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Moufang sets generated by translations
in unitals

Theo Grundhöfer, Markus J. Stroppel, Hendrik Van Maldeghem
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Abstract

We consider unitals with full translation groups for two points. The group generated
by these translations induces a Moufang set on the block joining the two points. We
show that the little projective group of that Moufang set is never a unitary group,
and is sharply two-transitive only if the unital has order two or three. Moreover,
we prove that the group generated by the translations acts semi-regularly outside
the special block if the little projective group is a Suzuki or Ree group.
Mathematics Subject Classification: 05B30 51A10 05E20
Keywords: Design, unital, automorphism, translation, Moufang set, two-transitive
group, unitary group, Suzuki group, Ree group

In [9] we considered unitals with all possible translations (see Section 1 below for
definitions) and characterized the classical (hermitian) unitals by this property. The
present paper takes a more general view: we only assume translations with centers on
a single block, and prove the following.

Main Theorem. LetU be a unital of order q containing two points z such that the group of all
translations with center z has order q. Then q is a prime power, and the group G generated by
these two translation groups is isomorphic to SL(2,Fq) or to PSL(2,Fq), or

(a) q = 22s ≥ 26 for some odd integer s ≥ 3, the group G is the Suzuki group Sz(2s) and acts
semi-regularly on the set of points outside the block containing the translation centers;

(b) q = 33r ≥ 33 for some odd integer r ≥ 1, the group G is the Ree group Ree(3r) and acts
semi-regularly on the set of points outside the block containing the translation centers.

In the classical (i.e. hermitian) unital of order q, the group G as above is isomorphic
to SL(2,Fq), cp. [10, 3.1, 4.1]. It seems that no unital of odd order q is known where
G � PSL(2,Fq); for q = 3 there is no such unital by Proposition 2.1 below (this uses [9,
2.3]). There exists a non-classical unital of order q = 4 such that G � SL(2,F4) � A5, see
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[10, 4.1]. More examples (of order 8) have been found by Verena Möhler in her Ph.D.
thesis [19, Section 6].

Related results for projective planes (instead of unitals) have been obtained by Hering
[11], [12], who considered groups generated by elations. The following statement is a
very special case of [12, Theorem 3.1]: if a projective plane of finite order q contains a
triangle p, z1, z2 such that the group of all elations with center z j and axis pz j has order q
for j = 1, 2, then the plane is desarguesian and the group generated by these two elation
groups is isomorphic to SL(2,Fq).

1 Unitals, translations and Moufang sets

A unital U = (U,B) of order q > 1 is a 2-(q3 + 1, q + 1, 1)-design. In other words, U is
an incidence structure such that any two points in U are joined by a unique block in B,
there are |U| = q3 + 1 points, and every block has exactly q + 1 points. It follows that
every point is on exactly q2 lines.

1.1 Lemma. Let V be a unital of order q, and let ϕ ∈ Aut(V) be an automorphism of V. If ϕ
fixes more than q2 + q − 2 points then ϕ is trivial. In particular, if ϕ fixes each point on each
line joining a given point to the points on a block not through that point then ϕ is trivial.

Proof. Let y be a point that is moved by ϕ. Joining y with each one of the fixed points
yields a set of lines through y. At most one of those lines can be a fixed line of ϕ, and
a non-fixed line contains at most one fixed point. If a fixed line through y exists then
that line contains at most q− 1 fixed points. For the number f of fixed points we obtain
q2 − 1 ≥ f − (q− 1) and f ≤ q2+ q− 2. If no line through y is fixed then f ≤ q2 ≤ q2+ q− 2.

The second assertion follows from the fact that the point set in question contains
(q + 1)q + 1 = q2 + q + 1 points. �

An automorphism of U is called a translation of U with center z if it fixes each line
through the point z. The set of all translations with center z is denoted by Γ[z]. We say
that a point z ofU has full translation group if Γ[z] has order q.

A Moufang set is a set X together with a collection of groups (Rx)x∈X of permutations
of X such that each Rx fixes x and acts regularly (i. e., sharply transitively) on Xr {x}, and
such that the collection {Ry | y ∈ X} is invariant under conjugation by the little projective
group 〈Rx | x ∈ X〉 of the Moufang set. The groups Rx are called root groups.

The finite Moufang sets are known explicitly:

1.2 Theorem. The little projective group of a finite Moufang set is either sharply two-transitive,
or it is permutation isomorphic to one of the following two-transitive permutation groups of
degree q + 1: PSL(2,Fq) with a prime power q > 3, PSU(3,F f 2 |F f ) with a prime power q =

f 3 ≥ 33, a Suzuki group Sz(2s) = 2B2(2s) with q = 22s ≥ 26, or a Ree group Ree(3r) = 2G2(3r)
with q = 33r, where r and s are positive odd integers.
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This was proved (in the context of split BN-pairs of rank one) by Suzuki [28] and
Shult [24] for even q, and by Hering, Kantor and Seitz [13] for odd q; these papers rely on
deep results on finite groups, but not on the classification of all finite simple groups. See
also Peterfalvi [22]. Note that PSL(2,F2) � AGL(1,F3), PSL(2,F3) � A4 � AGL(1,F4),
PSU(3,F4 |F2) � ASL(2,F3) and Sz(2) � AGL(1,F5) are sharply two-transitive. The
smallest Ree group Ree(3) � PΓL(2,F8) is almost simple, but not simple.

