) of neighbors of
x in ∆. Note that in case the rank of ∆ is 3, if x is a point, then ∆x is itself a generalized
quadrangle; if x is a line, then it is a generalized digon (a complete bipartite graph); if x
is a plane, then it is a projective plane.

In essence, a polar space is the natural geometry of a pseudo-quadratic form, as intro-
duced by Jacques Tits in [13]. They arise as subgeometries of projective spaces (the
points are precisely the points of the projective space where the pseudo-quadratic form
vanishes), and are hence called the embeddable polar spaces. Since the corresponding
groups are classical groups, one also calls them classical polar spaces. Axiomatizing the
situation, in the light of the introduction of Tits-buildings, aiming at a uniform descrip-
tion of all geometries naturally associated with simple algebraic groups, there appear two
classes of polar spaces which cannot be described using a pseudo-quadratic form. The
first class consists of the line Grassmanian geometries of 3-dimensional projective spaces
over non-commutative fields, and these are considered to be the trivial (non-thick) non-
embeddable polar spaces (they are also classical in the sense that their automorphism
groups are classical linear projective groups). The second class is related to exceptional
groups of type E7 and the Cayley planes; every such polar space is thick, has rank 3 and
its planes are projective planes coordinatized by Cayley-Dickson division algebras. The
latter implies that these polar spaces cannot be embedded in any projective space, and
hence they are called the non-embeddable polar spaces, or also the non-classical polar
spaces.

In the finite case, every polar space arises from a symplectic polarity, or a non-degenerate
Hermitian variety, or a non-degenerate quadric. In projective space PG(2n+ 1, q) of odd
dimension 2n + 1 over the Galois field Fq, we have the (thick) symplectic polar space
W(2n + 1, q) (arising from a symplectic polarity) of rank n + 1, n ≥ 1, the (thick)
Hermitian polar space H(2n+ 1, q) (arising from a non-degenerate Hermitian variety) of
rank n+ 1, n ≥ 1, the (thick) elliptic polar space Q−(2n+ 1, q) (arising from an elliptic
quadric) of rank n, n ≥ 2, and the (non-thick) hyperbolic polar space Q+(2n + 1, q)
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(arising from a hyperbolic quadric) of rank n + 1, n ≥ 1. In projective space PG(2n, q)
of even dimension 2n over the Galois field Fq, we have the (thick) Hermitian polar space
H(2n, q) (arising from a non-degenerate Hermitian variety) of rank n, n ≥ 2, and the
(thick) parabolic polar space Q(2n, q) (arising from a parabolic quadric) of rank n + 1,
n ≥ 1. The polar spaces W(2n+ 1, q) and Q(2n+ 2, q) are isomorphic if q is even.

Let ∆ be a polar space of rank n+1, n ≥ 1. A flag is a set of pairwise incident elements,
and a chamber is a flag consisting of n + 1 elements. Two elements A,B are called
opposite if no point of one element is collinear with all points of the other element. Two
flags are opposite if every member of one flag is opposite some member of the other flag.
Let C be a chamber of ∆. Then ∆0(C) is the rank n+ 1 geometry induced on the union
of all chambers opposite C. More generally, if F is a flag of ∆, then ∆0(F ) is the rank
n+ 1 geometry induced on the union of all chambers containing a flag opposite F .

A path γ is a sequence (x0, . . . , xk) of consecutive incident or coinciding elements of ∆.
An elementary homotopy is a deletion or insertion of an element x between two elements
y and z, where {x, y, z} is a flag. A trivial path is a path (x) consisting of a single
element, and this is by definition also elementary homotopic to the path (x, x). Two
paths are called homotopic if they can be transformed into each other by a series of
elementary homotopies. Finally, the geometry ∆0(C) is called simply connected if it is
connected and if every closed path contained in it is homotopic to a trivial path (with all
intermediate elementary homotopic paths contained in ∆0(C)). It is rather easy to see
that simple connectivity only makes sense in polar spaces of rank at least 3. If a geometry
Γ is connected but not simply connected, then it admits a universal cover, which is a
simply connected geometry admitting a local isomorphism onto Γ (a local isomorphism is
an epimorphism inducing isomorphisms on the rank 2 residues). The size of any fiber is
called the covering degree of Γ. Hence Γ is simply connected if and only if it has covering
degree 1.

Given a geometry Γ, let Σ be its geometric realization as a simplicial complex. Then Γ
is simply connected if and only if Σ is simply connected as a topological space (see e.g.
[11, Chapter 12]). Similarly, Γ is connected if and only if Σ is path connected.

In [1], Peter Abramenko encountered the problem of determining for which thick polar
spaces ∆ of rank 3 the geometry ∆0(C), with C any chamber of ∆, is simply connected.
He proved [1, Proposition 11, p. 66] that this was the case for all polar spaces of rank
3, except for W(5, q), q = 2, 3, 4, Q(6, q), q = 3, Q−(7, q), q = 2, 3, H(5, q2), q = 2,
and except possibly for W(5, q), q = 5, 7, 8, 9, 11, Q(6, q), q = 5, 7, 9, 11, 13, Q−(7, q),
q = 4, 5, 7, 8, 9, 11, H(5, q2), q = 3, 4, 5, H(6, q2), q = 2, 3, and all non-embeddable thick
polar spaces.

In this paper, we settle all of these open cases and prove the following theorems.

Theorem 2.1. Let ∆ be a thick polar space of rank 3, and let C be a chamber of ∆.
Then ∆0(C) is simply connected if ∆ is isomorphic to a non-embeddable polar space.

Theorem 2.2. Let ∆ be a thick polar space of rank 3, and let C be a chamber of ∆.
Then ∆0(C) is simply connected if ∆ is isomorphic to W(5, q), q = 5, 7, 8, 9, 11, Q(6, q),
q = 5, 7, 9, 11, 13, Q−(7, q), q = 4, 5, 7, 8, 9, 11, H(5, q2), q = 3, 4, 5, H(6, q2), q = 2, 3.
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Moreover, if ∆ ∼= W(5, 4) then the covering degree is 4, and if ∆ ∼= Q(6, 3) then the
covering degree is 81.

For some more information on the covers of W(5, 4) and ∆ ∼= Q(6, 3), see Proposition 5.2.
Combined with [1, Proposition 11, p. 66], we can now state the following.

Corollary 2.3. Let ∆ be a thick polar space of rank 3, and let C be a chamber of ∆.
Then ∆0(C) is simply connected, except for the following cases:

(1) ∆ ∼= W(5, 2), W(5, 3), Q−(7, 2), H(5, 22), where the covering degree is ∞;

(2) ∆ ∼= W(5, 4), where the covering degree is 4;

(3) ∆ ∼= Q(6, 3), where the covering degree is 81.

