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Abstract. We review the impact of Jacques Tits’ paper, “Ovöıdes et
groupes de Suzuki,” Arch. Math. 13 (1962), 187–198. The paper turned
out to be a milestone for both geometry (incidence geometry, finite
geometry, Galois geometry) and algebra (group theory).
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1. Introduction

One of the main achievements of Jacques Tits’ work is a successful geometric
interpretation of the so-called groups of Lie type, among which semisimple
algebraic groups, classical and mixed type groups, Chevalley groups and their
twisted variants. If the isotropic rank of these groups is at least 2, then they
act in a very explicit and canonical way on a geometric structure called
Moufang spherical Tits building of rank at least 2. These structures and the
action of their corresponding automorphism groups are—globally—well un-
derstood thanks to the groundbreaking seminal work of Tits [34] and Tits &
Weiss [35]. Special mentioning deserves the case where the ground field has a
valuation, since in this case a second and for certain purposes more efficient
geometrical structure called a Bruhat-Tits building or a non-discrete variant
exists by the work of Bruhat & Tits [5]. However, if the isotropic rank of
the group in question is equal to 1, then the canonical definition of the cor-
responding geometric structure only gives a set without obvious additional
geometric structure besides a rather precise and restricted kind of action of
the group—these sets are called Moufang sets. In many cases, for instance in
the case where the group is a non-split simple algebraic group of relative rank
1, it suffices to extend the ground field to see this set embedded—in some
specific way—in a more elaborate geometry. For example, quadrics of Witt
index 1 turn up here. This trick does not work so well for the twisted Cheval-
ley groups of types 2B2 (the Suzuki groups discovered by Suzuki [26]) and 2G2
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(the (small) Ree groups discovered by Ree [21]). And that is precisely the rea-
son why these groups were first discovered as permutation groups seemingly
unrelated to the nice geometries that were already studied by Tits at the time
of their discovery, and which would later be unified by the theory of buildings.
It is precisely in Tits’ paper [32] titled Groupes et ovöıdes de Suzuki, which
appeared in Archiv der Mathematik, volume 13 (1962), pages 187–198, that
the connection is made with the standard geometries for Chevalley groups.
Slightly before that, Tits [30] already generalized the constructions of Suzuki
and Ree to non-perfect fields and exhibited, with modern terminology, a split
BN-pair inside it, providing for instance concrete descriptions of the unipo-
tent subgroups showing, again with modern terminology, that these groups
defined Moufang sets. Already there, the geometries were present in an im-
plicit way; of course this was much more explicit in Tits’ mind, and revealed
to the mathematical community precisely in [32]. Here is perhaps also a good
place to note that the observation of Tits that the Suzuki and Ree groups
can be defined over imperfect fields led him to discover the so-called groups
of mixed type introduced in [34], Section 10.3.2.

A few years earlier, the Italian geometer Beniamino Segre developed his
ideas about fundamental questions in finite geometry. Segre thereby laid the
foundations of Galois geometry, that is, the study of interesting objects in
projective spaces defined over finite fields—called Galois spaces and Galois
fields, respectively. Central in his approach were point sets of projective space
with precise intersection behaviour with respect to subspaces, in particular
with lines. This led for instance to the following two fundamental theorems,
using modern standard notation.

Theorem 1.1 (Segre [22]). A set of q+1 points in the Desarguesian projective
plane PG(2, q) over the Galois field GF(q) = Fq of q elements, with q odd,
meeting every line in at most two points, is a conic.

Theorem 1.2 (Barlotti [2], Panella [16]). A set of q2 + 1 points in the 3-
dimensional Desarguesian projective space PG(3, q) over the Galois field GF(q) =
Fq of q elements, with q odd, meeting every line in at most two points, is a
quadric.

A crucial assumption in the previous theorems is the oddness of q. In-
deed, in the even case many counter examples to Theorem 1.1 were known,
and Segre constructed a counter example to Theorem 1.2 in PG(3, 8). That
counter example was precisely the smallest nontrivial protagonist of Tits’
paper [32]. By Segre, a k-cap K of PG(3, q) is a set of k points no three of
which are collinear. If k is maximal then K is called an ovaloid [23]. For
q > 2, the ovaloids of PG(3, q) are exactly the ovoids, whose definition is due
to Tits [31] (and also given below). For q = 2, an ovaloid has eight points,
while an ovoid has five points. The 5-caps of PG(3, 2) which are not contained
in a larger cap are exactly the ovoids.