LetU = (U,B) be a unital of order q, and let Γ = Aut(U) be its automorphism group.
Throughout this paper, we assume that U contains two points ∞ and o such that for
z ∈ {∞, o} the translation group Γ[z] has order q. Then Γ[z] acts transitively on B r {z}, for
any block B through z. In particular, Γ[x] has that transitivity property for each point x
on the block B∞ joining ∞ and o. The group G generated by Γ[∞] ∪ Γ[o] contains the
translation group Γ[x] for each x ∈ B∞, and (B∞, (Γ[x]|B∞)x∈B∞ ) is a Moufang set, with little
projective group G† ≔ G|B∞ � G/G[B∞], where G[B∞] is the kernel of the action on B∞.
This kernel coincides with the center Z of G, see [9, 3.1.2] or [11, 2.11]. So G is a central
extension of the little projective group G†.

1.3 Corollary. The kernel G[B∞] = Z acts semi-regularly on U r B∞.

Proof. If ϕ ∈ G[B∞] = Z fixes p ∈ UrB∞, then it fixes also pg for every g ∈ G, hence every
point on a line px with x ∈ B∞. Thus Lemma 1.1 implies that ϕ is trivial. �

The following fact was observed in the proof of [12, Theorem 2.4].

1.4 Lemma. Let (X, {∆x | x ∈ X}) be a finite Moufang set. If the little projective group Φ =
〈∆x | x ∈ X〉 is simple then ∆x = [∆x,Φx] for every x ∈ X, where Φx denotes the stabilizer of x
in Φ.

Proof. By the classification of finite Moufang sets, see 1.2, the simple group Φ is isomor-
phic to PSL(2,Fq), PSU(3,Ft2 |Ft), Sz(2s), or Ree(3r), where q > 3 with q + 1 = |X|, t > 2
with t3 + 1 = |X|, s > 1 with 22s + 1 = |X|, or r > 1 with 33r + 1 = |X|, respectively. We
have [∆x,Φx] ≤ ∆x since Φx normalizes ∆x; it remains to show that ∆x ≤ [∆x,Φx]. This
inclusion is an ingredient in simplicity proofs for Φ that use the Iwasawa criterion:

For Φ = PSL(2,Fq) the necessary commutators are computed in the proof of [30,
Theorem 4.4, page 23]. The case where Φ = PSU(3,Ft2 |Ft) is covered by [15, Proof of
II.10.13, page 244]. For Φ = Sz(2s) the assertion follows from the commutator formula
in [30, page 205], and for Φ = Ree(3r) the three commutator formulas in [4, § 5, pages
36/37] yield the assertion. �

1.5 Remark. The references in the proof of 1.4 yield the following sharper conclusion:
for every y ∈ X r {x} there exists an element ϕ ∈ Φx,y such that ∆x is equal to the set
[

∆x, ϕ
]

:=
{

[δ, ϕ]
∣

∣

∣ δ ∈ ∆x

}

of commutators. See also the proof of [11, 2.11 b)].
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1.6 Proposition. If G† is simple then G is a perfect central extension of G†, i.e. G coincides
with its commutator group G′, and G[B∞] is isomorphic to a quotient of the Schur multiplier
of G†.

Proof. If z ∈ B∞, τ ∈ Γ[z] and γ ∈ Gz, then γ−1τγ ∈ Γ[z] and [τ, γ] = τ−1γ−1τγ ∈ Γ[z]. Since
Γ[z] acts regularly on B∞ r {z}, every element of Γ[z] is determined by its action on B∞,
i.e. by its image in G†. By 1.4 every element of Γ[z] is a product of elements in Γ[z] that
are commutators. Hence Γ[z] ≤ G′ for every z ∈ B∞, and therefore G′ = G.

The kernel G[B∞] of the action on B∞ is the center of G, so the perfect group G is a
central extension of G† = G/G[B∞]. Therefore G[B∞] is isomorphic to a quotient of the
Schur multiplier of G†; see [17, 2.1.7], [15, V.23.3, page 629], or [2, 33.8 (4) p. 169]. �

2 Sharply two-transitive groups

2.1 Proposition. If q ≤ 3 thenU is the hermitian unital of order q.

Proof. Every unital of order 2 is isomorphic to the hermitian one, see e.g. [30, 10.16].
Now let q = 3. Since G† ≤ S4 is generated by elements of order 3, we have G† = A4 �

PSL(2,F3); in particular, G† is sharply two-transitive. By [9, 2.3] the center Z = G[B∞] has
even order, so there exists a central involution ζ in G.

