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Abstract

Let S be a polar space of rank n ≥ 2. A set of mutually non-collinear points of S is
trivially a subspace of S . We call it an ovoidal subspace. It is well known that when n = 2
all ovoids are maximal subspaces. However, as we shall see in this paper, when n > 2 ovoids
exist which are not maximal subspaces. Moreover, in the finite case, not all polar spaces
admit ovoids. So, it is natural to ask whether ovoidal maximal subspaces exist in any polar
space. In this paper we provide a basically affirmative answer to this question, proving that
ovoidal maximal subspaces exist in all polar spaces but the following ones: Q2n(2) with n
even and greater than 2, Q+

2n−1(2) with n ≡ 2, 3 (mod 4) and greater than 2 and Q−
2n+1(2)

with n ≡ 0, 3 (mod 4).

1 Introduction

Let S be a non-degenerate thick-lined polar space of finite rank n ≥ 2. According to Shult [17],
a subspace of S is a set X of points of S such that if a line ` of S meets X in at least two
points then X ⊇ `. If furthermore X is a proper subspace (that is, not the full point set of S )
and every line of S meets X non-trivially, then X is said to be a hyperplane. All hyperplanes
are maximal subspaces (Shult [17, 7.5.1]), namely they are maximal in the family of proper
subspaces of S .

Trivially, a nonempty set of mutually non-collinear points of S is a subspace of S . We call
it an ovoidal subspace, also a partial ovoid of S . In other words, an ovoidal subspace of S is a
set O of points such that every generator (i.e. maximal singular subspace) of S meets O in at
most one point. If every generator of S meets O in exactly one point then X is called an ovoid.

If O is an ovoid and n = 2 then O is a hyperplane, hence a maximal subspace of S . On the
other hand, when n > 2 all hyperplanes of S have rank at least n − 1, hence they cannot be
ovoidal subspaces; moreover, if S is embeddable then the hyperplanes of S are precisely the
maximal subspaces of S of rank at least 2, namely the non-ovoidal ones (see [4, Corollary 3]).
Two questions arise quite naturally:

(A) Is it true that when n = 2 every ovoidal maximal subspace is an ovoid?

(B) Is it true that when n > 2 no ovoidal subspace is a maximal subspace?

The answer is NO for both questions. Question (A) is answered in the negative in [4, Note 1].
Further counterexamples will be offered in the present paper.

Question (B) is Problem 4 of [4]. In this paper we shall prove that all polar spaces admit
ovoidal maximal subspaces, namely maximal subspaces which are ovoidal (not to be confused
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with maximal ovoidal subspaces, which trivially exist in any case). Explicitly, we shall prove
the following:

Theorem 1 Let S be a (non-degenerate thick-lined) polar space of finite rank n ≥ 2. Then S
admits ovoidal maximal subspaces except precisely when S is one of the following:

(1) Q2n(2) ∼= W2n−1(2) with n ≡ 0 (mod 2), n > 2;
(2) Q+

2n−1(2) with n ≡ 2, 3 (mod 4), n > 2;
(3) Q−2n+1(2) with n ≡ 0, 3 (mod 4).

Section 2 of this paper is entirely devoted to the proof of this theorem. An interesting property
of matrices is implicit in Theorem 1. In order to state it, we need the following definition: we
say that a square matrix A = (ai,j)

N
i,j=1 is anti-diagonal when ai,j = 0 if and only if i = j. We

also recall some terminology. Let MN (F) be the ring of square matrices of order N with entries
in a given field F. We say that two matrices A,B ∈ MN (F) are T -equivalent if B = CTAC for
a non-singular matrix C ∈ MN (F), where CT stands for the transpose of C. Suppose that F
is a separable quadratic extension of a field F0 and let σ be the unique non-trivial element of
the Galois group of F over F0. Recall that the adjoint of a matrix A = (ai,j)

N
i,j=1 (with respect

to σ) is the matrix A∗ := (a′i,j)
N
i,j=1 where a′i,j = aσj,i for every choice of i, j = 1, 2, ..., N . We

say that two matrices A,B ∈ MN (F) are ∗-equivalent if B = C∗AC for a non-singular matrix
C ∈MN (F). We are not going to recall the definitions of symmetric, anti-symmetric, hermitian
or anti-hermitian matrices. We only remind the reader of the fact that when char(F) = 2 all
entries on the main diagonal of an anti-symmetric matrix are null, by definition of anti-symmetry.
The following will be proved at the end of Section 2.

Corollary 2 In the following claims F is a field and we assume that N > 1.

(1) Let N be even. Then all non-singular anti-symmetric matrices of MN (F) are T -equivalent
to anti-diagonal matrices.

(2) Let N > 2 and suppose that F is finite of odd order. When N = 4 suppose moreover
that F 6= F3. Then every non-singular symmetric matrix of MN (F) is T -equivalent to an
anti-diagonal matrix.

(3) Let F be finite of square order. Then every non-singular hermitian or anti-hermitian
matrix of MN (F) is ∗-equivalent to an anti-diagonal matrix.

Turning back to ovoids, we know that in the rank 2 case ovoids are maximal subspaces. Is
the same true for polar spaces of arbitrary rank, possibly modulo a few exceptions? The next
theorem, to be proved in Section 4, provides an answer to this question in the finite case.

Theorem 3 Let S be a (non-degenerate thick-lined) finite polar space, different from both
Q+

5 (q) and Q+
7 (q), with q odd in the latter case. Suppose that S admits ovoids. Then all

ovoids of S are maximal subspaces.
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All quadrics Q+
5 (q) are actually counterexamples to the conclusion of Theorem 3 (see Section

4, Remark 14) while only a few of the quadrics Q+
7 (q) are known to admit ovoids. We might

regard Theorem 3 as an affirmative answer to the above question, albeit limited to the finite
case. However ovoids seem to be rare in finite polar spaces of arbitrary rank; so, we are not sure
if the set of exceptions considered in Theorem 3 can rightly be regarded as a small one.

We end the paper with a kind of counterpart to Theorem 3 for infinite polar spaces. It will
imply examples of polar spaces containing ovoids that are not maximal subspaces, and examples
of polar spaces all ovoids of which are automatically maximal subspaces.

Structure of the paper. Section 2 contains the proof of Theorem 1. The proof is divided in
four parts. We prove first that every thick-lined generalized quadrangle admits ovoidal maximal
subspaces. Next we consider embeddable polar spaces defined over division rings of order at least
3, proving that they also admit ovoidal maximal subspaces. After that, we turn to thick-lined
non-embeddable polar spaces of rank 3, obtaining the conclusion with the help of a classification
of their subspaces. Finally, we examine polar spaces defined over F2, thus completing the proof
of Theorem 1.

The arguments exploited in Section 2 do not provide explicit descriptions of ovoidal maximal
subspaces. However they show how to construct certain partial ovoids, called ‘totally scattered’
in Section 2, such that every maximal partial ovoid containing one of them is a maximal subspace.

In Section 3 we choose a more concrete approach. In the first part of Section 3 we offer
an explicit construction of a family of ovoidal maximal subspaces in symplectic spaces. In the
second part we consider embeddable polar spaces not of symplectic type, showing how totally
scattered partial ovoids can be constructed for them. Section 4 is devoted to ovoids. It contains
the proof of Theorem 3.

Notation. If X is a set of points of a polar space S we denote by 〈X〉S the subspace of S
spanned by X. Similarly, if X is a set of points of a projective space Σ then 〈X〉Σ is the subspace
of Σ spanned by X. When no ambiguity will arise, we will freely omit the subscripts S or Σ
from the symbols 〈.〉S and 〈.〉Σ, thus writing 〈X〉 instead of 〈X〉S , for instance, when X ⊆ S .

For two points x and y of a polar space S , if x and y are collinear we write x ⊥ y. Also, x⊥ is
the set of points of S collinear with x, with x ∈ x⊥ by convention, and we put X⊥ := ∩x∈Xx⊥,
for X a set of points of S .

Given a non-zero vector v of a vector space V , we denote by [v] the corresponding point of
PG(V ). We also use the symbol ⊥ to denote orthogonality between vectors or projective points.
Thus, given a K-vector space V and a reflexive sesquilinear form f : V × V → K, when writing
v ⊥ w for two vectors v,w ∈ V (or [v] ⊥ [w] for two points [v], [w] ∈ PG(V )) we mean that
f(v,w) = 0. Also, if x is a point of PG(V ) we denote by x⊥ the subspace of PG(V ) formed by
the points orthogonal to x and, for X ⊆ PG(V ), we put X⊥ := ∩x∈Xx⊥.

Thus, we use the same notation for collinearity in polar spaces and orthogonality in vector
or projective spaces, including symbols as x⊥ and X⊥. However the context will always avoid
any ambiguity.

The symbols W2n−1(q), Q+
2n−1(q), Q2n(q), Q−2n+1(q), H2n−1(q) and H2n(q) have the usual

meaning. Explicitly, W2n−1(q), Q+
2n−1(q) and H2n−1(q) are respectively the symplectic variety,
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the hyperbolic quadric and the hermitian variety of PG(2n − 1, q), Q2n(q) and H2n(q) are the
quadric and the hermitian variety of PG(2n, q) and Q−2n+1(q) is the elliptic quadric of PG(2n+
1, q).

2 Proof of Theorem 1

2.1 The rank 2 case

Theorem 2.1 All thick-lined generalized quadrangles admit ovoidal maximal subspaces.

Proof. Let S be a thick-lined generalized quadrangle, let p, q be two non-collinear points of S
and let r ∈ {p, q}⊥ be arbitrary. Choose rp ∈ 〈p, r〉 \ {p, r} and rq ∈ 〈q, r〉 \ {q, r}. Put

{p, q}⊥r|rp,rq := ({p, q}⊥ \ {r}) ∪ {rp, rq}. (1)

Clearly, {p, q}⊥r|rp,rq is a partial ovoid. Let O be a maximal partial ovoid containing {p, q}⊥r|rp,rq
and, for a point a 6∈ O, let Sa := 〈O ∪ {a}〉. By the maximality of O, the subspace Sa is a
(possibly degenerate) full subquadrangle. We shall prove that Sa = S .

We firstly prove that p, q ∈ Sa. As Sa is a subquadrangle, it contains at least one line `
through rq and, since Sa is full, all points of ` belong to Sa. If ` = 〈r, q〉 then q, r ∈ Sa, hence
Sa also contains the line 〈r, rp〉 = 〈r, p〉. In this case we are done: p, q ∈ Sa. So, suppose that
` 6= 〈r, q〉. Hence p 6∈ `. The unique point x on ` collinear to p belongs to Sa, and the unique
point y on 〈p, x〉 collinear to q is clearly distinct from r and hence belongs to {p, q}⊥r|rp,rq ⊆ Sa.

Note that x 6= y. Hence p ∈ 〈x, y〉 ⊆ Sa. Similarly, q ∈ Sa.
As p ∈ Sa and every line of Sa through p meets {p, q}⊥r|rp,rq non-trivially, all lines of S

through p belong to Sa. This implies that Sa is an ideal subquadrangle of S as defined in
Section 1.8 of [20] (for every point x ∈ Sa all lines of S through x belong to Sa). However Sa

is a also a full subquadrangle of S . Hence Sa = S by 1.8.2 of [20]. 2

Remark 1 When the generalized quadrangle S has order (s, t) with s infinite and s ≥ t the
conclusion of Theorem 2.1 also follows from a result of Cameron [3], according to which every
generalized quadrangle of order (s, t) as above admits ovoids (in fact, a partition in ovoids).