The paper is organized as follows. In the next section, we introduce the necessary
notions to handle the non-embeddable polar spaces, in particular we recall the recent
construction of these polar spaces by De Bruyn & Van Maldeghem [4]. In Section 4,
we prove Theorem 2.1 for non-embeddable polar spaces. In Section 5, we report on the
small cases to complete the proofs of Theorem 2.2 and Corollary 2.3.

3 Preliminaries on non-embeddable polar spaces

Let K be a commutative field, and let O be a Cayley-Dickson division algebra with center
K. The Moufang projective plane over O is the projective plane PG(2,O) with point set
{(∞), (m), (x, y) : m,x, y ∈ O} and line set {[∞], [x], [m, k] : x,m, k ∈ O}, and with
incidence relation ∗ defined by (x, y) ∗ [x] ∗ (∞) ∗ [∞] ∗ (m) ∗ [m, k] and

(x, y) ∗ [m, k] if and only if y = mx+ k.

According to Tits [13], there exists a unique polar space ∆ of rank 3 with planes isomor-
phic to the Moufang projective plane over O. We give the coordinate description which
can be found in [4].

Let ∞ be a symbol not belonging to O. Then the point set of ∆ is the set

{(∞), (x1), (x1, x2), (x1, x2; k), (x1, x2, x3; k), (x1, x2, x3, x4; k) : x1, x2, x3, x4 ∈ O, k ∈ K}.
The point (∞) is called the point of type 0. If x1, x2, x3, x4 ∈ O and k ∈ K, then (x1) is
called a point of type 1, (x1, x2) is called a point of type 2, (x1, x2; k) is called a point of
type 3, (x1, x2, x3; k) is called a point of type 4 and (x1, x2, x3, x4; k) is called a point of
type 5. The planes of ∆ are the following subsets of points, subdivided into eight types,
where in each case a, b, s ∈ O.

Type I. The plane [∞] consists of the following points:

p[∞],1(a, b) := (a, b),

p[∞],2(s) := (s),

p[∞],3 := (∞).
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Type II. For every k ∈ K, the plane [k] consists of the following points:

p[k],1(a, b) := (a, b; k),

p[k],2(s) := (s),

p[k],3 := (∞).

Type III. For every x ∈ O and every k ∈ K, the plane [x; k] consists of the following
points:

p[x;k],1(a, b) := (x, a, b; k),

p[x;k],2(s) := (−xσ, s),
p[x;k],3 := (∞).

Type IV. For every x ∈ O and all k, l ∈ K, the plane α := [x; k, l] consists of the
following points:

pα,1(a, b) := (a, x+ la, b; k + xσa+ aσx+ laσ+1),

pα,2(s) := (xσ, s; l),

pα,3 := (∞).

Type V. For all x1, x2 ∈ O and every k ∈ K, the plane α := [x1, x2; k] consists of the
following points:

pα,1(a, b) := (−xσ2 ,−xσ1 , a, b; k),

pα,2(s) := (s, x1 + x2s),

pα,3 := (x2).

Type VI. For all x1, x2 ∈ O and all k, l ∈ K, the plane α := [x1, x2; k, l] consists of the
following points:

pα,1(a, b) := (−xσ2 , a, xσ1 + ka, b; l + x1a+ aσxσ1 + kaσ+1),

pα,2(s) := (s, x1 + x2s; k),

pα,3 := (x2).

Type VII. For all x1, x2, x3 ∈ O and all k, l ∈ K, the plane α := [x1, x2, x3; k, l] consists
of the following points:

pα,1(a, b) := (a,−xσ3 + x1a, b, x
σ
2 + ka− xσ1b; l + x2a+ aσxσ2 + kaσ+1),

pα,2(s) := (x1, s, x2 + x3s; k),

pα,3 := (−xσ1 , x3).

6



Type VIII. For all x1, x2, x3 ∈ O and all k, l,m ∈ K, the plane α := [x1, x2, x3; k, l,m]
consists of the following points:

pα,1(a, b) := (a, b, x3
σ + lb+ x1a, x2

σ + ka+ xσ1b;

m+ x2a+ aσxσ2 + x3b+ bσx3
σ + kaσ+1 + lbσ+1 + (aσxσ1 )b+ bσ(x1a)),

pα,2(s) := (s, x1 + ls, x2 + x3s; k + xσ1s+ sσx1 + lsσ+1),

pα,3 := (xσ1 , x3; l).

Each of the above point sets admits a natural bijection βα onto the point set of the plane
PG(2,O) by mapping the point pα,1(a, b) to the point (a, b), the point pα,2(s) to the point
(s), and then point pα,3 to (∞). Now, these planes determine the collinearity relation
in ∆, and collinearity determines the lines. It is proved in [4] that one can explicitly
describe all lines of ∆ as the inverse images of the point sets of the lines in PG(2,O)
under the bijections βα. Moreover, the collection of all planes above is precisely the
family of all maximal singular subspaces of ∆.

In particular, one can check that the intersection of two planes is either empty, a single
point, or a line of ∆. In [4], all lines are explicitly given independently of the planes
as sets of points, and the lines are subdivided into twelve types. Here, we will only
need two of those types. The lines of type L are the lines of the planes α of type VIII
not containing pα,3, and the lines of type K are the lines of the planes α of type VIII
containing pα,3 but not pα,2(0). Note that each line of type L also occurs in a (unique)
plane of type VII, and each line of type K occurs in a (unique) plane of type VI. Two
points will be called L-collinear if they are contained in a common line of type L; similarly
for K-collinearity.

We define the chamber C∞ as the chamber consisting of the point (∞), the line through
the points (∞) and (0), and the unique plane [∞] of type I.

If two points p and q are collinear, then we write p ⊥ q, and if two singular subspaces
V and W are contained in a common singular subspace, then we denote by 〈V,W 〉 the
unique singular subspace of smallest dimension containing both V and W .

4 Proof of Theorem 2.1

Let ∆ be the non-embeddable thick polar space of rank 3 related to the Cayley-Dickson
division algebra O with center the commutative field K. We keep the notation of the
previous paragraph and we want to show that ∆0(C∞) is simply connected. We follow
the general strategy of Abramenko [1], namely, we define a filtration of ∆0(C∞) (i.e., a
sequence of nested subgeometries whose union is ∆0(C∞)) that begins with a “large”
contractible subgeometry and preserves simple connectivity at each step.

Note that it follows from the fact that the point (∞) belongs to all planes of type I, II,
III and IV that a point is opposite (∞) if and only if it has type 5. Likewise, it is easy to
see that a plane is disjoint from the plane [∞] (and hence opposite) if and only if it has
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type VIII. Finally, it also follows that the lines opposite 〈(∞), (0)〉 are precisely those of
type L. Hence ∆0(C∞) is the geometry induced by the set

Y := {points of type 5} ∪ {lines of type L} ∪ {planes of type VIII}.

Before defining the filtration of Y we record a result to be used later.