The product G′Z induces the commutator group (G†)′ � C2
2. Thus G′Z has index 3,

and G′ acts transitively on B∞. For z ∈ B∞, the translation group Γ[z] is not contained
in G′. We obtain G = G′Γ[z]G

′ = G′Γ[z], and G′ has index 3 in G. This means that Z ≤ G′,
and G is a covering group of A4. Then G � SL(2,F3) by [17, 2.12.5]. This group acts
regularly on U r B∞, see [9, 3.5].

We verify that U is obtained by the construction described in [10, 2.1]. The central
involution ζ does not fix any point apart from those on B∞. Therefore, the point set
U r B∞ is partitioned by fixed blocks of ζ; these are obtained as the blocks joining
x ∈ U r B∞ with its image under ζ. The group G acts on this set of fixed blocks. There
are 6 such blocks, and at least one of them is fixed by a subgroup S of order 4 in G. We
pick a point a on that block and identify the elements of G with the affine points via
γ 7→ aγ. Then the block in question is S.

There are 4 blocks through a that join a to points on B∞, their intersections with UrB∞
are identified with the Sylow 3-subgroups (viz., the translation groups) in G. Let D be
any one of the remaining 4 blocks through a. Then D is not stabilized by any translation,
and not stabilized by ζ. As SL(2,F3) contains only one involution, we infer that the
stabilizer of D in G is trivial. Therefore, the setD ≔ {Dδ−1 | δ ∈ D} consists of 4 different
blocks through a.

It has been proved in [10, 3.3] that the subgroup S and the set D are unique, up to
conjugation. The points at infinity are the centers of translations. Therefore each such
point is incident with those blocks whose points outside B∞ form an orbit under the
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corresponding translation group. This completes the proof thatU is isomorphic to the
hermitian unitalUH3

, see [10, 3.3]. �

Now we determine certain central extensions of finite sharply two-transitive permu-
tation groups; the following result is a variation of [12, Lemma 1.1] that is suitable for
our purpose.

2.2 Theorem. Let (G,X) be a finite sharply two-transitive permutation group with |X| > 1 and
let p be the prime dividing |X|. If E is a central extension of G = E/Z by a group Z of order p,
then E splits over Z (as a direct product E = Y×Z with Y � G), or we have one of the following:

(a) |X| = 2 = |G| and E is cyclic of order 4.

(b) |X| = 4, G = A4 � PSL(2,F3) and E � SL(2,F3).

(c) |X| = p2 ∈ {32, 52, 72, 112} and E = P ⋊ H where P is the Heisenberg group of order p3

and H is isomorphic to Q8, SL(2,F3), 2− S4 or SL(2,F5), respectively.

We describe the groups in item (c). The Heisenberg group of order p3 consists of
all unipotent upper triangular matrices in GL(3,Fp). By Q8 we denote the quaternion
group of order 8, and 2− S4 is the binary octahedral group, i.e. the double cover of S4

containing just one involution, see [29, 3.2.21, p. 301] or [16, XII.8.4]; this double cover is
isomorphic to the normalizer of SL(2,F3) in SL(2,F9). The extension groups E in item (c)
do not split over Z since P is not abelian.

Proof of 2.2. It is well known that |X| = pn is a power of a prime p and that the Sylow
p-subgroup of G is an elementary abelian normal subgroup of order pn in G; see e.g. [23,
7.3.1] or [21, 8.4] or [16, XII.9.1].

Let P be a Sylow p-subgroup of E. Then |P| = pn+1 and Z ≤ P; moreover P/Z is
the regular normal subgroup of G, hence P is normal in E. Each point stabilizer (or
Frobenius complement) Gx has order pn−1, and its pre-image Ex ≤ E has order (pn−1)p.
The group Ex splits as a direct product H×Z with H � Gx by the abelian (in fact, central)
case of the Schur–Zassenhaus theorem; see [23, 9.1.2 or 11.4.12] or [21, 10.3] or [15, I.17.5,
page 122]. Then

E = P ⋊H

and H acts (by conjugation) sharply transitively on the set of non-trivial elements of P/Z.

If H is trivial, then |X| = 2 = |G|, and E splits or is cyclic as in item (a). From now on
let |H| > 1. Then CP(H)/Z is a proper H-invariant subgroup of P/Z, hence trivial. This
means that CP(H) = Z. If P is abelian, then P = CP(H)× [P,H] = Z× [P,H], see [6, 5.2.39]
or [23, 10.1.6] or [15, III.13.4], and then E = P ⋊H = Z × ([P,H] ⋊H) splits over Z.

Now let P be non-abelian. Then P′ is a non-trivial subgroup of Z, as P/Z is (elementary)
abelian, hence P′ = Z. The center of P yields a proper H-invariant subgroup of P/Z;
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this subgroup is trivial, hence Z is the center of P (and the Frattini subgroup is Φ(P) =
PpP′ = Z). Thus P is an extraspecial p-group.