2.2 The embeddable case

2.2.1 Preliminaries on embeddings and subspaces

We recall that a projective embedding of a polar space S (an embedding of S for short) is an
injective mapping e : S → PG(V ) from (the point set of) S to (the point set of) the projective
geometry PG(V ) of a vector space V , such that the set e(S ) spans PG(V ) and e maps every
line of S surjectively onto a projective line of PG(V ). If K is the underlying division ring of V ,
then e is said to be defined over K.

A polar space is embeddable if it admits a projective embedding. If all embeddings of S are
defined over the same division ring, say K, then S is said to be defined over K.

Two embeddings e : S → PG(V ) and e′ : S → PG(V ′) are isomorphic if e′ = γ · e for an
isomorphism γ from PG(V ) to PG(V ′). An embedding ẽ : S → PG(Ṽ ) is universal if every
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embedding of S is isomorphic to eX := πX · ẽ for a suitable (possibly trivial) subspace X of Ṽ ,
where πX stands for the projection of PG(Ṽ ) onto PG(Ṽ /X). The universal embedding, if it
exists, is unique (modulo isomorphisms). Clearly, if S admits the universal embedding then all
of its embeddings are defined over the same dvision ring, namely the underlying division ring of
its universal embedding.

We recall that all (non-degenerate thick-lined) polar spaces of rank n > 3 are embeddable
and all those of rank 3 are embeddable but for the following two families: line-grassmannians
of 3-dimensional projective spaces defined over non-commutative division rings and a family of
thick polar spaces of rank 3 with non-desarguesian Moufang planes, which live inside buildings of
type E7 (see Tits [19, Chapters 7-9]; also Buekenhout and Cohen [2, Chapters 7-11]). We call the
polar spaces of the latter family Freudenthal-Tits polar spaces; they are implicit in Freudenthal
[9] and explicitly defined in Tits [19, Chapter 9].

Remark 2 The approach chosen by Freudenthal [9] and Tits’s definition in [19, Chapter 9] are
rather algebraic. The reader is referred to Mühlherr [13] for a more geometric approach and
De Bruyn and Van Maldeghem [8] for an explicit concrete description of Freudenthal-Tits polar
spaces.

As proved by Tits [19, 8.6], all embeddable polar spaces admit the universal embedding but
for the following two families of rank 2: grids of order at least 4 (at least five points on each line)
and certain generalized quadrangles defined over quaternion division rings (Tits [19, 8.6(II)(a)]).
We also recall that, if S admits the universal embedding, say ẽ, and is defined over a division
ring of characteristic different from 2, than ẽ is the unique embedding of S (Tits [19, Chapter
8]). In this case, the universal property of ẽ is ultimately vacuous.

Suppose that S is embeddable and let e : S → Σ = PG(V ) be an embedding of S .
A subspace X of S arises from e if e−1(〈e(X)〉Σ) = X. Clearly, if S admits the universal
embedding and a subspace X of S arises from an embedding of S , then X also arises from the
universal embedding.

Every subspace of S is a possibly degenerate polar space. The rank of a subspace X of S
is its rank as a polar space. If m is the rank of X and r the rank of the radical X ∩X⊥ of X,
then m − r is the reduced rank of X. Clearly, the rank and the reduced rank of X are equal if
and only if X is non-degenerate. The subspaces of rank 1 are precisely the ovoidal subspaces.

Let n ≥ 2 be the rank of S . Then all hyperplanes of S have reduced rank at least n − 1.
For instance, let H = x⊥ for a point x of S . Then H is a hyperplane of S , called a singular
hyperplane; its rank is n and its reduced rank is n− 1.

Suppose that S is embeddable and let e be an embedding of S . Then all singular hyper-
planes of S arise from e but, if e is not universal, then hyperplanes of S exist which do not
arise from e. However, let n > 2. Then S admits the universal embedding and all hyperplanes
of S arise from it (as it follows from a theorem of Ronan [15]). In fact this is a special case of
a more general result, proved in [4]:

Proposition 2.2 Let n ≥ 2 and suppose that S admits the universal embedding, say ẽ. Then
all subspaces of S of reduced rank at least 2 arise from ẽ.
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2.2.2 Preliminaries on ovoidal maximal subspaces

As above, let S be an embeddable non-degenerate polar space of rank n ≥ 2. As noticed in
Section 2.2.1, if n > 2 then S admits the universal embedding. When n = 2, assume that the
universal embedding of S exists. Let ẽ : S → PG(Ṽ ) be the universal embedding of S .

Proposition 2.3 Let n > 2. Then a partial ovoid O of S is a maximal subspace of S if and
only if it is maximal as a partial ovoid and ẽ(O) spans PG(Ṽ ).

Proof. Let O be an ovoidal maximal subspace of S . Then O is a maximal ovoidal subspace.
By way of contradiction, suppose that 〈ẽ(O)〉 ⊂ PG(Ṽ ) and let X be a hyperplane of PG(Ṽ )
containing ẽ(O). Then H := ẽ−1(X) is a hyperplane of S . However H contains at least a line
of S , since all hyperplanes of S have rank at least n − 1 and n ≥ 3 by assumption. Hence
H ⊃ O. This contradicts the hypothesis that O is a maximal subspace. Therefore ẽ(O) spans
PG(Ṽ ).

Conversely, suppose that ẽ(O) spans PG(V ) and O is a maximal partial ovoid. Let X be
a (possibly improper) subspace of S properly containing O and choose a point x ∈ X \ O.
As O is maximal as a partial ovoid, if x is a point of S exterior to O then x ⊥ y for some
point y ∈ O. Accordingly, X contains a line of S , namely the line 〈x, y〉. Hence X has rank
at least 2. If X is degenerate, then X is contained in a singular hyperplane x⊥ of S . Hence
ẽ(O) ⊆ ẽ(x)⊥ ⊂ PG(Ṽ ). However 〈ẽ(O)〉 = PG(Ṽ ) by assumption. We get a contradiction,
which forces us to conclude thatX is non-degenerate. Accordingly, X has reduced rank at least 2.
Therefore X = ẽ−1(〈ẽ(X)〉), by Proposition 2.2. However 〈ẽ(X)〉 ⊇ 〈ẽ(O)〉 and 〈ẽ(O)〉 = PG(Ṽ )
by assumption. Hence 〈ẽ(X)〉 = PG(Ṽ ). It follows that X = S . We have proved that O is a
maximal subspace of S . 2

The next corollary trivially follows from Proposition 2.3.

Corollary 2.4 If n > 2 then no ovoidal maximal subspace of S arises from ẽ.

Proposition 2.5 Let n = 2. Then a partial ovoid O of S is a maximal subspace of S if and
only if one of the following holds:

(1) O is an ovoid;
(2) O is a maximal partial ovoid and ẽ(O) spans PG(Ṽ ).

Proof. This statement can be proved by essentially the same arguments used to prove Propo-
sition 2.3. We leave the details for the reader. 2

Remark 3 Conditions (1) and (2) of Proposition 2.5 are not mutually exclusive. Indeed ovoids
are maximal partial ovoids and if an ovoid O does not arise from ẽ (in short, it is non-classical)
then ẽ(O) spans PG(Ṽ ).

The following is an obvious consequence of Propositions 2.3 and 2.5.

Corollary 2.6 Suppose that S admits a partial ovoid O such that ẽ(O) spans PG(Ṽ ). Then
every maximal partial ovoid of S containing O is a maximal subspace of S .
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2.2.3 Setting and more notation and terminology

Henceforth S is a (non-degenerate) embeddable polar space of rank n ≥ 2 and, if S admits the
universal embedding, then e : S → Σ = PG(V ) is its universal embedding; otherwise, if S is
a grid or a generalized quadrangle as in [19, 8.6(II)(a)], then e is any of the embeddings of S .
We denote by K the underlying division ring of V (which is also the underlying division ring of
S , except when S is a grid and K is infinite).

We shall keep the distinction between S and its e-image e(S ) ⊆ Σ. This distinction
might look futile (especially when e is the unique embedding of S ), but it helps to avoid
misunderstandings.

In the sequel we shall often deal with the subspace 〈e({p, q}⊥)〉Σ of Σ, for two non-collinear
points p, q if S . This subspace is the same as {e(p), e(q)}⊥, where ⊥ stands for the orthogonality
relation of Σ associated to e(S ) rather than the collinearity relation in S . Clearly, the subspace
〈e({p, q}⊥)〉Σ = {e(p), e(q)}⊥ has codimension 2 in Σ. In order to have a symbol not so clumsy
as 〈e({p, q}⊥)〉Σ, we put

Σp,q := 〈e({p, q}⊥)〉Σ (= {e(p), e(q)}⊥). (2)

Finally, we say that a partial ovoid O of S is totally scattered (in Σ) if e(O) spans Σ. In view of
Proposition 2.3, when n > 2, proving that S admits an ovoidal maximal subspace is the same
as proving that S admits a totally scattered partial ovoid.

2.2.4 Back to the rank 2 case

With S and Σ as above, suppose that n = 2. Let p, q be two non-collinear points of S .

Lemma 2.7 Suppose that S is not a grid and K 6= F2. Then the set e({p, q}⊥) properly
contains a basis of Σp,q.

Proof. By way of contradiction, suppose that e({p, q}⊥) is a basis of Σp,q. As this ba-
sis contains all singular points of Σp,q, the quadrangle e(S ) cannot be symplectic. Accord-
ingly, e(S ) is defined by a (σ, 1)-quadratic form, say φ. Choose any three points p1, p2, p3 of
{p, q}⊥ and let π = 〈e(p1), e(p2), e(p3)〉Σ (recall that S is not a grid, by assumption). So,
π ∩ e(S ) = {e(p1), e(p2), e(p3)}, since e({p, q}⊥) is independent by assumption and contains all
singular points of Σp,q. Accordingly, e(p1), e(p2) and e(p3) are the unique points of π which are
singular for φ and they span π. It follows that π ∩ e(S ) is a conic defined over F2, namely σ is
the identity and K = F2. However K 6= F2 by assumption. A contradiction has been reached. 2

The set {p, q}⊥r|rp,rq defined in (1) (see the proof of Theorem 2.1) is a partial ovoid. Moreover,

by Lemma 2.7, when neither S is a grid nor K = F2, then e({p, q}⊥ \ {r}) spans Σp,q for
some r ∈ {p, q}⊥, whence for any r ∈ {p, q}⊥, since the stabilizer of p and q in Aut(S ) acts
transitively on {p, q}⊥. However the span of Σp,q ∪ {e(rp), e(rq)} contains the line 〈e(p), e(q)〉Σ
and 〈e(p), e(q)〉Σ ∪ Σp,q spans Σ. Therefore e({p, q}⊥r|rp,rq) spans Σ, consequently {p, q}⊥r|rp,rq is
totally scattered.
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Remark 4 Actually, when S is as in [19, 8.6(II)(a)] the previous argument is incorrect, since
the full automorphism group of S does not stabilize the chosen embedding e. However, a
suitable subgroup of Aut(S ) of index 2 does the job.

Lemma 2.8 Suppose that K is infinite but S is not a grid. Then {p, q}⊥r|rp,rq contains an

infinite subset C such that the partial ovoid {p, q}⊥r|rp,rq \ C is still totally scattered.