Proposition 4.1. Suppose that Γ is a thick generalized quadrangle in which every point
and every line is incident with at least n2 + n + 2 elements, n ∈ N, n ≥ 1. If Z is a
nonempty set of points and lines of Γ such that for any element z of Z at most n elements
incident with z in Γ do not belong to Z, then the geometry induced by Z is connected.

Proof. Let x, y be two elements of Z. Without loss, we may assume d(x, y) = 3. Indeed,
if d(x, y) = 2, then consider any element of Z incident with y not incident with x (since
there is a unique element in Γ incident with both x and y, and n ≥ 1, such element
certainly exists). If d(x, y) = 4, then any element of Z incident with y is at distance 3
from x.

Since n2 +n+2−n ≥ n+2, we can select n+1 elements x0, x1, . . . , xn of Z incident with
x and at distance 4 from y. Since for each xi, i = 0, 1, . . . , n, there are at most n elements
incident with xi and not belonging to Z, and since for each such element there is a unique
element at distance 2 and incident with y, there are at least (n2 + n+ 1)− n(n+ 1) ≥ 1
elements y0 incident with y such that the unique elements zi at distance 2 from y0 incident
with xi, i = 0, 1, . . . , n, belong to Z. If ui denotes the unique element incident with both
zi and y0, i = 0, 1, . . . , n, then, by assumption, at least one of this, say u0, belongs to Z,
and so the path (x, x0, z0, u0, y0, y) belongs to Z.

For our purposes, we will mostly need the previous result in the following setting.

Corollary 4.2. Let Γ be a generalized quadrangle such that every element is incident
with infinitely many other elements. Let n ≥ 1 be an arbitrary natural number, and let
a1, a2, . . . , an be n elements of Γ. Then ∩ni=1Γ0(ai) is connected.

Proof. Assume that x ∈ ∩ni=1Γ0(ai). Let i ∈ {1, 2, . . . , n}. If x is opposite ai, then Γx is
contained in Γ0(ai). If d(x, ai) = 3, then the only element of Γx not contained in Γ0(ai)
is the unique one at distance 2 from ai. If d(x, ai) ≤ 2, then obviously x /∈ Γ0(ai), a
contradiction. Hence at most n elements incident with x are not contained in ∩ni=1Γ0(ai).

So the corollary will follow from Proposition 4.1 if we show that ∩ni=1Γ0(ai) is nonempty.
Let ` be maximal with the property that there exists x ∈ ∩`i=1Γ0(ai). Then ` ≥ 1.
Suppose for a contradiction that ` < n. Then d(x, a`+1) ≤ 2. By the previous paragraph
applied to ∩`i=1Γ0(ai), we know that there exists y ∈ ∩`i=1Γ0(ai) with y incident with x
and d(y, a`+1) = d(x, a`+1) + 1. Hence, after at most three steps, we can find an element
in ∩`+1

i=1Γ0(ai), contradicting the definition of `.

Recall that for an element x of ∆ we denote by ∆x the set (or induced subgraph on the
set) of neighbors of x in ∆. If x is a point, then ∆x is itself a generalized quadrangle;
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if x is a line, then it is a generalized digon (a complete bipartite graph); if x is a plane,
then it is a projective plane.

Proposition 4.3. Let q be a point of type 5. Then it is contained in a unique plane
αq of type V and in a unique line Lq intersecting 〈(∞), (0)〉 nontrivially. Moreover, in
the generalized quadrangle ∆q, the chambers C opposite the chamber Cq := {Lq, αq} are
precisely those for which C ∪ {q} is opposite C∞, i.e., ∆0

q(Cq) = ∆0(C∞) ∩∆q.

Proof. The first assertions follow from the fact that q is opposite (∞). The last assertion
follows directly from Theorem 3.28 and Proposition 3.29 of [13].

We will define the filtration of Y step-by-step. We will have Y0 ⊆ Y1 ⊆ · · · ⊆ Y9 ⊆ Y10 =
Y , and we start by defining Y0.

Throughout, put p := (0, 0, 0, 0; 0) ∈ Y and let Y0 ⊆ Y comprise the following sub-
spaces:

(1) points of type 5 L-collinear with p;

(2) lines of type L containing a point of type 5 L-collinear with p and whose point of
type 5 with first coordinate 0 is either

(a) non collinear with p, or

(b) K-collinear with p;

(3) planes of type VIII containing a line as in (2)(b) above.

To understand the structure of Y0, note that no point of type 5 with first coordinate 0
is L-collinear with p, and points of type 5 with first coordinate 0 that are K-collinear
with p are contained in a plane of type VIII as in (3). If a line M of type L contains
a point of type 5 L-collinear with p, and if its point of type 5 with first coordinate 0 is
also collinear with p, but not K-collinear, then the plane spanned by p and M is not of
type VIII, and hence we cannot directly contract that line inside Y0. This motivates the
conditions in (2).

Proposition 4.4. The geometry Y0 can be contracted onto p.

Proof. Indeed, we first contract every plane of type VIII containing a line as in (2)(b)
onto that line. Then we contract every line of Y0 as in (2)(a) onto its unique point of
type 5 collinear with p, and every line of type L as in (2)(b) onto the plane it spans
together with p. Every point of type 5 L-collinear with p is contracted onto the line it
spans together with p, and every plane in Y0 is contracted onto p. Finally, every line in
Y0 containing p is contracted onto p.

The previous arguments can be summarized as: for any subspace U in Y0, the subspace
defined by the points in U collinear with p also belongs to Y0 (and we will denote that
subspace by U⊥p), and for any U in Y0 all of whose points are collinear with p, the
subspace 〈p, U〉 also belongs to Y0.
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Concerning the points of Y0 it is appropriate to note that every point of Y0 \ {p} has
nonzero first coordinate. Conversely, one easily checks that every point in ∆ of type 5
with nonzero first coordinate and collinear with p, is L-collinear with p. This makes it
rather easy to recognize points of Y0.

The planes in Y0 admit a simple characterization via coordinates.

Proposition 4.5. Let α = [x1, x2, x3; k, l,m]. Then α ∈ Y0 if and only if either (i)
x2 = x3 = m = 0 or (ii) x3 6= 0 and m 6= 0. Moreover, p ∈ α in case (i) but not in case
(ii).