The commutator map gives a non-zero symplectic form f on P/Z with values in the
prime field Fp, and f is not degenerate, hence n = 2m is even; see [23, p. 140] or [15,

III.13.7]. The automorphism group H induced by H on P has trivial intersection with the
group of inner automorphisms of P and acts trivially on Z, hence H � H is isomorphic to
a subgroup of the symplectic group Sp(2m,Fp) by Winter [35, Theorem 1 or (3A) p. 161].

First we assume that the permutation group (G,X) is of type I (in the notation of [16,
XII.9.2]), which entails that H ≤ ΓL(1,Fpn ) = GL(1,Fpn ) ⋊ Aut(Fpn ); see [16, XII.9.2]. In
another terminology, this means that the corresponding nearfield (with multiplicative
group H) is a Dickson nearfield, compare [8, p. 834]. The cyclic group H ∩GL(1,Fpn ) ≤
F∗pn has order at least (pn−1)/n. If this cyclic group is reducible onFn

p , then it is contained

in a proper subfield of Fpn , hence (pn − 1)/n ≤ pn/2 − 1 and therefore pn/2 + 1 ≤ n; if
H ∩ GL(1, Fpn) is irreducible, then its order divides pn/2 + 1 by [35, Cor. 2] or [15, Satz
9.2.3, p. 288] as H ≤ Sp(n,Fp). In both cases we have 2n/2 − 1 ≤ pn/2 − 1 ≤ n, which is
false for n ≥ 6. If n = 4 then p = 2 and |H| = 15, hence H is cyclic and irreducible, but 15
does not divide 22 + 1. As n = 2m is even, there only remains the case where n = 2, and
p ∈ {2, 3} follows.

If p = 2 then |X| = 4 and G = A4 � PSL(2,F3); moreover, E is a covering group of
A4 since Z = P′ ≤ E′, hence E � SL(2,F3) by [17, 2.12.5], as in item (b). For p = 3 we
have |X| = 9 and |H| = 8. Each involution h ∈ H induces on P/Z � F2

3
a diagonalizable

linear transformation h without eigenvalue 1, hence h = −id. Thus H contains just
one involution, and H is cyclic or H � Q8 (these two possibilities correspond to the two
nearfields of order 9, one of them being the fieldF9). The cyclic case is ruled out because
Sp(2,F3) = SL(2,F3) contains no element of order 8. Thus H � Q8 as in the first case of
item (c).

Now we assume that (G,X) is not of type I. Then n = 2 and there are just seven
possibilities for the isomorphism type of H, with p ∈ {5, 7, 11, 23, 29, 59}: see [16, XII.9.4]
or [21, 20.3] or [8, 2.4]. This rephrases a famous result of Zassenhaus, which says that
there are only seven finite nearfields which are not Dickson nearfields. The condition
H ≤ Sp(2,Fp) = SL(2,Fp) excludes four of these seven possibilities (those where H
contains central elements other than ±id), see [16, XII.9.4, XII.9.5] or [8, 2.4]. This leads
to the three cases for H in item (c) with p ∈ {5, 7, 11}.

For all our odd primes p, the extraspecial group P of order p3 has exponent p: otherwise
the exponent is p2 and some non-trivial element of P/Z is fixed by every automorphism
of P by [35, Cor. 1]; this is a contradiction to the action of H on P/Z. Therefore P is
isomorphic to the Heisenberg group of order p3, see [6, 5.5.1] or [15, p. 355]. �

2.3 Theorem. If G† is sharply two-transitive on B∞, then q ≤ 3 andU is the hermitian unital
of order q.
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Proof. By Proposition 2.1 it suffices to show that q ≤ 3. Thus we assume that q > 3 and
aim for a contradiction.

The degree q+ 1 of G† is a power of some prime r, say q+ 1 = rn. By [9, 3.1] the kernel
G[B∞] is the center Z of G, and r divides |Z| by [9, 2.3]. Thus we can choose a subgroup
U of index r in Z; then G/U is a central extension of G† by the group Z/U of order r.
Such an extension G/U does not split: if G/U = Z/U × Y/U then Y contains all Sylow
s-subgroups of G with s , r, hence all translation groups Γ[x] with x ∈ B∞; thus Y = G,
which is a contradiction to |Z/U| = r.

Theorem 2.2 implies that n = 2 , r and that the Sylow r-subgroup of G/U is not
abelian (and more, as in item (c), but we do not need more). Let R be a Sylow r-
subgroup of G and let H := Γ[o]. Then RZ/Z is the regular normal subgroup of G†,
and R is characteristic in RZ, which is normal in G; hence R is normal in G. The
group RHR = RH contains all conjugates of H in G, hence G = RH = R ⋊ H. Thus
Z = G[B∞] = Go,∞ = (RoH)∞ = (R∩Z)H∞ = R∩Z, which gives Z ≤ R. The group R is not
abelian, but R/Z is abelian and has order r2; thus Z is the center of R. Now a (special
case of a) result of Wiegold says that |R′| divides r; see [33, Theorem 2.1], [29, p. 261],
[17, Lemma 3.1.1, p. 113] or [15, page 637]. We claim that R′ = Z. Otherwise we can
choose U as above with R′ ≤ U < Z, and then R/U is an abelian Sylow r-subgroup of
G/U, contrary to Theorem 2.2.