Proof. As S is embeddable but not a grid, S cannot be semi-finite. Hence {p, q}⊥ is infinite,
since K is infinite by assumption. If dim(Σp,q) > 1, then we can choose three points p1, p2, p3

in {p, q}⊥ \ {r}, different from r and such that e(p1), e(p2) and e(p3) span a plane π of Σ. This
plane contains infinitely many points of e(S ), which obviously belong to e({p, q}⊥). The point
e(r) might be one of them. Put C := π \{p1, p2, p4, r} Then C is an infinite subset of {p, q}⊥r|rp,rq
and {p, q}⊥r|rp,rq \C still spans Σ. When dim(Σp,q) = 1 we argue in the same way, but considering

two points p1, p2 ∈ {p, q}⊥ instead of three. 2

The case where S is a grid has been put aside in the above. We deal with it in the following
lemma:

Lemma 2.9 Suppose that S is a grid and |K| > 3. Then S admits an ovoid O containing a
subset C of size |K| − 3 (= |K| if K is infinite) such that O \ C is totally scattered.

Proof. As |K| ≥ 4 by assumption, S admits several non-equivalent embeddings and the
embedding e which we have chosen for S is just one of them. The full automorphisms group
of S acts transitively on the set of embeddings of S as well as on the set of ovoids of S .
None of the ovoids of O arises as a plane section from all embeddings of S . So, there exists an
ovoid O of S such that e(O) is not a conic of Σ, namely e(O) spans Σ. Hence e(O) contains a
basis {e(p1), e(p2), e(p3), e(p4)} of Σ. The ovoid O and the set C = O \ {p1, p2, p3, p4} have the
required properties. 2

2.2.5 The general embeddable case

Let now n ≥ 2. Note that, if e is universal then, for any non-degenerate subspace S ′ of S of
rank at least 2, the embedding e′ : S ′ → Σ′ := 〈e(S ′)〉Σ induced by e on S ′ is still universal
except when |K| > 3 and S ′ is a grid or S ′ is a generalized quadrangle as in [19, 8.6(II)(a)].
However, in the latter two cases we can always assume that e′ is the embedding chosen for S ′

as in Section 2.2.3.

Lemma 2.10 Let K be infinite. Then S admits a partial ovoid O containing an infinite subset
C such that O \ C is totally scattered.

Proof. We argue by induction on n. We firstly fix the inductive step. Suppose that the claim
holds true for a given n, let rank(S ) = n+ 1 and let p, q be two non-collinear points of S . By
the induction hypothesis, S ′ := {p, q}⊥ admits a partial ovoid O′ containing an infinite subset
C ′ such that e(O′ \C ′) spans Σp,q (= 〈e({p, q}⊥)〉Σ according to definition (2) of Section 2.2.3).
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Choose r ∈ C ′ and points rp ∈ 〈p, r〉\{p, r} and rq ∈ 〈q, r〉\{q, r}. Then O := (O′\{r})∪{rp, rq}
is a partial ovoid. Moreover, the set C := C ′ \ {r} ⊆ O is infinite and e(O \ C) spans Σ, since
e(O′ \C ′) ⊂ e(O \C) spans Σp,q and {e(rp), e(rq)}∪Σp,q spans Σ. So, O \C is totally scattered.

The initial step remains to be fixed. Suppose n = 2. When S is thick Lemma 2.8 does the
job. When S is a grid we can use Lemma 2.9. Note that, as K is infinite, the set C of lemma
2.9 is infinite as well. 2

We turn now to the finite case.

Lemma 2.11 Let K be finite but different from F2 and let U ⊂ e(S ) be a basis of Σ formed by
mutually non-orthogonal singular points. Then there exists a point v ∈ Σ such that v⊥ ∩U = ∅.

Proof. Since K is finite, dim(Σ) is finite as well. Hence H⊥ 6= ∅ for every hyperplane H of Σ.
If either char(K) 6= 2 or e(S ) is not a quadric then H⊥ is a point, say v, and v⊥ = H. Clearly
Σ admits hyperplanes disjoint from U . If H is such a hyperplane then v⊥ ∩ U = ∅. In this case
we are done. When char(K) = 2, e(S ) is a quadric and dim(Σ) is odd (hence dim(Σ) = 2n± 1
since K is finite), then H⊥ is a point and, if v is that point, then v⊥ = H. As before, we can
choose H disjoint from U thus obtaining that v⊥ ∩ U = ∅.

Suppose now that char(K) = 2, e(S ) is a quadric and dim(Σ) is even. Then dim(Σ) = 2n
and e(S ) = Q2n+2(K). Accordingly, Σ contains a unique point v0 (the nucleus of the quadric
e(S )) such that v⊥0 = Σ. We shall prove that Σ admits a hyperplane H disjoint from U and
such that H⊥ 6= {v0}. With H chosen in that way, if v ∈ H⊥ \ {v0} then v⊥ = H, and we are
done.

By assumption, Σ = PG(V ) with V = V (2n+ 1,K), e(S ) is the quadric defined by a non-
singular quadratic form φ : V → K and V admits a basis (ui)

2n+1
i=1 such that φ(ui) = 0 for any

i = 1, 2, ..., 2n + 1 and f(ui,uj) 6= 0 for 1 ≤ i < j ≤ 2n + 1, where f : V × V → K is the
bilinearization of φ. We shall prove that Σ admits a hyperplane H containing the nucleus v0 of
e(S ) and disjoint from U = ([ui])

2n+1
i=1 .

Put ai,j = f(ui,uj). Then A = (ai,j)
2n+1
i,j=1 is the representative matrix of f with respect to

([ui])
2n+1
i=1 . By assumption, ai,j = 0 if and only if i = j, namely A is anti-diagonal. Moreover

rank(A) = 2n and, if v0 =
∑2n+1

i=1 uiλi represents v0, then Av0 = 0. With no loss, we can
assume that the first 2n rows of A are independent. Then necessarily λ2n+1 6= 0. With no loss,
λ2n+1 = 1, namely v0 = u2n+1 +

∑2n
i=1 uiλi. Moreover, up to rescaling the vectors u1, ...,u2n,

we can assume that ai,2n+1 = 1 for i = 2, 3, ..., 2n and a1,2n+1 = µ 6= 1 (recall that |K| > 2 by
assumption). Hence µλ1 +

∑2n
i=2 λi = a2n+1,2n+1 = 0. Consequently

∑2n
i=1 λi 6= 0, because µ 6= 1.

Let H be the hyperplane of Σ defined by the following equation:
∑2n

i=1 xi +
∑2n

i=1 λi · x2n+1 = 0,
where unknowns are taken with respect to the basis (ui)

2n+1
i=1 of V .

Clearly v0 ∈ H and [ui] 6∈ H for every i = 1, 2, ..., 2n. Moreover [u2n+1] 6∈ H because∑2n
i=1 λi 6= 0. So, H contains the nucleus v0 of S and is disjoint from U . As H contains v0, H⊥

is a line through v0. If v is a point of that line different from v0 then v⊥ = H. 2

Lemma 2.12 Let K be finite but different from F2. If S = Q+
2n−1(3) assume moreover that

n > 2. Then S admits a completely scattered partial ovoid.

9



Proof. As in the proof of Lemma 2.10, we argue by induction on n. We firstly fix the inductive
step. Suppose that the claim holds true for n and let rank(S ) = n + 1. Let p, q be non-
collinear points of S . By the inductive hypothesis, {p, q}⊥ admits a partial ovoid O′ such that
e(O′) spans Σp,q. Clearly, e(O′) contains a basis U of Σp,q formed by singular mutually non-
orthogonal points. By Lemma 2.11 applied to Σp,q the subspace Σp,q contains a point v such
that v⊥ ∩ U = ∅. The triple {e(p), e(q), v} spans a plane π of Σ and Σp,q ∪ π spans Σ. As
v⊥ ∩ U = ∅, we have u⊥ ∩ π = 〈e(p), e(q)〉 for every point u ∈ U . It is clear that if K 6= F2 then
the plane π contains at least two singular points e(a) and e(b) exterior to the line 〈e(p), e(q)〉Σ
and such that v, e(a) and e(b) are non-collinear in Σ. Accordingly, O := {a, b} ∪ e−1(U) is a
partial ovoid and e(O) = {e(a), e(b)} ∪U spans Σ, namely O is totally scattered. The inductive
step is performed.

The initial step remains to be done. When S is thick or |K| > 3 then we can start the
induction at n = 2. Indeed when n = 2 and S is not a grid then {p, q}⊥r|rp,rq is a totally

scattered partial ovoid. When |K| > 3 and S is a grid, then we can apply Lemma 2.9.
Suppose that K = F3 and S is non-thick, namely S = Q+

2n−1(3). In this case the claim of
the lemma is false for n = 2. Thus, we are forced to start the induction at n = 3. Recall that,
given a non-singular 6 × 6 symmetric matrix A with entries in F3, the matrix A represents a
bilinear form fA of V (6, 3) and the Witt index of fA is 3 or 2 according to whether det(A) is
equal to −1 or 1 respectively. Choose A anti-diagonal as follows:

A =



0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 2
1 1 1 1 2 0

 .

It is easily seen that det(A) = −1 (in F3). Hence the form fA has Witt index 3, namely it defines
Q+

5 (3). The canonical basis of V (6, 3) consists of mutually non-orthogonal singular vectors (with
respect to fA). Hence the corresponding points of PG(5, 3) form a partial ovoid of Q+

5 (3) with
the required properties. 2

Remark 5 The following is the main obstacle we face when trying to generalize Lemma 2.11
to the infinite case: if K is infinite then dim(Σ) might be infinite; when dim(Σ) is infinite, it can
happen that H⊥ = ∅. On the other hand, it is likely that we can safely replace the hypothesis
that |K| <∞ with the weaker hypothesis that dim(Σ) <∞.

By combining Lemmas 2.10 and 2.12 with Proposition 2.3 we immediately obtain the fol-
lowing:

Theorem 2.13 Let S be embeddable of rank n > 2 and defined over a division ring different
from F2. Then S admits ovoidal maximal subspaces.

2.3 The non-embeddable case

Throughout this subsection S is a non-embeddable thick-lined polar space of rank n ≥ 3. As
recalled in Section 2.2.1, we have n = 3 and the following are the only possibilities for S :
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(1) S is the line-grassmannian of Σ = PG(3,K) with K a non-commutative division ring;
explicitly, the points and the lines of S are the lines and the full planar line pencils of Σ
respectively. In this case S is not thick; explicitly, every line of S belongs to just two
planes (generators) of S .

(2) S a Freudenthal-Tits polar space, namely a polar space as defined in Tits [19, Chapter 9]
(see also Mühlherr [13] and De Bruyn and Van Maldeghem [8]). In this case S is thick.
Its planes (generators) are Moufang but non-desarguesian.

We shall prove that S admits ovoidal maximal subspaces. We will obtain this result as a
by-product of a classification of all subspaces of S .

2.3.1 The non-thick case

Let S be the line-grassmannian of Σ = PG(3,K), with K non-commutative.

Lemma 2.14 Let S ′ be a proper subspace of S . Then one of the following occurs.

(i) S ′ is a partial ovoid;

(ii) S ′ consists of a set of lines through some point x which form a partial ovoid in the residue
at x;

(iii) S ′ = {p, q}⊥ for two non-collinear points;

(iv) S ′ is either a plane or the union of two planes through a given line;

(v) S ′ is a singular hyperplane, namely S ′ = p⊥ for some point p.