Whereas Segre approached ovoids from a combinatorial point of view,
Tits approached them from a group theoretic point of view. The latter allows
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to produce a definition where the case q = 2 above is included without extra
condition, and which also makes sense in the infinite case over any field (even
skew field). Let us explicitly state this definition; it was first formulated by
Tits, though not in [32], but in [31].

Definition 1.3 (Tits [31]). Let O be a set of points of some projective space Σ.
Then O is called an ovoid if every line of Σ intersects O in at most two points,
and if, for each point x ∈ O, the union of the set of lines of Σ intersecting O
in precisely {x}, is a hyperplane of Σ.

The crucial observation made by Tits in [32] is that the groups found
by Suzuki in [26], generalized by Tits in [30], act 2-transitively on ovoids of
a suitable 3-dimensional projective space (hence providing a geometric de-
scription of Suzuki’s set of q2 + 1 points upon which the Suzuki group Suz(q)
acts as a permutaton group). Moreover, again using modern terminology,
that ovoid can be constructed as the set of absolute points of a polarity of a
symplectic quadrangle (in the perfect case), or what is called a Suzuki quad-
rangle in the imperfect case. Hence, Tits not only found an infinite class of
new ovoids of PG(3,K), where K is a field in characteristic 2 whose Frobenius
x 7→ x2 admits a square root, but he also showed that this ovoid is contained
in a symplectic generalized quadrangle W(K) in such a way that each line of
W(K) has exactly one point in common with the ovoid. Such sets of general-
ized quadrangles are nowadays also called ovoids (of generalized quadrangles).
The origin and the connection between these two seemingly totally different
meanings of the notion of an “ovoid” is contained, discovered and explained
in [32].

In contemporary mathematics we know ovoids in all kinds of (mostly
building-like) structures, and their definition is either based on that of an
ovoid in projective space, or on that of an ovoid of a generalized quadrangle,
or a mixture. We mention ovoids of polar spaces, of generalized polygons
and of the natural geometry related to the 27-dimensional module of an
exceptional group of type E6.

We now describe the impact of Tits’ paper [32] on modern mathematics.
First on finite geometry, where the impact is immeasurable. Then we review
some other directions.

2. Impact on finite geometry

In this section ovoids, in particular Suziki-Tits ovoids, in finite projective
spaces PG(3, q) are considered.

2.1. Comparing definitions and small cases

By Segre [23] a set K of k points of PG(n, q) no three of which are collinear
is called a k-arc for n = 2 and a k-cap for n ≥ 3. For k maximal Segre calls
K an oval for n = 2 and an ovaloid for n ≥ 3. For q even such an oval has
q + 2 points and for q odd an oval has q + 1 points by [4], see also [20] and
Theorem 8.5 of [10]; for q 6= 2 an ovaloid has q2 + 1 points, and for q = 2 it
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has 8 points by [4] for q odd and by [20] for q even, see also Theorem 16.1.5
of [9]. In modern terminology the (q+1)-arcs of PG(2, q) are called ovals, and
the (q + 2)-arcs of PG(2, q) (then q is even) are called hyperovals.

The ovals of PG(2, q) and, for q 6= 2, the ovaloids of PG(3, q) are exactly
the ovoids of Tits [31, 32] in these dimensions; in PG(3, 2) the ovoids are the
5-caps which are not contained in a larger cap.

The definitions of Segre are very useful for finite fields, but for general
fields we need the ovoids in the sense of Tits.

For q even, the only known ovoids of PG(3, q) are the elliptic quadrics
and the Suzuki-Tits ovoids. Let us now look at small values of q.
(a) For q = 4, an ovoid of PG(3, 4) is an elliptic quadric, see [2].
(b) For q = 8, an ovoid of PG(3, 8) is either an elliptic quadric or a Suzuki-

Tits ovoid; see [7, 24].
(c) For q = 16, all ovoids of PG(3, 16) are elliptic quadrics; see [13, 14].
(d) For q = 32, an ovoid of PG(3, 32) is either an elliptic quadric or a

Suzuki-Tits ovoid; see [15].
(e) For q = 64, all ovoids of PG(3, 64) are elliptic quadrics, see [19].