Proof. We have pα,1(0, 0) = (0, 0, xσ3 , x
σ
2 ;m), so p ∈ α (and hence α ∈ Y0) if and only

if x2 = x3 = m = 0. If p /∈ α, then α⊥p is a line, and hence α ∈ Y0 if and only if
α⊥p ∈ Y0. But α⊥p has type L if and only if pα,3 is not collinear with p (by definition
of type L), and this happens if and only if x3 6= 0 (indeed, if x3 = 0, then the plane
[x1, 0, 0; 0, l, 0] contains both p and pα,3; if x3 6= 0, then any plane β of type VIII through
pα,3 has third coordinate nonzero, implying that the point pβ,1(0, 0) has nonzero third
coordinate). Noting that a point of type 5 with first coordinate 0 and collinear with p,
is K-collinear with p if and only if its second coordinate is distinct from 0, we see that,
if x3 6= 0, the point of type 5 with first coordinate 0 in α⊥p is K-collinear with p if and
only if pα,1(0, 0) is not collinear with p, and this happens if and only if m 6= 0 (indeed,
the points of type 5 with first and second coordinate 0 contained in a common plane of
type V, VI or VII all have a common last coordinate, as is easily checked; if m = 0, then
(0, 0, xσ3 , x

σ
2 ; 0), x3 6= 0, and (0, 0, 0, 0; 0) are contained in the plane [0, 0; 0]).

Now define Y1 as follows (where K× = K \ {0}; we will also use O× = O \ {0}):

Y1 = Y0 ∪
⋃

m∈K×
{q ∈ Y : q is a point K-collinear with and distinct from (0, 0, 0, 0;m)}.

The points (0, 0, 0, 0;m) have special properties.

Lemma 4.6. For all m ∈ K we have (∞)⊥ ∩ (0, 0, 0, 0;m)⊥ = (∞)⊥ ∩ p⊥. In particular,
no point of type 5 collinear with (0, 0, 0, 0; 0) is collinear with (0, 0, 0, 0;m), m ∈ O×.

Proof. One easily calculates that

(∞)⊥ ∩ (0, 0, 0, 0;m)⊥ = {(0), (x1, 0), (x1, 0; k), (x1, x2, 0; k) : x1, x2 ∈ O, k ∈ K},

which is independent of m.

Proposition 4.7. For any q ∈ Y1 \ Y0, the subgeometry Y0 ∩∆q is connected.

Proof. Let m ∈ K×. An arbitrary plane α of type VIII containing the point pα,1(0, 0) =
(0, 0, 0, 0;m) has coordinates [x1, 0, 0; k, l,m], x1 ∈ O, k, l ∈ K. An arbitrary point in that
plane K-collinear with and distinct from (0, 0, 0, 0;m) is just an arbitrary point in α with
first coordinate equal to 0 and second distinct from 0, i.e., q = (0, b, lb, xσ1b;m + lbσ+1),
b 6= 0. Lemma 4.6 implies that q /∈ Y0.

10



By Lemma 4.6, a point of type unequal to 5 is collinear with p if and only if it is collinear
with (0, 0, 0, 0;m). Hence lines in ∆q ∩ Y opposite 〈q, (0, 0, 0, 0;m)〉 are exactly those
whose point of type 4 is not collinear with p. As p is not collinear with q, such a line’s
unique point r collinear with p has type 5. Moreover, the first coordinate of r is nonzero
as r and q are L-collinear but not K-collinear. It follows that p and r are L-collinear.
Hence the lines of Y0 ∩∆q are precisely the lines of ∆q(Cq) ∩∆q({〈q, (0, 0, 0, 0;m)〉, β}),
where β is any plane through 〈q, (0, 0, 0, 0;m)〉.

It is straightforward to calculate that, if a plane β = [x′1, x
′
2, x
′
3; k′, l′,m′] contains the

point q, then x′3 = (l− l′)bσ and m′ = m− (l− l′)bσ+1. By Proposition 4.5, such a plane
belongs to Y0 if and only x′3 6= 0 and m′ 6= 0.

Since b 6= 0, the equality x′3 = 0 is equivalent with l = l′. This is equivalent with
saying that the unique point r of type 3 of β can be written as (x′1

σ, 0; l). A plane
γ = [x′′1, x

′′
2; k′′, l′′] of type VI contains q if and only if x′′1 = (l − k′′)bσ, x′′2 = 0 and

l′′ = m + (k′′ − l)bσ+1. Such a plane contains r if and only if k′′ = l; indeed, this is
necessary as the last coordinate of r, which is l, must be equal to the third coordinate
of γ, which is k′′, but it is also sufficient since k′′ = l implies x1 = 0. Hence, the unique
plane of type VI through q and r has coordinates [0, 0; l,m], and it follows that a plane
[x′1, x

′
2, x
′
3; k′, l′,m′], x′1, x

′
2, x
′
3 ∈ O, k′, l′,m′ ∈ K, containing q satisfies x′3 6= 0 if and only

if it intersects the plane [0, 0; l,m] only in q, hence if and only if those two planes define
opposite elements in the generalized quadrangle ∆q.

Likewise, with similar calculations, one shows that the condition m′ 6= 0 translates into
[x′1, x

′
2, x
′
3; k′, l′,m′] being opposite γ′ = [mb−1, 0; l −mb−σ−1, 0] in ∆q. It is now easy to

see that

Y0 ∩∆q = ∆0
q(Cq) ∩∆0

q({〈q, (0, 0, 0, 0;m)〉, γ}) ∩∆0
q({〈q, (0, 0, 0, 0;m)〉, γ′}).

The result now follows from Corollary 4.2.

Proposition 4.8. Y1 is simply connected.

Proof. By Proposition 4.4, the geometry Y0 is contractible, hence simply-connected. Let
q ∈ Y1 \ Y0. The geometry induced on {q} ∪ (∆q ∩ T0 is contractable onto q, hence it
is simply connected. Also, the intersection Y0 ∩ ∆q is connected as a geometry; hence
its geometric realization is a path-connected topological space. Using the Seifert-Van
Kampen theorem for topological spaces, we now see that the geometric realization of
the geometry induced on Y0 ∪ {q} is simply connected. We can repeat this argument
for a finite number of elements q = q0, q1, . . . , q` of Y1 \ Y0 and obtain that the geometry
induced on Y0 ∪ {q0, q1, . . . , q`} us simply connected. Since a closed path in Y0 contains
only a finite number of elements of Y1\Y0, this implies that evey closed path is homotopic
equivalent to the trivial path. Hence Y1 is a simply connected geometry.

We now add some lines to Y1 and define

Y2 = Y1 ∪ {L : L is a line of type L containing a point of Y1 \ Y0}.
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In order to show that ∆L ∩ Y1 is connected for L ∈ Y2 \ Y1, we only need to show that L
is contained in some plane of Y0, as ∆L is complete bipartite.

Proposition 4.9. Each line L ∈ Y2 \ Y1 is contained in a plane of Y0, and hence Y2 is
simply connected.

Proof. Let the line L contain the point q = (0, b, lb, d;m+ lbσ+1), with b ∈ O×, d ∈ O and
l,m ∈ K. Let the unique point of type 4 on L have coordinates (w1, w2, w3; i) ∈ O3 ×K.
As in the previous proof, one calculates that a plane β = [x′1, x

′
2, x
′
3; k′, l′,m′] contains q

if and only if 
x′2 = d− x′1

σ
bσ,

x′3 = (l − l′)bσ,
m′ = m− (l − l′)bσ+1.