Proof. Viewing S ′ as a set of lines of Σ, the property of being a subspace of S corresponds to
the following: if S ′ contains two intersecting lines then it contains all lines of the planar pencil
containing those two lines. The above cases (i)-(v) can be rephrased as follows:

(i) S ′ is a partial spread of Σ.

(ii) All members of S ′ meet a fixed line L of Σ, if a point x ∈ L is contained in at least two
members of S ′ then the members of S ′ through x form a full line pencil in a plane πx ⊃ L
and πx 6= πy for distinct points x, y ∈ L for which πx and πy are defined; dually, if a plane
π ⊃ L contains at least two members of S ′ then the lines of S ′ in π form a pencil with
center on L and no two such pencils have the same center.

(iii) There are two skew lines L1, L2 of Σ such that S ′ is the set of lines of Σ intersecting both
L1 and L2.

(iv) The members of S ′ are all lines of a plane of Σ, all lines through a point of Σ or all lines
of some plane π of Σ together with all lines through some point x ∈ π.

(v) The members of S ′ are the lines meeting a fixed line L (including L).

11



If S ′ does not contain intersecting members then clearly (i) holds. Suppose that S ′ does
contain intersecting members, but not all lines of a plane of Σ and not all lines through a point
of Σ. If all line pencils contained in S ′ contain the same line L, then S ′ is as in (ii).

So we may assume that S ′ contains two disjoint line pencils, say with vertex xi and plane
πi, i = 1, 2. Our assumption implies that the line L1 := 〈x1, x2〉 is not contained in π1 ∪ π2. Set
L2 = π1 ∩ π2. Clearly, L1 and L2 are skew, for each point y ∈ L2 the planar line pencil with
vertex y and plane 〈y, L1〉 is contained in S ′ and for each point x ∈ L1 the planar line pencil
with vertex x and plane 〈x, L2〉 is contained in S ′. So S ′ contains all lines intersecting both
L1 and L2. If S ′ does not contain any additional line, then we have case (iii).

Suppose now that S ′ contains a line L not intersecting both L1 and L2. If L intersects L1

in a point, then by considering the plane 〈L,L1〉, we readily deduce that also L1 belongs to S ′;
if L = L1, then similarly we readily deduce that every line intersecting L1 belongs to S ′. But
this contradicts our assumption that S ′ does not contain all lines of any plane of Σ. Hence L
is disjoint from  L1 ∪ L2. We claim that every point x of Σ is the vertex of a unique planar line
pencil contained in S ′. It is certainly contained in at most one such line pencil by assumption,
so we only need to show it is contained in at least one.

Suppose first that x ∈ L. Hence x 6∈ L1∪L2 and there is a unique line L′ through x meeting
both L1 and L2. This line belongs to S ′. Consequently, the pencil containing L and L′ is
contained in S ′.

Assuming that x 6∈ L, set π = 〈x, L〉 and xi = π∩Li, i = 1, 2. Suppose first that x, x1, x2 are
not collinear. Then S ′ contains the planar line pencil with vertex y := 〈x1, x2〉 ∩ L and plane
π, so 〈x, y〉 is a member of S ′. But also the unique line through x intersecting both L1 and L2

belongs to S ′ and the claim follows in this case. If x, x1, x2 are collinear, then we can find a
line M 6= 〈x1, x2〉 in π through x containing two points u1, u2 which are vertices of planar line
pencils not containing M , with respective planes α1 and α2; a previous argument then shows
that S ′ contains all lines intersecting both M and α1 ∩ α2 and the claim follows also in this
case.

Hence the members of S ′ form the line set of a generalized quadrangle Q fully embedded
in Σ such that each point of Σ is also a point of Q. This property forces Q to be a symplectic
generalized quadrangle. Accordingly, the underlying division ring K of Σ is commutative, a
contradiction.

Hence we may assume that S ′ contains all lines of a certain plane π or all lines through
a certain point x. If S ′ is not as in (iv), then, up to duality of Σ, we may assume that S ′

contains all lines of π and additionally two line L1, L2 intersecting π in distinct respective points
x1, x2. Then clearly all lines of Σ through x1 and all those through x2 are contained in S ′. For
an arbitrary line M intersecting L := 〈x1, x2〉, we choose an arbitrary point y ∈ M \ (L ∩M).
Then 〈y, xi〉 ∈ S ′ for i = 1, 2 implies M ∈ S ′. Hence all lines meeting L belong to S ′. If no
further lines belong to S ′, then (v) holds.

If N ∈ S ′ does not meet L, then we quickly deduce that all lines meeting N are contained
in S ′. Now, since for an arbitrary point z /∈ L∪N , the line pencils with vertex z and respective
planes 〈z, L〉 and 〈z,N〉 are contained in S ′, all lines through z are contained in S ′ and so
S ′ = S . 2

We now define a partial ovoid O′ of S , which amounts to defining a partial spread of Σ, as
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follows. Let L1, L2 be two disjoint lines of Σ and β : L1 → L2 an arbitrary bijection. Choose
r ∈ L1 arbitrarily. Choose a line M1 through r in the plane 〈L1, β(r)〉 distinct from both L1

and 〈r, β(r)〉. Similarly, choose a line M2 through β(r) in the plane 〈L2, r〉 distinct from both
L2 and 〈r, β(r)〉. Then O′ consists of M1,M2 and every line Kx := 〈x, β(x)〉, for x ∈ L1 \ {r}.

Let O be a maximal partial ovoid containing O′.

Theorem 2.15 The maximal partial ovoid O is a maximal subspace of S .

Proof. We show that O cannot be properly contained in any of the subspaces listed in
Lemma 2.14.
(1) By definition of maximal partial ovoid, O is not contained in a strictly larger partial ovoid.

This rules out (i).
(2) If a line L intersects M1,M2 and every line Kx, x ∈ L1 \ {r} then L /∈ {L1, L2}. It is then

readily deduced that L is disjoint from L1∪L2 and the line through r intersecting L and L2

intersects L2 in β(r). Hence none of M1 and M2 intersects L, a contradiction. This implies
that no line of Σ intersects every member of O. This rules out (ii), (iii) and (v). In case
(iv), picking a line in π through x also shows that every member of O should intersect a
fixed line. 2

2.3.2 The thick case

Let S be a Freudenthal-Tits polar space. Then there is an octonion division algebra O over
some field K coordinatizing the planes of S (see [19, Chapter 9]). From the description given in
[8] it easily follows that, for two opposite points p1, p2, the set of points {p1, p2}⊥⊥ is an infinite
set containing p1, p2 and determined by any pair of its points. We call such a set a hyperbolic
line.

We could again give a complete classification of the subspaces of S (see Remark 6), but the
following ‘quasi-classification’ is sufficient for our purposes.

Lemma 2.16 Let S ′ be a proper subspace of S . Then one of the following holds

(i) S ′ is a partial ovoid of S ;

(ii) S ′ consists of a set of lines through some point x which form a partial ovoid in the residue
at x;

(iii) S ′ is a (non-degenerate) generalized quadrangle closed under taking hyperbolic lines;

(iv) S ′ is a set of planes through some fixed line;

(v) S ′ = p⊥ for some point p.

Proof. If S ′ does not contain lines then we clearly have (i). Suppose now S ′ contains lines
but no planes. If all such lines contain a common point then we have (ii). So suppose that S ′

contains two non-intersecting lines L1, L2. If these are not opposite, then S ′ contains a plane,
a contradiction. Hence L1 and L2 are opposite. Let p1 and p2 be two opposite points with
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(L1 ∪ L2) ⊆ {p1, p2}⊥ =: U (we obtain pi by choosing two planes through L1 and projecting L2

onto these planes). Now U is a generalized quadrangle which, according to Proposition 5.9.4 of
[20], does not contain proper full subquadrangles. Hence U = 〈L1, L2〉 and therefore U ⊆ S ′.
Also, since by definition {x1, x2}⊥⊥ is contained in {p1, p2}⊥ for each pair of opposite points
x1, x2 ∈ U , the subspace U and hence S ′ is closed under taking hyperbolic lines. This is (iii).

So we may assume that S ′ contains planes. If all planes contain a common point x, and
not a common line, then we have two opposite lines in the residue of x, which implies that S ′

is the full residue at x since the residual quadrangle does not have proper full subquadrangles.
Hence (iv) or (v) arises.

Suppose that S ′ contains two opposite planes. The construction in [8] reveals the following
property of S . Restricting O in the construction to a quaternion subalgebra over K, we obtain
a sub polar space S0 of S , which is not a subspace, but with the property that every plane of
S through any line of S0 is also a plane of S0. We refer to the latter property as idealness.
Now two opposite planes can always be included in such a sub polar space S0. Moreover, S0

lives in a projective 5-space. Therefore, by Proposition 2.2, every pair of opposite planes of S0

spans S0. Consequently S0 is a sub polar space of 〈X0 ∪ Y0〉S for any two mutually disjoint
planes X0, Y0 of S0. On the other hand, every pair of opposite planes of S can be regarded as
a pair of opposite planes of a suitable copy of S0. Since we have assumed that S ′ contains two
opposite planes, we can also assume that S0 is a sub polar space of S ′. Since S0 is ideal as a
sub polar space, S ′ is ideal as a polar subspace. This forces S ′ = S . Indeed, for a point p of
S \S ′, if any such point exists, select a plane π in S ′ and let π′ = 〈p, p⊥ ∩π〉. The line p⊥ ∩π
belongs to S ′. Hence π′ is a plane of S ′, by idealness of S ′. Accordingly, p ∈ S ′. 2

Now we choose two opposite points x1, x2 in S and an infinite ovoidal maximal subspace O′

of U := {x1, x2}⊥ as constructed in Theorem 2.1. Hence

O′ ⊇ ((y⊥1 ∩ y⊥2 ∩ U) \ {r}) ∪ {u1, u2}

where y1, y2 are opposite points of U , r ∈ y⊥1 ∩ y⊥2 ∩ U and ui ∈ 〈yi, r〉 \ {yi, r} for i = 1, 2.
Notice that y⊥1 ∩ y⊥2 ∩ U is a hyperbolic line. Indeed let z1 and z2 be any two distinct points
of {y1, y2}⊥ ∩ U , necessarily opposite since {y1, y2}⊥ ∩ U consists of mutually opposite points.
Put U ′ := {z1, z2}⊥. Then U ′⊥ = {z1, z2}⊥⊥ is a hyperbolic line. Moreover, any two opposite
lines of U ′ span U ′. In particular, U ′ is spanned by the lines 〈x1, y1〉 and 〈x2, y2〉. Therefore
U ′⊥ = {x1, x2, y1, y2}⊥ = U ∩ {y1, y2}⊥, namely U ∩ {y1, y2}⊥ = {z1, z2}⊥⊥.

Choose r′ ∈ (y⊥1 ∩ y⊥2 ∩U) \ {r} and select points wi ∈ 〈xi, r′〉 \ {xi, r′}, i = 1, 2. Then define
O′′ = (O′ \ {r′}) ∪ {w1, w2}. Let O be a maximal partial ovoid of S containing O′′.

Theorem 2.17 The maximal partial ovoid O is a maximal subspace of S .