Hence up to (even) q = 64 each ovoid is either an elliptic quadric or a Suzuki-
Tits ovoid. We recall from the introduction that the first ovoid of PG(3, q)
which was not an elliptic quadric was discovered in 1959 by Segre [24] for
q = 8. It was shown by Fellegara [7] that this ovoid of PG(3, 8) is nothing else
than the smallest Suzuki-Tits ovoid.

Finally, let us remark that in the finite case ovoids do not exist in
dimension n > 3, see [28].

2.2. Plane intersections of Suzuki-Tits ovoids and translations

Let O be a Suzuki-Tits ovoid in PG(3, q). If π is a plane of PG(3, q), which is
not tangent to O, then π ∩ O is an oval of π. Such an oval is called by Tits
a θ-conic (here, θ refers to the Tits endomorphism, see Subsection 3.1). He
proves that all θ-conics are projectively equivalent [32].

Let C be the θ-conic of π. Then all projectivities of π stabilizing C fix
some point x of C (this is ∂C of Subsection 3.2) and also the tangent L ⊆ π
of C at x. The group G of these projectivities acts 2-transitively on C \ {x}
[32]. Also, the projectivity of π fixing precisely all points of L (a translation
of π with axis L) and mapping y ∈ C \ {x} onto z ∈ C \ {x}, stabilizes the
θ-conic C. The line L defined by the θ-conic C will be called a θ-absolute
line. Any oval D admitting this property for some point u ∈ D is nowadays
called a translation oval.

All translation ovals of PG(2, q) were determined by Payne [17] in 1971.

Theorem 2.1 (Payne [17]). In PG(2, 2h), the oval D is a translation oval if
and only if, in a suitable reference system, it consists of the points (xγ , x, 1),
with γ : t 7→ t2

n

and (n, h) = 1, together with the point (0, 1, 0).

In the case of the Suzuki-Tits ovoid with Tits endomorphism θ we clearly
have γ = θ, with h = 2r + 1 and n = r + 1.

The following definition is due to Tits [31].
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Definition 2.2 (Tits [31]). Let O be any oval or ovoid of some projective
plane or higher dimensional space Σ, respectively, over any field. Let x be
any point of O and let π be the tangent hyperplane of O at x. Then O is
called an oval or ovoid with translations (ovöıde à translations) if for any
two points y, z ∈ O \ {x} the translation with axis π which maps y onto z,
stabilizes O.

Suzuki-Tots ovoids are not translation ovoids, though. In the finite case
ovals and ovoids with translations admit a 2-transitive group of projectivities.
In the 2-dimensional case the oval is always a conic; see [31]. The following
important result is also due to Tits.

Theorem 2.3 (Tits [31, 32, 33]). In PG(3, q), q even, every ovoid having a 2-
transitive group of projectivities is either an elliptic quadric or a Suzuki-Tits
ovoid. The group is 3-transitive if and only if the ovoid is a quadric.

For characterizations of the many incidence structures where ovoids of
PG(3, q) are involved Theorem 2.3 plays a key role. The next result led to a
new class of translation planes.

Theorem 2.4 (Tits [32]). Let O be a Suzuki-Tits ovoid of PG(3, q), q = 22r+1

and r ≥ 1. Then the q2 + 1 θ-absolute lines form a 1-spread of PG(3, q), that
is, they form a partition of PG(3, q).

The impact of this theorem will be further elaborated in Section 2.4.

2.3. Inversive planes

Definition 2.5. An inversive plane or Möbius plane is an incidence structure
(finite or infinite) Γ = (P,C ), with P the set of points and C the set of
blocks called circles, satisfying the following axioms.

(i) Any three distinct points are contained in exactly one circle.
(ii) If x, y ∈ P and C ∈ C is such that x ∈ C and y /∈ C, then there is a

unique circle D ∈ C with x, y ∈ D and C ∩D = {x}.
(iii) |P| ≥ 4, there exist x ∈ P and C ∈ C with x /∈ C, and |D| > 0 for

every D ∈ C .