If we choose l′ /∈ {l, l −mb−σ−1}, which is always possible as |K| > 2, then β contains L
and belongs to Y0.

An argument similar as that in the proof of Proposition 4.8 shows that Y2 is simply
connected.

We now add some planes to Y2 and define

Y3 = Y2 ∪ {[x1, x2, x3; k, l, 0] : x3 ∈ O×, x1, x2 ∈ O, k, l ∈ K}
∪ {[x1, x2, 0; k, l,m] : x1 ∈ O, x2 ∈ O×, k, l ∈ K,m ∈ K×}.

Proposition 4.10. Let α ∈ Y3 \ Y2. Then ∆α ∩ Y2 is connected, and hence Y3 is simply
connected.

Proof. Let A be the set of points in ∆α ∩ Y0, let B be the set of points in ∆α ∩ (Y1 \ Y0),
and let W be the set of lines in ∆α ∩ Y2. Note that all points of A have a nonzero first
coordinate (indeed, every such point is L-collineair with p and distinct from p since either
x2 6= 0 or x3 6= 0) and all points in B have as first coordinate 0. So A ∩B = ∅. We first
show that A 6= ∅ 6= B.

• α = [x1, x2, x3; k, l, 0], with x3 ∈ O×, x1, x2 ∈ O, k, l ∈ K. The point of type
3 in α is (xσ1 , x3; l), which is never collinear with p, since x3 6= 0. Hence α⊥p is
a line of type L, and so A 6= ∅ in this case. Also, pα,1(0, xσ3 ) is K-collinear with
(0, 0, 0, 0;xσ3 ) since both points have 0 as first coordinate and lie in the common
plane [x−1

3 x2 + x1, 0, 0; 0, 1 + l, xσ+1
3 ]. So B 6= ∅.

• α = [x1, x2, 0; k, l,m], with x1 ∈ O, x2 ∈ O×, k, l ∈ K, m ∈ K×. The point of
type 3 in α is (xσ1 , 0; l), which is always collinear with p, and we also have that
neither pα,1(0, 0) = (0, 0, 0, xσ2 ;m) nor pα,2(0) = (0, x1, x2; k) is collinear with p
(all this because x2 6= 0 and a plane of type VII or VIII containing p must have
second coordinate 0). Hence every point in α distinct from pα,3 collinear with
p has type 5 and has nonzero first coordinate, hence belongs to Y0 and to A.
Also, the point pα,1(0, b) = (0, b, lb, xσ2 + xσ1b;m + lbσ+1) is K-collinear with and
distinct from (0, 0, 0, 0;m), for every b ∈ O×, see the first paragraph of the proof
of Proposition 4.7. Hence B 6= ∅.
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Now, if a line L in α belongs to Y0, then it contains a point of A. Likewise, if a line L
in α belongs to Y2 \ Y0, then it contains a point of B. Moreover, every line of type L
through any point of B is contained in Y2. Noting that all lines connecting a point of A
with a point of B have type L, we immediately deduce that A∩B ∩W is connected.

Note that a plane [x1, x2, x3; k, l,m], x1, x2, x3 ∈ O, k, l,m ∈ K, belongs to Y \ Y3 if and
only if x3 = 0 and either x2 = 0 and m 6= 0, or x2 6= 0 and m = 0. These will be added
in two distinct steps (Y5 and Y7, respectively).

Now we again add some points.

Y4 = Y0 ∪
⋃

m∈K×
{q ∈ Y : q is a point L-collinear with and distinct from (0, 0, 0, 0;m)}.

We first establish the general form of a point in Y4 \ Y1. Firstly, an arbitrary plane α of
type VIII containing the point pα,1(0, 0) = (0, 0, 0, 0;m) has coordinates [x1, 0, 0; k, l,m],
x1 ∈ O, k, l ∈ K. An arbitrary point in that plane L-collinear with and distinct from
(0, 0, 0, 0;m) is just an arbitrary point in α with first coordinate, say a ∈ O, unequal 0,
i.e.,

q = (a, b, lb+ x1a, ka+ xσ1b;m+ kaσ+1 + lbσ+1 + (aσxσ1 )b+ bσ(x1a)), a 6= 0.

Proposition 4.11. Let q ∈ Y4 \ Y3. Then ∆q ∩ Y3 is connected and hence Y4 is simply
connected.

Proof. Put q = (a, b, lb+ x1a, ka+ xσ1b;m+ kaσ+1 + lbσ+1 + (aσxσ1 )b+ bσ(x1a)), as above
and put r = (0, 0, 0,ma−σ; 0). It is clear that every plane of type VIII incident with
r must have the third and last coordinate equal to 0. Let β = [x′1, x

′
2, 0; k′, l′, 0], with

x′1, x
′
2 ∈ O and k′, l′ ∈ K arbitrary, and suppose q ∈ β. The description of planes of type

VIII implies
lb+ x1a = l′b+ x′1a,

ka+ xσ1b = x′2
σ
+ k′a+ x′1

σ
b,

m+kaσ+1+lbσ+1+(aσxσ1 )b+bσ(x1a) = x′2a+aσx′2
σ
+k′aσ+1+l′bσ+1+(aσx′1

σ
)b+bσ(x′1a).

Putting L = l − l′, K = k − k′ and X1 = x1 − x′1, we can rewrite this as
Lb+X1a = 0,

Ka+Xσ
1 b = x′2

σ
,

m+Kaσ+1 + Lbσ+1 + (aσXσ
1 )b+ bσ(X1a) = x′2a+ aσx′2

σ
.

Remembering K,L ∈ K, we deduce from the first equation that X1 belongs to the skew
field generated by a and b; then the second equation says that also x′2 belongs to this skew
field. Hence all elements in this system of equations belong to a common skew field, and
so we may remove the parentheses. It is now an elementary exercise to eliminate L and
K from the first two equations, and then also X1 disappears in the last equation, giving
m = x′2a. Noting that (0, 0, 0, x′2

σ; 0) always belongs to [x′1, x
′
2, 0; k′, l′, 0], we conclude
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that r ∈ β. Hence a plane of type VIII containing q has the form [x′1, x
′
2, 0; k′, l′, 0],

x′1, x
′
2 ∈ O, k′, l′ ∈ K, if and only if it contains r.

Now put s = (0, 0, 0, 0;m). It is clear that every plane of type VIII incident with s must
have second and third coordinate equal to 0. Conversely, let γ be an arbitrary plane
with coordinates [x′′1, 0, 0; k′′, l′′,m′′] and suppose q ∈ γ. Note that (0, 0, 0, 0;m′′) ∈ γ.
But then Lemma 4.6 implies m = m′′, yielding s ∈ γ. Hence a plane of type VIII
containing q has the form [x′′1, 0, 0; k′′, l′′,m′′], x′′1 ∈ O, k′′, l′′,m′′ ∈ K, if and only if
it contains s. We conclude that the planes of Y3 in ∆q are precisely the planes of
∆0
q(Cq) ∩∆0

q(〈r, q〉) ∩∆0
q(〈s, q〉).