Proof. We first show that no point of S is collinear to all points of O′′. Indeed, all points
collinear to (y⊥1 ∩ y⊥2 ∩U) \ {r, r′} constitute a generalized quadrangle Q contained in {v1, v2}⊥,
for two distinct points v1, v2 ∈ (y⊥1 ∩ y⊥2 ∩ U) \ {r, r′}. However {v1, v2}⊥ admits no proper full
subquadrangle. Hence Q = {v1, v2}⊥ and any two opposite lines of Q span Q. In particular,
Q is spanned by the opposite lines 〈x1, y1〉 and 〈x2, y2〉. Moreover, Q = {r, r′}⊥, since r, r′ ∈
{x1, x2, y1, y2}⊥ and Q = 〈x1, y1, x2, y2〉.
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If a point z is collinear to all points of O′′, then it belongs to Q. However Q = {r, r′}⊥.
Hence z ⊥ r, r′. On the other hand, z is also collinear to u1, u2, w1, w2, hence to x1, x2, y1, y2.
This is impossible within Q.

Hence a subspace containing lines and containing O cannot be of any of the types (i),
(ii), (iv) or (v) of Lemma 2.16. So suppose O is contained in a subspace S ′ isomorphic to
a generalized quadrangle and closed under taking hyperbolic lines, as in (iii) of Lemma 2.16.
Then, for z1, z2 ∈ O, we deduce y⊥1 ∩ y⊥2 ∩ U ⊆ S ′. Hence r ∈ S ′, implying yi ∈ 〈r, ui〉 ⊆ S ′,
i = 1, 2. Also, r′ ∈ S ′ implying xi ∈ 〈r′, wi〉 ⊆ S ′, i = 1, 2. Hence the two opposite planes
〈x1, y1, z1〉 and 〈x2, y2, z2〉 belong to S ′, and so S ′ coincides with S . We have proved that O
is indeed a maximal subspace. 2

Remark 6 Actually, in case (iii) of Lemma 2.16 we have S ′ = {p, q}⊥ for two opposite points
p and q of S . This can be proved by dimension arguments and a little more work, but we are
not going into the details of that proof here.

With (iii) stated in this sharper way, Lemma 2.16 yields a complete classification of all non-
ovoidal subspaces of S , which can be summarized as follows: S admits only those subspaces
that exists in any polar space, namely those of reduced rank at most 1 and intersections of
singular hyperplanes. As a consequence, the maximal non-ovoidal subspaces of S are precisely
its singular hyperplanes. Exactly the same holds in the non-embeddable non-thick case (Lemma
2.14). This also improves a result of Cohen and Shult [5], according to wich all hyperplanes of
a non-embeddable thick-lined polar space of rank 3 are singular.

2.4 The case K = F2

In order to finish the proof of Theorem 1, the case where S is a quadric defined over F2 remains
to be examined.

Theorem 2.18 Let S be a non-degenerate quadric of rank n ≥ 2, defined over F2. Then S
admits ovoidal maximal subspaces precisely in the following cases:

(1) S = Q2n(2) with either n = 2 or n odd;
(2) S = Q+

2n−1(2) with either n = 2 or n ≡ 0, 1 (mod 4);
(3) S = Q−2n+1(2) with n ≡ 1, 2 (mod 4).

Proof. The quadric S lives in PG(N − 1, 2), with N ∈ {2n, 2n + 1, 2n + 2}. Since it is well
known that Q4(2) and Q+

3 (2) admit ovoids while Q−5 (2) admits no ovoids, we can assume that
N > 5 and, in view of Propositions 2.3 and 2.5, the existence of an ovoidal maximal subspace
of S is equivalent to the existence of a totally scattered partial ovoid of S , which in turn is
equivalent to the existence of a basis E = (e1, ..., eN ) of V such that, if φ is the quadratic form
giving rise to S and f its bilinearization, we have φ(ei) = 0 for i = 1, 2, ..., N and f(ei, ej) = 1
for 1 ≤ i < j ≤ N . Equivalently, φ admits the following expression with respect to E:

φ(x1x2, ..., xN ) =
∑
i<j

xixj . (3)

So, the representative matrix of f with respect to E is A = J + I, where J is the N ×N matrix
with all entries equal to 1 and I is the identity matrix of order N .
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Assume firstly N = 2n + 1. Then A has rank 2n = N − 1 with kernel {0, r}, r =
∑

i ei.
Clearly, φ(r) =

(
N
2

)
= n(2n + 1) (computed modulo 2). However, φ is non degenerate if and

only if φ(r) = 1; equivalently, n is odd. So, as φ is non-degenerate by assumption, φ can be
expressed as in (3) if and only if n is odd. This proves the claim of Theorem 2.18 for N odd.

Suppose that N is even, say N = 2m. Hence A is non-singular. Define

φm(x1, ..., x2m) :=
∑

1≤i<j≤2m xixj (see (3));

ψm(x1, ..., x2m) := φm(x1, ..., x2m) +
∑2m

i=1 x
2
i .

In these definitions m = 1 is allowed. Both φm and ψm are non-degenerate quadratic forms. Let
⊥ be the orthogonality relation associated with φm and suppose m > 1. Then φm induces ψm−1

on {e2m−1, e2m}⊥. As the form induced by φm on 〈e2n−1, e2n〉 is hyperbolic, φm and ψm−1 have
the same type, namely they are either both hyperbolic or both elliptic.

Suppose m > 2. Then φm induces φλ,m−2 on {e2m−3, e2m−2, e2m−1, e2m}⊥. As ψm−1 induces
ψ1,2(x2m−3, x2m−2) = x2

2m−3 + x2m−3x2m−2 + x2
2m−2 on 〈e2m−3, e2m−2〉, which is elliptic, the

types of φm−2 and ψm−1 are opposite. Hence φm−2 and φm have opposite types. Clearly, φ1 is
hyperbolic. Therefore φ1+2k is hyperbolic if k is even and elliptic if k is odd.

Consider now φ2. We know that φ2 and ψ1 have the same type. However ψ1(x1, x2) =
x2

1 + x1x2 + x2
2 is elliptic. Hence φ2 is elliptic. By the above, φ2k is elliptic if k is odd and

hyperbolic if k is even. The theorem follows from the fact that the existence of an ovoidal
maximal subspace of S is equivalent to φ admitting the expression (3), which is precisely the
expression called φm in the above. 2

Remark 7 Suppose that the form φ defined in (3) is non-degenerate (hence either N is even or
N − 1 ≡ 0 (mod 4)) and let S be the quadric associated to φ. With e1, ..., eN as in the proof
of Theorem 2.18, the set O := {[e1], ..., [eN ]} is a partial ovoid of S and, if it is maximal as a
partial ovoid, then it is a maximal subspace of S .

As we shall see in a few lines, O is non-maximal if and only if N ≡ 0 (mod 4). Indeed, for
a vector u ∈ V , we have ek 6⊥ u for every k = 1, 2, ..., N only if u =

∑N
i=1 ei and N is even.

Consequently, when N is odd O is maximal. Let N be even, with u as above, and suppose that
φ(u) = 0. Then

(
N
2

)
= 0 (in F2). Hence N ≡ 0 (mod 4). So, if N ≡ 0 (mod 4) then O is not

maximal and O ∪ {[
∑N

i=1 ei]} is the unique maximal partial ovoid containing O (hence it is the
unique ovoidal maximal subspace containing O); otherwise, O is maximal.

Note that neither O nor O ∪ {u} (when N ≡ 0 (mod 4)) are ovoids. Indeed, apart from the
fact Q4(2), Q+

3 (2), Q+
5 (2) and Q+

7 (2) are the only quadrics defined over F2 which admit ovoids
(see Section 4.1), when N > 5 both O and O ∪ {u} are far too small to be ovoids.

2.5 Conclusions

End of the proof of Theorem 1. By combining Theorems 2.1, 2.13, 2.15, 2.17 and 2.18 we
obtain Theorem 1.

Proof of Corollary 2. We could obtain part (1) of Corollary 2 from Lemmas 2.10 and 2.12,
but the following elementary argument is enough. It is well known that all non-singular anti-
symmetric matrices of MN (F) (N even) are mutually T -equivalent. So, all we have to do is
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finding a non-singular, anti-diagonal and anti-symmetric matrix A = (ai,j)
N
i,j=1. Here is one:

ai,j = 1 if i < j, ai,i = 0 and ai,j = −1 if i > j. It is readily seen that, with A defined in this
way, det(A) = 1. Claim (1) of Corollary 2 is proved.

Turning to claims (2) and (3), let SM be the polar space associated with the appropriate
bilinear or hermitian form represented by M with respect to the canonical basis of V = V (N, q).
Claims (2) and (3) amount to the following: SM contains a basis of PG(N − 1, q) formed by
mutually non-orthogonal points. So, assuming that N > 2 and (N, q) 6= (4, 3) when M is
symmetric, we must prove the following: if rank(SM ) > 1 then SM admits a totally scattered
partial ovoid; otherwise SM has rank 1 and spans PG(N − 1, q).

When rank(SM ) > 1, the claim follows from Lemma 2.12. Note that q = 2 is forbidden
here. Indeed q is odd in claim (2) while q ≥ 4 in (3). Suppose that rank(SM ) ≤ 1. Note
that SM 6= ∅. Indeed N ≥ 3 in (2), which forces |SM | ≥ q + 1, while if M is hermitian then
|SM | ≥ 1 +

√
q. Therefore SM has rank 1 and spans PG(N − 1, q). Explicitly, SM is either a

conic of PG(2, q), an elliptic quadric of PG(3, q), a set of 1+
√
q points of PG(1, q) or a hermitian

unital of PG(2, q).

Remark 8 The hypothesis (N,F) 6= (4,F3) cannot be dropped from claim (2) of Corollary
2. Indeed it is easily checked that every anti-diagonal symmetric matrix M of M4(F3) has
determinant equal to −1. Therefore, if M ∈ M4(F3) is symmetric and anti-diagonal then SM

is an elliptic quadric of PG(3, 3). We miss hyperbolic quadrics. This is in conformity with the
fact that each ovoid of Q+

3 (3) arises from each embedding.

Remark 9 In claims (2) and (3) of Corollary 2 the hypothesis that F is finite is not strictly
necessary, provided that those claims are rephrased as follows: every isotropic non-singular sym-
metric (hermitian) matrix of MN (F) is T -equivalent (∗-equivalent) to an anti-diagonal matrix,
a symmetric or hermitian matrix M ∈MN (F) being called isotropic if SM 6= ∅.

3 Constructions

3.1 A construction in symplectic varieties

Let S be a symplectic polar space of rank n ≥ 2, namely S admits an embedding e : S →
PG(V ) such that dim(V ) = 2n and e(S ) is the polar space associated to a non-degenerate
alternating form f : V × V → K, with K a commutative division ring.

Let A be a generator of S and {a1, a2, ..., an} a basis of A. For every k = 1, 2..., n, let
Lk be a hyperbolic line of S containing ak and contained in {a1, ..., ak−1, ak+1, ...., an}⊥. Let
{e1, f2, ..., en, fn} be a basis of V such that f(ei, fj) = δi,j (Kronecker symbol) and f(ei, ej) =
f(fi, fj) = 0 for any choice of i, j = 1, ..., n. We can assume that [ei] = e(ai) for i = 1, 2, ..., n.
Thus, there exist scalars λi,j ∈ K such that e(Lk) = 〈[ek], [fk +

∑
i 6=k eiλi,k]〉. With the lines Lk

defined as above, for k 6= h we have Lk 6⊥ Lh (namely L⊥k ∩ Lh = {ah}) if and only if

λi,j 6= λj,i, for any choice of i 6= j. (4)

Condition (4) is very easy to satisfy. For instance, we can choose λi,j arbitrarily for i ≤ j and
put λj,i = λi,j + 1 for i < j. Suppose to have chosen L1, L2, ..., Ln in such a way that (4) holds
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and let a be a point in A \ ∪nk=1〈ai〉i 6=k, namely e(a) = [
∑n

i=1 eiµi] for µ1, µ2, ..., µn ∈ K∗. Put
O′ :=

⋃n
k=1(Lk \ {ak}) and O := O′ ∪ {a}.