In the finite case it can be shown that Γ is equivalent to a set P of
n2 + 1 points, together with a set C of subsets of P, each of size n+ 1, such
that any three points are contained in exactly one element of C , for some
n ∈ N \ {0, 1}. That is, Γ is a 3 − (n2 + 1, n + 1, 1) design. The integer n is
called the order of the inversive plane Γ.

Let O be an ovoid of PG(3, q). If we set P = O, and C the set of
intersections O ∩ π with π any non-tangent plane of O, then Γ = (P,C ) is
an inversive plane of order n. Such an inversive plane is called egglike. If O is
an elliptic quadric, then the corresponding inversive plane is called classical
or Miquelian. By Theorem 1.2 each egglike inversive plane of odd order q is
classical. But it is not known whether or not each inversive plane of odd order
is egglike. On the other hand we have the following important theorem.

Theorem 2.6 (Dembowski [6]). Each inversive plane of even order is egglike.
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Hence finite inversive planes of even order q are equivalent to ovoids
of PG(3, q), and so the Suzuki-Tits ovoids play a key role in the theory of
finite inversive planes. There is a large amount of literature on classifications
and characterizations of inversive planes; see for instance [6]. In many of these
results Suzuki-Tits ovoids appear. There is a famous classification of inversive
planes due to Hering [8], see also [6], and the inversive plane arising from the
Suzuki-Tits ovoid is of Hering type VI.1. In fact, by Tits [33] the Suzuki-
Tits ovoids are the only egglike inversive planes of this type (recall that each
egglike inversive plane of odd order is classical and that each inversive plane
of even order is egglike).

2.4. Translation planes

Let Γ be a projective plane with point set P and suppose for some line L of
Γ there is a group of collineations of Γ fixing L pointwise and acting sharply
transitively on P \ L. Then Γ is a translation plane with translation line L.

Let S be a 1-spread of a 3-dimensional projective space Σ (finite or
infinite), that is, a partition of the point set of Σ into lines. Then it is well-
known that S defines a translation plane Γ as follows. Consider Σ as a
hyperplane of a 4-dimensional projective space Σ. The points of Γ are the
points of Σ\Σ, together with the members of S ; the lines of Γ are the planes
of Σ which have precisely a member of S in common with Σ, together with
Σ itself—incidence is natural containment. If Σ = PG(3, q) the translation
plane has order q2. By Theorem 2.4 the q2 + 1 θ-absolute lines of a Suzuki-
Tits ovoid O form a 1-spread of PG(3, q). So to O corresponds a translation
plane of order q2. In [11], Lüneburg also constructs S , but his approach is
different. Let us call these translation planes the Lüneburg-Tits planes.

Many papers and several books are on translation planes; in particular,
see [3, 11, 12]. The book [11] by Lüneburg is entirely on Suzuki-Tits ovoids,
Suzuki groups and Lüneburg-Tits planes. In all these books, Lüneburg-Tits
planes play an important role.

Influenced by [32] the first author proved in 1972 [27] that each ovoid of
PG(3, q), q = 2h and h > 1, corresponds to a 1-spread of PG(3, q) which be-
longs to a linear complex of lines of PG(3, q), and conversely. The translation
plane defined by such a 1-spread was called an ovoidal translation plane by
the first author. Also, the generalized quadrangle W(q) arising from a linear
complex of lines of PG(3, q) is self-dual if and only if q is even. We remark
that Tits, who refereed the paper [27], provided several suggestions.

2.5. Other impact, in particular on generalized quadrangles

Ovoids are used to construct many other geometric objects. From ovoids,
in particular from Suzuki-Tits ovoids, arise strongly regular graphs, linear
projective 2-weight codes, cap-codes, maximal arcs, partial geometries, gen-
eralized quadrangles, partial quadrangles, unitals, ovoids in polar spaces, . . . .

Much is written on the so called generalized quadrangles T3(O) of order
(q, q2) of Tits, arising from an ovoid O of PG(3, q), see [18]. This generalized
quadrangle is classical, that is, it is isomorphic to a generalized quadrangle
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arising from an elliptic quadric of PG(5, q), if and only if O is an elliptic
quadric of PG(3, q). Hence for q odd T3(O) is always classical by Theorem 1.2.
For q even, q > 2, the T3(O), with O a Suzuki-Tits ovoid, is the only known
non-classical T3(O). In fact, this non-classical T3(O) is the only known non-
classical translation generalized quadrangle of order (s, s2), with s even, see
[29].