Thus R′ = Z has order r, and R is an extraspecial group of order r3. Since r , 2 the
group H = Γ[o] contains an involution α inducing inversion on R/R′ = R/Z, hence α
fixes each subgroup between Z and R.

Each subgroup of order r2 is normal in R with abelian quotient, and thus contains
R′ = Z. As the group H acts transitively on the set of non-trivial elements of R/R′, it also
acts transitively on the set of subgroups of order r2 in R. If S is one of those subgroups
then R acts transitively on the set of non-central subgroups of order r in S. There are r
such subgroups, and the involution α (which leaves S invariant) fixes at least one of
them, say T.

The number of points not on B∞ is q3 + 1− (q+ 1) = r2(r2 − 1)(r2 − 2), and not divisible
by r3 = |R|. Therefore, there exists some subgroup of order r fixing at least one point x
not on B∞. That subgroup is not contained in the center because the latter acts semi-
regularly on U r B∞, see [9, 1.7]. We have noted in the previous paragraph that the
non-central subgroups of order r form a single conjugacy class in HR. Thus the group T
fixes some affine point x. Then T = Tα also fixes xα, and the point o where B∞ meets the
block joining x and xα. This contradicts the fact that T induces a subgroup of order r in
the regular normal subgroup on B∞. �
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3 Unitary groups

3.1 Lemma. Let r be prime power, and let d be a divisor of r + 1. Then the following hold:

(a) Every element of order d in GL(3,Fr2) is diagonalizable over Fr2 .

(b) If A is an element of order d in SU(3,Fr2 |Fr) then the characteristic polynomial of A is
X3 − tAX2 + tA X − 1, where tA is the trace of A.

(c) Two elements of order d in SU(3,Fr2 |Fr) are conjugates under SU(3,Fr2 |Fr) if, and only
if, they have the same trace.

Proof. (a) Let A ∈ GL(3,Fr2) be an element of order d. The minimal polynomial of A
then divides Xr+1 − 1, and every characteristic root is a root of that polynomial. These
roots lie in Fr2 because r + 1 divides the order of the multiplicative group of Fr2 . As the
minimal polynomial has only simple roots, the matrix A is diagonalizable in GL(3,Fr2 ).

(b) Now assume A ∈ SU(3,Fr2 |Fr). Let λ be one of the characteristic roots of A, then
λλ = λrλ = 1. In the characteristic polynomial det(X · id − A) = X3 + c2X2 + c1X + c0,
the constant c0 equals −det A = −1. The coefficient c2 equals −tA, where tA is the
trace of A. Expanding the product of the linear factors, we obtain tA = −c2 as the
sum λ0 + λ1 + λ2 of all characteristic roots of A. The coefficient c1 is obtained as
λ0λ1 + λ1λ2 + λ2λ0 = λ

−1
2
+ λ−1

0
+ λ−1

1
= λ2 +λ0 +λ1 = tA.

(c) Let A and B be elements of order d in SU(3,Fr2 |Fr). Clearly tA = tB holds if A and B
are conjugates. Conversely, assume tA = tB. We have seen above that A and B have the
same characteristic polynomial. Therefore, they are conjugates in GL(3,Fr2 ). According
to [26, I, 3.5, III, 3.22] (or [31, Case A (ii), p. 34] or [5, Lemma 5 with remarks on p. 12])
they are also conjugates in the unitary group U(3,Fr2 |Fr).

Finally, the group U(3,Fr2 |Fr) contains diagonal elements of arbitrary determinant
in {s ∈ Fq2 | s s = 1}. As such diagonal matrices centralize each other diagonal matrix,
we can adapt the conjugating element of U(3,Fr2 |Fr) in such a way that the conjugation
is achieved by an element of SU(3,Fr2 |Fr). �

The following lemma is a consequence of results in [20, Thm. 1.6, Thm. 1.3]; we give
a direct proof for the reader’s convenience.

3.2 Lemma. Let r = 2e and let A ∈ SU(3,Fr2 |Fr) be non-central with Ar+1 = 1. Then A2 is the
product of two elements of SU(3,Fr2 |Fr) with orders dividing 4.

Proof. We use coordinates such that the hermitian form is described by x0 y2 +x1 y1 +x2 y0.

The element J ≔
(

1 0 0
0 1 0
1 0 1

)

∈ SU(3,Fr2 |Fr) is an involution, and Fu,v ≔

(

1 u v
0 1 u
0 0 1

)

belongs to

SU(3,Fr2 |Fr) if v + v = u u. Note also that F4
u,v = id, and F2

u,v = id holds if u = 0 (then

v ∈ Fr). The product JFu,v =

(

1 u v
0 1 u
1 u v+1

)

has trace v+ 1, and its characteristic polynomial is

X3 + (v + 1)X2 + (v+1)X + 1.