Noting that p is not collinear with q, a line R of type 5 through q is not contained in Y0

if and only if its unique point of type 4 is collinear with p, or its unique point of type 5
with first coordinate 0 is collinear with p. Now, by Lemma 4.6, the point of type 4 on
R is collinear with p if and only if it is collinear with s if and only if 〈q, s〉 is collinear
with R in ∆q. Now let u be a point of type 5 with first coordinate 0. Suppose first that
u is collinear with p. Since u is not L-collinear with p, one verifies (see [4]) that the
line 〈u, p〉 is contained in a unique plane of type either V or VI, of the form [0, 0; 0] or
[0, 0; k, 0], k ∈ K respectively. But such a plane automatically contains r. Conversely, if
u is collinear with r, then the same argument implies that p is collinear with u. Hence we
have shown that the lines of Y0 in ∆q are precisely those of ∆0

q(Cq)∩∆0
q(〈r, q〉)∩∆0

q(〈s, q〉).
By Corollary 4.2, this is connected. Proposition 4.9 implies that ∆q∩Y3 is connected.

We now add half of the missing planes to Y4 and define

Y5 = Y4 ∪ {[x1, 0, 0; k, l,m] : x1 ∈ O, k, l ∈ K,m ∈ K×}.

Proposition 4.12. Let α ∈ Y5 \ Y4. Then ∆α ∩ Y4 is connected and hence Y5 is simply
connected.

Proof. Let α = [x1, 0, 0; k, l,m], x1 ∈ O, k, l ∈ K, m ∈ K×. We note that (0, 0, 0, 0;m) ∈
α, hence by the definition of Y1 and Y4, all other points of type 5 of α are contained in
Y4. By the definition of Y2, all lines in α of type L containing a point pα,1(0, b), b ∈ O×,
belong to Y4. This implies easily that ∆α∩Y4 is connected (in fact, it suffices to find two
lines through each point of α that belongs to Y4, but here we found infinitely many).

So far, Y5 contains all lines of type L all of whose points are collinear with p. It also
contains all lines of type L with a unique point q collinear with p such that q has type
5 and is L-collinear with p, or such that q has type 4 and the line contains a point K-
collinear with some (0, 0, 0, 0;m), m ∈ K×. Since all lines of type L contain some point
collinear with (0, 0, 0, 0;m), for all m ∈ O, it is natural to first concentrate on special
cases of that collinearity.

Also, there are still lines in Y not incident with any point of Y5. We cannot add those
lines, as such a line M would give rise to non-connected ∆M ∩ Y5. For instance, one
checks that the line T of the plane α = [0, 1, 1; 0, 0, 0] containing the points pα,2(−1) and
pα,1(0, x), with x ∈ O \K, does not contain any point of type 5 collinear with any point
(0, 0, 0, 0;m), m ∈ K.
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Hence we now add some specific lines to Y5 and define Y6 as follows.

Y6 = Y5 ∪ {〈q, q′〉 : q = (a, b, c, d; k) ∈ Y4, b 6= 0 and q ⊥ q′ = (a′, 0, c′, d′; k′), a′ /∈ {0, a}}.

By definition, every line R ∈ Y6 \ Y5 contains at least one point of Y4; so to prove
connectivity of ∆R ∩Y5, it suffices to prove that there is at least one plane of Y5 incident
with R.

Proposition 4.13. There is at least one plane of Y3 containing any line R of Y6 \ Y5.
Consequently, ∆R ∩ Y5 is connected and hence Y6 is simply connected.

Proof. Every line of type L is incident with infinitely many planes of type VIII, and
exactly one of type VII. Suppose two planes α1, α2 of type VIII meet in R and let
αi = [xi, yi, 0; ki, li, 0], xi, yi ∈ O, yi 6= 0, ki, li ∈ K, i = 1, 2.

Let R = 〈q, q′〉 with q = (a, b, c, d; k) ∈ Y4, b 6= 0, q ⊥ q′ = (a′, 0, c′, d′; k′), a′ /∈ {0, a}.
Let r = (w1, w2, w3; i) be the unique point of type 4 in R. Note that this implies, by
the definition of lines in ∆, that b− w1a = 0− w1a

′, hence w1 = b(a− a′)−1 6= 0. Since
r ∈ αi, i = 1, 2, we easily deduce{

x1 − x2 = −(l1 − l2)w1,

k1 − k2 = (l1 − l2)wσ+1
1 .

Since a′ 6= 0 and w1 6= 0, R contains a point pαi,1(0, e), with e 6= 0, i = 1, 2. This easily
yields, by comparing the third coordinate of pα1,1(0, e) = pα2,1(0, e), l1b = l2b, hence
l1 = l2, and by the above equalities, x1 = x2 and k1 = k2. From the fourth coordinate
of pα1,1(0, e) = pα2,1(0, e) follows y1 = y2, hence α1 = α2. It follows that there is at most
one plane of type VIII not in Y5 that contains R. The proposition is proved.

Now we add all remaining planes to Y6.

Y7 = Y6 ∪ {[x1, x2, 0; k, l, 0] : x1 ∈ O, k, l ∈ K, x2 ∈ O×}.

Proposition 4.14. For any plane α ∈ Y7 \ Y6, we have that ∆α ∩ Y6 is connected and
hence Y7 is simply connected.

Proof. Put α = [x1, x2, 0; k, l, 0] : x1 ∈ O, k, l ∈ K, x2 ∈ O×. Let us determine the points
of Y6 in α. Note first that pα,3 = (xσ1 , 0; l) = pβ,3, with β = [x1, 0, 0; 0, l, 0] 3 p. Also,
pα,1(0, 0) = (0, 0, 0, xσ2 ; 0) = pγ,1(0, xσ2 ) 3 p, where γ = [0, 0; 0]. Hence the line α⊥p has
type K and all of its points of type 5 have 0 as first coordinate and so are not L-collinear
with p. Consequently, there are no points of Y0 in α.

By Lemma 4.6, every point rm := (0, 0, 0, 0;m), m ∈ K, is collinear with pα,3. Hence
all points of type 5 collinear with rm have the same first coordinate (distinct from 0 by
Lemma 4.6 again), and so there is one with second coordinate 0, say pα,1(a, 0). Since
a 6= 0, pα,1(a, 0) cannot be K-collinear with rm. So, no point of α belongs to Y1. The
calculation in the first part of the proof of Proposition 4.11 shows that pα,1(a, 0) is L-
collinear to rm if and only if m = x2a, hence a ranges over all K-multiples of x−1

2 . Since
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every line of type L in α contains a point of type 5 with first coordinate x−1
2 , it suffices

to show that two arbitrary points of Y4 in α can be joined by a path of Y6 in α. By
the definition of lines in Y6 \ Y5, every point of Y4 in α is connected by a single line to
pα,1(x−1

2 , 0), except for the points pα,1(x−1
2 , b), b ∈ O×, and the points pα,1(a, 0), a 6= x−1

2 .
Every point pα,1(a, 0), a 6= x−1

2 is connected with every point pα,1(x−1
2 , b), b ∈ O×, so we

have at most two connected components. Now, picking two distinct m,m′ ∈ K \ {0, 1},
we see these two sets are connected since the point pα,1(mx−1

2 , 1) is connected with
pα,1(m′x−1

2 , 0).

