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ABSTRACT

In this paper, we axiomatize the geometries obtained from the long root
subgroup geometries by taking as new lines the so-called imaginary lines.
A generic such line is the union of the orbits of the centers of the two
root groups corresponding to two opposite long roots, which share at least
two points. This extends characterizations of Cuypers and Hall on copolar
spaces, who treated the quadrangular case. Here, we treat the remaining
case, the hexagonal one. Our results hold over any field of size at least 5
and characteristic different from 2.
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1. Introduction

1.1. General context and motivation

Buildings, sometimes also called Tits-buildings, were introduced by Jacques Tits [26]
and give a geometric interpretation of semi-simple groups of algebraic origin (semi-
simple algebraic groups, classical groups, groups of mixed type, (twisted) Chevalley
groups). These buildings are, at first glance, complicated combinatorial structures;
however, the properties of spherical buildings can be made more accessible using asso-
ciated point-line geometries. The most commonly used point-line geometries that can
be associated to a spherical building ∆ of type (W,S) are the so called Lie incidence
geometries [6]. For every nonempty subset J ⊆ S, there is a canonical procedure that
yields a Lie incidence geometry with point set the set of J-simplices of ∆. Classical
examples are given by the (Grassmannians of) projective and polar spaces, which are
associated to buildings of type An, and Bn or Dn respectively.

For every irreducible Moufang building ∆ (of rank at least two, not an octagon
or a Moufang quadrangle of type F4), there is some (not necessarily unique, see Re-
mark 2.26) subset J ⊆ S for which there is a natural correspondence between the
points of the associated Lie incidence geometry and the long root subgroups of ∆. This
geometry is referred to as the long root (subgroup) geometry of ∆ and either forms
a polar space—in which case we call it quadrangular—or contains a lot of non-thick
generalized hexagons with thick lines—in which case we call it hexagonal.

Long root geometries have been studied from different angles. From an algebraic
point of view, they were studied in the context of Timmesfelds theory of abstract root
subgroups [25], which axiomatizes the behaviour of (centers of) the root subgroups of
long roots in spherical buildings. Moreover, these long root geometries appear as the so
called extremal geometries ([5], [9]) of certain Lie algebras, and more recently, provide
important classes of examples of Tits quadrangles and Tits hexagons ([19], [18]), which
are higher rank generalizations of Moufang polygons. From an incidence geometric
point of view, there are two main approaches. Firstly, the long root geometries are
studied in the context of other Lie incidence geometries, and are hence classified as
so called parapolar spaces that satisfy certain extra regularity conditions ([10], [23]).
Secondly, they appear as the most important examples of root filtration spaces ([3],
[4]), which are point-line geometries equipped with five relations between points that
must satisfy a list of axioms (none of which involves any groups). These two incidence-
geometric approaches, while very powerful, have the disadvantage that they capture a
broader class of incidence geometries (namely, the root shadow spaces, see [4]), whose
point set not necessarily coincides with the long root subgroups of a spherical building.

We propose and axiomatize an alternative point-line geometry associated to ∆. This
point-line geometry, which we call the imaginary geometry of ∆, takes as point set the
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same point set as the long root geometry of ∆ (i.e. the centers of the long root sub-
groups of ∆). Its lines, which we call imaginary lines, are induced by the rank one
groups generated by two opposite long root subgroups. When the long root geome-
try is quadrangular, this imaginary geometry has been studied and axiomatized before
([7], [11], see also Section 3.2). In this paper, we focus on the hexagonal imaginary
geometries.

In such hexagonal imaginary geometry, the set of imaginary lines through a point
can be given the structure of a Freudenthal triple system, and as such, these geome-
tries have been studied (implicitly) throughout the literature (for example in [16]). We
complement this algebraic approach by providing an axiomatization of the hexago-
nal imaginary geometries. The protagonists of this incidence-geometric point of view
are the imaginary geometries of buildings of type A2, which are called A2-planes and
should be considered as the imaginary counterparts of non-thick generalized hexagons
with thick lines. The main theorem roughly states that the hexagonal imaginary ge-
ometries are characterized by these A2-planes and the local interactions that they have
with other points of the geometry. As was shown in [16], Freudenthal triple systems
(when generalized to arbitrary characteristic) can behave very different over fields of
characteristic 2. As a consequence, the imaginary geometries suffer from the same
desease, and for the axiomatization, we will restrict ourselves to hexagonal imaginary
geometries defined over fields of characteristic not two.

In [18], it is shown that every Moufang building of rank one of so called polar type
arises as the fixed point structure of a Galois involution of some imaginary geometry.
The imaginary lines of this imaginary geometry induce imaginary lines of the Moufang
set, and the geometry obtained like this is exactly the Tits web of the Moufang set,
as was introduced in [27]. The imaginary geometries defined here should be seen as
higher rank counterparts of these Tits webs.

Finally, we mention a further motivation. The rank one analogues of the Tits poly-
gons mentioned above are the Tits sets, introduced in [17]. The abelian Tits sets have
recently been classified by the first author in her PhD thesis [12] under a mild (and
natural) additional condition, and they arise from higher rank spherical buildings by
considering the vertices of a so-called Jordan type (the middle node in the An diagram,
the extreme nodes in the other classical diagrams, and the node labeled 7 in the E7 dia-
gram). The next natural class to consider is the class of Tits sets corresponding to the
long root geometries, and for this class, it is expected that the characterization in the
present paper will be very useful.
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1.2. Formulation of the main results

The purpose of this paper is twofold. First of all, we introduce imaginary geometries
and investigate their behaviour. Secondly, we propose and prove an incidence geomet-
ric axiomatization of hexagonal imaginary geometries. For notation and definitions, we
refer to Section 2.

Definition. Let ∆ be an irreducible spherical Moufang building of rank at least two,
and let E be a (conjugacy) class of centers of long root subgroups of ∆. For A,B
two opposite elements of E , define the imaginary line through A and B to be the set
{A} ∪ BA. We define Im(∆,E ) to be the point-line geometry with as point set E and
as line set the set of all imaginary lines. This space is called hexagonal when there exist
A,B ∈ E with [A,B] ∈ E , and quadrangular if no such A,B exist. Any point-line
geometry obtained like this is called an imaginary geometry.

The only irreducible spherical Moufang buildings of rank at least two that do not
posses a class of long root subgroups are the octagons and the Moufang quadrangle of
type F4, so in particular, we attach an imaginary geometry to all irreducible spherical
Moufang buildings of rank at least two that are not of those types. Moreover, whenever
such a building ∆ is either simply laced or defined over a field of characteristic not two
or three, the set E is uniquely determined. In this case, we denote Im(∆) := Im(∆,E ).

The imaginary geometry Im(∆,E ) fully determines ∆ and E , implying that studying
Im(∆,E ) is equivalent to studying ∆. There is a unique Lie incidence geometry of ∆,
called the long root geometry, whose point set coincides with E .

We will focus on hexagonal imaginary geometries. It turns out that these are exactly
the imaginary geometries which contain imaginary geometries Im(A2(k)) for some
skew field k. which we will call A2-planes. We now provide an explicit construction
of these A2-planes, along with the most essential definitions to understand the main
theorem below (referring forward for details).

Definition. Let k be a skew field. Consider the projective plane P(k3), and denote
its point and line set with Pτ and Lτ , respectively. The geometry Im(A2(k)) is the
point-line geometry (E ,I ) with

E := {(p, l) | p ∈Pτ , l ∈ Lτ , p ∈ l},
I := {[q,m] | q ∈Pτ ,m ∈ Lτ , q 6∈ m}, where

[q,m] := {(p, pq) | p ∈P, p ∈ m} for all q ∈Pτ ,m ∈ Lτ with q 6∈ m.

This geometry Im(A2(k)) is called the A2-plane over k. The corresponding long root
geometry is the point-line geometry (E ,L ) with L := {Tp | p ∈Pτ}∪{Tl | l ∈ Lτ},
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where

Tp := {(p,m) |m ∈ Lτ ,m 3 p}, for all p ∈Pτ ,

Tl := {(q, l) | q ∈Pτ , q ∈ l} for all l ∈ Lτ .

One should note that the long root geometry (E ,L ) is a non-thick generalized hexagon
with thick lines. We will prove that elements of L are fully determined by the geometry
Im(A2(k)). We can hence refer to these elements as transversals of Im(A2(k)).

We refer forward to Section 3.4 to see that an A2-plane contains many dual affine
planes. It hence makes sense to consider the following definitions.

Definition. Let A be an A2-plane over a field k. A conical subset of A is a subset of
A that intersects any dual affine plane of A in a conic (Definition 2.7). Such a conical
subset is called a conical subspace when it intersects every transversal of A in 0, 1 or
all of its points.

Notation. Let Y be an imaginary geometry (or a geometry axiomatizing it, as in the
Main Theorem) and let p be a point of Y , then p 6≡ denotes the set of points in Y non-
collinear to p.

Proposition. Let Y = Im(∆,E ) be a hexagonal imaginary geometry. Assume that
every line of Y contains at least four points (or equivalently, ∆ is not defined over F2).
Moreover, if ∆ is of type An, assume that ∆ = An(k) for some field k. Then Y is a
connected partial linear space. Moreover, the following properties hold.

(Im1) Let l and m be two intersecting lines, and p a point on l.
(1) If |p 6≡ ∩ m| = 1, any point of m \ {l ∩ m} is noncollinear to exactly one

point of l.
(2) If |p 6≡ ∩m| = 2, the lines l and m generate an A2-plane over some field.
The situation in (ii) occurs at least once.

(Im2) For any A2-plane A, and any point p, the set p 6≡ ∩ A forms a conical subspace
of A and contains three mutually collinear points, not on a common line.

(Im3) For any points p, q, if p 6≡ = q 6≡, then p = q.

It turns out that, at least when no A2-plane is defined over a field of characteristic two,
the axioms (Im1), (Im2) and (Im3) suffice to characterize all imaginary geometries.

Main Theorem. Let Y be a connected partial linear space that satisfies(Im1), (Im2)
and (Im3). Assume that no A2-plane of Y is defined over a field of characteristic 2 or
over F3. Then Y is the hexagonal imaginary geometry of a spherical building, defined
over a field k with |k| ≥ 5 and char(k) 6= 2, or an infinite rank analagon of such a
hexagonal imaginary geometry (as defined in Remark 3.12.)
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1.3. Outline of paper

In Section 3, we introduce the notion of an imaginary geometry and give several ex-
amples. In Section 4 we focus on the properties of hexagonal imaginary geometries,
in particular, we prove that such a geometry satisfies axioms (Im1), (Im2) and (Im3).
In Section 5, we discuss several diferent classes of conical subspaces of A2-planes.
Sections 6 to 8 comprise the proof of the main Theorem.

The idea of the proof of the main theorem is the following: we start with the partial
linear space Y = (E ,I ), and use the presence of A2-planes in Y to define four possible
relations between two distinct points: linelike, symplectic, special and collinear, and
to define a set of transversals L . The goal is to show that the point-line geometry
(E ,L ), equipped with the relations defined above, forms a root filtration space. A
priori however, it is not at all clear whether these relations are disjoint, or whether the
point-line geometry (E ,L ) is a partial linear space.

The first difficulty we tackle, is proving that the four defined relations are disjoint.
This is done in Section 6. Next, we focus on the relation between two special points p
and q: in Section 7, we prove that the behaviour of any point linelike to both p and q is
fully determined by the behaviour of p and q, Axiom 1.2 will then ensure that there is a
unique such a point. The next difficulty is to find a way to distinguish between linelike
and symplectic points, which is done in Section 8.1, and again heavily relies on Axiom
1.2. At this point, one has all the tools to prove that the four relations indeed define
a filtration on E , which is done in Section 8.2. A subtle, yet tedious detail is that one
should still prove that (E ,L ) is a partial linear space; this is done in Section 8.3. Once
we have that (E ,L ) is non-degenerate root filtration space, we can apply Theorem 2.16
to obtain that it is a hexagonal root shadow space. In Section 8.4 we then conclude that
(E ,L ) is a long root geometry, and that Y is the corresponding imaginary geometry.

2. Preliminaries

In this section, we discuss four different classes of incidence structures. Schematically,
and ignoring the peculiarity that some root shadow spaces (namely those of infinite
rank) are not Lie incidence geometries, see Remark 2.13, these classes can be depicted
as follows:

Point-line geometries ⊃ Lie incidence geome-
tries ⊃ Root shadow spaces ⊃ Long root geometries.

Throughout the section, we will use some basic definitions regarding buildings, for
which we refer to [22].
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2.1. Point-line geometries

The most general incidence structures studied in incidence geometry are point-line ge-
ometries. We recall some basic definitions, which can all be found in [24].

Definition 2.1. A point-line geometry is a pair (P,L ) consisting of a nonempty set
P , and a nonempty set L of subsets of P . The elements of P are called points, those
of L are called lines. We say that two points are collinear when they are contained in a
common line, and say that they are noncollinear when they are not. Let X = (P,L )
be a point-line geometry.

1. A subspace S of X is a subset of P for which every line that contains at least two
points of S, is contained in S. A subspace that consists of mutually collinear points
is called a singular subspace. A subspace that intersects every line in at least a point,
is called a hyperplane.

2. For any set P ⊆P , the subspace generated by P is defined to be the intersection of
all subspaces that contain P . A subset generated by three mutually collinear points,
not on a common line, is called a plane.

3. The point-line incidence graph of X is the bipartite graph that has vertex set P∪L
and edge set {(p, l) | p ∈P, l ∈ L , p ∈ l}). We denote this graph with ΓX .

4. The geometry X is called (co)connected when (the complement of) ΓX is a con-
nected graph.

5. The distance between points x, y is defined to be the half the distance between x and
y in ΓX . In particular, x and y are collinear if and only if they are at distance one.

6. The geometry X is called a partial linear space when every two collinear points p
and q are contained in exactly one line (which we then denote with pq), and where
moreover every line contains at least three points.

7. We define Aut(X) to be the group {σ ∈ Sym(P) |L σ = L }.

We give some examples of partial linear spaces that will be useful later on.

Example 2.2. Let V be a (left) vector space of dimension n ≥ 3 over some skew
field k. The projective space P(V ) is the partial linear space that has as points the 1-
dimensional subspaces of V . The lines are induced by the 2-dimensional subspaces of
V . When n = 3, this is called the projective plane defined over k.

Example 2.3. Let V be a (left) vector space (possibly of infinte dimension) over some
skew field k. The dual V ∗ of V is a (right) vector space over k. Let W ∗ be a subspace
of V ∗ such that {v ∈ V |φ(v) = 0, ∀φ ∈ W ∗} = {~o}. If V is finite dimensional, the
only possibility for W ∗ is V ∗. Denote P := P(V ) and H = P(W ∗). Note that H is a set
of hyperplanes of P such that H forms a subspace of the dual of P and no point of P is
contained in all elements of H.

The partial linear space E (P,H) is defined as follows. The point set is the set
{(p,H) | (p,H) ∈ P × H, p ∈ H}. The lineset consists of two types: subsets of
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the form {(p,H) | p ∈ l} where l is a line of P that is contained in H , and subsets of
the form {(p,H) |H ⊃ K} where K is a codimension-2 subspace of P that contains p
for which there are at least two elements of H containing it.

A projective space defined over a field k and of dimension n is denoted by P(kn).

Definition 2.4. A polar space is a point-line geometry in which every point is collinear
to one or all points of a line. It is called nondegenerate when no point is collinear to all
other points. We say that a polar space has rank n ∈ N when every chain M1 ⊂ M2 ⊂
. . . of nonempty singular subspaces has length at most n (where the length of a chain is
defined to be the number of subspaces contained in it), and when there moreover exists
such a chain of length n. When no such n exists, we say that the polar space has infinite
rank.

We gather two examples of such polar spaces.

Example 2.5. Let V be a vector space defined over some field k, let q : V → k be
a quadratic form with associated symmetric bilinear form f : V × V → k, where
f(v, w) = q(v + w) − q(v) − q(w). A subspace S of V is called isotropic when
q(s) = 0 for all s of S. Assume that q contains some isotropic 2-space and that q is
nondegenerate, that is, {v ∈ V | q(v) = f(v, w) = 0, ∀w ∈ V } = {~o}. The point-line
geometry with as points the isotropic 1-spaces of V and as lines the isotropic 2-spaces
of V is a nondegenerate polar space. Any polar space that can be realized like this is
called an orthogonal polar space.

Example 2.6. Let V be a 2n-dimensional vector space (n ≥ 2) with basis {ei}1≤i≤2n,
and let f be the alternating bilinear form on V given by f(x, y) = x1y2 − y1x2 + · · ·+
x2n−1y2n − y2n−1x2n, for x =

∑
xiei and y =

∑
yiei. A subspace S of V is called

isotropic when f(v, w) = 0 for all v, w ∈ S. Note that every 1-space of V is isotropic.
The point-line geometry with as points the isotropic 1-spaces of V and as lines the
isotropic 2-spaces of V is a nondegenerate polar space of rank n. A polar space that
can be realized like this is called a symplectic polar space.

All polar spaces of rank at least 3 (including those of infinite rank) have been clas-
sified, and besides the orthogonal and symplectic ones, there are the polar spaces de-
fined using a pseudo-quadratic form with an associated Hermitian form, and also the
so-called nonembeddable ones. We will not need the latter two classes. For more back-
ground and the proof of this classification we refer to [26].

We finish this subsection with a few more definitions regarding (conics of) dual affine
planes, as they will play a crucial role in what follows.

Definition 2.7. (1) A partial linear space τ = (P,L ) is called a dual affine plane
if noncollinearity, denoted by 6≡, induces an equivalence relation on P and
moreover, for∞ a (new) symbol not in P , the following point-line geometry
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is a projective plane:

τ∞ := (P ∪ {∞},L ∪ {T ∪ {∞} |T equivalence class of 6≡})

If τ∞ = P(k3) for some skew field k, we say that τ is defined over k.
(2) Suppose that τ = (P,L ) is a dual affine plane defined over a field k. A subset

C of P is called a conic of τ when either C or C ∪ {∞} is a conic of τ∞. In
the latter case, we say that it is a conic through the missing point of τ .

(3) Also when τ = (P,L ) is not defined over a field, we have the notion of a
degenerate conic of τ , which is a set C of P such that either C or C ∪ {∞} is
empty, a point, a line, the union of two lines or the whole of τ∞. By convention,
we say that both the empty set and the plane τ are degenerate conics of τ (both
through the missing point of τ ).

2.2. Lie incidence geometries

In this section, we recall the definition of Lie incidence geometries, which should be
seen as Grassmannians of spherical buildings, and as such, are generalizations of the
projective and polar spaces discussed above. They were introduced in [6] as Lie inci-
dence systems.

Definition 2.8. Let (W,S) be a finite irreducible Coxeter system of rank at least 2, and
∆ a thick building of type (W,S). For any J ⊆ S, we define a point-line geometry
(PJ ,LJ):

PJ :={J-simplices of ∆}
LJ :={j-lines of ∆ | j ∈ J}

For j ∈ J , a j-line is defined to be a set of the form {K |K is J-residue incident with F},
with F a simplex of type S\{j}. Any geometry that arrises like this is called a Lie inci-
dence geometry. If ∆ has type Xn, we say that (PJ ,LJ) is the Lie incidence geometry
of type Xn,J related to ∆.

This definition is quite abstract, so we provide some examples related to classical
buildings.

Example 2.9. Let k be a skew field and let ∆ be the building An(k), for n ≥ 2.

(1) The Lie incidence geometry of type An,1 related to ∆ is the projective space
P := P(kn+1).

(2) The Lie incidence geometry of type An,{1,n} related to ∆ is the point-line ge-
ometry E (P,H) as defined is Example 2.3 with H the set of all hyperplanes of
P. Note that this geometry has two types of lines, the 1-lines and the n-lines,
which is of course due to the fact that J has size 2.
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Example 2.10. Let ∆ be a building of type Xn with Xn either Bn(n ≥ 3) or Dn(n ≥ 4).

(1) The Lie incidence geometry of type Xn,1 related to ∆ is a polar space Γ.
(2) The Lie incidence geometry of type Xn,2, n ≥ 3, related to ∆ is the line Grass-

mannian of this polar space Γ. This line Grassmannian of any polar space Γ
(possibly of infinite rank) is defined as follows: its points are the lines of Γ, two
points L and M are collinear when the corresponding lines in Γ intersect in a
point p of Γ and at the same time span a singular plane π of Γ. In this case, the
line LM is the set of lines in Γ through p in π.

Remark 2.11. If we refer to a Lie incidence geometry of a building ∆, then ∆ is not
necessarily assumed to be Moufang (see the addendum of [26]). As a consequence, any
thick generalized quadrangle and hexagon is a Lie incidence geometry of type B2,1 and
G2,1, respectively.

2.3. Root shadow spaces and root filtration spaces

Some Lie incidence geometries behave nicer than others. One particularly nice class of
Lie incidence geometries are the root shadow spaces, which are discussed in detail in
[4].

Definition 2.12. Let Xn, n ≥ 2, be an irreducible crystallographic Coxeter diagram.
There is at least one Dynkin diagram Yn that has Xn as underlying Coxeter diagram.
The extended (or affine) diagram of Yn is obtained by adding one extra node to Yn
corresponding to the highest root. Let J be the set of nodes in Yn connected to this
additional node. Any Lie incidence geometry of type Xn,J is called a root shadow
geometry. These are exactly the Lie incidence geometries of the following types (where
n ≥ 2 unless stated otherwise):

An,{1,n},Bn,1,Bn,2,Dn,2 (for n ≥ 4),F4,1,F4,4,G2,1,G2,2,E6,2,E7,1,E8,8.

Remark 2.13. There are three more classes of geometries which are not Lie incidence
geometries, but still behave very similarly to the geometries above. We will also refer
to them as root shadow geometries (of infinite rank). They are the following.