Lemma 3.1 The set O is a maximal partial ovoid of S .

Proof. We firstly prove that O is a partial ovoid. No two points of the set
⋃n
k=1(Lk \ {ak}) are

orthogonal, since L1, ..., Ln are hyperbolic lines and if k 6= h then L⊥k ∩ Lh = {ah}. It remains
to prove that a⊥∩Lk = {ak}. Suppose the contrary. Then Lk ⊆ a⊥. However Lk ⊥ ai for every
i 6= k. Moreover, the set {a1, ..., ak−1, ak+1, ..., an, a} spans A. It follows that Lk ⊆ A⊥ = A, a
contradiction.

Maximality remains to be proved. Let b be a point exterior to O. We shall prove that
b⊥ ∩ O 6= ∅. We have b⊥ ∩ Lk 6= ∅ for every k. If b⊥ contains a point of Lk \ {ak} then we are
done. So, suppose that b⊥ ∩ Lk = {ak} for every k. Then b ∈ A. Accordingly, b ⊥ a ∈ O. 2

As O′ ⊂ O, the set O′ is also a partial ovoid, but not a maximal one. However,

Lemma 3.2 Let X ⊆ O′ be such that |X ∩ Lk| ≥ 2 for every k = 1, 2, ..., n. Then e(X) spans
PG(V ). In particular, e(O′) spans PG(V ).

Proof. With X as in the hypotheses of the lemma, 〈e(X)〉 contains the line e(Lk) for every
k = 1, 2, ..., n. Accordingly, 〈e(X)〉 contains [ek] and [fk] for every k. However V is spanned by
e1, ..., en, f1, ..., fn. Therefore 〈e(X)〉 = PG(V ). 2.

Let ẽ : S → PG(Ṽ ) be the universal embedding of S . If char(K) 6= 2 then ẽ = e (hence
Ṽ = V ). In this case ẽ(O′) spans PG(Ṽ ), by Lemma 3.2 (with the terminology in Section 2, the
partial ovod O′ is totally scattered). On the other hand, when char(K) = 2 the embedding e is
a proper quotient of ẽ. In this case we cannot use Lemma 3.2 to obtain that 〈ẽ(O′)〉 = PG(Ṽ ).
In fact 〈ẽ(O′)〉 ⊂ PG(Ṽ ) when K = F2. Nevertheless:

Lemma 3.3 Suppose that char(K) = 2 but K 6= F2. Then ẽ(O′) spans PG(Ṽ ).

Proof. Under the hypotheses of the lemma, ẽ(S ) is the quadric associated to a non-degenerate
quadratic form φ : Ṽ → K and 〈ẽ(O′)〉 = PG(V ′) for a subspace V ′ of Ṽ . We shall prove that
V ′ = Ṽ .

Let φ′ be the form induced by φ on V ′ and S ′ the quadric defined by φ′ in PG(V ′). As
|K| > 2, for every k = 1, 2, ..., n the sets ẽ(Lk) and ẽ(Lk \ {ak}) span the same subspace Xk

of PG(Ṽ ). Hence PG(V ′) ⊇ ∪ni=1Xi. Moreover ẽ(ak) ∈ PG(V ′) for every k = 1, 2, ..., n, as
ak ∈ Lk. It follows that S ′ contains ẽ(A), which is a generator of ẽ(S ). However no point of
A is collinear with all points of O, by construction. Therefore S ′ is non-degenerate of rank n.
Turning back to Xk, its codimension in PG(Ṽ ) is equal to 2n − 2. Indeed Xk = 〈ẽ(Lk)〉 and
ẽ(Lk) = A⊥k ∩ B⊥k (in ẽ(S )) for any two submaximal singular subspaces Ak and Bk of ẽ(S )
such that A⊥k ∩ B⊥k = ∅ and |A⊥k ∩ B⊥k ∩ ẽ(Lk)| > 1. Since S ′ is non-degenerate and has the
same rank as ẽ(S ), two singular subspaces Ak and Bk as required can always be chosen in S ′.
Hence the equality ẽ(Lk) = A⊥k ∩B⊥k holds true in S ′, too. Consequently, Xk has codimension

2n− 2 in PG(V ′) as well as in PG(Ṽ ). This forces V ′ = Ṽ . 2
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Lemma 3.4 If K = F2 and n is odd then ẽ(O) spans PG(Ṽ ).

Proof. Suppose that K = F2. Let φ be the quadratic form of Ṽ associated to ẽ(S ). An ordered
basis (u1,v1, ...,un,vn,w) can be chosen in Ṽ such that φ admits the following expression with
respect to it:

φ(x1, y1, ..., xn, yn, z) =
n∑
i=1

xiyi + z2.

With no loss, we can assume to have chosen the vectors uk in such a way that [uk] = ẽ(ak) for
every k = 1, 2, ..., n and

ẽ(Lk) = {[uk], [vk +
∑
i 6=k

uiλi,k], [uk + vk +
∑
i 6=k

uiλi,k + w]}

for suitable scalars λi,j such that λk,h 6= λk,h when k 6= h (see (4)). Since [uk] = ẽ(ak) for every
k, we also have ẽ(a) = [

∑n
k=1 uk].

Let X be the span of ẽ(O) in PG(Ṽ ). Then X contains both [vk +
∑

i 6=k uiλi,k] and [uk +
vk +

∑
i 6=k uiλi,k + w], for every k = 1, 2, ..., n. Hence X also contains [uk + w]. Consequently

[uk + uh] ∈ X for any choice of k 6= h. However X also contains ẽ(a) = [
∑n

k=1 uk] and n is
odd, by assumption. Therefore [uk] ∈ X for any k. Hence w ∈ X and vk ∈ X for any k. So, X
contains all of [u1], ..., [un], [v1], ..., [vn] and [w]. In short, X = PG(Ṽ ). 2

Theorem 3.5 The set O is an ovoidal maximal subspace of S , except precisely when K = F2

and n is even and different from 2.

Proof. In view of Lemmas 3.3 and 3.4 and Propositions 2.3 and 2.5, if either K 6= F2 or n is
odd then O is a maximal subspace of S . If K = F2 and n = 2 then |O| = 5, which is just the
size of an ovoid of S . Hence O is an ovoid. Finally, when K = F2 and n > 2 is even then S
admits no ovoidal maximal subspace, by the isomorphism W2n−1(2) ∼= O2n(2) and Theorem 1.
2

Remark 10 If K 6= F2 then O is not an ovoid. Indeed, let |K| > 2. Suppose firstly that for
every k = 1, ..., n there exists i 6= k such that λi,k 6= 0. Then B := 〈[f1], ..., [fn]〉 is a generator of
S but O ∩B = ∅. On the other hand, let λi,k = 0 for some k and every i 6= k, say λi,1 = 0 for
every i > 1. Then λ1,2 6= 0 by (4). Given t ∈ K \ {0, λ1,2} ( 6= ∅ since |K| > 2), put f ′1 := e2t+ f1
and f ′2 := e1t+ f2. Then B′ := 〈[f ′1], [f ′2], [f3], ..., [fn]〉 is a generator of S and B′ ∩O = ∅. In any
case, O is not an ovoid.

Finally, let K = F2. Then |O| = 2n + 1 while an ovoid of W2n−1(2), if it exists, has size
2n + 1. As 2n + 1 < 2n + 1 if n > 2, O is an ovoid if and only if n = 2. (Anyway, it is well
known that no ovoids exist in W2n−1(2) when n > 2; see also Section 4.1.)

3.2 More constructions

Throughout this subsection S is the polar space associated to a non-degenerate (σ, 1)-pseudoquadratic
form φ : V → K/Kσ,1 of finite Witt index n ≥ 2, where K is a (possibly non-commutative) di-
vision ring, V is a K-vector space, σ is an involutory anti-automorphism of K and Kσ,1 :=
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{t− tσ}t∈K. So, S is regarded as a subgeometry of Σ := PG(V ) and the inclusion mapping of
S into Σ provides the universal embedding of S except when dim(V ) = 4, |K| > 3 and S is a
hyperbolic quadric or a quadrangle as in [19, 8.6(II)(a)].

We shall show how to construct a totally scattered partial ovoid of S , namely a partial ovoid
O such that 〈O〉Σ = Σ. We will only describe the constructions. The verifications that they
indeed hit the target will be left to the reader.

We put N := dim(V ) ≥ 2n. For ease of exposition, we assume that N <∞, but everything
we are going to say also holds when N is infinite.

3.2.1 The orthogonal case with N = 2n

Assume that σ = idK (hence K is commutative) and N = 2n. Then φ can be expressed as
follows with respect to a suitable basis (u1,v1, ...,un,vn) of V :

φ(x1, y1, ..., xn, yn) =
n∑
i=1

xiyi.

Suppose that char(K) 6= 2. Let L = (λi,j)
n
i,j=2 be an (n − 1) × (n − 1) anti-symmetric matrix.

For every k = 2, 3, ..., n, put Ik = {2, 3, ..., n} \ {k} and

xk(t) = − ukt
2 +

∑
i∈Ik

uiλi,k + vk + (u1 + v1)t.

Put Xk := {xk(t)}t∈K∗ . The set O := {u1} ∪ (∪nk=2Xk) is a partial ovoid. Moreover, if |K| > 3
then 〈O〉Σ contains [u1], ..., [un], [v1], ..., [vn]. Hence 〈O〉Σ = Σ.

The same construction applies when char(K) = 2 but now choosing L = (λi,j)
n
i,j=2 in such a

way that λi,j + λj,i 6= 0 for any choice of i 6= j instead of λi + λj = 0.

Proposition 3.6 If |K| > 3 then the partial ovoid O is totally scattered.

Remark 11 The partial ovoid O is not maximal. Indeed O ∪ {v1} is still a partial ovoid.
However, if char(K) 6= 2 and K is quadratically closed then O ∪ {v1} is maximal, whence it is a
maximal subspace.

3.2.2 The orthogonal case with N > 2n and char(K) 6= 2

Still with σ = idK suppose that N > 2n and char(K) 6= 2. Put m = N − 2n. A basis
(u1,v1, ...,un,vn,w1, ...,wm) of V exists such that φ admits the following expression with re-
spect to it:

φ(x1, y1, ..., xn, yn, z1, ..., zm) =
n∑
i=1

xiyi +
m∑
j=1

µjz
2
j

and φ is anisotropic on 〈w1, ...,wm〉, namely
∑m

j=1 µjz
2
j = 0 only if z1 = z2 = ... = zm = 0. We

choose an anti-symmetric matrix L = (λi,j)
n
i,j=1 and a non-singular matrix A = (αi,j)

m
i,j=1 such

that
m∑
j=1

µjαj,rαj,s 6= 0 for 1 ≤ r < s ≤ m. (5)
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Example 3.7 Many non-singular matrices exist which satisfy condition (5). For instance, put
α1,j = 1 for every j and αi,j = δi,j (Kronecker symbol) when i > 1. This is perhaps the easiest
choice, but here is another one: choose m pairwise different square elements α1, ..., αm ∈ K∗ and
put αi,j = αj−1

i .