We now add all the lines having a point in Y7 (and we know that there are still others,
see the example of the line T above).

Y8 = Y7 ∪ {M : M is a line of type L containing a point in Y4}.

Since every line in Y8\Y7 is by definition incident with a point of Y7, and since Y7 contains
all planes of type VIII, and every line of type L is inside a plane of type VIII, we know
that ∆M ∩ Y7 is connected, for M ∈ Y8 \ Y7, and hence Y8 is simply connected.

We now add all remaining points to Y8 and define

Y9 = Y8 ∪ {q : q is a point of type 5}.

Proposition 4.15. For any point q ∈ Y9 \ Y8, we have that ∆q ∩ Y8 is connected and
hence Y9 is simply connected.

Proof. First note that Y8 contains all planes of Y , hence if we consider a line M 3 q
of Y8, then all but exactly one planes of ∆q incident with M belong to ∆q ∩ Y8. Now
let α = [x1, x2, x3; k, l,m], x1, x2, x3 ∈ O, k, l,m ∈ K, be a plane through q. We show
that at most two lines of α through q do not belong to Y8. It will then follow from
Proposition 4.1 that ∆q ∩ Y8 is connected.

Suppose first that x3 6= 0. Then there is a unique point r = pα,2(−x−1
3 x2) of type 4

with third coordinate 0. Let M be a line in α through q distinct from (1) the line of
type K through q, and (2) the line 〈q, r〉. Then M has type L and the point rM on M
of type 4 has third coordinate distinct from 0. It is easily seen that this implies that
rM is not collinear with p, hence, by Lemma 4.6, rM is not collinear with any point
(0, 0, 0, 0;m′), for any m′ ∈ K. Hence, again using Lemma 4.6, all points sm′ collinear
with (0, 0, 0, 0;m′), m′ ∈ K, and incident with M are distinct, and so at least one has
first coordinate nonzero, implying that it is L-collinear with the corresponding point
(0, 0, 0, 0;m′). This, in turn, implies that M belongs to Y8.

Hence we may assume that x3 = 0. If x2 6= 0, then no point of type 4 in α has third
coordinate equal to 0, and so the argument of the previous paragraph implies that only
the line of type K through q in α does not belong to Y8, but all other lines in α through
q do.

Hence we may assume that x2 = x3 = 0. In this case (0, 0, 0, 0;m) ∈ α, and then it
follows from the definitions of Y1, Y2, Y4 and Y8 that all lines of type L through q in α
belong to Y8.
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Now that we have all points and planes of Y in Y9, we can add all remaining lines and
define Y10 = Y . Clearly, for any line M ∈ Y10, the geometry ∆M ∩ Y is connected and,
once again, the Seifert-Van Kampen theorem, as used in the proof of Proposition 4.8,
implies that Y is simply connected. This completes the proof of Theorem 2.1 for the
nonembeddable thick polar spaces.

5 The small cases

In this section we deal with some of the smallest finite polar spaces of rank 3. Note that
Abramenko already proved the following in [1, Example 8, p. 65]: Suppose ∆ is one of
W(5, 2), W(5, 3), Q−(7, 2) or H(5, 22), and C is a chamber of ∆. Then the covering degree
of ∆0(C) is ∞. Moreover, he points out that computer calculations (not described in
detail) show that W(5, 4) and Q(6, 3) are not simply connected, although the covering
degree remained unknown.

We deal with the remaining open finite cases with the help of computer calculations
performed using the GAP [7] computer algebra system and various of its extension pack-
ages.1 For this, we follow an approach already outlined by Abramenko, which is group
theoretic and does not directly involve the geometry.

Throughout this section, let ∆ be a thick finite polar space of rank 3. Let (H, (Uα)α∈Φ)
be a corresponding root group datum, as defined in [3]. That is, Φ is a root system, the
Uα are the root groups and H normalizes the root groups. The group G, generated by H
and the root groups, acts naturally on ∆. Modulo its center it is a subgroup of Aut(∆)
(and often even equal).

Fix a base Π = {α1, . . . , αn} of Φ such that α1, α2 span a root system of type BC2 and
α2, α3 one of type A2. This base yields a system of positive roots Φ+. Define Ui := Uαi

for
1 ≤ i ≤ n, and Uij := 〈Ui, Uj〉 for 1 ≤ i < j ≤ n. Moreover let U := 〈Uα | α ∈ Φ+〉, and
let C be the chamber of ∆ stabilized by U . Then if ∆0(C) is connected (which is always
the case unless ∆ ∼= W(5, 2), see [1, Proposition 7, p. 60]), the following holds:

U = 〈U1, U2, U3〉, U1 = U12 ∩ U13, U2 = U12 ∩ U23, U3 = U13 ∩ U23.

Denote by Ũ the universal completion of the amalgam given on U12, U13, U23 with respect
to their intersections. Clearly the group U is a completion of this amalgam, hence U is
a quotient of Ũ . More precisely, the following refinement of the Tits’ lemma [14] is true
(see also [1, Lemma 19, p. 64] and the discussion preceding it):

Lemma 5.1. There exists an exact sequence of the form

1→ π1(|∆0(C)|)→ Ũ → U → 1.

1 The complete source code can be downloaded from the first author’s homepage at http://www.

quendi.de/math.
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The covering degree of ∆0(C) equals the size of π1(|∆0(C)|). Thus it is finite if and only

if Ũ is finite, and in that case equals |Ũ |/|U |. In the following we exploit exactly this
relation. Note that we already know |U | (its size is the product of the sizes of all root

subgroups), so it remains to compute the size of Ũ , or prove that it is infinite.

First, we need to enter Ũ into the computer. Since Ũ is the amalgamated product of
the groups U12, U13, U23, we need the root groups U1, U2, U3. To this end we construct a
matrix representation for U and the root groups, based on [3, Section 10], respectively
the expositions of this material in [1, pp. 77–78 and 107–111] and [2, Example 7.136].
From this, it is straight-forward to first compute finite presentations for the groups
Uij, 1 ≤ i < j ≤ 3 and then for their amalgamated product Ũ . Note that [3] also
describes presentations, which we could in principle also use. But by using the matrix
representations, we can perform additional consistency checks on all obtained results
(e.g. whether the matrices indeed preserve a suitable quadratic form).