(1) Polar spaces of infinite rank. These geometries behave similarly to Lie inci-
dence geometries of type Bn,1 for n ≥ 2 and Dn,1 for n ≥ 4.

(2) Line Grassmannians of polar spaces of infinite rank. These geometries behave
similarly to Lie incidence geometries of type Bn,2 for n ≥ 3 and Dn,2 for n ≥ 4.

(3) A geometry E (P,H) as defined in Example 2.3 with P an infinite dimensional
projective space. These geometries behave similarly to the Lie incidence ge-
ometries of type An,{1,n}.

Definition 2.14. A root shadow space is called quadrangular when it is a polar space
(including infinite rank!), and hexagonal when it is not.
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There are several frameworks that axiomatize the hexagonal root shadow spaces. We
will make use of the notion of root filtration spaces.

Definition 2.15. A partial linear space X = (E ,L ) is a root filtration space with
filtration Ei, −2 ≤ i ≤ 2 if the sets Ei ⊆ E × E with −2 ≤ i ≤ 2, provide a partition
of E × E into five symmetric relations satisfying the following for all x, y, z ∈ E :

(Rf1) The relation E−2 is equality.
(Rf2) The relation E−1 is collinearity of distinct points.
(Rf3) For each (x, y) ∈ E1, there exists a unique point, denoted with [x, y], such that

Ei(x) ∩ Ej(y) ⊆ E≤i+j([x, y]).

(Rf4) If (x, y) ∈ E2, then E≤0(x) ∩ E≤−1(y) = ∅.
(Rf5) The subsets E≤i are subspaces of Γ, for −2 ≤ i ≤ 2.
(Rf6) The subset E≤1 is a geometric hyperplane of Γ.

The root filtration space X is called nondegenerate when:

(Rf7) The set E2 is nonempty.
(Rf8) The space X is connected.

Here we have denoted E≤i =
⋃i
j=−2 Ej and E(≤)i(x) := {y ∈ E | (x, y) ∈ E(≤)i}.

Theorem 2.16 ([4] and [13]). Every nondegenerate root filtration space is a hexagonal
root shadow space. Conversely, for every hexagonal root shadow space X (possibly of
infinite rank), there is a unique filtration such that it forms a root filtration space. The
filtration can be defined as follows.

(x, y) ∈ E−2 ⇐⇒ x = y.

(x, y) ∈ E−1 ⇐⇒ x and y are collinear in X.

(x, y) ∈ E0 ⇐⇒ x and y are at distance 2 in X and have at least 2 common neighbours;
in this case we say that x and y are symplectic.

(x, y) ∈ E1 ⇐⇒ x and y are at distance 2 in X and have exactly 1 common neighbour : [x, y];

in this case we say that x and y are special.
(x, y) ∈ E2 ⇐⇒ x and y are at distance 3 in X.

in this case we say that x and y are opposite.

2.4. Long roots, abstract root subgroups and long root geometries

For (almost) every irreducible, spherical, thick Moufang building ∆ of rank at least two,
there is one root shadow space related to ∆ for which its points coincide with the root
subgroups of the long roots of ∆. In this subsection, we recall the definition of these
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long roots, the special role of their root groups and their connection to root shadow
geometries. An excellent reference for background on root groups and buildings is [1].
For the long root (subgroup) geometries themselves, see [25].

Notation 2.17. In this subsection, ∆ denotes a thick, irreducible Moufang building of
rank at least two. For a root (also called a half-apartment) α of ∆, the group Uα denotes
the root group of α. Moreover, set G+ := 〈Uα |α root of ∆〉.

We first recall which roots of ∆ are called long roots. More details can be found in
[15]

Definition 2.18. Let Σ be an apartment of ∆, and let α, β be two roots of Σ. We define
the angle θ between α and β as follows. If α = β, set θ(α, β) := 0. If α = −β, set
θ(α, β) := π. Suppose that α 6= ±β. Let T be a rank 2 residue of ∆ such that both
α ∩ T and α ∩ T are roots of T . If T is an n-gon, and α ∩ β ∩ T contains p chambers,
then we define θ(α, β) := (n−p)

n
π. One can check that such T always exists, and that

θ(α, β) is independent of the choice of T .

Definition 2.19. A root α of ∆ is called long when for every apartment Σ containing α
and every root β of Σ one of the following holds:

(1) θ(α, β) > π/3 or α = β,
(2) θ(α, β) = π/3, the group Uα is abelian, [Uα, Uβ] = Uγ with γ the unique root

of Σ at angle π/3 with both α and β,
(3) θ(α, β) ≤ π/2, Z(Uα) 6= 1 and [Z(Uα), Uβ] = 1.

A G+-orbit of long roots in ∆ called a class of long roots. A root group of a long root
is called a long root subgroup.

Proposition 2.20 (Theorem 3.8 of [15]). If ∆ is not an octagon or a Moufang quad-
rangle of type F4, it contains a class of long roots.

Classes of long roots of ∆ are particularly interesting because the centers of their
root groups form a set of abstract root subgroups, which were studied by Timmesfeld
in [25].

Definition 2.21. A rank one group is a group generated by two nontrivial nilpotent
subgroups A and B such that for each a ∈ A∗, there exists an element b ∈ B∗ with
Ab = Ba and vice versa.

An example of a rank one group is given by PSL2(k), with k a field. This group is
generated by the upper and lower triangular matrices with 1s on the diagonal.

Definition 2.22. Let G be a group, with E a conjugacy class of abelian subgroups of
G such that G = 〈E 〉. The set E is called a class of abstract root subgroups of G when
for each A,B ∈ E , exactly one of the following occurs:
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(E≤0) The groups A and B commute,
(E1) The group [A,B] belongs to E and equals [A, b] = [a,B] for all a in A and b in

B,
(E2) The group 〈A,B〉 is a rank one group. In this case, A andB are called opposite.

If all possibilities above occur, we call E nondegenerate. If possibilities (1) and (3)
occur, but not (2), we call E a class of abstract transvection groups. If for all opposite
elements A,B of E , the rank one group 〈A,B〉 ∼= PSL2(k) for some fixed field k, then
E is called a class of k-root subgroups of E (or a class of k-transvection groups).

Proposition 2.23 ([25]). LetM be a class of long roots of ∆, and set E := {Z(Uα) |α ∈
M}. One of the following holds:

(1) The set E is nondegenerate class of abstract root subgroups of G+. Define the
line set L to be the set of all subsets of E of cardinality at least 3 that are of
the form

{C |C ≤ AB} for A,B ∈ E with [A,B] = 1.

The point-line geometry (E ,L ) forms a hexagonal root shadow space related
to ∆.

(2) The set E is a class of abstract transvection groups of G+. For A in E , set
CE (A) := {B ∈ E | [A,B] = 1}. Moreover, define the line set L to be the
subsets of E of the form

{C |C ≤ Z(〈CE (A) ∩ CE (B)〉)} for A,B ∈ E with [A,B] = 1.

The point-line geometry (E ,L ) forms a quadrangular root shadow space re-
lated to ∆.

A root shadow space that can be obtained like this is called a long root geometry
(related to ∆).

We give a quick overview of the long root geometries obtained in Proposition 2.23.

Example 2.24. If ∆ is simply laced (or equivalently, of type An,Dn for n ≥ 4 or En for
6 ≤ n ≤ 8), the set of all of its roots forms a G+ orbit, implying that there is exactly
one class of long roots. At the same time, there is only one root shadow space related to
∆, which is always hexagonal. Its point set coincides with the set of all root subgroups
of ∆.

Example 2.25. If ∆ is not simply laced, the group G+ has two orbits on the roots of
∆, and there are two root shadow spaces related to ∆.

(1) If ∆ has type Bn for n ≥ 3, the Lie incidence geometry of type Bn,1 related to
∆ is a polar space Γ.
(a) If Γ is an orthogonal polar space, the line Grassmannian of Γ is a hexagonal

long root geometry.
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(b) If Γ is not orthogonal, then the polar space Γ itself is a quadrangular long
root geometry.

(2) If ∆ has type F4, any root shadow space for which the convex closure of sym-
plectic points forms an orthogonal polar space, is an hexagonal long root ge-
ometry.

(3) If ∆ has type B2 or G2, one can easily read of from the commutator relations in
[28] which roots are long. Unless ∆ is a Moufang quadrangle of type F4, we can
always find at least one long root geometry related to ∆, which is quadrangular
or hexagonal depending on whether ∆ is of type B2 or G2.

Remark 2.26. When the building ∆ is defined over a bad characteristic (which is 2 if
∆ is a building of type Bn or F4, and 3 if ∆ is a building of type G2), it could be that ∆
has two classes of long root subgroups, and hence has two distinct long root geometries
related to it.

Definition 2.27. As in Remark 2.13, there are some classes of geometries of infinite
rank which are not Lie incidence geometries, but behave similarly to the long root
geometries defined in Proposition 2.23. These geometries are the following:

(1) Non-orthogonal olar spaces of infinite rank.
(2) Line Grassmannians of orthogonal polar spaces of infinite rank.
(3) The geometries E (P,H) with P an infinite dimensional projective space (see

Example 2.3).

We will refer to them as long root geometries (of infinite rank).

Remark 2.28. Let X = (E ,L ) be a hexagonal long root geometry (possibly of infinite
rank), then for any point x ∈ E , we define the group

Zx := {θ ∈ Aut(X) | yθ = y, ∀ y ∈ E≤0(x) and yθ ∈ y[x, y], ∀ y ∈ E1(x)}.
The set {Zx |x ∈ E } is a class of abstract root subgroups of 〈Zx |x ∈ E 〉. We refer to
this set as the canonical class of root subgroups related toX . If some points x and y are
collinear or symplectic, then [Zx, Zy] = 0. If they are special, then [Zx, Zy] = Z[x,y].
In the latter case, the group Zx acts sharply transitively on the points of the line y[x, y]
different from [x, y]. If they are opposite, then 〈Zx, Zy〉 is a rank one group.

Proposition 2.29. Let X = (E ,L ) be an hexagonal long root geometry with {Zx |
x ∈ E } its canonical class of root subgroups. Let x and y be two opposite points of
X , and let p and q be two special points of X for which [p, q] = x. Denote with S the
smallest subspace of X for which the following hold:

(1) it contains the points p, q and y;
(2) for every two special points p′ and q′ of S, [p′, q′] ∈ S.

Then S is a long root geometry of type A2,{1,2}, which is defined over a skew field
k as soon as X itself is not of type A2,{1,2}. If X is not of type E (P,H), then k is
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automatically a field. No two points of S are symplectic, and points in the long root
geometry S are opposite (collinear, special) if and only if they are opposite (collinear,
special) in X .

Proof. This is proved for all cases throughout [14]. Alternatively, one can also argue
as in the proof of Proposition 4.11.2, see Section 4.2. Finally, one can translate the
assertion to the root subgroup language and then use Section V.2 of [25]. �

We finish this subsection by mentioning a common property of hexagonal long root
geometries.

Lemma 2.30. Let X be a hexagonal root long root geometry (possibly of infinite rank),
and let y1 and y2 be symplectic points, both opposite some point x. There is a point w
that is opposite x and collinear to y1 and y2. If X is not of type E (P,H) or of type B3,2,
then there also exists a point u that is special to x and collinear to y1 and y2.

Proof. Properties (a) and (b) of Section 3 of [4] imply that y1 and y2 are contained in a
subspace Γ isomorphic to a polar space containing a (unique) point z symplectic to x.
Under the given assumptions, Γ, which is an orthogonal polar space, contains a point
w collinear to both y1 and y2, but not to z, and a point u collinear to all of y1, y2 and z.
The assertion now follows from Conditions (Rf4) and (Rf6). �

3. Imaginary geometries

In this section, we define the main objects of this paper: the imaginary geometries.
These geometries have the same point set as long root geometries, but have a different
set of lines. Depending on whether the corresponding long root geometry is quadran-
gular or hexagonal, the imaginary geometry behaves very differently.

3.1. Definition of imaginary geometries

We start by defining imaginary geometries related to spherical buildings.

Definition 3.1. Let ∆ be a thick, irreducible, spherical Moufang building of rank at
least two, and let E be a class of centers of long root subgroups of ∆. If A,B in E are
opposite, it follows from [25, Lemma 2.1] that

{C ∈ E |C ∈ 〈A,B〉} = A〈A,B〉 = {A} ∪BA = B ∪ AB.
We refer to this set as the imaginary line through A and B. Define Im(∆,E ) to be the
point-line geometry with as point set E and as line set the set of all imaginary lines. If
∆ has type Xn, we say that the imaginary geometry Im(∆,E ) is also of type Xn
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As in Definition 2.27, there are some geometries that are not associated to spherical
buildings, but still behave very similarly to the geometries Im(∆,E ). We will therefore
work with the following more general definition.

Definition 3.2. Let X = (E ,L ) be a long root geometry (possibly of infinite rank)
with canonical set of abstract root subgroups {Zx |x ∈ E }. For any two opposite
points x, y of E , the group 〈Zx, Zy〉 is an abstract root subgroup. It follows from [25,
Lemma 2.1] that

{z ∈ E |Zz ≤ 〈Zx, Zy〉} = x〈Zx,Zy〉 = y〈Zx,Zy〉 = {x} ∪ yZx = {y} ∪ xZy .

We denote this set with xy and call it the imaginary line defined by x and y.

Definition 3.3. A point-line geometry Y is called an imaginary geometry if there is a
long root geometry X such that the point set of X coincides with the point set of Y
and the lines are the imaginary lines of X . If this is the case, we will say that Y is the
imaginary geometry of X . We call Y hexagonal (quadrangular) when X is hexagonal
(quadrangular).

If Y is the imaginary geometry of the long root geometry X , it could a priori be
that there is another long root geometry X ′, not isomorphic to X , such that Y is also
the imaginary geometry of X ′, in particular, Y could even both be quadrangular and
hexagonal. This is of course not the case, as we will prove in Proposition 4.1.

Notation 3.4. In an imaginary geometry Y (or more general, in an incidence struc-
ture that axiomatizes such an imaginary geometry), we denote collinearity with ≡, and
noncollinearity with 6≡. Moreover, for any point p, we denote

p≡ = {q | q point of Y with q ≡ p} and p 6≡ = {q | q point of Y with q 6≡ p}.
For any sets S1, S2 of points, we denote

S 6≡1 =
⋂
s∈S1

s 6≡ and S1 6≡ S2 if S2 ⊆ S 6≡1 .

3.2. Quadrangular imaginary geometries

Imaginary geometries of quadrangular long root geometries have been studied and ax-
iomatized before, for example in [7], [8] and [11]. In the former two, imaginary lines
are called hyperbolic lines, and the imaginary geometry is referred to as the hyperbolic
geometry of polar spaces. The reason why we call it “imaginary” is that we reserve
this name for objects that contain points at distance 3 in the original geometry, while
“hyperbolic” refers to objects at distance 2 in the original geometry (this is conform
the terminology in Chapter 6 of [29]). In this subsection, we shortly discuss one ex-
ample of a quadrangular imaginary geometry, and state the axiomatization theorem of
quadrangular imaginary geometries, as obtained in [8].
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Construction 3.5. Let Y be a quadrangular long root geometry. Two points x and y of
X are opposite when they are not collinear, in which case they are at distance 2 in X .
Suppose this is the case, then the imaginary line xy coincides with ({x, y}≡)≡.

Proof. If X is a polar space of rank at least 3, this follows from [7, Section 4]. If X has
rank 2, it is a Moufang quadrangle, not of type F4, and the result immediately follows
from the commutator relations in the appropriate, but various chapters of [28]. �

Example 3.6. Let X be a symplectic polar space of rank n. The point set of X coin-
cides with the point set of the projective space P(k2n+1). Two points p1 and p2 of X
are opposite when they are not collinear in X , in this case, the imaginary line through
p1 and p2 is the (non-isotropic) line p1p2 of P(k2n+1).

Lemma 3.7 ([7]). The following properties hold in a quadrangular imaginary geometry
Y :

(1) For any line l and point p, the point p is collinear to all, all but one or no points
of l.

(2) A plane is either a dual affine plane or a linear plane (that is, a plane in which
any two points are collinear).

(3) There is a unique quadrangular long root geometry X for which Y is the imag-
inary geometry of X .

Proposition 3.8 ([7]). Let Y = (E ,I ) be a connected and coconnected partial lin-
ear space in which the axioms below hold (where we denote (non)collinearity as in
Notation 3.4)

(1) If l is a line and p is a point with |p 6≡ ∩ l| = 1, then p and l generate a dual
affine plane.

(2) If π is a subspace of Y isomorphic to a dual affine plane, containing a point q.
If |q 6≡ ∩ p 6≡ ∩ π| ≥ 2 for some point p, then q 6≡ ∩ π ⊆ p 6≡.

(3) If p and q are points with p≡ ⊆ q≡, then p = q.
(4) Every line contains at least four points.

Then X = (E ,L ) with L the set of subsets of E given by

pq := {r | p 6≡ ∩ q 6≡ ⊆ r 6≡} for p and q elements of E with p 6≡ q

is a quadrangular long root geometry. Moreover, if every line l ∈ I coincides with
(l 6≡)6≡, the set I is the set of imaginary lines of X , and Y is the imaginary geometry of
X .
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3.3. Hexagonal imaginary geometries

We provide a construction of imaginary lines in a hexagonal long root geometry, and
apply this construction to give some explicit examples of hexagonal imaginary geome-
tries, using the corresponding long root geometries.

Construction 3.9. Let X = (E ,L ) be a hexagonal long root geometry containing
opposite points x and y. Let px and qx be points collinear to x and special to y, such
that px and qx are also special. Denote py := [px, y] and qy := [qx, y]. The imaginary
line xy coincides with

{[p, q] | p ∈ pxpy, q ∈ qxqy with p special to q}.

Proof. It follows from basic properties of root shadow spaces [4] that every point of
pxpy is special to a unique point of qxqy, while being opposite to all other points of that
line. Moreover, we find that px and qx are special, with x = [px, qx] and that py and qy
are special, with y = [py, qy].

Let {Zx | x ∈ E } be the canonical class of root subgroups related to X , defined
in Remark 2.28. Using Definition 3.3, we find that xy = {x} ∪ yZx = {[px, qx]} ∪
{[pzy, qzy ] | z ∈ Zx}. The proof now follows from the fact that, as noted in Remark 2.28,
the group Zx acts transitively on the points of the line pxpy different from px. �

Example 3.10. Let X be the hexagonal long root geometry E (P,H), with P and H as
in Example 2.3. Two points (p1, H1) and (p2, H2) are opposite in X when p1 6∈ H2 and
p2 6∈ H1. In this case, the imaginary line through (p1, H1) and (p2, H2) is given by the
set

{(q, 〈q,H1∩H2〉) | q point on p1p2} = {(H∩p1p2, H) |H hyperplane through H1∩H2}.
If Y is an imaginary geometry of X , we will say that Y is of type E (P,H). When P is
a projective plane, this example is discussed in more detail in Section 3.4.

Example 3.11. Let Γ be an orthogonal polar space (possibly of infinite rank), and letX
be the hexagonal long root geometry related to Γ (that is, the line Grassmannian of Γ).
Two lines l and m of Γ are opposite points of X when in Γ every point of l is collinear
to a unique point ofm and vice versa. Let k1 and k2 be two lines of Γ that intersect both
l and m. Then the imaginary line lm of X is the set of lines of Γ that intersect both k1
and k2. This set is independent of the choice of k1 and k2.

Remark 3.12. An hexagonal imaginary geometry of infinite rank is one of the follow-
ing:

(1) an imaginary geometry of type E (P,H) with P an infinite-dimensional projec-
tive space,

(2) an imaginary geometry of a line Grassmannian of an orthogonal polar space of
infinite rank.
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3.4. Imaginary geometries of type A2

We finish this section by zooming in on one particular example of hexagonal imaginary
geometries, namely those related to a building of type A2, as this will be the main
building block of the axiomatic hexagonal imaginary geometries.

Notation 3.13. In this subsection, ∆ denotes a thick Moufang building of type A2 de-
fined over some field k. As mentioned in Example 2.9, the Lie incidence geometry of
type A2,1 related to ∆ is a projective plane τ = P(k3), whose point and line set we
denote with Pτ and Lτ . Throughout the subsection, we assume that |k| ≥ 3.

We first describe the long root geometry and the imaginary geometry of ∆. Note
that these are exactly the geometries obtained in Example 2.3 and Example 3.10 with
P = τ .

Example 3.14. The long root geometry related to τ is the point-line geometry X =
(E ,L ) with

E := {(p, l) ∈Pτ ×Lτ | p ∈ l},
L := {Tp | p ∈Pτ} ∪ {Tl | l ∈ Lτ},

where for any point p of τ and line l of τ , the sets Tp and Tl are defined as follows:

Tp := {(p,m) |m ∈ Lτ ,m 3 p} and Tl := {(q, l) | q ∈Pτ , q ∈ l}.
As already noted, X is a non-thick generalized hexagon with thick lines.

Example 3.15. The imaginary geometry related to ∆ is the point-line geometry Y =
(E ,I ), where E is the point set of X defined in Example 3.14 and

I := {[q,m] | q ∈Pτ ,m ∈ Lτ , q /∈ m} with [q,m] := {(p, pq) | p ∈ m} = {(l∩m, l) | q ∈ l}.

Notation 3.16. In the rest of this subsection, we will work with both X and Y from
Example 3.14 and Example 3.15, which have the same point set but a different set of
lines. We refer to lines of X as transversals of X , and lines of Y as lines. Two distinct
points are called collinear when they are contained in a common line and noncollinear
when they are not. We will make use of Notation 3.4 for Y . If two points are contained
in a common transversal of X , they are called linelike in X .