8
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Let tA be the trace of the given matrix A and put v ≔ tA + 1. The norm map
N : Fr2 → Fr : x 7→ x x = xr+1 is surjective, hence we find u ∈ Fr2 such that u u = v + v.
We abbreviate F ≔ Fu,v and infer from 3.1 that JF and the diagonalizable matrix A have
the same characteristic polynomial, hence also the same set of eigenvalues. If JF is
diagonalizable, then JF has the same order as A, and 3.1 implies that A is conjugate to
JF in SU(3,Fr2 |Fr). Now A2 is conjugate to (JF)2 = JFJF = (JFJ−1)F.

It remains to consider the case where JF is not diagonalizable. Then the characteristic
polynomial has a root λ with multiplicity 2 (not 3 since A is not central), and A is
conjugate to the diagonal matrix diag(λ, λ, λ−2) where N(λ) = λr+1 = 1 , λ3. Thus JF is
similar (i.e. conjugate in GL(3,Fr2 )) to its Jordan normal form



















λ 0 0
1 λ 0
0 0 λ−2



















,

hence (JF)2 is similar to diag(λ2, λ2, λ−4) which is similar to A2. The matrix (JF)2 =

JFJF = (JFJ−1)F is conjugate to A2 in SU(3,Fr2 |Fr) by 3.1. �

3.3 Remark. The assumption that A is not central is needed in 3.2. Indeed, for any
field F of characteristic two, non-trivial central elements of GL(n, F) are never products
of two elements in Sylow 2-subgroups. In fact, a non-trivial central element is of the
form u id with u ∈ F. The elements of Sylow 2-subgroups are unipotent (i.e. they have 1
as their only characteristic root). If the product of unipotent elements S,T equals u id
then S = uT−1 is a unipotent element with characteristic root u, so u = 1 and the product
is trivial, indeed.

3.4 Theorem. The little projective group G† is not isomorphic to PSU(3,Fr2 |Fr), for any r.

Proof. If G† is isomorphic to PSU(3,Fr2 |Fr) then the translation groups are the root
subgroups, i.e. the (Sylow) subgroups of order r3 in PSU(3,Fr2 |Fr). In particular, we
have q = r3. For r = 2 we have q = 8, and G† is (isomorphic to) the sharply two-transitive
group PSU(3,F4|F2) � Q8 ⋉F

2
3
; this is excluded by 2.3.

From now on, let r > 2. The group PSU(3,Fr2 |Fr) is perfect, and G is a perfect central
extension of PSU(3,Fr2 |Fr), see 1.6 or [9, 3.1]. For the case at hand, we know that
SU(3,Fr2 |Fr) is the universal cover of PSU(3,Fr2 |Fr), see [7, Thm. 2]. So we assume that
SU(3,Fr2 |Fr) acts (not necessarily faithfully) on the unitalU such that the root subgroups
induce transitive groups of translations with center on B∞.

Assume first that r is odd, and let 2a be the highest power of 2 dividing |U r B∞| =
(r3 + 1)r3(r3 − 1). Then 2a divides (r3 + 1)(r − 1) and 2a+1 divides (r3 + 1)r3(r − 1)(r + 1) =
| SU(3,Fr2 |Fr)|. So some point in U r B∞ is fixed by some involution γ ∈ SU(3,Fr2 |Fr).
We use coordinates such that the hermitian form defining SU(3,Fr2 |Fr2) is given by

x0 y2 +x1 y1 +x2 y0. Then the matrices
(

1 0 0
1 1 0
−1/2 −1 1

)

and
(

1 −4 −8
0 1 4
0 0 1

)

belong to root groups

9
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of SU(3,Fr2 |Fr), and their product
(

1 −4 −8
1 −3 −4
−1/2 1 1

)

is an involution (and represents an in-

volution in PSU(3,Fr2 |Fr)). All involutions in SU(3,Fr2 |Fr) are conjugate by 3.1, hence
γ is a product of two root elements and does not fix any point outside B∞; this is a
contradiction.

Therefore r is even. Let p be a prime dividing r+1, and let m be the largest integer such
that pm divides r+1. Then p is odd (because r is even), and p2m divides (r3+1)r3(r2−1) =
| SU(3,Fr2 |Fr)|.

If p > 3 then p does not divide r2 − r + 1, and pm+1 does not divide |U r B∞| =
(r3 + 1)r3(r2 + r + 1)(r − 1). So there exists at least one orbit whose length is not divisible
by pm+1, and there exists an element γ of order p in the stabilizer of some point not in B∞.
If γ is not central in SU(3,Fr2 |Fr) then γ2 is a product of two root elements (see 3.2) and
does not fix any point outside B∞. So γ is a central element of order p > 3 in SU(3,Fr2 |Fr),
contradicting the fact that the center of SU(3,Fr2 |Fr) has order 3 or is trivial.