There are in total five families of finite polar spaces we need to consider. In Table 1 we
summarize some information about the groups occurring in each case.

∆ G |U | |U1| |U2| |U3| |U12| |U13| |U23|
W(5, q) Sp6(Fq) q9 q q q q4 q2 q3

Q(6, q) O7(Fq) q9 q q q q4 q2 q3

Q−(7, q) 2O8(Fq) q12 q2 q q q6 q3 q3

H(5, q2) U6(Fq) q15 q q2 q2 q6 q3 q6

H(6, q2) U7(Fq) q21 q3 q2 q2 q10 q6 q5

Table 1: Finite polar spaces of rank 3, groups of automorphisms and root group sizes.

The next step is to compute the size of Ũ . The usual approach to that is coset enumera-
tion. However, doing this näıvely (by enumerating cosets of the trivial subgroup or some
cyclic subgroups) is not feasible except in the very smallest cases, due to the quickly

growing size of Ũ and the resulting memory and time requirements. So a more refined
approach is necessary. We employ the following three strategies:

1. To handle the cases where Ũ is infinite, we compute the abelian invariants of
the second derived subgroup Ũ ′′ of Ũ , that is, the quotient Ũ ′′/Ũ ′′′. We find the

following, verifying the result from [1, Example 8, p. 65] that Ũ is infinite in each
of these cases:

(a) For ∆ ∼= W(5, 2), we have Ũ ′′/Ũ ′′′ ∼= Z2.

(b) For ∆ ∼= W(5, 3), we have Ũ ′′/Ũ ′′′ ∼= Z12.

(c) For ∆ ∼= Q−(7, 2), we have Ũ ′′/Ũ ′′′ ∼= Z50.

(d) For ∆ ∼= H(5, 22), we have Ũ ′′/Ũ ′′′ ∼= Z12.

2. We may exploit that Uij injects into every completion of the amalgam. Since

|Ũ | = |Uij| · |Ũ : Uij|, and we know |Uij|, it suffices to compute |Ũ : Uij|, which
can be done using coset enumeration. The larger the subgroup, the more efficiently
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this yields a result. Consulting Table 1, we see that U12 is the best choice. The
expected index (if the covering degree is 1) then ranges between q5 and q11.

Using this strategy and the GAP package ACE [8], we computed the following: The

group U is isomorphic to Ũ if ∆ is isomorphic to W(5, q), 5 ≤ q ≤ 16, or Q(6, q),
5 ≤ q ≤ 16, or Q−(7, q), 3 ≤ q ≤ 13, or H(5, q2), 3 ≤ q ≤ 5, or H(6, q2), 2 ≤ q ≤ 5.
For W(5, 4) the covering degree is 4, and for Q(6, 3) the covering degree is 81.

3. While the coset enumeration already covers all previously unknown cases, we now
discuss a second, more effective approach to handle the cases with finite covering
degree. This second approach is completely different and works for larger values of
q without running into memory limitations, which is the primary factor preventing
the coset enumeration approach from being applied to more cases.

First, we use the GAP package NQ [10] to compute the maximal nilpotent quotient

Unq of Ũ . Computing the size of Unq (or, for that matter, most other properties) is
then simple and fast, as it is given by a so-called polycyclic presentation, which per-
mits highly effective computations. The sole remaining obstacle is the verification
that Unq ∼= Ũ . For this we apply a trick from [12, Section 11.8] involving rewriting

systems: First a new presentation for Ũ is constructed by adding new generators
and relations that correspond to a polycyclic generating sequence in Unq. Then the
GAP package kbmag [9] is used to construct a confluent rewriting system from this.

Finally, this confluent rewriting system can be used to compute the size of Ũ . But
of course Ũ and Unq are isomorphic if and only if they have the same size.

Using this approach, we computed the following: The group U is isomorphic to
Ũ if ∆ is isomorphic to W(5, q), 5 ≤ q ≤ 61, or Q(6, q), 5 ≤ q ≤ 61, or Q−(7, q),
3 ≤ q ≤ 47, or H(5, q2), 3 ≤ q ≤ 11, or H(6, q2), 2 ≤ q ≤ 9. For W(5, 4) the covering
degree is 4, and for Q(6, 3) the covering degree is 81.

From the above discussion, Theorem 2.2 now follows.

We point out that for each of the five families of finite polar space of rank 3, our com-
putations covered both previously known and unknown cases. Where the results were
previously known, our computational results agree.

The above techniques also apply to the two cases with finite, non-trivial covering degree
using GAP, where we computationally prove that Unq ∼= Ũ . Working with the group Unq
then allows us to deduce the following.

Proposition 5.2. If ∆ ∼= W(5, 4), then Ũ is a non-split central extension of U over the

module F2
2, and H2(U,F2

2) = F50
2 . The nilpotency classes of U and Ũ are equal to 4 each.

If ∆ ∼= Q(6, 3), then Ũ is a non-split non-central extension of U over the module F4
3, and

H2(U,F4
3) = F13

3 . The nilpotency classes of U and Ũ are equal to 5 and 9, respectively.

Finally, we should mention that the same techniques can be applied to higher rank.
In particular, we computed the following (note that for the cases over F2, the rank 3
subgeometries are not connected, which makes it necessary to consider all positive root
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subgroups, and not just those corresponding to a base of the root system).

Proposition 5.3. Let ∆ be a thick polar space, let C be a chamber of ∆. Then ∆0(C) is
simply connected if ∆ ∼= W (7, 3), W (7, 4), Q(8, 3), Q−(9, 2), H(7, 22), or if ∆ ∼= W (9, 2).
On the other hand, if ∆ ∼= W (7, 2) then ∆0(C) is not simply connected and the covering
degree is ∞.

With some effort, and using a straight-forward generalization of [5], it should be possible
to prove that the geometry induced by the set of chambers opposite a given chamber
in any polar space of rank at least 4 is simply connected, with the sole exception of
W (7, 2).
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Answer to referee’s comments.

We have corrected all linguistic errors pointed out by the referee, except the first one:
the referee suggests to replace “more small” in “more small classical polar spaces” into
“smaller”, but the “more” refers to the spaces (so “more polar spaces which are small”).
We have simply deleted “more”.

There were two remarks concerning the content. The first one to comment on the struc-
ture of Y0, and to expand the proof of its simply connectivity (contractibility). We have
done this, see page 9, the paragraph starting with “To understand the structure of Y0. . . ”.
And we made a proposition of the contractibility of Y0, see Proposition 4.4 on page 9,
with a 6-line proof now.

The second remark on the content was to state the Seifert-Van Kampen theorem for
graphs. In fact, we use the ordinary Seifert Van Kampen theorem, but apply it to a
geometric realisation of our simplical complexes. We give a more detailed account of
this

22


	Introduction
	Main Results
	Preliminaries on non-embeddable polar spaces
	Proof of Theorem 2.1
	The small cases