In Theorem 2.16 we saw that there are five possible relations between points of a
long root geometry. In X however, no two points are symplectic, so this amounts to
four different relations between points. We describe them explicitely in the following
Lemma.

Lemma 3.17. Let (p, l) and (q,m) be two points of X . Exactly one of the following
occurs.

(E−2) p = q and l = m. The points are equal.
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(E−1) p = q or l = m, but not both. There exists a unique transversal (namely Tp or
Tl respectively) that contains both (p, l) and (q,m). The points are linelike in
X .

(E1) p ∈ m or q ∈ l, but not both. There exists a unique point, namely (p,m) or
(q, l) respectively, which is linelike in X to both (p, l) and (q,m). We denote
this point with [(p, l), (q,m)]. The points are special in X .

(E2) p 6∈ m and q 6∈ l. There is a unique line that contains (p, l) and (q,m), namely
[l ∩m, pq]. The points are collinear (in Y ).

When two distinct points in Y are noncollinear, they can hence either be linelike or
special in X . We come back to that in Lemma 3.22.

As pointed out in Lemma 3.7, every quadrangular imaginary geometry contains a lot
of dual affine planes. We show that this is also the case for the hexagonal imaginary
geometry Y .

Definition 3.18. For p ∈Pτ and l ∈ Lτ , we define the following subsets of Y :

πp := {(q,m) ∈ E | q 6= p and p ∈ m},

πl := {(q,m) ∈ E |m 6= l and q ∈ l}.

Lemma 3.19. For p ∈Pτ and l ∈ Lτ , the subsets πp and πl form subspaces of Y and
are dual affine planes.

Proof. We prove this for πp, the proof for πl then follows immediately by dualizing.
Each line of Y which contains two points of πp is of the form [p, l], and is hence fully
contained in πp, which implies that πp is a subspace of Y . The points of τ different
from p, together with the lines of τ not through p form a dual affine plane. The map

πp → τ \ {p} : (q,m) 7→ q

is clearly an isomorphism between πp and this dual affine plane. �

The next lemma determines the planes of Y . The proof is an easy verification in τ
and is omitted.

Lemma 3.20. Let [p, l] and [q,m] be two lines in Y that intersect in the point (r, n).
Exactly one of the following cases occurs.

(1) p = q and l = m. In this case, (p, l) and (q,m) are equal.
(2) p = q or l = m, but not both. The two lines generate the dual affine plane πp

(or πl). Any point of [p, l] \ {(r, n)} is noncollinear to a unique point of [q,m]
and vice versa.

(3) p 6= q and l 6= m. The lines generate A. Any point of [p, l] \ {(r, n)} is
noncollinear with exactly two points of [q,m] and vice versa.
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In particular, every plane of Y is either Y itself, or is one of the dual affine planes
described in Definition 3.18.

Remark 3.21. If k would be equal to F2, then the subspace in Y generated by [p, l] and
[q,m] with p 6∈ m and q 6∈ l would just be [p, l] ∪ [q,m], which is not the whole of A.

We can use Lemma 3.20 to distinguish whether two noncollinear points in Y are
linelike or special in X . This is done in the next lemma. The proof of this lemma is
again just a verification, and is hence omitted.

Lemma 3.22. Let p and q be two distinct noncollinear points p and q in Y . The follow-
ing hold.

(1) The points p and q are linelike in X if and only if there is a dual affine plane of
Y that contains both p and q. In this case, the transversal in X through p and q
is given by ({p, q} 6≡)6≡.

(2) The points p and q are special in X when there is no dual affine plane of Y that
contains both p and q. In this case, [p, q] is the unique point in Y linelike to
both p and q.

Remark 3.23. Lemma 3.22 implies that the imaginary geometry Y determines whether
two distinct noncolllinear points are linelike or special inX . Moreover, the transversals
of X are determined by the lines of Y . We can hence say that two points are linelike
(or special) in Y and speak of transversals of Y .

Definition 3.24. For a dual affine plane π of Y , a transversal of Y is called a transversal
of π if it contains at least two points of π. Define π̄ to be the union of all transversals
of π, and define Tπ := π̄ \ π. We will refer to π̄ as the transversal closure of π.

Notation 3.25. For a transversal T of Y , the set T 6≡ is the union of all transversals of Y
that intersect T in a point. The set T 6≡ \ T is a dual affine plane, which we denote with
πT .

Remark 3.26. Using Definitions 3.25 and 3.24, one deduces the following natural cor-
respondence between dual affine planes of A and transversals of A: a transversal T
corresponds to the dual affine plane πT and a dual affine plane π corresponds to the
transversal Tπ. Note that for a point p and a line l of τ , the transversals Tp and Tl
correspond to dual affine planes πp and πl.

We finish this subsection with one more lemma, which will be usefull later on. The
proof is once again an easy verification, and is hence omitted.

Lemma 3.27. Let q be a point and π be a dual affine plane of Y , with q 6∈ π̄.

(1) There is exactly one point p of π linelike with q.
(2) q 6≡ ∩ π̄ = T ∪ l, with T the transversal of π through p and l a line of π through

p.
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(3) Every line through q intersects π̄ in exactly one point.

Remark 3.28. By picking a coordinate system for τ , we obtain (projective) coordinates
for the points and lines of τ and hence coordinates for the points of A, which are
incident point-line pairs of τ . As such, we obtain a map σ from A to the projective
space P(k8):

x1x2
x3

 ,
(
a1 a2 a3

) 7−→
x1x2
x3

 .
(
a1 a2 a3

)
=

x1a1 x1a2 x1a3
x2a1 x2a2 x2a3
x3a1 x3a2 x3a3

 .

Note that the image of this map consists exactly of the matrices of rank 1 and trace
0. The points of A are hence all contained in a hyperplane of P(k8), and are even the
intersection of the Segre variety (formed by all matrices of rank 1) with this hyperplane.

We can consider the images under σ of transversals, lines and dual affine planes of
Y .

• Let T be a transversal of A, then σ(T ) is a line in P(k8).
• Let L be a line of A, then 〈σ(L)〉 is a plane of P(k8). We have that σ(L) =
σ(A) ∩ 〈σ(L)〉 is a conic in this plane.
• Let π be a dual affine plane of A, then 〈σ(π)〉 is a 4-dimensional subspace of
P(k8). We have that σ(A) ∩ 〈σ(π)〉 = σ(π̄).

Now let Q be a hyperplane of P(k8) and set Q := Q∩σ(A). Then we can consider the
intersection of Q with the objects above:

• Let T be a transversal of A, then σ(T ) ∩ Q is either a point or the whole of
σ(T ).
• Let L be a line of A, then σ(L) ∩Q is either empty, exactly one point, exactly

two points or is the whole of σ(L).
• Let π be a dual affine plane of A, then σ(π) ∩Q is either the whole of σ(π) or

it is of the form σ(C ) with C some conic of π through the missing point of π.

Remark 3.29. The representation of X and Y using a Segre variety as in Remark 3.28
is precisely the polarized embedding arising from the adjoint module of the Lie algebra
sl2(k) as described in [2], as is readily verified.

4. Properties of hexagonal imaginary geometries

We discuss some properties of hexagonal imaginary geometries, where we focus on the
properties occurring in the Main Theorem. In particular, we will prove the following
proposition.
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Proposition 4.1. Let Y be a imaginary geometry where lines contain at least four
points. Then Y is a connected partial linear space that satisfies (Im1), (Im2) and (Im3).
Moreover, there exists a unique long root geometry X such that Y is the imaginary
geometry of X .

Notation 4.2. In this section, the point-line geometry Y = (E ,I ) is a hexagonal imag-
inary geometry related to some hexagonal long root geometry X = (E ,L ), where X
is possibly of infinite rank. We denote with {Zx | x ∈ E } the canonical class of root
subgroups of X , as defined in Remark 2.28.

The point-line geometries X and Y have the same point set, but a different line set.
As in Notation 3.16, we refer to the lines of X as transversals, and lines of Y as lines.
If two distinct points are contained in a common line, we say that they are collinear
and if they are not contained in a common line, we say that they are noncollinear. We
use the notations ≡ and 6≡ introduced in Notation 3.4. When points are noncollinear,
it follows from Theorem 2.16 that there are three options: they can be linelike in X ,
symplectic in X or special in X , in the latter case, there is a unique point that is linelike
in X to both p and q, we denote this point with [p, q].

Throughout the subsection, we assume that transversals (and hence also lines) con-
tain at least four points.

Lemma 4.3. The imaginary geometry Y is a partial linear space.

Proof. Suppose that x and y are collinear points in Y , and that l is any line that contains
x and y. We aim to prove that l = x〈Zx,Zy〉. The imaginary line l is of the form p〈Zp,Zq〉

with p and q points of E that are collinear inX , which implies that x = pu1 and y = pu2 ,
for u1, u2 ∈ 〈Zp, Zq〉. It then follows from [25, II.2.1] that 〈Zx, Zy〉 = 〈Zp, Zq〉, which
indeed implies that l = x〈Zx,Zy〉. �

4.1. The A2-planes contained in hexagonal imaginary geometries

By Proposition 2.29, the long root geometry X contains subspaces that are long root
geometries of type A2. In this subsection, we investigate corresponding subspaces of
the imaginary geometry Y that are imaginary geometries of type A2 (which are the
A2-planes of Definition 4.4).

Definition 4.4. A subspace of Y that is isomorphic to an imaginary geometry of type
A2 (defined over a skew field k) is called an A2-plane (defined over k).

Remark 4.5. Suppose that A is an A2-plane of Y . Then two points p, q of Y contained
in A are collinear in A if and only if they are collinear in Y . If these two points are
noncollinear in A, it follows by Remark 3.23 that they are linelike in A (in which case
there is a transversal of A containing them) or special in A. A priori, it is not clear that
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the two points are linelike (special) in A if and only if they are linelike (special) in X .
In the next lemma, we construct A2-planes of Y where this is the case.

Lemma 4.6. Let y, p, q be points of Y such that p and q are special in X , and y is
collinear to p, q and x := [p, q]. The plane A in Y generated by p, q and r is an
A2-plane. For each pair of points p′ and q′ of A, the following hold:

(1) the points p′ and q′ are linelike (special, opposite) in X if and only if they are
linelike (special, opposite) in A;

(2) if p′ and q′ are linelike, the transversal in X that contains p′ and q′ coincides
with the transversal in A that contains p′ and q′.

(3) the points p′ and q′ are not symplectic in X .

If X is not of type A2,{1,2}, the A2-plane A is defined over a skew field k. If X is not of
type E (P,H), k is a field.

Proof. LetA be the subspace ofX that contains p, q, x and y, and is closed under taking
special paths, obtained in Proposition 2.29. Denote with LA the set of transversals ofX
contained in A. Then XA = (PA,LA) is a long root geometry of type A2,{1,2}. More-
over, two points are linelike (special, opposite) in XA if and only if they are linelike
(special, opposite) in X .

Let p and q be two points of PA that are collinear in Y . Then these points must
be opposite in XA, so we can construct the imaginary line in XA through p and q
using Construction 3.9. Since lines of XA are transversals of X , this is of course the
imaginary line of X through p and q, which is by definition the line pq of Y . Let
IA be the set of lines of Y that contain two points of PA. Then every element of
IA is hence completely contained in PA, and coincides with an imaginary line of
XA. This translates to the fact that PA is a subspace of Y . The point-line geometry
A = (PA,IA) is isomorphic to the imaginary geometry of XA, meaning that it is an
A2-plane. It is clear that A is defined over a (skew) field if and only if XA is. This
completes the proof. �

Lemma 4.7. Let l and m be two lines of Y intersecting in some point q. If some point
of l \ {q} is noncollinear to exactly i points of m (i ∈ N), then any point of l \ {q} is
noncollinear to exactly i points of m.

Proof. Denote q = l∩m. Let p̂ be any point of l\{q}. The group Zq acts transitively on
the points of l \ {q}, so there exists some u ∈ Zq with p̂ = pu. The group Zq stabilizes
the line m, so

i = |{p 6≡ ∩m}| = |{p 6≡ ∩m}u| = |{p̂ 6≡ ∩m}|.
�

Remark 4.8. In the statement (and proof) of Lemma 4.7, we can of course replace
noncollinear with linelike, symplectic or special in X .
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Lemma 4.9. Let l and m be two intersecting lines of Y . Exactly one of the following
occurs:

(1) Every point of l is collinear to every point of m.
(2) Every point of l \ {l ∩m} is linelike (symplectic, special) in X to exactly one

point of m \ {l ∩m}, and collinear to all other points of m, and vice versa.
(3) Every point of l\{l∩m} is special inX to exactly two points ofm\{l∩m} and

collinear to all other points of m, and vice versa. The subspace in Y generated
by l and m is an A2-plane that has the properties listed in Lemma 4.6.

Proof. Denote q = l ∩m, and let p be any point of l \ {q}. If p is collinear to all points
of m, the claim follows from Lemma 4.7. Suppose that p is noncollinear to some point
r of m. In X , the points p and r are either linelike, symplectic or special. If they are
special, there exists a unique point [p, r] linelike to both. We make a case distinction.

(1) Suppose that p is linelike or symplectic to r. The group Zr fixes p and it acts
transitively on the points of m \ {r}. The point p is collinear to q ∈ m, and is
hence collinear to all points in qZr = m \ {r}. This implies that p is linelike
(or symplectic) to a unique point of m (namely r), and that it is collinear to
all other points of m. Using Lemma 4.7, we find that this is the case for every
point of l \ {q}. By reversing the roles of r and p, we also find that every point
of m \ {q} is linelike (or symplectic) to a unique point of l, and collinear to all
other points of l.

(2) Suppose that p is special to r and that q is noncollinear to s := [p, r]. The point
q is special to s and collinear to all other points of the transversal sp. The group
Zr fixes s, stabilizes the transversal sp, and acts transitively on m \ {r}. This
implies that every point of qZr = m\{r} is special to s and collinear to all other
points of the transversal sp, in particular to p. The point p is hence noncollinear
to a unique point of l, namely r. Using Lemma 4.7, we find that every point of
l \ {q} is noncollinear to a unique point of m. By reversing the roles of r and p,
we also find that every point of m \ {q} is noncollinear to a unique point of l.

(3) Suppose that p is special to r and that q is collinear to s := [p, r]. We can
apply Lemma 4.6 to obtain that q, p and r (and hence also l and m) generate an
A2-plane in Y . It follows from Lemma 3.20 that every point of l \{q} is special
to exactly two points of m \ {q} and vice versa.

�

Lemma 4.10. Every A2-plane of Y has the properties listed in Lemma 4.6.

Proof. Let A is an A2-plane of Y . It follows from Lemma 3.20 that A is generated by
two lines l and m where every point of l \ {l ∩ m} is noncollinear to two points of
m \ {l ∩ m} and vice versa. It then follows from Lemma 4.9 that A indeed has the
properties of Lemma 4.6. �
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The next corollary should be compared to Lemma 3.22.

Corollary 4.11. Let p and q be distinct noncollinear points. The following hold.

(1) The points p and q are linelike in X if and only if there is an A2-plane A of
Y that contains p and q such that p and q are linelike in A. In this case, the
transversal in X that contains p and q coincides with the transversal in A that
contains p and q.

(2) The points p and q are symplectic in X if and only if there does not exist any
A2-plane of Y that contains both p and q.

(3) The points p and q are special in X if and only if there is an A2-plane A of Y
such that p and q are special in A.

Proof. This follows directly from Lemmas 4.6 and 4.9. �

Remark 4.12. Corollary 4.11 implies that the hexagonal imaginary geometry Y deter-
mines whether two distinct noncollinear points are linelike, symplectic, or special inX .
Moreover, the transversals in X are determined by the lines of Y . We can hence say
that two points are linkelike (symplectic or special) (in Y ) and speak of transversals (of
Y ).

4.2. Conclusion

By now, we have gathered enough information to conclude the proof of Proposition 4.1

Proof of Proposition 4.1. It follows from Lemma 4.3 that Y is a partial linear space
and from [3, Lemma 5] that Y is connected. Moreover, it follows from Corollary 4.11
that X is the unique long root geometry for which Y is the imaginary geometry of X .
Then Axiom (Im1) follows from Lemma 4.9.

We now show Axiom 1.2. By letting the Lie algebra sl2(k) correspondng to a rank
one group generated by two opposite long root groups act in its adjoint representation
on the Lie algebra corresponding to X , we deduce, using Remark 3.29, that, in the em-
bedding of X corresponding to the adjoint module (as in [2]), an A2-plane is embedded
as in Remark 3.28. Then Axiom 1.2 follows from (Rf6) and Remark 3.28.

Finally, we prove Axiom 1.2. To that end, let p and q be two distinct points. We
prove that p≡ 6= q≡. If p and q are symplectic, this follows from [4, Lemma 8]. If p and
q are linelike, special or opposite, then p and q are contained in some A2-plane A, and
it is clear that p≡ ∩ A 6= q≡ ∩ A. �
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5. Conical subspaces of imaginary geometries of type A2

5.1. Definitions and notation

As the title of this section suggests, we will discuss conical subspaces of hexagonal
imaginary geometries of type A2.

Notation 5.1. In this section, k is a skew field, with |k| ≥ 4. We denote with A the
hexagonal imaginary geometry related to the building A2(k), and with τ = (Pτ ,Lτ )
the projective plane P(k3). Note that τ is the Lie incidence geometry of type A2,1 of
A2(k).

Definition 5.2. (1) A conical subset of A is a subset of A which intersects every
dual affine plane of A in a (possibly empty) conic, as defined in Definition 2.7.
It is called fully degenerate when all these conics are degenerate.

(2) A conical subspace of A is a conical subset C for which every transversal of
A that contains two points of C , is automatically contained in C . If moreover
every transversal of A contains a point of C , the subset C is called a conical
hyperplane of A.

In general, a conical subspace is not a subspace of A, we use this terminology be-
cause it is a subspace of the long root geometry of A.

Remark 5.3. It is clear that every conical hyperplane of an imaginary geometry of type
A2 is automatically a conical subspace, and it is easy to check that it indeed contains
three mutually collinear points.

Lemma 5.4. A conical subset of A intersects any line or transversal of A in all or at
most two of its points.

Proof. Every line of A is contained in a dual affine plane of A. Moreover, for any
transversal T , and any point p ∈ T , there is a dual affine plane of A that contains
T \ {p}. �

Notation 5.5. Let Q be a conical subset of A, let π be a dual affine plane of A and let
T be a transversal of π. If Q ∩ π = T \ {T ∩ Tπ}, we simplify notation by writing
Q ∩ π = T .

5.2. Fully degenerate conical subsets

In this subsection, we discuss fully degenerate conical subsets of A. We first describe a
class of examples.

Lemma 5.6. Let π1 and π2 be two (possibly coinciding) dual affine planes of A. Then
π̄1 ∪ π̄2 is a fully degenerate conical subset of A.
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Proof. Set Q := π̄1 ∪ π̄2. Let π be any dual affine plane of A. If π = π1 or π = π2,
then π ∩Q = π, which is indeed a degenerate conic of π. We can hence assume that
π 6= π1, π2. Then

π ∩Q = (π ∩ π̄1) ∪ (π ∩ π̄2).
The intersection π∩πi is either a line or a transversal (i = 1, 2). The intersection π∩Q
is hence either a line, a transversal, the union of two lines, the union of two transversals
or the union of a line and a transversal. All these structures are degenerate conics of
π. �

Some choices of π1 and π2 yield conical hyperplanes, others do not even yield a
conical subspace. Below, we list all different possibilities.

Example 5.7. (1) Let p be a point of τ and l a line of τ . Then Q := π̄p ∪ π̄l forms
a conical hyperplane. If p ∈ l, then this set Q is exactly the set of points in A
which are noncollinear with the point (p, l) of A.

(2) Let p be a point of τ , then Q := π̄p forms a conical subspace of A. For any line
l of τ that does not contain p, the transversal Tl intersects Q trivially, the set Q
is hence not a conical hyperplane of A. Dually, for a line l of τ , the set π̄l also
forms a conical subspace of A which is not a conical hyperplane of A.

(3) Let p and q be two points of τ , then Q := π̄p ∪ π̄q forms a conical subset. Let
r be a point of τ not on pq, then the transversal Tr intersects Q in exactly two
points, namely (r, rp) and (r, rq). The set Q hence does not form a conical
subspace.

It turns out that, as soon as a fully degenerate conical subset contains enough points,
it is either the whole of A or it is as in Lemma 5.6. In order to prove this, we first gather
some easy lemmas, which we mention here without proof.

Lemma 5.8. Let Q be a fully degenerate conical subset which is not a conical sub-
space. Then either Q is a conical subspace of A, or there is a dual affine plane π of A
which intersects Q in the union of two lines.

Lemma 5.9. Let π1 and π2 be two distinct dual affine planes in A. Any conical subset
that contains π1 and π2 either equals π̄1 ∪ π̄2 or A itself.

We are now ready to prove the previously mentioned result.

Proposition 5.10. A fully degenerate conical subset of A that contains three mutually
collinear points, not on common line, is either the whole ofA, or it is of the form π̄1∪π̄2
with π1 and π2 two (possibly coinciding) dual affine planes of A.

Proof. Let Q be a conical subset of A which contains at least three mutually collinear
points, not on a common line. For any dual affine plane π ofA, the intersection π∩Q is
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empty, a point, a line, a transversal, the union of two lines, the union of two transversals,
the union of a line and a transversal or the whole of π. We will make a case distinction.

Case 1: The set Q does not form a conical subspace.
By Lemma 5.8, there exists a dual affine plane π of A which intersects Q in the union
of two lines. Without loss of generality, we may assume that π is of the form πp, with
p some point of τ . The intersection Q ∩ πp is then the union [p, l]∪ [p,m] with l and m
some lines of τ not through p. Let q be the intersection in τ of l and m.