There remains the case where p = 3 is the only prime divisor of r + 1. Then r + 1 =
2d + 1 = 3m for positive integers d and m. We infer that r = 2d ∈ {2, 8}, see e.g. [21,
Lemma 19.3]; this is an old result of Levi ben Gerson from 1343, see [3, § 4, pp. 169ff].
Since r > 2 we have r = 8 and m = 2. Then 33 = 3m+1 is the highest power of 3
dividing |U r B∞| = (r3 + 1)r3(r2 + r + 1)(r − 1) = 29 · 33 · 7 · 19 · 73 but 35 = 32m+1 divides
| SU(3,F64|F8)| = (r3 + 1)r3(r2 − 1) = 29 · 35 · 7 · 19. We now find an element γ of order 3
in the stabilizer of a point not in B∞. If γ is not central in SU(3,F64|F8) then γ = γ−2 is
a product of two root elements (see 3.2) and does not fix any point outside B∞. So γ
is a central element of order 3 in SU(3,F64|F8) and fixes every point in U, see 1.3. This
means that SU(3,F64 |F8) induces on U a group isomorphic to PSU(3,F64|F8), of order
(r3 + 1)r3(r2 − 1)/3 = (83 + 1)83(82 − 1)/3 = 29 · 34 · 7 · 19. Since 34 does not divide |U rB∞|
we still find an element of order 3 in the stabilizer of a point not on B∞, and reach a
contradiction using 3.2 again. �

4 Suzuki groups and Ree groups

4.1 Theorem. If G† is a Suzuki group then q ≥ 26 and G = G†, and G acts semi-regularly on
U r B∞.

Proof. We have G† = Sz(2s) for some odd integer s ≥ 1, and the unital has order q = 22s.
The smallest Suzuki group Sz(2) � AGL(1,F5) is sharply two-transitive, and excluded
by 2.3.

The Schur multiplier of Sz(23) is elementary abelian of order 4, see [1], cf. [34, 4.2.4]
and [17, 7.4.2]. If ζ is a central involution in G then ζ acts trivially on B∞, and joining
any point x with xζ gives a block B fixed by ζ. If that block does not meet B∞ then ζ
fixes at least one of the q + 1 = 65 points on B. This contradicts 1.3. So B contains a
point z of B∞. Then there exists a translation τ with center z such that xζ = xτ. The

10



Moufang sets generated by translations in unitals Grundhöfer, Stroppel, Van Maldeghem

translations have order dividing 4, hence τζ is an element of order 2 or 4 fixing x. If τ has
order 4 then (τζ)2 = τ2 is non-trivial translation fixing x. This is impossible, so τ is an
involution. The automorphisms ζτ and τ induce the same action on B∞. In particular,
the involution ζτ fixes no point on B∞ apart from z. For each point y ∈ UrB∞, the block
joining y and yτζ is fixed by τζ, and meets B∞ in a fixed point of τζ; that point has to
be z. This means that τζ fixes every block through z, and is a translation with center z.
Now ζ = τ(τζ) ∈ Γ[z] is a translation fixing every point on B∞. This contradicts the fact
that a non-trivial translation fixes only one point. So G = G† holds if G† = Sz(23).

If G† = Sz(2s) with s > 3 then G = G† because the Schur multiplier is trivial; see [1],
cf. [34, 4.2.4] and [17, 7.4.2]. Thus we have G = G† = Sz(2s) for s ≥ 3. Consequently,
each element of order 2 or 4 in G is a translation. Apart from the elements of order 4,
every element in Sz(2s) is strongly real, i.e. a product of two involutions; see e.g. [18,
24.7, 24.6]. In particular, every non-trivial element is the product of two translations
(viz., elements of order dividing 4), and does not fix any point in U r B∞. So the action
of G on U r B∞ is semi-regular. �

The following result is contained in [12, 2.6]; we give a more detailed proof.

4.2 Lemma. In the Ree group Ree(r) with r = 32e+1 ≥ 3, every element of prime order is the
product of two elements with orders dividing 9.

Proof. All involutions in Ree(r) are conjugate (also for r = 3), so each of them is contained
in a subgroup isomorphic to Ree(3) � PΓL(2,F8) � SL(2,F8) ⋊ C3. The factorization
(

1 u+1
0 1

)

=
(

1 1
1 0

) (

0 1
1 u

)

in SL(2,F8), where u ∈ F8 satisfies u3 + u + 1 = 0, shows that every
involution is the product of an element of order 3 with an element of order 9 (it is also
the product of two elements of order 9, see [9, Case (6), p. 429]).