For k = 1, 2, ..., n and r = 1, 2, ...,m we put

xk,r(t) := −uk · (
m∑
j=1

µjα
2
j,r)t

2 +
∑
i 6=k

uiλi,k + vk +
m∑
j=1

wjαj,rt, (t ∈ K),

Xk,r := {[xk,r(t)]}t∈K∗ and O := ∪nk=1∪mr=1Xk,r. The set O is a partial ovoid (but not a maximal
one).

Proposition 3.8 If |K| > 3 then the partial ovoid O is totally scattered. If K = F3 but m > 1
then the matrix A can be chosen in such a way that O is totally scattered.

Remark 12 The hypothesis that K 6= F3 when m = 1 cannot be removed from Lemma 3.8.
Indeed, when m = 1 and K = F3 our construction yields a partial ovoid of size n+ 1, too small
to span Σ.

3.2.3 The orthogonal case with N > 2n and char(K) = 2

Still assuming that σ = idK and N > 2n, let now char(K) = 2. Then V admits a basis
(u1,u2, ...,u2n−1,u2n,v1,v2, ...,v2`−1,v2`,w1,w2, ...,wm), with 2` + m = N − 2n, such that φ
is expressed as follows with respect to it:

φ(x1, ..., x2n, y1, ..., y2`, z1, ..., zm) =

n∑
i=1

x2i−1x2i + ψ(y1, ..., y2`, z1, ..., zm)

where ψ(y1, ..., y2`, z1, ..., zm)=
∑`

i=1(κiy
2
2i−1 + y2i−1y2i + y2

2iχi) +
∑m

j=1 z
2
jµj for suitable scalars

κ1, χ1, ..., κ`, χ`, µ1, ..., µm ∈ K∗ such that

ψ(y1, ..., y2`, z1, ..., zm) = 0 only if y1 = ... = y2` = z1 = ... = zm = 0.

By assumptions, at least one of ` or m is positive. To fix ideas, assume that both ` and m are
positive. Let L = (λi,j)

n
i,j=1 and N = (νi,j)

n
i,j=1 be n × n matrices such that λi,j + λj,i 6= 0 6=

νi,j + νj,i and νi,j 6= λi,j , λj,i for any choice of i 6= j and let A = (αi,j)
`
i,j=1, B = (βi,j)

`
i,j=1 and

C = (γi,j)
m
i,j=1 be invertible matrices with A and B satisfying the following conditions:∑`
j=1 κjαj,rαj,s 6= 0 for 1 ≤ r < s ≤ `,∑`
j=1 χjβj,rβj,s 6= 0 for 1 ≤ r < s ≤ `,∑`
j=1 αj,rβj,s 6= 0 for any choice of r, s ∈ {1, 2, ..., `}.

 (6)

We know from Example 3.7 that several ways exist to choose matrices A and B in such a way
that the first two conditions of (6) are satisfied. Satisfying the third condition is not so difficult.
For instance, the ‘easiest’ choice of Example 3.7 for A and a slight modification of that choice
for B do the job.
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With A, B and C as above, for every k = 1, 2, ..., n, every r = 1, 2, ..., ` and every s =
1, 2, ...,m we put:

xk,r(t) := u2k−1 ·
∑̀
j=1

κjα
2
j,rt

2 +
∑
i 6=k

u2i−1λi,k + u2k +
∑̀
j=1

v2j−1αj,rt,

yk,r(t) := u2k−1 ·
∑̀
j=1

χjβ
2
j,rt

2 +
∑
i 6=k

u2i−1λk,i + u2k +
∑̀
j=1

v2jβj,rt,

zk,s(t) := u2k−1 ·
m∑
j=1

µjγ
2
j,st

2 +
∑
i 6=k

u2i−1νi,k + u2k +
m∑
j=1

wjγj,st.

Put Xk,r := {xk,r(t)}t6=0, Yk,r := {yk,r(t)}t6=0, Zk,s := {zk,s(t)}t6=0 and

O :=

n,`,m⋃
k,r,s=1

(Xk,r ∪ Yk,r ∪ Zk,s).

Then O is a partial ovoid and spans Σ. So far we have assumed that `,m > 0 (hence K is
infinite). If ` = 0 then we define only zk,s(t) and put O := ∪k,sZk,s. Similarly, when m = 0
then O := ∪k,r(Xk,r ∪ Yk,r). Again, O is a partial ovoid; moreover, it spans Σ except when
(`,m) ∈ {(1, 0), (0, 1)} and K = F2. In the end, the following holds:

Proposition 3.9 If K 6= F2 then the partial ovoid O is totally scattered.

Remark 13 With R := 〈w1...,wm〉, let πR be the canonical projection of Σ = PG(V ) onto
PG(V/R). Then πR provides an embedding of S in PG(V/R). Suppose that ` = 0 and
φ(R) = K. Then πR(S ) is symplectic and we are driven back to Section 3.1. With O as above,
let OR be the partial ovoid of πR(S ) as constructed in Section 3.1 and let ÕR = π−1

R (OR) ∩S

be its lifting to Σ. Then O 6= ÕR. Indeed ÕR contains exactly one pointed conic for every
k = 1, 2, ..., n while O contains m bi-pointed conics for every k.

3.2.4 The hermitian case with N = 2n

Let σ 6= idK and N = 2n. A basis (u1,v1, ...,un,vn) of V exists such that φ admits the following
expression with respect to it:

φ(x1, y1, ..., xn, yn) =

n∑
i=1

xσi yi + K/Kσ,1.

Given a matrix L = (λi,j)
n
i,j=1 such that λi,j + λσj,i 6= 0 for any i 6= j, we put xk(t) := ukt +∑

i 6=k uiλi,k + vk for k = 1, 2, ..., n and t ∈ Kσ,1, Xk := {[xk(t)]}t∈Kσ,1\{0} and O := ∪nk=1Xk.

Proposition 3.10 The set O is a totally scattered partial ovoid.
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3.2.5 The hermitian case with N > 2n

Still with σ 6= idK, let now N > 2n. Put Kσ,1 := {t ∈ K | t + tσ = 0}. Note that Kσ,1 ⊆ Kσ,1.
The vector space V admits a basis

(u1,u2, ...,u2n−1,u2n,v1,v2, ...,v2`−1,v2`, e1, ..., em0 , f1, ..., fm1)

(possibly ` = 0, m0 = 0 or m1 = 0) such that φ is expressed as follows with respect to it, with
values taken modulo Kσ,1:

φ(x1, ..., x2n, y1, ..., y2`, t1, ..., tm0 , s1, ..., sm1) =
=
∑n

i=1 x
σ
2i−1x2i + ψ(y1, ..., y2`, t1, ..., tm0 , s1, ..., sm1)

where ψ(y1, ..., y2`, t1, ..., tm0 , s1, ..., sm1) stands for the following

∑̀
i=1

(yσ2i−1κiy2i−1 + yσ2i−1y2i + yσ2iχiy2i) +

m0∑
j=1

tσj µjtj +

m1∑
j=1

sσνjsj

for suitable scalars κ1, χ1, ..., κ`, χ`, µ1, ..., µm0 ∈ Kσ,1 \Kσ,1 and ν1, ..., νm1 ∈ K \Kσ,1 such that

φ(y1, ..., y2`, t1, ..., tm0 , s1, ..., sm1) ∈ Kσ,1 only if
y1 = y2 = ... = y2` = t1 = ... = tm0 = s1 = ... = sm1 = 0.

}
Clearly, if Kσ,1 = Kσ,1 (as it is the case when either char(K) 6= 2 or σ acts non-trivially on the
center of K) then ` = m0 = 0. In this case necessarily m1 > 0, since 2` + m0 + m1 = N − 2n
and N > 2n by assumption.

To fix ideas, suppose that each of `,m0 and m1 is positive. Choose matrices L = (λi,j)
n
i,j=1,

M = (µi,j)
n
i,j=1 and N = (νi,j)

n
i,j=1 such that λi,j + λσj,i 6= 0, µi,j + µσj,i 6= 0, νi,j + νσj,i = 0,

µi,j 6= λi,j , λ
σ
j,i, νi,j 6= λi,j , λ

σ
j.i and νi,j 6= µσj,i for any choice of i 6= j. Moreover A = (αi,j)

`
i,j=1,

B = (βi,j)
`
i,j=1, C = (γi,j)

m0
i,i=1 and D = (δi,j)

m1
i,j=1 are invertible matrices with A, B and D

satisfying the following:∑`
j=1 α

σ
j,rκjαj,s 6= 0 for 1 ≤ r < s ≤ `,∑`

j=1 β
σ
j,rχjβj,s 6= 0 for 1 ≤ r < s ≤ `,∑`

j=1 α
σ
j,rβj,s 6= 0 for r, s = 1, ..., `.∑m1

j=1 δ
σ
j,r(νj + νσj )δj,s 6= 0 for 1 ≤ r < s ≤ m1.

For every k = 1, 2, ..., n, every r = 1, 2, ..., ` every r0 = 1, 2, ...,m0, every r1 = 1, 2, ...,m1 and
any s, t ∈ K put:

ak,r(s, t) := u2k−1s+
∑

i 6=k u2i−1λi,k + u2k +
∑`

j=1 v2j−1αj,rt,

bk,r(s, t) := u2k−1s+
∑

i 6=k u2i−1λk,i + u2k +
∑`

j=1 v2jβj,rt,

ck,r0(s, t) := u2k−1s+
∑

i 6=k u2i−1µi,k + u2k +
∑m0

j=1 ejγj,r0t,

dk,r1(s, t) := u2k−1s+
∑

i 6=k u2i−1νi,k + u2k +
∑m1

j=1 fjδj,r1t.
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Next put

Ak,r := {ak,r(s, t) | s+
∑`

j=1 t
σασj,rκjαj,rt ∈ Kσ,1, t 6= 0},

Bk,r := {bk,r(s, t) | s+
∑`

j=1 t
σβσj,rχjβj,rt ∈ Kσ,1, t 6= 0},

Ck,r0 := {ck,r0(s, t) | s+
∑m0

j=1 t
σγσj,r0µjγj,r0t ∈ Kσ,1, t 6= 0},

Dk,r1 := {dk,r1(s, t) | s+
∑m1

j=1 t
σδσj,r1νjδj,r1t ∈ Kσ,1, t 6= 0}.

Finally, O :=
⋃n,`,m0,m1

k,r,r0,r1=1(Ak,r ∪Bk,r ∪ Ck,r0 ∪Dk,r1).
We have assumed that neither ` nor m0 is 0. Of course, when one of them is 0 we must

accordingly modify the previous definition. For instance, when ` = 0 < m0,m1 we form O as
the union of the sets Ck,r0 and Dk,r1 . In this case we omit to introduce the matrices L, A and
B; we only need M , N , C and D. Similarly, if m0 = 0 < `,m1 then O is formed only by the
sets Ak,r, Bk,r and Dk,r1 . In this case M and C are omitted. If ` = m1 = 0 then O = ∪k,r0Ck,r1
and if m0 = m1 = 0 then O = ∪k,r(Ak,r ∪ Bk,r). Finally, if ` = m0 = 0 then only N and D are
needed and O = ∪k,r1Dk,r1 . With O defined in this way,

Proposition 3.11 The set O is a totally scattered partial ovoid.