We first prove that we find a point r on pq \ {p, q} for which Tr ∩ Q = ∅. To
that end, let n be any line through p in τ . Since πp ∩Q is the union of two lines, we
have that Tn 6⊆ Q. By Lemma 5.4, Tn ∩ Q contains at most two points. If n does
not contain q, this line n intersects l and m in distinct points ql and qm, implying that
Tn∩Q = {(ql, n), (qm, n)} and hence that (p, n) 6∈ Q. As a result, the only point of Tp
that can be contained in Q, is (p, pq), and hence πpq ∩Q does not contain any line. We
can use this to determine πpq ∩Q: it is either at most one point (s, k) with s ∈ pq and
s ∈ k 6= pq, or is the transversal Tq. Taking r on pq \{p, q, s}, we find that Tr∩Q = ∅.

Next, we prove that πl, πm ⊆ Q. To that end, take xl on l\{q} and set xm := rxl∩m.
The set Q contains (xl, pxl) and (xm, pxm) and moreover has empty intersection with
Tr. Considering πxlxm ∩Q we hence find that Txl and Txm are contained in Q. Since
xl is any point on l different from q, we find that πl \ Tq ⊆ Q, which indeed implies
that πl ⊆ Q. Similarly, we find that πm ⊆ Q.

It now follows from Lemma 5.9 that Q = π̄l ∪ π̄m. This concludes Case 1. From
now on, we assume that Q forms a conical subspace, that is, each transversal of A that
is not contained in Q intersects Q in at most one point.

Case 2: There is a dual affine plane that intersects Q in the union of a transversal and
a line.
Without loss of generality, we may assume that this plane is of the form πp with p some
point of τ . Then πp ∩Q = Tl ∪ [p,m] for lines l and m in τ with p ∈ l and p 6∈ m. Set
q := l ∩m.

First suppose that there exists some point rl of l \ {q, p} for which Trl 6⊆ Q. Let rm
be any point ofm different from q. The line [p, rlrm] intersects Q in exactly two points,
namely (rl, prl) and (rm, prm). As a result, the plane πrlrm intersects Q in either the
union of two lines or the union of a line and a transversal. Since we assume that Q is a
conical subspace, the former cannot happen. Moreover, we assumed that Trl 6⊆ Q. We
hence find that πrlrm ∩Q is the union of a line through (rl, prl), (which equals [s, rlrm],
for some point s of τ ) and a transversal through (rm, prm) (which equals Trm). The
point rm was an arbitrary point of m \ q, so we find that πm \ Tq ⊆ Q, which implies
that πm ∩Q = πm. Moreover, the plane πrlrm plays the same role as πp, where Tprm
plays the role of Trl , and [s, rlrm] that of [p,m]. So with the same reasoning as above,
we find that πs ⊆ Q. By Lemma 5.9 , we can conclude that Q = π̄m ∪ π̄s.
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Next, suppose that Trl ⊆ Q for every point rl of l \ {q, p}. Then πl \ {Tp, Tq} ⊆ Q,
which, given that |k| ≥ 4, implies that πl ∩Q = πl. Moreover, Tq ∪ [p,m] ⊆ πm ∩Q,
so either πm ⊆ Q, or πm ∩Q = Tq ∪ [p,m]. In the latter case, πm plays the same role
as πp, so we can apply the same arguments on πm instead of πp. We find that either
πp ⊆ Q (which cannot happen by the assumption on πp) or πq ⊆ Q. By Lemma 5.9,
we hence find that either Q = π̄l∪π̄m (which actually cannot happen since we assumed
Q to be a conical subspace) or Q = π̄l ∪ π̄p. This concludes Case 2.

Case 3: There is a dual affine plane that intersects Q in the union of two transversals.
Without loss of generality, we may assume that this plane is of the form πp with p some
point of τ . We have that Q ∩ πp = Tl ∪ Tm for l and m some lines of τ through p.
We may assume that Case 2 does not occur and show that this leads to a contradiction.
Let n be any line of τ not through p. Then [p, n] is contained in πp and hence contains
exactly two points of Q. Keeping in mind that πn ∩ Q cannot be the union of two
lines or the union of a line and a transversal, the intersection πn ∩ Q is the union of
two transversals (namely Tn∩m and Tn∩l). Varying n, we see that πl ∪ πm ⊆ Q, a
contradicton as before.

Case 4: Every line of A that contains two points of Q, is contained in Q.
By assumption, we find three pairwise collinear points x1, x2, x3 in Q not on a line. As
pointed out in Lemma 3.20, every plane of A is either the whole of A or is a dual affine
plane. Suppose that Q is not A, then x1, x2 and x3 must lie in some dual affine plane π
of A. Since every line of A that contains two points of Q is contained in Q, the plane
π, which is generated by the points x1, x2 and x3, is contained in Q. By Lemma 5.4,
the transversal Tπ is also contained in Q. If Q contains another point q of A, it will
follow from Lemma 3.27 that Q = A. �

We use Proposition 5.10 to obtain another classification, which will be very usefull
in the proof of the Main Theorem.

Definition 5.11. We say that Q is a conical subset with vertex q when Q is a conical
subset containing the point q for which every line through q in A is either contained in
Q or intersects Q in a unique point, namely q.

Lemma 5.12. Let Q be a fully degenerate conical subset with vertex q that contains
three mutually collinear points, not on a line. Then the set Q is one of the following:

(1) the whole set A,
(2) a set of the form π̄1 ∪ π̄2 with π1 and π2 dual affine planes in A such that

q ∈ π̄1 ∩ π̄2.

Proof. By Proposition 5.10, the set Q either equals A, or is of the form π̄1 ∪ π̄2 with π1
and π2 two dual affine planes of A. In the former case, there is nothing more to prove,
we may hence assume that we are in the latter case. There is some line l through q for
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which l 6⊆ Q. Suppose that q 6∈ π̄1, then the line l intersects π̄1 in some point different
from q, which is contained in Q. This implies that l ⊆ Q, a contradiction. �

We finish this section by giving a condition that ensures that a conical subset is fully
degenerate, and by gathering an easy observation on these fully degenerate conical
subsets.

Lemma 5.13. A conical subset of A that contains a dual affine plane of A is a fully
degenerate conical subset of A.

Proof. Let Q be a conical subset of A that contains some dual affine plane π. Any
transversal of π intersects π in all but one of its points, and is, by Lemma 5.4, contained
in Q. This implies that π̄ ⊆ Q. Let π′ be any other dual affine plane of A, then the
intersection π′ ∩Q contains π′ ∩ π̄, which is either a line or a transversal of π′. This
implies that Q ∩ π′ is indeed a degenerate conic of π′, and concludes the proof. �

Lemma 5.14. Let π1 and π2 be two (possibly coinciding) dual affine planes of A. Then
for any point q ∈ Q := π̄1 ∪ π̄2, there is at least one transversal of A through q that is
contained in Q.

5.3. Conical subspaces are often conical hyperplanes

This subsection is devoted to proving the following Proposion.

Proposition 5.15. Let k be a field with char(k) 6= 2 and |k| ≥ 5. A conical subspace
of A which contains three mutually collinear points, not on a common line, is either the
transversal closure of a dual affine plane or is a conical hyperplane of A. .

Notation 5.16. From now on, let k be a field with char(k) 6= 2 and |k| ≥ 5. Let Q be a
conical subspace of A which contains at least three mutually collinear points, not on a
common line.

We first gather information regarding the possible intersections of Q with dual affine
planes of A.

Lemma 5.17. Let π be a dual affine plane of A. Then one of the following occurs.

(1) The set π ∩Q is empty, in this case, Tπ ∩Q is either empty, one point, or Tπ.
(2) The set π ∩Q is a point p. In this case, Tπ ∩Q is either empty or a point q. In

the latter case, p and q are not linelike.
(3) The set π ∩Q is a line. In this case, Tπ ∩Q is empty.
(4) The set π ∩Q is a transversal T of π. In this case, Tπ ∩Q is either Tπ ∩ T or

Tπ.
(5) The set π∩Q is the union of a line and a transversal T . In this case, Tπ ∩Q =

T ∩Q.
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(6) The set π ∩Q is the union of two transversals of π. In this case, Tπ ∩Q = Tπ.
(7) The set π ∩Q = π. In this case, Tπ ∩Q = Tπ.
(8) The set π ∩Q is a nondegenerate conic C of π through the missing point of π.

In this case, Tπ ∩Q is either empty or equals Tπ ∩ T , with T the transversal of
π that corresponds to the tangent line of C through the missing point.

Proof. This follows immediately when combining the condition that π ∩Q is a conic
and that Q contains 0, 1 or all points of any transversal of π̄. �

Remark 5.18. If char(k) were equal to 2 (which we do not allow here), there would be
one extra possibility in Lemma 5.17, namely where π ∩ Q is a nondegenerate conic,
while the nucleus of this conic is the missing point of π.

Lemma 5.19. Let π be a dual affine plane of A such that Tπ contains a point of Q, but
some transversal T of π does not contains any point of Q. Then π∩Q is empty, a point
or a transversal. In particular, every line in π intersects Q in at most one point.

Proof. By assumption, the set Tπ ∩Q is a unique point. Using Lemma 5.17, we can
hence see that it suffices to prove that π∩Q is neither the union of a line and a transver-
sal, nor a nondegenerate conic through the missing point of π. First suppose that π∩Q
contains a line l. Every transversal of π intersects l, contradicting the fact that there is
a transversal of π that contains no point of Q. Next, suppose that π ∩Q is a nondegen-
erate conic C . Let T be any transversal of π. Either T contains a point of C , in which
case T ∩Q 6= ∅, or T corresponds to the tangent line of C through the missing point,
in which case Tπ ∩ T ∈ Q. Again a contradiction. �

Lemma 5.20. If no line of A intersects Q in exactly two points, the set Q is the
transversal closure of one dual affine plane or equals A.

Proof. One easily checks that Q is a fully degenerate conical subspace of A. The claim
then follows from Proposition 5.10 and Example 5.7. �

We will need the following rather technical lemma.

Lemma 5.21. Suppose that there exists some line l of τ such that for each, but at most
one, point q of τ on l the following assertion holds:

“For all lines m of τ not through q, the line [q,m] of A intersects Q in at most one
point.”

Then Q is the transversal closure of one dual affine plane.

Proof. Let l be as in the lemma, let s be a point of l and suppose that the assertion
holds for all points of l different from s. We claim that no line [p,m] of A intersects
Q in exactly two points. To that end, first let m be any line of τ different from l and
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set r := m ∩ l. Then for any point p on l \ {s, r}, the line [p,m] of πm contains, by
assumption, at most one point of Q. If πm ∩Q was a nondegenerate conic, then, since
we assume |k| ≥ 5 and char(k) 6= 2, there would be at least two lines in πm through
(r, l) which would intersect Q in exactly two points, a contradiction. The set πm∩Q is
a degenerate conic, and there is at most one line through (r, l) in πm that intersects this
conic in more than one point. We find that πm ∩Q is either empty, a point, a line, or a
transversal. In particular, there is no line [p,m] that intersects Q in exactly two points.
Next, let p be a point of τ not on l. Using the fact that no line [p,m] with m 6= l and
p 6∈ m intersects Q in at most one point, we find that πp∩Q is empty, a point, a line, or
a transversal. In particular, we find that [p, l] does not intersect Q in exactly two points.
This proves the claim. The lemma now follows immediately from Lemma 5.20. �

Lemma 5.22. Let π be a dual affine plane of A for which Tπ∩Q = ∅ and |π∩Q| ≥ 2.
Then the set Q is the transversal closure of one dual affine plane.

Proof. Without loss of generality, we may assume that π is of the form πl with l some
line of τ . Using Lemma 5.17, one sees that π ∩Q is either a line or a nondegenerate
conic of πl. In any case, there exists at most one transversal T of τ for which T∩Q = ∅.
Let p ∈ l be the point of τ for which T = Tp, and let q be any other point of l.
Then |Tq ∩ Q| = 1. Moreover, Tl is a transversal of πq disjoint from Q. Applying
Lemma 5.19 to πq, we find that every line of A of the from [q, n], with n a line of
τ not through q, intersects Q in at most one point. The assertion now follows from
Lemma 5.21. �

We have now gathered all ingredients needed to finish the proof of Proposition 5.15.

Proof of Proposition 5.15. Assume for a contradiction that Q is neither a conical hy-
perplane, nor the transversal closure of one dual affine plane. By assumption, there
exists some transversal T of A that intersects Q trivially. Without loss of generality,
we may assume that T is of the form Tl for some line l of τ . It follows from Lemma 5.22
that πl ∩Q contains at most one point, which in particular implies that Tq ∩Q = ∅ for
each, but at most one, point q of l. Let q be such a point, then we can apply Lemma 5.22
to πq, and obtain that πq ∩Q is at most one point, and hence that every line in A of the
form [q,m] (with m a line of τ not through q) intersects Q in at most one point. We
can now apply Lemma 5.21 to the line l of τ , and obtain a contradiction. �

All examples of conical subsets that we have seen so far are fully degenerate. It is
however good to keep in mind that there are other examples.

Example 5.23. Let p be a point and l a line of τ , and consider a projectivity

φ : {Points on l} → {Lines through p}.
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Then the following set forms a conical hyperplane of A:

Q(p, l, φ) := {[q, φ(q)] | q ∈ l and q 6∈ φ(q)} ∪ {Tq ∪ Tφ(q) | q ∈ l and q ∈ φ(q)}.

6. Defining five distinct point relations

Notation 6.1. In this section, Y denotes a connected partial linear space that satisfies
Axioms(Im1) and (Im2). We assume that no A2-plane of Y is defined over F3 or over
a field of characteristic 2. We make use of Notation 3.4.

In this section, we will define five point relations on Y , and prove that these relations
are disjoint. Along the way, we prove that every point p of Y is noncollinear to a conical
hyperplane of any A2-plane of Y , which is a stronger version of Axiom 1.2.

6.1. Some initial observations

We start by gathering some initial observations on Y .

Lemma 6.2. Let l and m be two intersecting lines such that some point of l is non-
collinear to exactly one point of m. Then noncollinearity induces a bijection between
l \ {l ∩m} and m \ {l ∩m}.

Proof. Let p be the intersection point of l and m. By Axiom (Im1)(i), any point of
m \ {p} is noncollinear to a unique point of l \ {p}. We can however apply this same
axiom again while interchanging the roles of l and m. We then indeed obtain that
noncollinearity induces a bijection between l \ {p} and m \ {p}. �

Lemma 6.3. Let l and m be two intersecting lines such that some point of l is non-
collinear to exactly two points of m. Then each point of l \ {l ∩m} is noncollinear to
exactly two points of m \ {l ∩m} and vice versa.

Proof. If this is the case, then, by (Im1)(ii), the lines l and m generate an A2-plane
defined over a field. By Lemma 3.20, the claim is true in every A2-plane. �

Lemma 6.4. Let p be a point and l a line. If l is contained in some A2-plane, then p is
collinear to no or all but at most 2 points of l.

Proof. Let A be an A2-plane that contains l. By Axiom 1.2, the point p is noncollinear
to a conical subspace of A. The claim now follows from Lemma 5.4. �

Remark 6.5. Axiom (Im1) stipulates that Y contains an A2-plane. A priori however,
we do not know whether every line is contained in an A2-plane.

Lemma 6.6. The space Y contains dual affine planes.
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Proof. By Axiom (Im1), the space Y contains an A2-planeA. As explained in Lemma 3.19,
this plane A contains several dual affine planes. �

Next, we introduce some definitions and notations, which are of course inspired on
the observations we made in Section 4.

Definition 6.7. (1) A dual affine plane π of Y that is contained in some A2-plane
A of Y , is called a linelike plane. In general, not every dual affine plane of Y is
a linelike plane.

(2) Let A be an A2-plane of Y . Using Remark 3.26, we define the following.
(a) For a transversal T of A, we denote with πAT the dual affine plane π of A

that corresponds to T .
(b) For a dual affine plane π of A, we denote with TAπ the transversal in A

corresponding to π. We define π̄A := π ∪ TAπ , and call this the transversal
closure of π in A.

(3) A transversal of Y is defined to be any subset T ⊂ X for which there exists an
A2-plane A ⊃ T such that T is a transversal of A.

(4) Let π be a linelike plane and T be a transversal of Y . We say that that T is a
transversal of π when there exists an A2-plane A that contains both π and T in
which T is a transversal of π.

Remark 6.8. A priori, two transversals of Y can intersect in an arbitrary number of
points. If the linelike plane π is contained in two distinct A2-planes A0 and A1 of Y ,
and q is a point of π, it could, in principle, even happen that the transversal T1 of π in
A1 does not fully coincide with the transversal T2 of π in A2. Of course, we do have
that T1 ∩ π = T2 ∩ π = q 6≡ ∩ π. This implies that it could for example happen that
TA0
π 6= TA1

π .

Remark 6.9. We repeat Notation 5.5. Let p be a point and π be a linelike plane. If
p 6≡ ∩ π = T ∩ π for some transversal T of π, we simply write p 6≡ ∩ π = T , and say that
p 6≡ ∩ π is a transversal T of π.

Lemma 6.10. Let p be a point and let A be an A2-plane. The set p 6≡ ∩ A is either a
conical hyperplane of A, or is of the form π̄A for some dual affine plane π of A.

Proof. By Axiom 1.2 the set p 6≡ ∩ A is a conical subspace of A which contains at least
three mutually collinear points, not on a common line. By Proposition 5.15, such a
subset is either a concial hyperplane or the transversal closure of a dual affine plane of
A. �

Corollary 6.11. Let p be a point and T a transversal. If |p 6≡ ∩ T | ≥ 2, then p 6≡ T .

Proof. Let A be an A2-plane that contains T . By Lemma 6.10, the point p is non-
collinear to a conical subspace of A. By definition, a conical subspace of A intersects a
transversal of A in zero, one or all of its points. �
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6.2. Relations between a point and a linelike plane

In this subsection, we will investigate sets p 6≡ ∩ π with p a point and π a linelike plane.
We start with a very elementary lemma, which is based on Lemma 5.17.

Lemma 6.12. Let p be a point and π be a linelike plane. For any A2-planeA containing
π, exactly one of the following holds.

(1) The set p 6≡ ∩ π is empty. In this case, TAπ ⊆ p 6≡.
(2) The set p 6≡ ∩ π is a line. In this case, TAπ ∩ p 6≡ is empty.
(3) The set p 6≡ ∩ π is a transversal T of π in A and TAπ ∩ p 6≡ = T ∩ TAπ .
(4) The set p 6≡ ∩ π is a transversal T of π in A and TAπ ⊆ p 6≡.
(5) The set p 6≡ ∩ π is the union of two disjoint transversals of π in A. In this case,

TAπ ⊆ p 6≡.
(6) The set p 6≡ ∩ π is the union of a line and a transversal T of π in A. In this case,

p 6≡ ∩ TAπ = T ∩ TAπ .
(7) The set p 6≡ ∩ π is a nondegenerate conic of π through the missing point of π.
(8) The plane π is contained in p 6≡. In this case, also TAπ is contained in p 6≡.

If we are in case (1), (5) (6) or (7), the set p 6≡∩A is automatically a conical hyperplane
of A. If we are in case (2) or (3), the set p 6≡ ∩ A is of the form π̄A1 for some dual affine
plane π1 of A.

Proof. By Lemma 6.10, we find that Q := p 6≡ ∩ A is either of the form π̄A1 for some
dual affine plane π1 of A, or is a conical hyperplane of A. In the former case, we
can easily deduce that Q intersects π̄ as described in (2), (3), (4) or (8). In the latter
case, the set Q ∩ π is a conic of π, which intersects every transversal of π (and the
transversal TAπ ) in one or all of its points, which implies that Q intersects π̄ as described
in (1), (4), (5), (6), (7) or (8). �

Lemma 6.13. Let l be a line containing distinct points p, q, r, and let π be a linelike
plane through q but not through l. Suppose that p is collinear to all points of π. Then r
is as well. For any A2-plane A that contains π, we have that l 6≡ TAπ .

Proof. Assume for a contradiction that r is noncollinear to at least one point of π.
Suppose first that there is a point s in π collinear to q but noncollinear to r. Then we
can consider the linem := sq. Sincem is contained in the plane π which is contained in
some A2-plane, Lemma 6.4 implies that the point r is noncollinear to one or two points
of m (one of which is s). Then Lemma 6.2 or Lemma 6.3, respectively, implies that
p is also noncollinear with one or two points, respectively, of m ⊂ τ , a contradiction.
We hence conclude that r is collinear to all points of π which are collinear to q, i.e.
r 6≡ ∩ π ⊆ T , with T the transversal of π containing q. Lemma 6.12 then implies that
r 6≡ ∩ π either equals T or is empty. The point r is collinear with q ∈ T , so r is indeed
collinear to all points of π.
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The point q is contained in π, so q 6≡ TAπ . Moreover, it follows from Lemma 6.12(1)
that r and p are noncollinear to TAπ . The point r however can be chosen arbitrarily on
l \ {p, q}, so we indeed obtain that l 6≡ TAπ .

�

Lemma 6.14. Let p and q be collinear points, and let π be a linelike plane through q.
The following statements are equivalent.

(1) The set p 6≡ ∩ π is either a line or a transversal of π.
(2) The point p is noncollinear to a unique point of every line in π through q.

Proof. Let p, q and π be as stated. Every line of π intersects every other line of π and
every transversal of π in a unique point. So if the first claim holds, the second one
holds, too. On the other hand, we know that the set p 6≡ ∩ π is one of the possibilities in
Lemma 6.12. The only possibilities where p is noncollinear to a unique point of every
line in π through a certain point q collinear with p, are those where p 6≡ ∩ π is either a
line, or a transversal of π. We conclude that the two claims are equivalent. �

Lemma 6.15. Let l be a line containing distinct points p, q, r, and let π be a linelike
plane through q but not through l. Suppose that p 6≡ ∩ π is a line. Then r 6≡ ∩ π is a line
as well, which moreover contains the point p 6≡ ∩ q 6≡ ∩ π.