The root elements of Ree(r) have orders dividing 9; thus it remains to consider ele-
ments with prime order p > 3. We have

|Ree(r)| = (r3 + 1)r3(r − 1) = r3(r2 − 1)(r +
√

3r + 1)(r −
√

3r + 1),

and Ree(r) contains subgroups isomorphic to PSL(2,Fr), viz. subgroups of index 2 in
centralizers of involutions, see [32, page 62]. If p divides r2 − 1, then PSL(2,Fr) contains
a Sylow p-subgroup of Ree(r), and every element of PSL(2,Fr) is a product of two
elements (transvections) of order 3 by [9, 3.4] or [11, 2.7].

It remains to consider primes p > 3 that divide r ±
√

3r + 1; this includes the prime
divisor 7 of |Ree(3)|. The corresponding Sylow p-subgroups are cyclic, hence all sub-
groups of order p are conjugate, and Ree(r) contains the Frobenius group Cp ⋊ C3 of
order 3p, see [32, IV.3, page 83]. The inclusion Cp ⋊ C3 ≤ AGL(1,Fp) yields that every
element of order p in Cp ⋊ C3 is a commutator, hence it is the product of two conjugate
elements of order 3. �

4.3 Theorem. If G† is a Ree group then G = G†, and the action of G on UrB∞ is semi-regular.

11
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Proof. We have G† = Ree(r) with r = 32e+1 ≥ 3, and the unital has order q = r3.
We first prove that G = G† if r = 3; then G† = Ree(3) � PΓL(2,F8) � SL(2,F8) ⋊ C3.

As in [9, Case (6), p. 429], we note that the final term D of the commutator series
of G is a cover of SL(2,F8), which has no proper cover (see [15, V.25.7] or [27]), hence
D � SL(2,F8). There exists a translation α ∈ G rD of order 3 such that 〈α,D〉 = 〈α〉 ⋉D
induces G† � G/G[B∞] on B∞, as in [9, Case (6), p. 429]. Hence G is the direct product of
〈α〉 ⋉D with the center G[B∞] of G. Each Sylow 3-subgroup of 〈α〉 ⋉D has order 33 and
acts faithfully on B∞, hence it is a full translation group Γ[z] for some z ∈ B∞. There exist
at least two such Sylow 3-subgroups (as D is simple), and together they generate G.
Hence G = 〈α〉 ⋉D and G[B∞] is trivial.

For r > 3, the Ree group Ree(r) is simple and has trivial Schur multiplier; see [1].
So G = G† holds for every r ≥ 3, and the Sylow 3-subgroups of G are the translation
groups. By 4.2 the stabilizer Gc of a point c ∈ U r B∞ cannot contain any element of
prime order, hence Gc is trivial. �

5 Proof of the Main Theorem

LetU be a unital of order q containing two points z such that the group of all translations
with center z has order q. Then the group G generated by these two translation groups
induces a Moufang set (as defined in the paragraph preceding 1.2) on the block B∞
containing the translation centers (see [9, 3.1], where our present group G is called Ĝ).

We have listed the possibilities for the little projective group G† in 1.2. The group G†

cannot be a unitary group, see 3.4. If G† is sharply two-transitive then q ∈ {2, 3} and U
is the hermitian unital of order q, see 2.3.

Now assume that G† is isomorphic to PSL(2,Fq) but not sharply two-transitive. Then
q > 3, the group G† is simple, and G is a perfect central extension of G†. In most
cases, the Schur multiplier of SL(2,Fq) is trivial, and only the cases G � SL(2,Fq) and
G � PSL(2,Fq) remain. The Schur multiplier of SL(2,Fq) is not trivial only if q ∈ {4, 9}.
In these cases, the arguments in [9, p. 428, (2)] show that G � SL(2,F4) if q = 4 and
G � SL(2,F9) or G � PSL(2,F9) if q = 9.

If G† is a Suzuki or Ree group then G = G†, and the action on U r B∞ is semi-regular,
see 4.1 and 4.3. The smallest Suzuki group Sz(2) � AGL(1,F5) is sharply two-transitive,
and excluded by 2.3.

In each one of the cases discussed above, the order q of the unital turns out to be a
prime power (thanks to the restriction q ∈ {2, 3} in the sharply two-transitive case).

6 Simplifications of a previous paper

The present paper yields some simplifications of the classification of the unitals ad-
mitting all translations in [9], as we explain now. The elimination of the sharply two-
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transitive groups in 2.3 leaves only Moufang sets which are determined uniquely by
the isomorphism type of their root groups, see [9, 3.3]. Thus the mapping g : Lc → N
considered in [9, page 430] is constant, and Proposition 4.2 in [9] is not needed anymore;
the proof of that proposition depends on the classification of the finite simple groups.
By 3.4 one can omit the consideration of unitary groups.

The classification of the finite simple groups is still involved at the very end of the
proof in [9, page 430], when we quote a result of Kantor’s which uses the classification
of finite doubly transitive groups. If the order q of the unital is a power of 2, then
the classification of finite simple groups can be avoided, because the doubly transitive
groups of degree q3 + 1 are classified in [14, Theorem 2]; see also [25].
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