4 Ovoids and maximal subspaces

Throughout this section, but for the very last remark, S if a finite (non-degenerate, thick-lined)
polar space of rank n > 2. Let q be the order of the underlying field of S and t + 1 the
number of generators of S which contain a given singular subspace of rank n− 1. Recall that
t ∈ {1, q, q2, q1/2, q3/2}. The parameters q and t are the orders of S .

We recall that W2n−1(q) ∼= Q2n(q) when q is even. Accordingly, the properties of W2n−1(q)
with q even are not the same as when q is odd. This fact causes slight complications in the
exposition, which we prefer to avoid. So, henceforth, when referring to W2n−1(q) we implicitly
assume that q is odd.

We have defined ovoids in the Introduction of this paper. We are not going to repeat that
definition here. Instead we recall that, for a singular subspace X of S of rank m < n, the star
SX of X is the polar space of rank n−m formed by the singular subspaces of S which properly
contain X, those of rank m+ 1 being taken as points of SX and those of rank m+ 2 as lines (if
m ≤ n− 2). Obviously, the generators of SX are the generators of S which contain X.

4.1 Basics on ovoids and non-existence results

Let q and t be the orders of S . Since a partial ovoid meets every generator in at most one
point, every partial ovoid O of S has size at most qn−1t + 1 and it is an ovoid if and only if
|O| = qn−1t+ 1.

Let O be an ovoid of S and let X be a non-maximal singular subspace of S , disjoint from
O. Let OX := {〈X,x〉 | x ∈ O ∩X⊥}. Then OX is an ovoid of SX . In particular, if x is a point
of S exterior to O then Ox is the set of lines which join x to points of O and it is an ovoid of
the star Sx of x. Accordingly, |Ox| = |x⊥ ∩O| = qn−2t+ 1.

The fact that OX is an ovoid of SX can be exploited to prove the non-existence of ovoids in
certain polar spaces. Indeed, if we already know that SX admits no ovoid, then we can conclude
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that no ovoids exist in S . In this way, by reduction to the rank 2 case, we immediately see that
W2n−1(q), Q−2n+1(q) and H2n(q) admit no ovoid. Indeed it is well known that W3(q), Q−5 (q) and
H4(q) admit no ovoids (see e.g. Payne and Thas [16]). Moreover, no ovoid exists in Q8(q), for
any prime power q (Gunarwardena and Moorhouse [10]). Therefore Q2n(q) has no ovoid, for
any n ≥ 4.

As for Q6(q), the following is known. If q is even then Q6(q) has no ovoids (Thas [18]) and
no ovoids exist in Q6(p), for p prime, p > 3 (O’Keefe and Thas [14]). On the other hand, Q6(3h)
admits ovoids, for any positive integer h (Kantor [11]).

Not so much is known about H2n−1(q) for n > 2. It is known that H5(4) has no ovoid
(De Beule and Metsch [6]), hence no ovoids exist in H2n−1(4) for any n ≥ 3. It is also known
that no ovoid exists in H2n−1(q) when the prime basis p of q satisfies the following inequality
(Moorhouse [12]):

p2n−1 >

(
2n+ p− 3

p− 1

)2

+ 2 ·
(

2n+ p− 3

p− 1

)
·
(

2n+ p− 3

p− 2

)
. (7)

Note that, for a given p, the second term of (7), say fp(n), is a polynomial of degree 2(p − 1)
in the unknown n. Therefore the ratio p2n−1/fp(n) diverges as n diverges. So, (7) says that
H2n−1(q) admits ovoids only if n is not too large compared to p. In other words, for every given
prime p, if n > 2 then H2n−1(p2h) admits no ovoids except possibly for a finite number of choices
of n. Inequality (7) embodies an upper bound for the number of those lucky choices, which only
depends on p. We are not aware of any further existence or non-existence result for ovoids of
H2n−1(q) when n > 2.

A few existence results are known for ovoids of Q+
2n−1(q), n > 2. For instance, Q+

5 (q) admits
ovoids for any q and Q+

7 (q) admits ovoids for q a power of 2 or 3, for q an odd power of a
prime p ≡ 2 (mod 3) and for q prime (we refer to Table 1 of [7] for this information). On the
other hand, no ovoids exist in Q+

2n−1(q) if the prime basis p of q satisfies the following inequality
(Blokhuis and Moorhouse [1])

pn−1 >

(
2n+ p− 4

p− 1

)
+ 2 ·

(
2n+ p− 4

p− 2

)
. (8)

Likewise (7), inequality (8) says that Q+
2n−1(ph) admits ovoids only if n is not too large compared

to p.

4.2 Proof of Theorem 3

Let S be finite with orders q > 1 and t and rank n > 2. Suppose that S is neither Q+
5 (q) (for

any q) nor Q+
7 (q) (with q odd). Let O be an ovoid of S . Given a point x 6∈ O, consider the

subspace S (O, x) = 〈O ∪ {x}〉 of S generated by O ∪ {x}. If S (O, x) = S for every x 6∈ O
then O is a maximal subspace of S .

By way of contradiction, suppose there exists a point a 6∈ O such that S (O, a) ⊂ S .
The subspace S (O, a) has rank at least 2, since it contains at least the qn−2t + 1 lines which
join a to points of O. The polar space S is embeddable and admits the universal embedding
(indeed it is finite of rank n > 2). Hence the subspace S (O, a) arises from the universal
embedding ẽ : S → PG(Ṽ ) of S (Theorem 2.2), namely S (O, a) = ẽ−1(〈ẽ(O∪{a})〉). However
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S (O, a) ⊂ S by assumption. Hence 〈ẽ(O ∪ {a})〉 is contained in a hyperplane X of PG(Ṽ ).
Accordingly, O ∪ {a} is contained in the hyperplane H := ẽ−1(X) of S .

If H = b⊥ for some point b of S , then b is joined with all points of |O|. However |O| =
qn−1t + 1 while |b⊥ ∩ O| is either 1 or qn−2t + 1 according to whether b ∈ O or b 6∈ O. In any
case, we get a contradiction. Therefore H is non-singular. So, H is a non degenerate polar space
of rank m ∈ {n − 1, n} and order (q, t′), where t′ depends on m and the type of S . However
O, being contained in H, is also an ovoid of H. Consequently qn−1t+ 1 = qm−1t′ + 1. If m = n
then t′ = t. This is impossible, as H cannot have the same rank and the same orders as S .
Therefore m = n− 1 and t′ = qt.

On the other hand, if t′ > q then H is necessarily isomorphic to either Q−2m+1(q) or H2m(q).
However, as remarked in Section 4.1, neither Q−2m+1(q) nor H2m(q) admit ovoids, while O is
an ovoid of H. Therefore t′ ≤ q and the equality t′ = qt now forces t = q and t = 1, namely
S ∼= Q+

2n−1(q) and H ∼= Q2m(q) = Q2n−2(q).
As noticed in Section 4.1, the quadric Q2m(q) admits no ovoids when m > 3 and Q6(q)

admits no ovoids if q is even. However O is an ovoid of H. Therefore m ≤ 3 and m = 2 if
q is even, namely n ≤ 4 and n = 3 if q is even. However, according to the hypotheses of the
theorem, t > 1 when either n = 3 or n = 4 and q is even. We have reached a final contradiction.
Consequently, S (O, x) = S for every point x 6∈ O. 2

Remark 14 The quadrics Q+
5 (q) and Q+

7 (3h) are counterexamples to the conclusion of Theorem
3. Indeed Q+

5 (q) contains Q−3 (q), which is indeed an ovoid of O+
5 (q). However Q−3 (q) is not a

maximal subspace of Q+
5 (q), as it is contained in a hyperplane Q4(q) of Q+

5 (q). Similarly, Q6(3h)
is a hyperplane of Q+

7 (3h) and contains ovoids (Section 4.1). The ovoids of Q6(3h) are still ovoids
in Q+

7 (3h), but they cannot be maximal subspaces of Q+
7 (3h).

Remark 15 The statement of Theorem 3 can be made slightly sharper by allowing S = Q+
7 (p)

with p prime and different from 3. Indeed Q6(p) admits no ovoids for a prime p 6= 3.

Remark 16 Remark 14 suggest the following counterexample in the infinite case. Let S =
Q+

2n+1(K), with K an infinite field and n ≥ 2. Then S contains hyperplanes isomorphic to
Q2n(K). If S ′ is one of them, every generator of S ′ is contained in exactly two generators of
S and every generator of S contains exactly one generator of S ′. The polar space S ′ admits
ovoids, by Cameron [3] (in fact, it admits even a partition in ovoids). Let O be an ovoid of S ′.
Since every generator of S contains exactly one generator of S ′, every generator of S meets
O in exactly one point. Accordingly, O is also an ovoid of S . However O is not a maximal
subspace of S , since it is contained in the hyperplane S ′ of S . This is a special case of the
following more general observation, which is the best we can do for the infinite case:

Proposition 4.1 Let S be an infinite polar space of rank r ≥ 3. If S is the line-grassmannian
of PG(3,K), with K non-commutative, then every ovoid of S is a maximal subspace. If S is
embeddable, and its universal embedding is finite-dimensional, then S possesses ovoids that are
not maximal subspaces if and only if S admits non-singular hyperplanes of rank r − 1.

Proof. We first note that no ovoid is contained in a singular hyperplane. Indeed, suppose
for a contradiction that the ovoid O is contained in p⊥ for some point p of S . Then we can
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find a submaximal singular subspace W in p⊥ not containing p and disjoint from O (since every
projective space has a hyperplane avoiding two given points). Every generator containing W
and distinct from 〈W,p〉 is disjoint from O, a contradiction.

Suppose first that S is the line-grassmannian of PG(3,K), with K non-commutative, and
suppose, for a contradiction, that an ovoid O is contained in a proper subspace X of S . By
Lemma 2.14, X is contained in the perp of a point, contradicting the previous paragraph.

Now suppose that S is embeddable, and its universal embedding is finite-dimensional, say
in the projective space Σ. First suppose that S admits a non-singular hyperplane H of rank
r − 1. By [3], H admits an ovoid O. Since H is a hyperplane, every generator of S intersects
H in a submaximal singular subspace, that is, a generator of H, which by definition contains a
member of O. Hence O is an ovoid of S , which is not a maximal subspace as O ⊂ H ⊂ S .

Now suppose that S possesses an ovoid O that is not a maximal subspace, and let O ⊂
S ′ ⊂ S , with S ′ a subspace. Then S ′ is a non-degenerate polar space by the first paragraph
of this proof. Let S be the subspace of Σ corresponding to S ′. Suppose S ′ has rank r′. We
claim that r′ < r. Indeed, suppose for a contradiction that r′ = r. There exists a submaximal
singular subspace M ′ of S ′ disjoint from O. Since S ′ is not an ideal subspace (as otherwise S ′

would coincide with S ), there is a generator M not contained in S ′ but containing M ′. Since
also O is contained in S ′, M ∩O = ∅, a contradiction. The claim is proved. Now we can extend
S ′ to a hyperplane of Σ and the proposition follows. 2

Note that the sharpened version of Lemma 2.16 referred to in Remark 6 implies that also
each ovoid of the Freudenthal-Tits polar space is a maximal subspace, providing alternative
evidence of the existence of ovoidal maximal subspaces in these polar spaces, using [3] once
again.

Proposition 4.1 has many applications. We content ourselves by mentioning that each ovoid
of every non-degenerate quadric in an even-dimensional projective space over an algebraically
closed field is a maximal subspace, and that every quadric over R (and likewise every hermitian
polar space over C) admits ovoids which are not maximal as subspaces.
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