Proof. Let π, p, q and r be as stated. By assumption, the set k := p 6≡ ∩ π is a line.
Let m be any line in π through q. Then Lemma 6.14 implies that p is noncollinear to a
exactly one point of m. By Lemma 6.2, the point r is also noncollinear to exactly one
point of m. The line m through q in π was arbitrary, so r 6≡ ∩ π contains exactly one
point of every line in π through q. Lemma 6.14 then implies that r 6≡ ∩ π is either a line
of π or a transversal of π. In either case, the set r 6≡ ∩ π intersects the line k in a point
s. Suppose that s is collinear to q. As above, we find that p is noncollinear to a unique
point of the line qs, so by Axiom (Im1), the point s is noncollinear to a unique point of
l, a contradiction to the fact that it is noncollinear to both p and r. We hence conclude
that s is noncollinear to q. Any transversal of π through s contains q, and r is collinear
to q, so we conclude that r 6≡ ∩ π is indeed a line through s. �

Lemma 6.16. Let l be a line containing distinct points p, q, r, and let π be a linelike
plane through q but not through l. Suppose that p 6≡ ∩ π is a transversal of π. Then
r 6≡ ∩ π is a transversal of π as well.

Proof. The proof is very similar to that of Lemma 6.15. We start by using Lemma 6.14
to obtain that p is noncollinear to exactly one point of every line through q. Sec-
ondly, we invoke Lemma 6.2 to see that the same holds for the point r. Next, we
use Lemma 6.14 again to obtain that r 6≡ ∩ π is either a line or a transversal. If it were a
line however, then we could apply Lemma 6.15 with the roles of p and r interchanged



Title of article 39

to obtain that p 6≡ ∩ π would be a line, a contradiction. We can hence indeed conclude
that r 6≡ ∩ π is a transversal of π. �

Lemma 6.17. Let l be a line containing distinct points p, q, r, and let π be a linelike
plane through q but not through l. Suppose that p 6≡ ∩ π is the union of two disjoint
transversals of π. Then r 6≡ ∩ π is the union of two disjoint transversals of π as well.

Proof. Let π, p, q and r be as stated. We prove that l is contained in some A2-plane
and that r is noncollinear to exactly two points of every line in π through q. Let m be
any such line. The point p is noncollinear to two disjoint transversals of π and hence to
exactly two points of m. Lemma 6.3 implies that the point r is noncollinear to exactly
two points of m. Moreover, using Axiom (Im1), we find that l is indeed contained in
the A2-plane 〈l,m〉.

Considering the possibilities in Lemma 6.12, we see that exactly one of the following
statements holds for r 6≡ ∩ π:

(1) a union of two disjoint transversals of π,
(2) a nondegenerate conic C of π through the missing point of π such that every

line of π through q intersects C in exactly two points.

Suppose for a contradiction that the second statement holds. Let A be an A2-plane that
contains π. By Lemma 6.12, the set r 6≡ ∩ A is a conical hyperplane of A, implying
that r is noncollinear to some point s of TAπ . By Lemma 6.12, both points p and q are
noncollinear to TAπ , so s ∈ TAπ is noncollinear to the points p, q, r of l. We argued in
the first paragraph of this proof that l is contained in some A2-plane. As a result, we
can apply Lemma 6.4 and obtain that s 6≡ l.

Denote with Ts the transversal of π in A that contains s. We claim that q 6∈ Ts.
Suppose that this would be the case. Denote with π∞ the projective plane obtained
by adding one point to π, and denote this point with ∞. Define C = r 6≡ ∩ π. By
assumption, the set C∞ := C ∪ {∞} forms a nondegenerate conic of π∞. It follows
from Corollary 6.11 that Ts∩r 6≡ = {s}. Hence the point q is contained in a tangent line
to C∞ in π∞, namely q∞. The projective plane π∞, however, is, by Axiom (Im1)(ii),
defined over a field of characteristic different from two. This implies that q lies on
exactly two tangent lines to C∞ in π∞. Translating this back to π, we find that there is
a line through q in π which intersects C = r 6≡ ∩ π in exactly one point, a contradiction.
We conclude that q 6∈ Ts.

Take t ∈ Ts ∩ π. The point q is not contained in Ts, and is hence collinear to
t. Consider the line m := tq. By Lemma 6.3, applied to l and m, the point t is
noncollinear to exactly two points of l, at least one of which is different from p; call
this r′. The point r′ is noncollinear to both t and s of Ts, implying that r′ 6≡ Ts. Since
r′ plays the same role as r, we see that r′6≡ ∩ π is the union of two distinct transversals,
one of which is Ts. Lemma 6.12 moreover implies that r′ 6≡ TAπ . But then every point
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of TAπ is noncollinear to p, r′ and q. So, by Lemma 6.4, we have that TAπ 6≡ l. The point
r ∈ l, however, is collinear to all points of TAπ \ {s}, a contradiction. This proves that
r 6≡ ∩ π is indeed the union of two disjoint transversals. �

Lemma 6.18. Let l be a line containing distinct points p, q, r, and let π be a linelike
plane through q but not through l. Suppose that p 6≡ ∩ π is the union of a line and a
transversal of π. Then r 6≡ ∩ π is the union of a line and a transversal of π too, where
the line contains the point p 6≡ ∩ q 6≡ ∩ π.

Proof. Let π, p, q and r be as stated. Let A be an A2-plane that contains π. By assump-
tion, we have that p 6≡∩π = m∪T , for some line m and some transversal T of π, define
x := m ∩ T . Let Tq be the transversal of π in A that contains q, and set y := Tq ∩ TAπ .
Note that y ∈ T \ {T ∩ TAπ }. Lemma 6.12 implies that p is collinear to y.

Let s be any point of l \ {p, q}. We determine the possibilities for s 6≡ ∩ π. For
every line n in π through q different from qx, the point p is noncollinear to exactly two
points of n. Axiom (Im1)(ii) implies that 〈l, n〉 is an A2-plane, which we assumed to be
defined over a field of at least five elements, implying that l contains at least six points.
Moreover, Lemma 6.3 implies that the point s is noncollinear to exactly two points of
n. The point p is noncollinear to exactly one point of the line qx. By Lemma 6.2,
the point s is noncollinear to a unique point of qx, which we denote with xs. Taking
into account the different possibilities in Lemma 6.12, we see that s 6≡ ∩ π is one of the
following.

(1) The union of a line ms and a transversal Ts of π in A, which intersect in the
point xs. In this case, s is collinear to y.

(2) A nondegenerate conic C through the missing point of π. The line qx intersects
C in exactly one point, namely xs. Every other line in π through q intersects C
in exactly two points. Since A, and hence π, is defined over a field of charac-
teristic not two, the point s is in this case noncollinear to y.

We have to prove that the first statement holds for the point r ∈ l \ {p, q}. Assume,
for a contradiction, that this is not the case. First suppose that the second statement
holds for some s of l \ {r, p, q}. Then the point y is noncollinear to three distinct points
of l, namely q, r and s. We already noted before that l is contained in some A2-plane, so
by Lemma 6.4, the point y would be noncollinear to the whole of l, and in particular to
p, a contradiction. This implies that the first statement holds for all points s of l\{q, r}.
Denote with Tr the transversal of π in A that contains xr (which was defined to be the
unique point on qx not collinear to r).

We claim that for any two points s1 and s2 of l \ {q, r}, the intersection ms1 ∩ms2

is contained in Tr or Tq. Assume this was not the case. Let ys be the unique point on
qx which is noncollinear to ms1 ∩ms2 . By assumption, ys is different from q and xr.
Lemma 6.2 implies that there is a unique point s on l noncollinear to ys. This point s is



Title of article 41

different from q and r, which implies that s 6≡∩π is the union of a line and a transversal
of π, which intersect in ys ∈ qx. The point s is hence noncollinear to the transversal of
A in π that contains ys, and in particular to ms1 ∩ms2 . But then the point ms1 ∩ms2 is
noncollinear to three points of l, namely s1, s2 and s. By Lemma 6.4, it is noncollinear
to all points of l, in particular to q, a contradiction. This proves the claim.

We argued before that l contains at least 6 points, so in particular, we find two distinct
points s1 and s2 of l \ {q, r, p}. Using the previous paragraph, one sees that the lines
ms1 , ms2 and m intersect in one point z of π, which lies either on Tr or on Tq. In
either case, the point z is noncollinear to these three points of l. By Lemma 6.4, it is
noncollinear to the whole of l, in particular, to q. We conclude that z is contained in Tq.
The point r however, is then noncollinear to both y and z of Tq, and by Corollary 6.11,
also to q ∈ Tq, a contradiction. This concludes the proof. �

6.3. Relations between points

In Lemma 3.17, we distinguished four different relations between two points in an
A2-plane. We will use this to define five relations between two points of Y . These
definitions are of course inspired on the observations made in Corollary 4.11.

Definition 6.19. Let p and q be two points of Y . One (or more) of the following occurs.

(1) The points p and q are equal.
(2) There is an A2-plane A of Y containing p and q such that p and q are linelike in

A. In this case, we say that p and q are linelike.
(3) There is no A2-plane of Y that contains both p and q. In this case, we say that p

and q are symplectic.
(4) There is an A2-plane A of Y containing p and q such that p and q are special in

A, i.e. there exists a unique point in A, which we denote with [p, q]A, which is
linelike in A to both p and q. In this case, we say that p and q are special.

(5) The points p and q are collinear.

Our first goal is to prove that the five relations defined above are disjoint. A priori,
this might not be the case. We have for example not yet proven that every line is
contained in some A2-plane, so two points could at the same time be symplectic and
collinear. Some of the relations are of course automatically disjoint, so we start with
these.

Lemma 6.20. Let p and q be two points which are either collinear or symplectic. Then
p and q are not linelike nor special.

Proof. If p and q are collinear, they are collinear in every plane (and hence every A2-
plane) that contains them both. This implies that they are neither linelike nor special.
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If p and q are symplectic, then, by definition, they are not contained in any common
A2-plane, and are hence neither linelike nor special. �

If two points p and q are noncollinear but contained in different A2-planes, it could
be that they are linelike in one of these planes, but special in the other one. In Propo-
sition 6.25, we will prove that this cannot occur, that is, two points that are linelike
cannot be special. In preparation of the proof of this proposition, we first gather a few
lemmas.

Lemma 6.21. Let l be a line containing distinct points p, q, r and let A be an A2-plane
through q but not through l. Suppose that p 6≡ ∩ A = π̄A for some dual affine plane π
of A. Denote with T the transversal of π in A noncollinear to q. Then r 6≡ ∩ A = π̄′A,
where π′ is some dual affine plane of A different from π in which T is a transversal.

Proof. Denote with τ the projective plane related to A. Without loss of generality, the
plane π is of the form πx for some point x of τ . The point q ∈ A is collinear with p,
and is hence not contained in π̄x. As a result, it is of the form (y,m) with y some point
of τ and m a line of τ not through x. Note that the transversal T is the transversal Txy.

Let m′ be a line of τ through y, different from m and xy, then the plane πm′ contains
q = (y,m), while the intersection πm′ ∩ π̄x is a line, namely [x,m′]. The point p is
hence noncollinear to exactly a line of the linelike plane πm′ , which contains q. By
Lemma 6.15, the set r 6≡ ∩ πm′ is also a line of πm′ , which contains p 6≡ ∩ q 6≡ ∩ πm =
(y, yx), and is hence of the from [z,m′] with z some point of τ on yx \ {y, x}. With
Lemma 6.12 we obtain that the set r 6≡∩A has the form π̄′ with π′ some dual affine plane
of A. This plane π′ must of course contain the line [z,m′] and hence equals either πz or
πm′ . It cannot be the latter, since we showed before that r is noncollinear to exactly a
line of that plane. The transversal T = Txy is indeed a transversal of the plane πz. �

Corollary 6.22. Let l be a line containing distinct points p, q, r, and let A be an A2-
plane through q. If p 6≡ ∩ A is a conical hyperplane of A, then so is r 6≡ ∩ A.

Proof. Each point ofA is noncollinear to a conical hyperplane ofA. If p ∈ A, then also
r ∈ A, implying that r 6≡ ∩ A is a conical hyperplane. If p 6∈ A, then the claim follows
from Lemma 6.21. �

Lemma 6.23. Let l be a line containing distinct points p, q, let π be a linelike plane
through q, and let A be any A2-plane through π. If p 6≡ TAπ , then l 6≡ TAπ .

Proof. Let p, q, l, π and A be as in the statement of the lemma. Let r be any point of
l \ {p, q}, we have to prove that r 6≡ TAπ .

First assume that p is noncollinear to a conical hyperplane of A. By Corollary 6.22,
the point r is also noncollinear to a conical hyperplane of A. Using Lemma 6.12, we
see that exactly one of the following three cases occurs.
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(1) The point p is collinear to all points of π. By Lemma 6.13, the point r is also
collinear to all points of π, and is hence noncollinear to TAπ .

(2) The point p is noncollinear to exactly one transversal of π inA. By Lemma 6.16,
the point r is also noncollinear to exactly one transversal of π in A. As r 6≡ ∩ A
is a conical hyperplane, we find that r is noncollinear to TAπ .

(3) The point p is noncollinear to exactly two disjoint transversals of π in A. By
Lemma 6.17, the point r is also noncollinear to exactly two transversals of π in
A. The set r 6≡ ∩ A is again a conical hyperplane of A, so also in this case r is
noncollinear to all points of TAπ .

Next, assume that p 6≡ ∩ A is not a conical hyperplane of A. By Lemma 6.10, the set
p 6≡ ∩ A = π̄′ for some dual affine plane π′ of A. The point p is collinear to q ∈ π and
noncollinear to TAπ . This transversal is also noncollinear to q, so Lemma 6.21 implies
that r 6≡ ∩ A indeed also contains TAπ . This concludes the proof. �

We are now ready to prove the crucial lemma in the run up to Proposition 6.25.

Lemma 6.24. Let p and q be linelike points. Then for every line l through q, the point
p is noncollinear to either exactly one point of l, namely q, or to all points of l.

Proof. Let l be a line through q, and suppose that p is noncollinear to some point x ∈
l \ {q}. We have to prove that p is noncollinear to l, or equivalently, that every point
of l is noncollinear to p. The points p and q are linelike, so by definition, there is some
A2-plane A containing p and q such that p and q are linelike in A. Denote with T the
transversal in A that contains both p and q. Let T ′ be the unique transversal in A that
contains p but not q, and set π := πAT ′ .

If x is noncollinear to T ′ = TAπ , we can use Lemma 6.23, with x in the role of p, to
obtain that every point of l is noncollinear to T ′, and in particular to p. Assume that
this is not the case, then x 6≡ ∩ T ′ contains at most one point, and hence equals {p}. By
Lemma 6.12, the set x 6≡ ∩ π has to be a nondegenerate conic C through the missing
point of π. Denote with π∞ the projective plane obtained by adding one point, denoted
∞, to π. The set C∞ := C ∪ {∞} is a conic in π∞. Since x 6≡ ∩ T = {p}, we find
that the line q∞ is the tangent line to C∞ at∞. The plane π∞ is defined over a field
of characteristic not two, so there is exactly one other tangent line m to C∞ through q.
In π, this means that there is exactly one line m through q which contains one point of
C , while all other lines of π through C contain zero or two points of C . Let r be any
point of l \ {x, q}. Using Lemma 6.2 and Lemma 6.3, we find that the line m contains
exactly one point noncollinear to r, while all other lines through q in π contain exactly
zero or two points noncollinear to r. Considering the possibilities in Lemma 6.12, we
can hence conclude that r 6≡ ∩ π is one of the following.

(1) The union of a line and a transversal of π. Lemma 6.18 would then imply that
x 6≡ ∩ π is also the union of a line and a transversal of π, a contradiction.
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(2) A nondegenerate conic Cr through the missing point of π such that there is
exactly one line through q in π which contains exactly one point noncollinear
to r. The set Cr ∪ {∞} then forms a conic in π∞, with q∞ the tangent line at
∞. This implies in particular that r 6≡ ∩ T ′ = p, and hence that r is noncollinear
to p.

This concludes the proof of the lemma. �

Proposition 6.25. Let p and q be two linelike points. Then they are not special.

Proof. Let p and q be two linelike points, and let A be an A2-plane that contains p and
q such that p and q are special in A. In A, there exists some point x which is collinear
to both p and q. By Lemma 3.20, the point p is noncollinear to exactly two points of
m = qx, a contradiction to Lemma 6.24. �

6.4. A point is noncollinear to a conical hyperplane of any A2-plane

As the title of this subsection suggests, the next goal is to prove that a point p is non-
collinear to a conical hyperplane of any A2-plane. Afterwards, we use this to prove that
two collinear points cannot be stmplectic.

We first gather a natural in-between result.

Lemma 6.26. Let A and A′ be two A2-planes that contain special points q1 and q2. Ev-
ery point ofA′ that is collinear to both q1 and q2 is noncollinear to a conical hyperplane
of A.

Proof. Let p′ be a point of A′ that is collinear to both q1 and q2. By Lemma 6.10, it
suffices to prove that p′6≡ ∩ A is not of the form π̄A with π a certain dual affine plane
of A. Suppose for a contradiction that this is the case. For i = 1, 2, denote with Ti
the transversal in A that contains qi and [q1, q2]A. If the point p′ were noncollinear to
[q1, q2]A, it would follow from Lemma 5.14 that it would be noncollinear to Ti 3 qi for
some i, a contradiction. So p′ is collinear with [q1, q2]A.

By Lemma 3.27 there is a unique point x of π that is linelike to [q1, q2]A. Without
loss of generality, we may assume that x ∈ T1. Let Tx be the transversal in A through
x different from T1. By Lemma 5.14, the set π̄A contains Tx, implying that p′ is non-
collinear to Tx. Next, consider the line p′q1. By Lemma 3.20, there is a point r on
p′q1 \ {q1} which is noncollinear to q2. Applying Lemma 6.21, with p′ taking the role
of p, q1 that of q and Tx that of T , we find that r 6≡ ∩ A is the transversal closure in A
of a dual affine plane of A that has Tx as a transversal. Together with the fact that r is
noncollinear to q2, this implies that r 6≡ ∩ A = π̄AT1 3 q1, a contradiction to the fact that
r is collinear to q1. �
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We can now use the previous lemma to reach the goal of this section.

Proposition 6.27. Let p be a point and let A be any A2-plane. Then p is noncollinear
to a conical hyperplane of A.

Proof. By Lemma 6.10, it suffices to prove that p 6≡ ∩ A is not of the from π̄A for some
dual affine plane π of A. Suppose for a contradiction that this is the case. Let q1 be a
point of A collinear to p. By Lemma 3.27, the set q 6≡1 ∩ π is the union of a transversal
T and a line m. Let q2 be a point of m not on T . We claim that q 6≡2 ∩ pq1 = {p, q1}.
Indeed, let p′ be any point of pq1 \ {p, q1}. Then, using Lemma 6.21 with p′ in the role
of r, we see that p′6≡ ∩ A is the transversal closure in A of a dual affine plane π′ of A,
where π′ contains T , but is different from π. We hence indeed find that p′ is collinear
q2, which proves the claim. By Axiom (Im1)(ii), the point q2 and the line pq1 then
generate an A2-plane A′. Both the A2-planes A and A′ contain the special points q1 and
q2, while A′ contains points (namely any point of pq1 \ {p, q1}) that are collinear to q1
and q2 but are not collinear to a conical hyperplane of A. This contradicts Lemma 6.26
and hence concludes the proof. �

Corollary 6.28. Let p be a point and T a transversal, then p is noncollinear to at least
one point of T .

Proof. This is an immediate consequence of Proposition 6.27. �

We can use this proposition to obtain the following useful lemma.

Lemma 6.29. Every line is contained in some A2-plane.

Proof. The space Y is connected, and contains at least one A2-plane. It hence suffices
to prove that every line l of Y that intersects an A2-plane, is itself contained in an A2-
plane. So let l be a line, and A an A2-plane that intersects l. If l is contained in A,
there is nothing to prove. Suppose that l intersects A in some point p. Let q be a point
of l different from p. Suppose that there is some line m through p in A for which q is
noncollinear to exactly two points of m. Then Axiom (Im1)(ii) implies that 〈l,m〉 is
an A2-plane, which contains l. Suppose for a contradiction that this is not the case. By
Lemma 6.4, and the fact that q is collinear to p, we find that q is noncollinear to at most
one point of every line m through p in A. Let T be a transversal through p in A, let r
be a point of T \ {p} and let Tr be the transversal in A through r but not through p.
The dual affine plane πATr contains p. Considering the possibilities in Lemma 6.12, and
keeping in mind that no line through p in π intersects q 6≡ in more than one point, we
find that q 6≡ ∩ π is either empty or is a transversal. By Proposition 6.27, the set q 6≡ ∩ A
is a conical hyperplane of A, so in each of these two cases, the transversal Tr, and in
particular r is contained in q 6≡. We hence find that T \ {p} ⊆ q 6≡. Corollary 6.11 then,
however, implies that q is also noncollinear to p, a contradiction to the fact that they
both belong to the line l. �
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Corollary 6.30. Two collinear points cannot be symplectic.

Proof. Two points are symplectic when they are not contained in a common A2-plane.
By Lemma 6.29, every pair of collinear points is contained in a common A2-plane. �

7. Special points

Notation 7.1. In this section, Y denotes a connected partial linear space that satisifes
Axioms (Im1), (Im2) and (Im3). We assume that no A2-plane of Y is defined over F3

or over a field of characteristic two. We make use of Notation 3.4.

In this section, we prove that the behaviour of two special points completely deter-
mines the behaviour of any point that is linelike to both of them. This will allow us to
invoke Axiom 1.2, and obtain that this point is uniquely determined.

7.1. When a point is linelike or symplectic to some point of an A2-plane

We start by discussing what happens when a point is linelike or symplectic to some
point of an A2-plane.

Lemma 7.2. Let p and q be linelike or symplectic points. For every line l through q,
the point p is noncollinear to exactly one point of l, namely q, or to all points of l.

Proof. Suppose that q is collinear to some point of l. It follows from Lemma 6.29 that
the line l is contained in some A2-plane. We can hence apply Lemma 6.4 and obtain
that |p 6≡ ∩ l| ≤ 2. However, if p is noncollinear to exactly two points of l, it follows
from Axiom 1.2 that 〈p, l〉 is an A2-plane. Using Lemma 3.20, we find that p and q are
special in A, a contradiction to the assumption that they are linelike or symplectic. �

Lemma 7.3. Let p be a point and T a transversal. If p is linelike or symplectic with
some point q of T , then p is noncollinear to every point of T .

Proof. There exists some dual affine plane π that contains q such that T is a transversal
of π. The point p is noncollinear to q and, by Lemma 7.2, to one or all points of every
line through q in π. Using Lemma 6.12, one then easily concludes that p 6≡ T . �

Lemma 7.4. Suppose that p is linelike to a point of a line l, then p is neither linelike,
nor symplectic to any other point of l.

Proof. Let q be a point of l that is linelike to p. Then there exists some A2-plane A in
which p and q are contained on some common transversal T . Let r be a point of l \{q}.
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If r was linelike or symplectic to p, Lemma 7.3 would imply that r is noncollinear to
the whole transversal T , and in particular to q, a contradiction. �

Lemma 7.5. Let p be a point and A be an A2-plane. If p 6≡ ∩ π is a degenerate conic
for every dual affine plane π of A, and p is moreover linelike or symplectic with some
point q ∈ A, then p 6≡ ∩ A is one of the following.

(1) The whole set A.
(2) A set of the form π̄A1 ∪ π̄A2 with π1 and π2 dual affine planes in A such that

π1 ∩ π2 is a line through q.
(3) A set of the form z 6≡ ∩ A with z some point in A linelike with q. This equals

π̄AT1 ∪ π̄
A
T2

, with T1 and T2 the two transversals in A through z.

Proof. Using the terminology of Definition 5.11, we find that p 6≡∩A is a fully degener-
ate conical subset with vertex q. Using Lemma 5.12, we hence find that p 6≡∩A is either
A or a subset π̄A1 ∪ π̄A2 with π1 and π2 dual affine planes in A for which q ∈ π̄A1 ∩ π̄A2 .
At the same time, the set p 6≡ ∩A is a conical hyperplane of A. Using Example 5.7, one
easily sees that this indeed implies the claim. �

7.2. When a point is linelike or symplectic to several points of an A2-plane

A point can of course also be linelike or symplectic to several points of an A2-plane.
We investigate some particular cases that will be useful later on.

Lemma 7.6. Let p be a point and let A be an A2-plane containing linelike points q1
and q2. If p is linelike or symplectic to both q1 and q2, the set p 6≡ ∩A is either the whole
of A, or equals q 6≡ ∩A for some point q on the transversal in A that contains q1 and q2.

Proof. Let T be the transversal in A that contains both q1 and q2. We first prove that
p 6≡ πAT , or equivalently, that p 6≡ T ′ for every transversal T ′ of A that intersects T . Let
T ′ be such a transversal, and set q′ := T ′∩T . First suppose that q′ = q1 or q2. Then the
point p is linelike or symplectic to q′, so it follows from Lemma 7.3, that p 6≡ T ′. Next,
suppose that q′ 6∈ {q1, q2}. The plane π′ := πAT ′ contains q1 and q2. One can easily
argue, using Lemma 6.12 and Lemma 7.2, that p 6≡ ∩ π′ is either T ′ or π′. Since p 6≡ ∩A
is a conical hyperplane, it follows that p 6≡ T ′. This proves the claim. One can now use
Lemma 5.13 to obtain that p 6≡ ∩ π is a degenerate conic for every dual affine plane π of
A. The result now follows from Lemma 7.5. �

Lemma 7.7. Let p be a point and let A be an A2-plane containing special points q1 and
q2. If p is linelike or symplectic to both q1 and q2, the set p 6≡ ∩A is either the whole set
A or equals [q1, q2]

6≡
A ∩ A.

Proof. For i = 1, 2, let Ti be the transversal in A that contains qi and [q1, q2]A, and let
Qi be the transversal in A through qi different from Ti. By Lemma 7.3, the set p 6≡∩πAT1
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contains T2 and Q1. The point p is moreover linelike or symplectic to q2 ∈ πAT1 , so
using Lemma 7.2, one easily argues that p 6≡ πAT1 . Similarly, one finds that p 6≡ πAT2 .
Lemma 5.9 then implies that p 6≡ ∩ A is either the whole of A or the set π̄AT1 ∪ π̄

A
T2

=

[q1, q2]
6≡
A ∩ A. This concludes the Lemma. �

Lemma 7.8. Let p′ be a point and let A be an A2-plane containing special points q1
and q2. Suppose that p′ is linelike to q1 and linelike or symplectic to q2. Let T be a
transversal that contains both p′ and q1 and let T1 be the transversal in A that contains
q1 and [q1, q2]A. For any point p ∈ T \ {p′, q1}, the set p 6≡ ∩ A is of the form x 6≡p ∩ A
with xp some point in T1 \ {[q1, q2]A}.

Proof. By Lemma 7.7, the set p′ 6≡∩A is eitherA or [q1, q2]
6≡
A∩A. Suppose that we are in

the former case, then Corollary 6.11 implies that p is noncollinear to all points that are
noncollinear to both p′ and q1, and in particular to q 6≡1 ∩A. If p were noncollinear to any
other point y of A, this same corollary would imply that y would also be noncollinear
to q1, a contradiction. This implies that p 6≡ ∩A = q 6≡1 ∩A. Next, assume that p′6≡ ∩A =

[q1, q2]
6≡
A ∩ A. Denote with T2 the transversal in A that contains both q2 and [q1, q2]A.

The set p′ 6≡ ∩ A equals π̄AT1 ∪ π̄
A
T2

. The point q1 on the other hand, is noncollinear to
π̄AT1 and collinear to some points of π̄AT2 . Again using Corollary 6.11, we find that p is
collinear to some point of π̄AT2 and noncollinear to π̄AT1 . Moreover, the point p is linelike
to q1 ∈ T1. Considering the possibilities in Lemma 7.5, we can hence indeed conclude
that also in this case, p 6≡ ∩ A = x 6≡p ∩ A for some point xp of T1 \ {[q1, q2]A}. �

7.3. Special points p and q determine behaviour of the point [p, q]A

The goal of this section is to prove the following proposition.

Proposition 7.9. Let p and q be special points, let A be an A2-plane that contains p
and q, and let l be a line through q. The following claims hold.

(1) The point [p, q]A is collinear to l \ {q} if and only if |p 6≡ ∩ l| = 2.
(2) The point [p, q]A is noncollinear to the line l if and only if |p 6≡ ∩ l| 6= 2. This is

the case if and only if p 6≡ ∩ l is either l or {q}.

We divide the proof into three parts, namely Lemma 7.10, Lemma 7.11 and Lemma 7.12.

Lemma 7.10. Let p and q be special points, let A be an A2-plane that contains p and
q, and let l be a line through q. If the point p 6≡ l, then [p, q]A 6≡ l.

Proof. It is clear that [p, q]A is noncollinear to q ∈ l. Suppose for a contradiction
that [p, q]A is collinear to some point of l \ {q}. By Lemma 6.24, the point [p, q]A is
collinear to all points of l\{q}. Every such point r ∈ l\{q} is then noncollinear to p but
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collinear to [p, q]A, so Corollary 6.11 implies that r 6≡ ∩T = {p}, with T the transversal
in A through p and [p, q]A. The set r 6≡ ∩ A is however a conical hyperplane, so there is
a line m in πAT through q that contains one or two points noncollinear to r. Let Tp be
the transversal in A through p different from T , and set x := Tp ∩m. By Lemma 6.2
or Lemma 6.3, applied to l and m, we can re-choose r ∈ l so that r is noncollinear to
x. This point r is then noncollinear to both x and p of Tp, and hence by Corollary 6.11,
noncollinear to the whole of Tp. Checking the possibilities in Lemma 6.12, and keeping
in mind that r 6≡ ∩A is a conical hyperplane, we find that r 6≡ ∩ πAT is the union of a line
with the transversal Tp. Applying Lemma 6.18 applied to r, l and πAT , we see that every
point of l\{q} is noncollinear to the union of a line and a transversal of πAT , which must
intersect T in p by assumption, and hence equals Tp. This however implies that Tp is
noncollinear to all points of l \ {q}, and by Lemma 6.4, also to q, a contradiction. �

Lemma 7.11. Let p and q be special points, let A be an A2-plane that contains p and q
and let l be a line through q. If |p 6≡ ∩ l| = 2, then [p, q] 6≡A ∩ l = {q}.

Proof. Suppose for a contradiction that there exists some point of l \ {q} noncollinear
to [p, q]A. The point [p, q]A is linelike to q, so by Lemma 6.24, the point [p, q]A is
noncollinear to all points of l. Let r be the point of l \ {q} that is noncollinear to p.
Then r is noncollinear to both p and [p, q]A. Denote with T the transversal in A that
contains both p and [p, q]A. Using Corollary 6.11, we find that r 6≡ T . Lemma 6.23,
with π = πAT , implies that l 6≡ T , and in particular that the point p is noncollinear to all
points of l, a contradiction. �

Lemma 7.12. Let p and q be special points, let A be an A2-plane that contains p and
q, and let l be a line through q. If p 6≡ ∩ l = {q}, then [p, q]A 6≡ l.

Proof. Suppose for a contradiction that there exists some point r of l \ {q} collinear
to [p, q]A. Let T denote the transversal in A that contains p and [p, q]A. By Propo-
sition 6.27, the point r is noncollinear to some point p′ of T , which, by assumption,
has to be different from [p, q]A. This point p′ is noncollinear to both q and r of l, and
moreover, it is clear that [p, q]A = [p′, q]A.

First suppose that |p′6≡ ∩ l| > 2. Lemma 6.4 implies that p′ 6≡ l. We can apply
Lemma 7.10 to p′, q, A and l and obtain that [p′, q]A 6≡ l. This is a contradiction to the
fact that r is collinear to [p, q]A = [p′, q]A.

Next, suppose that |p′6≡ ∩ l| = 2, that is, p′6≡ ∩ l = {q, r}. By Axiom (Im1)(ii), the
point p′ and the line l generate an A2-plane, which we denote here with A′. The point
[p, q]A is linelike to both p′ and q, which are both contained in A′, and the point p lies
on the transversal T through [p, q]A and p′. We can hence apply Lemma 7.8 to obtain
that p 6≡ ∩ A′ = x 6≡p ∩ A′ for some point xp on T ′ \ {[p′, q]A′} with T ′ the transversal in
A′ that contains p′ and [p′, q]A′ . However, by applying Lemma 3.20 to A′, we find that
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such a point xp is noncollinear to exactly two points of l ∈ A′, a contradiction to the
assumption that p 6≡ ∩ {l} = {q}. �

Taking together the results of Lemma 7.10, Lemma 7.11 and Lemma 7.12, we indeed
obtain Proposition 7.9.

7.4. When a point is linelike to some points of an A2-plane

In this subsection, we use Proposition 7.9 to obtain more information on what happens
when a point is linelike so some point of an A2-plane.

Lemma 7.13. Let p be a point and A be an A2-plane. If p is linelike to some point of
A, the set p 6≡ ∩A is not of the form π̄A1 ∪ π̄A2 with π1 and π2 dual affine planes in A that
intersect in a line.

Proof. Suppose that p is linelike to some point q ∈ A, and suppose for a contradiction
that p 6≡ ∩ A = π̄A1 ∪ π̄A2 with π1 and π2 dual affine planes in A that intersect in a line
l. Using Lemma 7.5, we see that q ∈ l. For i = 1, 2, denote with Qi the transversal
of πi in A through q. The points p and q are linelike, so there exists an A2-plane A′

that contains both p and q in which p and q are linelike. In this A2-plane A′, there is
a unique transversal through p that does not contain q. Fix some point r 6= p on that
transversal. Observe that [r, q]A′ = p.

We first discuss the possibilities for r 6≡ ∩ π1. The point p is, by assumption, non-
collinear to each linem in π1 through q. We can apply Proposition 7.9, withA′, r,m, p =
[r, q]A′ in the role of A, p, l, [p, q]A, respectively, and obtain that r 6≡ ∩m is either m or
{q}. Considering the possibilities in Lemma 6.12, and taking into account Proposi-
tion 6.27 that says that r 6≡ ∩ A is a conical hyperplane and hence that r 6≡ ∩ π1 is not a
line, we find that r 6≡ ∩ π1 is either π1, Q1 or Q1 ∪m1 with m1 some line in π1 through
q. In all three cases, Q1 is contained in r 6≡. We can apply this same reasoning to π2
instead of π1, and obtain that Q2 ⊆ r 6≡.

Now let m 6= l again be a line in π1 through q, and let πm be the unique dual affine
plane in A through m different from π1. Then Q2 is a transversal of πm. The point r
is noncollinear to Q2 and noncollinear to one or all points of m. Using the possibilities
in Lemma 6.12, we find that r 6≡ ∩ πm is either πm, Q2, or the union Q2 ∪m′ with m′

some line in πm through q. Let n 6= m be a line through q in πm, then the previous
argument shows that r 6≡ ∩ n = n or {q}. We can again apply Proposition 7.9, and
find that p = [q, r]A′ is noncollinear to n. This line n is however not contained in
p 6≡ ∩ A = π̄A1 ∪ π̄A2 , a contradiction. This concludes the proof. �

Lemma 7.14. Let p be a point and letA be an A2 plane. If p is linelike to some point q of
A and noncollinear to a dual affine plane π of A that contains q, it is also noncollinear
to π̄AT with T the transversal of π in A through q.
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Proof. We have that p 6≡ π, so it follows form Lemma 5.13 that p 6≡∩A intersects every
dual affine plane of A in a degenerate conic. The point p is moreover linelike to q. We
can apply Lemma 7.5 and obtain that the set p 6≡∩A is one of the possibilities described
in Lemma 7.5. Using Lemma 7.13 and the fact that p is noncollinear to the dual affine
plane π of A, one finds that p 6≡ ∩ A is either A or is of the form z 6≡ ∩ A with z some
point in A linelike to q. There is only one such point z for which z 6≡ contains π, namely
T ∩ TAπ with T the transversal of π in A through q. We hence find that π̄AT is contained
in z 6≡ ∩ A ⊆ p 6≡. �

Lemma 7.15. Let p be a point, let A be an A2-plane containing special points q1 and
q2. If p is linelike to q1 and noncollinear to q2, then p is noncollinear to π̄AT1 with T1 the
transversal of A that contains q1 and [q1, q2]A.

Proof. Let p,A, q1, q2 and T1 be as stated. Let T2 be the transversal in A that contains
q2 and [q1, q2]A. By assumption, the points p and q1 are linelike, so there exists some
transversal T that contains both p and q1.

First, we aim to find a point p1 ∈ T which is noncollinear to π̄AT2 . To that end, let r be
a point of πAT2 that is not contained in T1. Then r is collinear to q1, so by Corollary 6.28,
there is a point p1 on T \{q1} which is noncollinear to r. This point p1 is of course also
linelike to q1, so by Lemma 7.3 and Lemma 6.24, we have that q1r and T1 are contained
in p 6≡1 . We can hence conclude that p 6≡1 ∩ π̄AT2 is equal to either q1r ∪ T1, or π̄AT2 . The
point q2 ∈ T2, however, is noncollinear to both p and q1, and is by Corollary 6.11 hence
also noncollinear to p1. This implies that p1 is noncollinear to π̄AT2 .

The point p1 is linelike to q1 and is noncollinear to the plane πAT2 which contains
q1. Consequently, we can apply Lemma 7.14 to the point p1 and obtain that p1 is
noncollinear to the set π̄AT1 . Every point in this set is of course also noncollinear to q1,
and is hence noncollinear to two points of T . Using Corollary 6.11, we can conclude
that every point of π̄AT1 is noncollinear to p ∈ T . This concludes the proof. �

7.5. Special points p and q uniquely determine a point [p, q]

For special points p and q, we can always construct a point that is linelike to both of
them: take any A2-plane A that contains p and q, and consider the point [p, q]A. In this
subsection, we will prove that this construction is independent of the chosen A2-plane.
Up to this point, we have not used the Axiom (Im3). This axiom will, however, be
crucial in all arguments that follow. We recall:

(Im3) For points p and q, if p 6≡ = q 6≡, then p = q.

The main result of this subsection is Proposition 7.18. We first gather two prelimi-
nary results.
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Lemma 7.16. Let T be a transversal containing a point p and let x, y be two points for
which

x 6≡ ∩ T \ {p} = y 6≡ ∩ T \ {p}.
Then x 6≡ ∩ T = y 6≡ ∩ T .

Proof. Both points x and y are, by Corollary 6.11 and Corollary 6.28, noncollinear to
either a unique point of T or to every point of T . From this, we immediately obtain that

x 6≡ p ⇐⇒ |x 6≡ ∩ T \ {p}| 6= 1 ⇐⇒ |y 6≡ ∩ T \ {p}| 6= 1 ⇐⇒ y 6≡ p,

which proves the assertion. �

Lemma 7.17. Let A be an A2-plane containing a point q, and let x, y be two points for
which

x 6≡ ∩ A ∩ q≡ = y 6≡ ∩ A ∩ q≡.
Then x 6≡ ∩ A = y 6≡ ∩ A.

Proof. Let p be a point ofA, we prove that p is collinear to x if, and only if, it is collinear
to y. If p is collinear to q, this follows immediately from the assumption. Suppose that
p is special to q. Let T be the transversal in A that contains p but not [p, q]A. The point
q is collinear to all points of T \{p}, so x 6≡∩T \{p} = y 6≡∩T \{p}. Now the assertion
follows from Lemma 7.16, in combination with the previous case. Next, suppose that
p is linelike to q, let T be the transversal in A that contains p but not q. All points
of T \ {p} are special to q, so the assertion again follows from Lemma 7.16. Finally,
suppose that p equals q. Let T be any transversal through p in A. Then all points of
T \ {p} are linelike to q, so with the exact same argument, the assertion holds. �

Proposition 7.18. Let p and q be special points, and let A and A′ be A2-planes con-
taining p and q. Then [p, q]A = [p, q]A′ .

Proof. First, we claim that [p, q] 6≡A ∩ q≡ = [p, q] 6≡A′ ∩ q≡. Let x be a point collinear to q,
and let lx be the line that contains x and q. We can apply Proposition 7.9 first to A and
then to A′ and find that

[p, q]A ≡ x ⇐⇒ |p 6≡ ∩ lx| = 2 ⇐⇒ [p, q]A′ ≡ x.

This indeed proves the claim.

We proceed by proving that [p, q] 6≡A = [p, q] 6≡A′ . To that end, let x be a point collinear
to [p, q] 6≡A. We prove that it is also collinear to [p, q] 6≡A′ . If x is collinear to q, the claim
immediately follows from the argument above, so we may assume that x is noncollinear
to q. Denote with Tp, Tq the transversals in A that contain [p, q]A and p, q, respectively.
Set π := πATp and note that q ∈ π. We claim that there is a line l in π through q for which
|x 6≡∩l| = 2. Suppose this were not the case, then, using the possibilities in Lemma 6.12,
and taking into account that x 6≡ ∩ A is a conical hyperplane, we would obtain that x is
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noncollinear to Tq, which contains [p, q]A, a contradiction. So let l be a line through q
in A for which |x 6≡ ∩ l| = 2. By Axiom (Im1)(ii) the plane 〈x, l〉 is an A2-plane, which
we denote with Al. By the previous claim, we find that [p, q] 6≡A ∩ q≡ = [p, q]6≡A′ , which
immediately implies that

[p, q] 6≡A ∩ Al ∩ q
≡ = [p, q] 6≡A′ ∩ Al ∩ q≡.

Lemma 7.17, applied to [p, q]A, [p, q]A′ andAl, then implies that [p, q]A∩Al = [p, q]A′∩
Al. The point x, being collinear to [p, q]A, is hence also collinear to [p, q]A′ . We
can apply this very same argument with A and A′ interchanged, and we conclude that
[p, q] 6≡A = [p, q]6≡A′ .

Together with Axiom (Im3), this last claim immediately implies that [p, q]A = [p, q]A′ .
�

It is an immediate consequence of Proposition 7.18 that the following is well defined.

Definition 7.19. For special points p and q, define [p, q] := [p, q]A for A any A2-plane
that contains p and q.

An immediate, but useful, corollary of this is the following.

Corollary 7.20. If a point p is linelike to some point of a line l and collinear to another
point of l, then there exists an A2-plane that contains both p and l.

Proof. Let q be the point on l that is linelike with p, let A be any A2-plane containing
p and q, and let r be a point in A linelike with p but not with q. Proposition 7.9, with
r, q, p in the role of p, q, [p, q], respectively, implies that |r 6≡ ∩ l| = 2. We can hence use
Axiom (Im1)(ii) and find an A2-plane A′ that contains r and l. This A2-plane A′ then
of course contains q ∈ l and hence also [r, q] = p. �

7.6. Special points p and q have a unique point linelike to both

Definition 7.19 associates a point [p, q] to every pair of special points p and q. In this
subsection, we prove that this point [p, q] can be characterised as the unique point that
is linelike to both p and q. As in Section 7.5, the crucial ingredient will again be Axiom
1.2.

Lemma 7.21. Let p and q be special points. Let x be a point linelike or symplectic to
p and noncollinear to q. If x is special to q, assume moreover that for every A2-plane
Aq through x and q, the point p is noncollinear to π̄Aq

Tq
, with Tq the transversal in Aq

through x and [x, q]. Then x is linelike or symplectic to [p, q].

Proof. Let p, q, x be as stated. Assume for a contradiction that x is neither linelike nor
symplectic with r := [p, q]. Let A be an A2-plane that contains p and q. The point x is
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linelike or symplectic to p ∈ A, so, by Lemma 7.3, x is noncollinear to both transversals
in A through p, and hence to r. Together with the assumption that x is not linelike nor
symplectic to r, this implies that x is special to r.

We first claim that, if x is special to q, the point [r, x] is noncollinear to any line lq
through x that is contained in an A2-plane with q. Indeed, assume that x is special to
q, and let Aq be an A2-plane that contains both x and q. Denote with Tq the transversal
in Aq that contains x and [x, q]. By assumption, we know that p is noncollinear to
πq := π

Aq

Tq
, which contains q. The point p is hence noncollinear to all points of any

line through q in πq. Proposition 7.9 on its turn, then implies that [p, q] = r is also
noncollinear to all points of any line through q in πq, and is hence noncollinear to πq.
This point r is at the same time linelike to q, so with Lemma 7.14, we find that r is
noncollinear to [q, x] 6≡ ∩ Aq, which implies that r 6≡ ∩ Aq is either [q, x] 6≡ ∩ Aq or Aq
itself. Let lq be any line in Aq through x. Then in any of the two cases, the point r is
noncollinear to exactly one or all points of that line. We can apply Proposition 7.9 with
r, x, [r, x], lq taking over the role of p, q, [p, q], l, respectively, and obtain that [r, x] is
indeed noncollinear to lq. This proves the claim.

Next, let Ar be an A2-plane that contains x and r. We claim that [r, x] 6≡ ∩ Ar is
contained in q 6≡. First suppose that q is linelike or symplectic to x. Since q is also
linelike to r, we can use Lemma 7.7 to obtain that q 6≡ ∩ Ar = Ar or [x, r]6≡ ∩ Ar, and
hence to conclude that [x, r] 6≡ ∩ Ar is contained in q 6≡. Next, suppose that q is special
to x. Let Tr be the transversal in Ar that contains r and [r, x]. The point q is linelike
to r and noncollinear to x, so Lemma 7.15 implies that q is noncollinear to the set π̄Ar

Tr
.

Together with Lemma 7.5, this implies that q 6≡ ∩ Ar equals either Ar or z 6≡ ∩ Ar with
z some point of Tr. In the former case, the set [r, x]6≡ ∩ Ar is indeed contained in q 6≡.
Suppose that we are in the latter case, and suppose for a contradiction that z 6= [r, x].
Let lq be a line through x in Ar, not in π̄Ar

Tr
. We have that [r, x] ≡ lq \ {x}, and that

|q 6≡ ∩ lq| = |z 6≡ ∩ lq| = 2. By Axiom (Im1)(ii), the plane 〈q, lq〉 is an A2-plane, which
contains both q and lq, but the claim above then implies that [r, x] 6≡ lq, a contradiction.
We hence indeed obtain that [r, x]6≡ ∩ Ar is contained in y 6≡.

We are now ready to finalize the proof. Let T be the transversal in A that contains
r and q, and take q′ ∈ T \ {r, q}. The point x is noncollinear to r and q of T , so, by
Corollary 6.11, it is also noncollinear to q′. We can hence repeat the reasoning in the
previous paragraph with q′ instead of q, and obtain that [r, x] 6≡ ∩ A is contained in q′6≡.
Every point of [r, x] 6≡ ∩ A is hence noncollinear to both q and q′ of T , and is hence
contained in q 6≡ ∩ q′6≡ ∩A = πAT , a contradiction to the fact that [r, x] 6≡ ∩A is a conical
hyperplane of A. �

Corollary 7.22. Let p and q be special points, and let x be a point linelike to p and
noncollinear to q. Then x is linelike or symplectic to [p, q].
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Proof. It suffices to show that the conditions of Lemma 7.21 hold. To that end, suppose
that x is special to q, and let Aq be an A2-plane that contains x and q. Denote by
Tq the transversal in Aq that contains x and [x, q]. The point p is linelike to x and
special to q, so, by Lemma 7.15, we find that p is noncollinear to π̄Aq

Tq
. The conditions

of Lemma 7.21 hence indeed hold, and we obtain that x is linelike or symplectic to
[p, q]. �

Lemma 7.23. Let p and q be special points, and let x be a point that is linelike to both
p and q. For any A2-plane A that contains both p and q, the following holds:

x 6≡ ∩ A = [p, q]6≡ ∩ A.

Proof. LetA be an A2-plane that contains p and q. By assumption, the point x is linelike
to both p and q of A, so by Lemma 7.7, the set x 6≡ ∩ A either equals A or [p, q]6≡ ∩ A.
It hence suffices to prove that x 6≡ ∩ A 6= A. Suppose for a contradiction that this is
the case. Let r be a point of A that is linelike to p but not to [p, q], and let s be a point
of A that is linelike to r but not to p. By construction, the point r equals [p, s] and is
collinear to q. The point x is linelike to p and noncollinear to s ∈ A. By Corollary 7.22,
the point x is linelike or symplectic to r. Now consider the line l := rq. The point x is
linelike to q ∈ l and linelike or symplectic to r ∈ l, which contradicts Lemma 7.4. �

Lemma 7.24. Let p and q be special points, and let x be a point linelike to both p and
q, then

x 6≡ ∩ q≡ = [p, q]6≡ ∩ q≡.

Proof. It clearly suffices to prove that for every line l through q, we have that x 6≡ ∩ l =
[p, q] 6≡ ∩ l. So let l be a line through q. First suppose that [p, q]6≡ ∩ l = {q}. By
Proposition 7.9, the point p is noncollinear to exactly two points of l. Axiom (Im1)(ii)
implies thatAl := 〈p, l〉 is an A2-plane. This planeAl of course contains p and q ∈ l, so
Lemma 7.23 yields x 6≡∩Al = [p, q] 6≡∩Al. This indeed proves that x 6≡∩ l = [p, q]6≡∩ l.

Next suppose that [p, q]6≡ ∩ l 6= {q}. Proposition 7.9 implies that [p, q] 6≡ l and that
p 6≡ ∩ l is either {q} or l. We have to prove that x 6≡ l. Suppose for a contradiction the
opposite. Then Corollary 7.20 yields an A2-plane Al that contains both x and l. Let π
be the dual affine plane in Al that contains both x and l.

We claim that p is noncollinear to the transversal TAl
π . Indeed, first assume that

p 6≡ ∩ l = l. Let z be any point of π collinear with x. The line xz contains at least
two points noncollinear to p, namely x and xz ∩ l. The point p is linelike to x, so
Lemma 6.24 implies that x is noncollinear to the line xz, and hence also to z. From this,
we can conclude that p 6≡ ∩ π = π, and, by Corollary 6.11, that p is also noncollinear
to TAl

π . On the other hand, assume that p 6≡ ∩ l = {q}. Then we can again take any
point z in π collinear to x. The line xz then contains a point xz ∩ l collinear to p, so
Lemma 6.24 implies that p 6≡ ∩ xz = {x}. This implies that p 6≡ ∩ π = Tq with Tq the
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transversal in A through x and q. The set p 6≡ ∩ A is however a conical hyperplane, so
also in this case, p 6≡ TAl

π . This proves the claim.

The point p is linelike to x and noncollinear to the transversal TAl
π . By Lemma 7.15,

we find that p 6≡ πAl
Tq

with Tq the transversal of Al that contains q and x. In particular,
the point p is noncollinear to T ′q, with T ′q the transversal in Al through q different from
Tl. Let r be a point on T ′q \ {q}, then r is special to x, and [r, x] = q. The point p is
linelike to x and noncollinear to r, so, by Corollary 7.22, the point p must be linelike
or symplectic to [r, x] = q, a contradiction to the fact that p is special to q. �

Corollary 7.25. Let p and q be special points, and let x and y be points that are linelike
to both p and q. Then

x 6≡ ∩ q≡ = y 6≡ ∩ q≡.

Proof. Lemma 7.24 stipulates that both sets are equal to [p, q] 6≡ ∩ q≡ �

Lemma 7.26. Let A be an A2-plane containing linelike points q1 and q2, let TA be
the unique transversal in A that contains q1 and q2, and let q be any point on any
transversal through q1 and q2, but different from q1 and q2. Then there exists some point
qA on TA \ {q1, q2} for which q 6≡ ∩ A = q 6≡A ∩ A.

Proof. Let T be a transversal that contains q1 and q2, and take q ∈ T \ {q1, q2}. The
points q1 and q2 on T are noncollinear to the set π̄ATA , so, by Corollary 6.11, the point q
is also noncollinear to π̄ATA . This point q is moreover linelike to both q1 and q2, so, by
Lemma 7.5, the set q 6≡ ∩ A is either A or is of the form q 6≡A ∩ A with qA some point of
TA. Assume that q is noncollinear to q 6≡1 ∩A. Then every point of q 6≡1 ∩A is noncollinear
to two points of T , namely q and q1, and is, by Corollary 6.11, hence noncollinear to all
points of T , and in particular to q2, a contradiction. With the same argument, but with
q1 and q2 interchanged, we also find that qA is collinear to some point of q 6≡2 ∩A. Hence
qA /∈ {q1, q2}, which concludes the proof. �

Lemma 7.27. Let p and q be special points, and let x and y be points that are linelike
to both p and q, then we have that x 6≡ = y 6≡.

Proof. The points x and y play exactly the same role, it hence suffices to prove that
y 6≡ ⊆ x 6≡, or equivalently, that x≡ ⊆ y≡. Let r be collinear to x. We prove that r is also
collinear to y. If r is collinear to q, this follows from Corollary 7.25. So we suppose
that this is not the case.

Let T be a transversal that contains both x and q, and take q′ ∈ T \ {x, q}. The point
r is collinear to x and noncollinear to q, so, by Corollary 6.11, it is collinear to q′. We
can now use Corollary 7.20 to find an A2-plane A′ that contains both q′ and the line
xr. Let T ′ be the transversal in A′ that contains both x and q′. Then Lemma 7.26, with
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A′, T ′, x, q′, q in the roles of A, TA, q1, q2, q, respectively, implies that q 6≡ ∩A = q 6≡A ∩A
for some point qA of T ′ ⊂ A′.

By Corollary 7.25, we have that x 6≡ ∩ q≡ = y 6≡ ∩ q≡. In particular, this is true in A′,
where, q≡ ∩ A′ = q≡A ∩ A′. We hence obtain that

x 6≡ ∩ A′ ∩ q≡A = y 6≡ ∩ A′ ∩ q≡A .

Applying Lemma 7.17, we can conclude that x 6≡ ∩ A′ = y 6≡ ∩ A′. The point r is hence
also collinear to y. �

Proposition 7.28. For special points p and q, there is exactly one point, namely [p, q],
that is linelike to both p and q.

Proof. It is clear than [p, q] is linelike to both p and q. So let x be any other point
linelike to both p and q. By Lemma 7.27, we have that x 6≡ = [p, q] 6≡. Axiom 1.2 then
immediately implies that x = [p, q]. �

8. Turning Y into a root filtration space

In this section, the partial linear space Y = (E ,I ) is a partial linear space satisfying
Axioms (Im1), (Im2) and (Im3). We moreover assume that no A2-plane of Y is defined
over the field F3 or over a field of characteristic two.

Denote with L the set of transversals of Y . We will prove that X = (E ,L ) forms a
nondegenerate root filtration space. To that end, we will first gather some extra results
in Section 8.1 that will help distinguish linelike, symplectic and special points. Next,
in Section 8.2, we translate these results to the language of root filtration spaces, and in
particular prove thatX satisfies axioms (Rf1) to (Rf8) of Definition 2.15. In Section 8.3
we proceed by proving that X also forms a partial linear space, which then implies that
it forms a nondegenerate root filtration space.

8.1. Distinguishing linelike, symplectic and special points

In this subsection, we will gather several results that will help distinguish linelike,
symplectic and special points.

In a first step, we consider a point x that is linelike to at least two points of some
A2-plane A, and see if we can determine the set of points in A that are linelike or
symplectic to x.

Lemma 8.1. If a point x is linelike or symplectic to two points of a transversal T , then
x is linelike or symplectic to all points of T .
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Proof. Let x be linelike or symplectic to two distinct points q1 and q2 of T . Suppose
for a contradiction that there exists some point q of T such that x is neither linelike nor
symplectic to q. By Lemma 7.3, the point x is also noncollinear to q, implying that
x is special to q. Let A be an A2-plane that contains the special points x and q. The
point q1 is linelike or symplectic to both x and q of A, so we can apply Lemma 7.7 and
obtain that q 6≡1 ∩ A is either A or [x, q] 6≡ ∩ A, and in particular, that [x, q]6≡ ∩ A ⊆ q 6≡1 .
Similarly, we find that [x, q] 6≡∩A ⊆ q 6≡2 . Every point ofA noncollinear to [x, q] is hence
noncollinear to both q1 and q2 of T , and, by Corollary 6.11, noncollinear to q ∈ T , a
contradiction. �

Lemma 8.2. Let x be a point, let A be an A2-plane containing a transversal T , and
assume that x is linelike to at least two points of T . For every point p of T for which
p 6≡∩A ⊆ x 6≡, the point x is linelike or symplectic to all points of Tp, with Tp the unique
transversal in A through p different from T .

Proof. Let x,A and T be as stated. Let p be any point of T , and denote with Tp the
transversal in A through p different from T . The point x is linelike with at least two
points of T ; denote those with q1 and q2. By Lemma 8.1, the point x is linelike or
symplectic to all points of T , and in particular also to p.

Assume that p 6≡ ∩A ⊆ x 6≡. Denote πp := πATp , and let q be any point of πp \ T . Note
that q is special to p and noncollinear to x. First suppose that x is linelike to p. Then
we can use Corollary 7.22 to obtain that x is indeed linelike or symplectic to all points
of Tp. Next, suppose that x is symplectic to p. In particular, we find that p is different
from q1 and q2, and hence that q1, q2 ∈ πp. We want to apply Lemma 7.21 to x, p and
q. To do so, assume that x is special to q, let Aq be any A2-plane that contains x and q,
and denote with Tq the transversal in Aq through x and [x, q]. We have to prove that p
is noncollinear to πq := π

Aq

Tq
.

Denote with Tx the transversal in Aq through x different from Tq, and let y 6= x
be any point of Tx. We claim that y is noncollinear to Tp. Since every point of T is
linelike or symplectic to x, Lemma 7.3 implies that every point of T is noncollinear
to Tx, and in particular, that y is noncollinear to T . Moreover, for i = 1, 2, the point
qi is linelike to x. If qi was noncollinear to any point of πq \ Tx, Lemma 7.15 implies
that qi would be noncollinear to the whole of πq, which contains q, a contradiction. We
hence obtain that q 6≡i ∩ πq = Tx, and in particular, that qi is noncollinear to a unique
point of the line qy, namely y. Then Axiom (Im1)(i) implies that y is noncollinear to
a unique point of qqi, namely qi. We use this to determine y 6≡ ∩ πp. The point y is
hence collinear to q, noncollinear to T in πp, and there are two lines through q in πp for
which y is noncollinear to exactly one point of that line. Lemma 6.12 then implies that
y 6≡ ∩ πp = T . The set y 6≡ ∩A is of course a conical hyperplane of A, so this very same
lemma implies that y is noncollinear to TAπp = Tp, which proves the claim.
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The point [p, q] is linelike to the point q and noncollinear to y, so Lemma 6.24 implies
that [p, q] is noncollinear to the line qy. The point p is noncollinear to y, so Proposi-
tion 7.9 on its turn then implies that p is noncollinear to the whole of qy. The point y
was an arbitrary point on Tx \ {x}, so we indeed obtain that p is noncollinear to the
dual affine plane πq.

As desired, we can now apply Lemma 7.14 to x, p and q, and obtain that x is linelike
or symplectic to [p, q] ∈ Tp \ {p}. The point x is hence linelike or symplectic to at least
two points of Tp, namely p and [p, q]. Lemma 8.1 concludes the proof. �

Lemma 8.3. If a point x is linelike to at least two points of a transversal T contained
in an A2-plane A, then the set x 6≡ ∩ A is one of the following.

(1) The set p 6≡ ∩ A for some point p of T . In this case, the points in A that are
linelike or symplectic to x are exactly those points in A that are linelike to p.

(2) The whole of A. In this case, the points in A linelike or symplectic to x are
exactly the points of π̄AT .

Proof. We can apply Lemma 7.6 to x and A, and find that x 6≡ ∩ A is either A or p 6≡ ∩
A with p some point of T . We have to determine which points of A are linelike or
symplectic to x. From Lemma 8.1 it is already clear that x is linelike or symplectic to
all points of T .

First assume that x 6≡ ∩A = p 6≡ ∩A for some point p of T . We can apply Lemma 8.2
and obtain that x is linelike or symplectic to all points of Tp. The set of points in A
that are linelike to p, is exactly Tp ∪ T , so x is indeed linelike to all points of A that are
linelike to p. It follows from Lemma 7.5 that x is not linelike to any other point of A.

Next, assume that x 6≡ ∩ A = A. Let p be any point of T , and denote with Tp the
transversal in A through p different from Tp. The set p 6≡ ∩ A is contained in A, and
hence also in x 6≡. We can then again apply Lemma 8.2 and obtain that x is linelike or
symplectic to all points of Tp. This point p was an arbitrary point of T , so we conclude
that x is linelike or symplectic to all points of π̄AT . Let y be any point of A not in π̄AT ,
then y is collinear to at least one of the points q1 and q2. Without loss of generality, we
may assume that it is collinear to q1. Let l be the line through q1 and y. The point x
is linelike to a point of l and by Lemma 7.4 hence not linelike or symplectic to y ∈ l.
This concludes the proof. �

The next goal is to prove Corollary 8.6, for which we first gather two smaller results.

Lemma 8.4. Let T be a transversal containing points q, q1 and q2, and let p be a point
that is symplectic to q and special to q1 and q2. Then we have

[p, q2]
6≡ ∩ p≡ = [p, q1]

6≡ ∩ p≡.
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Proof. The points [p, q1] and [p, q2] clearly play the same role (with q1 and q2 inter-
changed). It hence suffices to prove that every point collinear to [p, q1] and p, is also
collinear to [p, q2]. Let l be a line through p containing a point collinear to [p, q1].
Then, by Proposition 7.9, the point q1 is noncollinear to exactly two points of l. Axiom
(Im1)(ii) implies that A := 〈q1, l〉 is an A2-plane. This plane of course contains q1,
p ∈ l and [p, q1]. Let T1 be the transversal in A that contains q1 and [p, q1]. We can
apply Lemma 7.8 with q, q2, q1, p in the role of p′, p, q1, q2, respectively, and find that
q 6≡2 ∩ A = x 6≡q2 ∩ A, with xq2 some point of T1 different from [p, q1]. This set intersects
l in exactly two points, that is, |q 6≡2 ∩ l| = 2. Proposition 7.9 then implies that [p, q2] is
collinear to l \ {p}, which concludes the proof. �

Lemma 8.5. Let T be a transversal containing points q, q1 and q2, and let p be a point
that is symplectic to q and special to q1 and q2. Then [p, q1] = [p, q2].

Proof. By Axiom (Im3), it suffices to prove that [p, q1]
6≡ = [p, q2]

6≡. The points [p, q1]
and [p, q2] however, play the same role, so it suffices to prove that [p, q2]

6≡ ⊆ [p, q1]
6≡,

or equivalently, that [p, q1]
≡ ⊆ [p, q2]

≡. To that end, let r be a point collinear to [p, q1].
If r is collinear to p, it follows from Lemma 8.4 that r is also collinear to [p, q2]. So
suppose that r is noncollinear to p.

Let T1 be a transversal through p and [p, q1], and let p′ be a point of T1 \ {p, [p, q1]}.
The point r is collinear to [p, q1] and noncollinear to p, so, by Corollary 6.11, it is
collinear to p′ ∈ T1. We then apply Corollary 7.20 to the point p′ and the line r[p, q1],
and obtain an A2-plane A that contains p′, r and [p, q1]. By Lemma 8.4, we have that
[p, q1]

6≡ ∩ p≡ = [p, q2]
6≡ ∩ p≡. In particular, we find that

[p, q1]
6≡ ∩ A ∩ p≡ = [p, q2]

6≡ ∩ A ∩ p≡.

Let TA be the transversal in A through p′ and [p, q1]. We apply Lemma 7.26 with
p, p′, [p, q1] in the role of q, q1, q2, respectively, and obtain that p 6≡ ∩ A = p 6≡A ∩ A for
some point pA of TA. Hence,

[p, q1]
6≡ ∩ A ∩ p≡A = [p, q2] ∩ A ∩ p≡A,

for some point pA of A. Using Lemma 7.17, we obtain that [p, q1]
6≡ ∩A = [p, q2]

6≡ ∩A.
The point r is contained in A, and is hence collinear to [p, q2]. This concludes the
proof. �

Corollary 8.6. Let T be a transversal containing points q and x. If a point p is linelike
or symplectic to q and special to x, then [p, x] is linelike to all points of T \ {q}.

Proof. Let q′ be any point of T \ {x, q}. By Lemma 8.1, the point p is special to q′.
We now use Lemma 8.5 with p, q, q′, x in the role of p, q1, q2, q, respectively, and obtain
[p, q] = [p, q′]. The point [p, q′] is linelike to q′, so [p, q] is, too. �
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Remark 8.7. If in Corollary 8.6, the point p is linelike to q, then q is linelike to both p
and x, implying that q = [p, x].

Next, we consider an A2-plane A containing two special points q1 and q2. We sup-
pose that a point p is linelike to q1 and symplectic to q2, and try to produce extra points
in A to which p is linelike. To that end, we distinguish between the case where p is
collinear to some points of A (Lemma 8.8) and the case where p is noncollinear to all
points of A (Lemma 8.9). We summarize the results in Corollary 8.10.

Lemma 8.8. Let q1 and q2 be two special points, let A be an A2-plane containing q1
and q2 and let T1 be the transversal in A that contains q1 and [q1, q2]. If some point p
is linelike to q1, symplectic to q2 and if p 6≡ ∩ A = [q1, q2]

6≡ ∩ A, then p is linelike to all
points of T1 \ {[q1, q2]}.

Proof. Let T be a transversal that contains both p and q1, and let x1 be any point of T1 \
{q1, [q1, q2]}. We claim that there exists some point x of T such that x is noncollinear to
x 6≡1 ∩ A, while being linelike to two points of T . Indeed, let Tx1 be the transversal in A
through x1 different from T1, and let y be any point of πATx1 \T1. Note that y is collinear
to q1, [q1, q2] and p. By Corollary 6.28, the point y is noncollinear to at least one point
of T , say x, which of course is different from p and q1. The point q2 is symplectic to
p ∈ T and special to q1 ∈ T , so, by Corollary 8.6, the point [q1, q2] is linelike to all
points of T \ {p}, and in particular to x. The point x is hence linelike to the two points
q1 and [q1, q2] of T1. We can use this to determine x 6≡ ∩ A; by Lemma 7.6, it is either
equal to A or of the form q 6≡ ∩A with q some point of T1. In the latter case, we can use
the fact that x is noncollinear to y to conclude that q = x1. In any case, the point x is
indeed noncollinear to x 6≡1 ∩ A, which proves the claim.

We can now apply Lemma 8.2 to x, and obtain that x is linelike or symplectic to all
points of Tx1 . Let z be a point of Tx1 , then z is linelike or symplectic to x and special
to q1. Corollary 8.6 then implies that [z, q1] = x1 is linelike to p. This concludes the
proof. �

Lemma 8.9. Let q1 and q2 be two special points, let A be an A2-plane containing q1
and q2 and let T1 be the transversal in A that contains q1 and [q1, q2]. If a point p is
linelike to q1, symplectic to q2 and noncollinear to A, then p is linelike to each, but at
most one, point of T1.

Proof. Let T be a transversal that contains q1 and p, and let x be any point on T \{q1, p}.
The point q2 is symplectic to p and special to q1 ∈ T , we can hence use Corollary 8.6
to obtain that [q1, q2] is linelike to all points of T \ {p}, and in particular to x. We
claim that x is linelike to all points of T1. To that end, we first determine x 6≡ ∩ A. By
Corollary 6.11, every point noncollinear to p and q1 is noncollinear to all points of T ,
and hence to x. This implies that q 6≡1 ∩ A is contained in x 6≡. Moreover, any point in
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x 6≡∩A is noncollinear to x and p, and again by Corollary 6.11, also to q1. We conclude
that x 6≡ ∩A = q 6≡1 ∩A. Take z in A linelike to q1 but not on T1. By Lemma 8.3, applied
to x, we find that x is linelike or symplectic to z. We can now apply Lemma 8.8 to x,
and find that x is linelike to all points of T1\{q1}. The point x is obviously also linelike
to q1, which proves the claim. The point x was an arbitrary point of T \ {p, q1}, so we
conclude that each point of T \ {p} is linelike to each point of T1.

Next, let x1 be any point of T1 \ {q1}. By the previous paragraph, the point x1 is
linelike to all points of T \ {p}, so Lemma 8.1 implies that x1 is linelike or symplectic
to p. Let A′ be an A2-plane that contains T . Assume that x1 is symplectic to p, we aim
to prove that x 6≡1 ∩A′ contains p 6≡ ∩A′. The point x1 is linelike to at least two points of
T , so, using Lemma 8.3, we find that x 6≡1 ∩ A′ is either A′ or equals x 6≡ ∩ A′, for some
point x on T . In the latter case, x1 is moreover linelike or symplectic to all points of
T ′x, with T ′x the transversal in A′ through x different from T . In the former case, we
immediately obtain that p 6≡ ∩ A′ is contained in x 6≡1 . Therefore, suppose that we are in
the latter case. Lemma 8.8 implies that x1 is linelike to all points of T \ {x}. The point
x1 is assumed to be symplectic to p ∈ T , so this implies that x = p. We again obtain
that p 6≡ ∩ A′ is contained in x 6≡1 .

Suppose for a contradiction that p is symplectic to another point x′1 of T1 \ {q1}.
Then, by the previous paragraph, both x1 and x′1 are noncollinear to the set p 6≡ ∩ A′.
Using Corollary 6.11, we find that every point of T is noncollinear to the set p 6≡ ∩ A′,
including q1, a contradiction. We conclude that p is indeed linelike to each, but at most
one, point of T1. �

Corollary 8.10. Let x be a point and T a transversal. If x is linelike to at least two
points of T , it is linelike to all but at most one point of T . If x is moreover not linelike
to p ∈ T , then p 6≡ ∩ A ⊆ x 6≡ for any A2-plane A that contains T .

Proof. Let A be an A2-plane that contains T . Using Lemma 7.6, we see that x 6≡ ∩ A is
either A or is of the form p 6≡ ∩ A with p some point of T . In any case, we can pick a
point p of T such that p 6≡ ∩ A ⊆ x 6≡. Let q be a point in A linelike to p but not on T .
By Lemma 7.21, the point x is linelike or symplectic to q. If x is linelike to q, we use
Proposition 7.28 to see that x coincides with p, which proves the assertion. Suppose
that x is symplectic to q. If x 6≡∩A = p 6≡∩A, then, by Lemma 8.8, the point x is linelike
to T \ {p}. If on the other hand, x 6≡ ∩A = A, then we use Lemma 8.9 to conclude that
x is linelike to all but at most one point of T . �

We of course want to obtain a stronger version of Corollary 8.10, namely that a point
is linelike to zero, one or all points of a transversal. We will prove this in Proposi-
tion 8.12. Once again Axiom 1.2 will play a crucial role. We first prove an in-between
lemma.
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Lemma 8.11. Let p be a point, and let T1 and T2 be two transversals through p. If some
point q1 of T1 is symplectic to some point q2 of T2 but linelike to all other points of T2,
then q2 is linelike to all points of T1 different from q1.

Proof. Let x2 be any point of T2 \ {q2}. By assumption, this point is linelike to both p
and q1 of T1, so Corollary 8.10 implies that there is at most one point on T1 that is not
linelike to x2. In particular, we find some point x1 ∈ T1 \ {p, q1} that is linelike to x2.

We claim that x1 is linelike to q2. Suppose not. LetA be an A2-plane that contains T2.
Both points q1 and x1 are then linelike to p and x2 of T2, but not to q2. Corollary 8.10
then implies that both q1 and x1 are noncollinear to q 6≡2 ∩ A. The points q1 and x1
are both contained in the transversal T1, so Corollary 6.11 then implies that q 6≡2 ∩ A
is noncollinear to all points of T1, in particular to p ∈ A, a contradiction. The claim
follows.

The point q2 is linelike to both p and x1 on T1, and is symplectic to q1 ∈ T1. We can
again use Corollary 8.10 and obtain that q2 is linelike to T1 \ {q1}. �

Proposition 8.12. If a point is linelike to at least two points of a transversal, it is
linelike to all points of that transversal.

Proof. Let q1 be a point and T2 a transversal, and suppose that q1 is linelike to at least
two points of T2. By Corollary 6.11, we have that q1 is linelike or symplectic to all
points of T2. Suppose for a contradiction that there is some point q2 on T2 that is
symplectic to q1.

By Corollary 8.10, the point q1 is linelike to T2 \{q2}. Take any point p on T2 \{q2},
and let T1 be a transversal that contains q1 and p. By Lemma 8.11, the point q2 is
linelike to T1 \ {q1}. We will prove that q 6≡1 = q 6≡2 . The points q1 and q2 clearly play the
same role, so it suffices to show q 6≡1 ⊆ q 6≡2 . Let x be any point noncollinear to q1. We
prove that x is also noncollinear to q2.

First assume that x is linelike or symplectic to q1. By Lemma 7.3, the point x is
noncollinear to every point that is linelike to q1. The point q1 is, however, linelike to
T2 \ {q2}. So, x is noncollinear to T2 \ {q2}. By Corollary 6.11, the point x is then
noncollinear to all points of T2, including q2.

Now assume that x is special to q1 and denote x1 := [x, q1]. The point x1 is linelike to
q1, and is, by the reasoning above, hence noncollinear to all points of T2. We claim that
x1 is linelike or symplectic to q2. If x1 is linelike or symplectic to at least two points of
T2, Lemma 8.1 implies that it is linelike or symplectic to all points of T2, including q2.
If not, then there is a point x2 ∈ T2 \ {q2} that is special to x1. In this case, both x1 and
x2 are linelike to q1, so Proposition 7.28 yields q1 = [x1, x2]. Let Ax be any A2-plane
containing x1 and x2, and let Tx be the transversal in Ax through q1 and x2. The point
q1 is linelike to T2 \ {q2}, so by Lemma 8.11, the point q2 is linelike to Tx \ {q1}. Then
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Corollary 8.10 implies that q2 is noncollinear to q 6≡1 ∩ Ax and Lemma 8.3 then implies
that q2 is linelike or symplectic to all points of Ax that are linelike to q1. The point
x1 being such a point, we indeed obtain that q2 is linelike or symplectic to x1. Using
Lemma 7.3, we find that q2 is noncollinear to all points that are linelike to x1. The point
x is of course linelike to x1, so we conclude that x is indeed noncollinear to q2.

We have obtained that q 6≡1 = q 6≡2 . Axiom 1.2 implies q1 = q2, a contradiction. This
concludes the proof of the proposition. �

We finish this subsection by gathering two corollaries which will be usefull later on.

Corollary 8.13. Let q1 and q2 be two special points. If a point p is linelike to q1 and
symplectic to q2, it is linelike to [q1, q2].

Proof. Let T be a transversal through p and q1. The point q2 is symplectic to p and
special to q1, so, by Corollary 8.6, the point [q1, q2] is linelike to T \ {p}. Using Propo-
sition 8.12, we immediately obtain that [q1, q2] is linelike to all points of T , and hence
also to p. �

Corollary 8.14. Let q1 and q2 be two special points. If a point p is symplectic to both
q1 and q2, it is linelike or symplectic to [q1, q2].

Proof. Assume for a contradiction that p is special to [q1, q2]. For i = 1, 2, the point
qi is linelike to [q1, q2] and symplectic to p. Using Corollary 8.13, we find that qi is
linelike to [p, [q1, q2]]. This point [p, [q1, q2]] is hence linelike to both points q1 and q2,
and, by Proposition 7.28, equals [q1, q2], a contradiction. �

8.2. Translation to the language of root filtration spaces

We define a new line set L on E , and define relations on E that will turn out to de-
fine the filtration on (E ,L ). One should note that these relations are actually just a
rebranding of those considered in Definition 6.19.

Definition 8.15. We define the following relations on E :

E−2 := {(x, y) |x = y},
E−1 := {(x, y) |x and y are linelike},
E0 := {(x, y) |x and y are symplectic},
E1 := {(x, y) |x and y are special},
E2 := {(x, y) |x and y are collinear}.

Let L denote the set of transversals of Y . We will denote with X the point-line geom-
etry (E ,L ), equipped this filtration {Ei}−2≤i≤2.
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Lemma 8.16. The sets Ei, with −2 ≤ i ≤ 2 provide a partition of E × E into five
symmetric relations. Every element of L contains at least six points.

Proof. It is clear from Definition 6.19 that the relations are symmetric. The fact that
the relations form a partition follows from Lemma 6.20, Proposition 6.25 and Corol-
lary 6.30. An element T of L is a transversal of Y , and is hence a transversal in some
A2-plane of Y , which is defined over a field with at least five elements, implying that T
contains at least six points. �

Axioms (Rf1) and (Rf2) hold by definition in X , we hence start with proving Axiom
(Rf3).

Lemma 8.17. Axiom (Rf3) holds in X .

Proof. Let x and y be special points, then, by Proposition 7.28, there is a unique point
[x, y] that is linelike to both x and y. We check that [x, y] indeed satisfies the Axiom
(Rf3). Let z be any point in Ei(x) ∩ Ej(y), we aim to prove that z is contained in
E≤i+j([x, y]). It suffices to check this for i ≤ j and for i+ j ≤ 1.

• Suppose that i = −2. Then z equals x, which automatically means that y is
special to z (i.e. j = 1), and that [x, y] is indeed linelike to z.
• Suppose that i = −1. If j = −1, then, by Proposition 7.28, the point z equals

[x, y]. If j = 0, then it follows from Corollary 8.13 that z is linelike to [x, y].
If j = 1, then it follows from Corollary 7.22 that z is linelike or symplectic to
[x, y]. If j = 2, then it suffices to prove that z is noncollinear to [x, y]. But z
is linelike to x and is by Lemma 7.3 noncollinear to all points linelike to x, in
particular indeed to [x, y].
• Suppose that i = 0. If j = 0, then it follows from Corollary 8.14 that z is

linelike or symplectic to [x, y]. If j = 1, we have to prove that z is noncollinear
to [x, y]. The point z is symplectic to x and is by Lemma 7.3 noncollinear to all
points linelike to x, in particular to [x, y].

�

Lemma 8.18. Axioms (Rf4)− (Rf8) hold in X .

Proof. Axiom (Rf4) holds by Lemma 7.4. Axiom (Rf5) holds by Corollary 6.11 for
i = 1, Lemma 8.1 for i = 0 and Proposition 8.12 for i = −1. Axiom (Rf6) holds
by Corollary 6.28. Any two collinear points of Y give rise to an element of E2, which
implies that Axiom (Rf7) holds. The space Y is connected, so in order to prove that
X is connected, it suffices to find a path in X that connects any pair (x, y) of E2. Such
a pair however lies on a line of Y , and is, by Lemma 6.29 contained in an A2-plane.
Inside such an A2-plane, we of course find a path in X connecting x and y. This proves
that Axiom (Rf8) holds. �
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8.3. A tedious yet unavoidable detail: X forms a partial linear space

In order to be able to conclude that X is a root filtration space, we still have to verify
thatX is a partial linear space, that is, two linelike points of Y are contained in a unique
common transversal of Y . This is what we will do in this section. In order to do so,
we will use several results from [4] that hold for (nondegenerate) root filtration spaces.
Whenever we do so, the results do not depend on this root filtration space being a partial
linear space.

Lemma 8.19. For each (p, q) ∈ E0 and each (x, y) ∈ E−1 with x, y ∈ E−1(p)∩E−1(q),
there is exactly one element of L that contains x and y.

Proof. In proposition 11 of [4], it is proved that the subspace E−1(p) ∩ E−1(q) satisfies
the following properties:

(1) No point is linelike with all other points,
(2) Every point is linelike with one or all points of every transversal (contained in

the subspace).

A space with these properties is however always a partial linear space (see for example
Theorem 7.3.6 of [24]). There is hence at most one element of L containing x and y
that is itself contained in E−1(p) ∩ E−1(q). Since E−1(p) and E−1(q) are subspaces in
X , any element of L that contains x and y is contained in E−1(p) ∩ E−1(q). �

Lemma 8.20. If there is some (x, y) ∈ E−1, for which there exists some p, q ∈ E−1(x)∩
E−1(y) for which (p, q) ∈ E0, then X is a partial linear space.

Proof. Theorem 13 of [4] implies that, if there is some point pair (x, y) ∈ E−1 for
which this holds, this holds for all point pairs in E−1. The result then follows from
Lemma 8.19. �

Lemma 8.21. Let (x, y) ∈ E−1 be a pointpair such that Mx,y := E≤−1(x) ∩ E≤−1(y)
consists of mutually linelike points, then for each v with ∅ 6= E≤−1(v) ∩Mx,y 6= Mx,y,
the set Mx,y ∩ E≤(v) is a proper hyperplane of Mx,y. In particular, Mx,y ∩ E1(v) 6= ∅.

Proof. It follows from Lemma 16 of [4] that E≤0(v)∩Mx,y forms a proper subspace of
Mx,y. In particular, there exists some element w of Mx,y \ E≤0(v). There is some point
of Mx,y linelike to both v and w, implying that w ∈ E1(v). �

We are now ready to prove that X is a partial linear space. The proof is based on the
idea in Lemma 17 of [4].

Lemma 8.22. The point-line geometry X is a partial linear space.

Proof. Assume thatX is not a partial linear space, then there exists linelike points x and
y, with two different transversals T1 and T2 through x and y. Without loss of generality,
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we find a point z2 on T2 \ T1. Let A1 be an A2-plane through T1. Lemma 7.26 yields
z 6≡2 ∩A1 = z 6≡1 ∩A1 for some point z1 of T1 \{x, y}. Select z in A1 linelike to z1 but not
on T1. Then, by Lemma 8.2, the point z2 is linelike or symplectic to z. If it was linelike
to z, then, by Proposition 7.28, z2 = [z, x] = z1, a contradiction to z2 6∈ T2. We hence
obtain that z2 is symplectic to z.

The set X is not a partial linear space, so, by Lemma 8.20, the sets

Mx,y := E≤−1(x) ∩ E≤−1(y) and Mz1,z := E≤−1(z) ∩ E≤−1(z1)

both consist of mutually linelike points. Note that z1, z2 ∈Mx,y. The point z2 is linelike
to z1 but not to z, so by Lemma 8.21, there is some point w ∈ Mz1,z that is special to
z2. Let T be a transversal through z and w. The point x is linelike to z1 and special to z,
so, by Lemma 8.21, it is linelike or symplectic to some point w′ of T . Note that w′ 6= z.
This point w′ is contained in T , which is contained in Mz1,z and is hence linelike to z1.
Since w′ is linelike or symplectic to x and z1 of T1, it follows from Lemma 8.1 that w′

is also linelike or symplectic to y. This point w′ is hence also linelike or symplectic to
z2 ∈ T2. The point z2 is linelike or symplectic to both z and w′ of T , and hence also to
w, a contradiction. �

In particular, we obtain:.

Proposition 8.23. The space X is a nondegenerate root filtration space.

8.4. Last step in the proof of the Main Theorem

In this subsection, we finish the proof of the Main Theorem. In particular, we prove
that X = (E ,L ) is a long root geometry, which is defined over a field (not F3 and of
characteristic not two), and that Y is the imaginary geometry of X . We first apply the
classification theorem of root filtration spaces.

Proposition 8.24 ([4] and [13]). The point-line geometryX is a hexagonal root shadow
space (possibly of infinite rank) which is defined over a field of characteristic not two,
different from F3.

We will use the correspondence of X and Y to prove that X is not just a root shadow
space, but also a long root geometry. To that end, we first describe how we can recon-
struct the partial linear space Y from X , cf. Construction 3.9.

Construction 8.25. Two points p and q are opposite in X if and only if they are
collinear in Y . In this case, we can reconstruct the line pq in Y as follows. Take
any two paths (p, p1, p2, q) and (p, q1, q2, q) in X such that p1 is special to q1 and p2 is
special to q2.

pq = {[x, y] |x ∈ p1p2, y ∈ q1q2 with x special to y}.
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Proof. Follows immediately from the fact that the points p, p1, p2, q, q1 and q2 generate
an A2-plane in Y . Note that this construction is independent of the chosen points pi, qi
precisely because Y is a partial linear space. �

Proposition 8.26. X is a hexagonal long root geometry and Y is the imaginary geom-
etry of X .

Proof. It follows from Proposition 8.24 that X is a hexagonal root shadow space. If X
would be a long root geometry, then it follows immediately from Construction 3.9 and
Construction 8.25 that Y is the imaginary geometry ofX . It hence suffices to show that
X is a long root geometry.

First suppose that X does not have infinite rank. Then X is related to a thick, spher-
ical building ∆ of rank n ≥ 2. If X is related to a spherical Moufang building ∆, one
easily checks that the fact that Y is a partial linear space which can be obtained from X
using Construction 8.25, implies that X is indeed a long root geometry. We prove that
∆ is Moufang. If n > 2, this follows immediately. Suppose that n = 2, thenX is either
of type A2,{1,2} or G2,1. In the former case, the points of X coincide with the points of
an A2-plane of Y , which is assumed to be defined over a field, implying that ∆ is Mo-
ufang. In the latter case, X is a thick generalized hexagon, as noted in Remark 2.11. In
the language of generalized polygons however, Construction 8.25 translates to the fact
that the lines of X are distance-3-regular (see [20], also Section 1.9.16 in [29]). Also,
the existence of an A2-plane through every pair of opposite lines implies readily that in
the dual generalized hexagon, with the terminology of [21], all intersection sets have
size 1. The main result of [21] (see also Theorem 6.3.4 of [29]) now implies that ∆ is
Moufang, and hence that X is a long root geometry.

Next, suppose that X has infinite rank. If X is of type E (P,H), it is automatically a
long root geometry. If X is a line Grassmannian of a polar space Γ of infinite rank, one
again checks that the fact that Y is a partial linear space which can be obtained from X
using Construction 8.25, implies that Γ is an orthogonal polar space, and hence that X
is a long root geometry. �

This concludes the proof of the Main Theorem.
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