3. Other impact

In this final section, we review some other impact of [32]. As Tits’ œuvres are
situated on the cross roads of geometry and group theory, it seems appropriate
to mention some examples in incidence geometry and group theory (and their
interaction). We start with the description of a special family of quadrangles
and ovoids that emerged from [32].

3.1. Moufang quadrangles of mixed type

As alluded to before, one of the crucial basic observations of Jacques Tits in
[32] is that the set of absolute points of a polarity in a generalized quadrangle
forms an ovoid of that quadrangle. And when the quadrangle is a symplec-
tic quadrangle W(K) that admits a polarity, then this ovoid—which is the
Suzuki-Tits ovoid—is also an ovoid of PG(3,K). A necessary and sufficient
condition for the existence of a polarity in W(K) is that K is perfect and the
Frobenius admits a square root, that is, a map x 7→ xθ such that (xθ)θ = x2.
The second author called θ in [37] a Tits endomorphism, and since then this
name is used by many authors. When K is not perfect, then the Frobenius
x 7→ x2 is not bijective (it is injective, though), and so it does not admit an
inverse, which translates into the fact that there is no polarity possible (not
even a duality). However, if a Tits endomorphism exists (not bijective if the
Frobenius is not bijective!), then one can restrict the line pencils in such a
way that a polarity exists in the resulting subquadrangle. The latter quad-
rangle is called a Suzuki quadrangle in [37]. Also, the corresponding ovoid is
an ovoid of PG(3,K), which is slightly surprising since it is not an ovoid of
the ambient symplectic quadrangle!

In case the underlying field K is not perfect, and the dimension of K
over its subfield K2 of all squares is large, then there are all sorts of mutually
nonisomorphic subquadrangles of W(K) which potentially admit polarities,
and so the Suzuki-Tits ovoid defined above can have a lot of subovoids!

3.2. Circle geometries: inversive planes, Möbius planes

An ovoid in PG(3, q) gives rise to an inversive plane, see Definition 2.5. This
also holds in the infinite case, with exactly the same set of axioms. As in the
finite case, there is no determination of all inversive planes. However, under
some suitable conditions one can easily isolate all inversive planes that arise
from the Suzuki-Tits ovoids. These conditions are the following.

First we make sure that we deal with the case of characteristic 2 by the
following two axioms. Let Γ = (P,C ) be an inversive plane.
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(CH1) For every circle C ∈ C and every pair of points x, y both not in C,
either there is a unique circle containing both x and y and touching C,
or all circles through x and y touch C.

(CH2) There do not exist three circles two by two touching each other in dis-
tinct points.

And here is the additional axiom for the Suzuki-Tits ovoids (over a
perfect field).

(ST) The inversive plane Γ is furnished with a map ∂ : C →P : C 7→ ∂C ∈ C
such that:

(1) For every pair of points x, y ∈ P there is a unique circle C ∈ C con-
taining x and y and such that ∂C = x.

(2) For every circle C and every point x /∈ C, there is at most one circle D
containing x and ∂C and such that ∂D ∈ C.

The only inversive planes satisfying (CH1), (CH2) and (ST) are obtained
from the Suzuki-Tits ovoids by declaring the circle C through three points
the intersection of the ovoid with the unique plane of the ambient projective
space through these points. That plane contains the perp of a unique point
x of the symplectic quadrangle and ∂C is by definition the intersection of C
with the image of x under the polarity.

Struyve and the second author [25] also axiomatize the ovoids in the
non-perfect case, and even the subovoids mentioned at the end of Section 3.1.

3.3. Tits webs from generalized Suzuki-Tits ovoids

A programme initiated by Jacques Tits himself in the second half of the
nineties consists of characterizing the rank one Chevalley groups and simple
algebraic groups of relative rank one as the automorphism groups of a geome-
try attached to them, in a precise way defined by Tits (using the orbits of the
centres of the unipotent subgroups). These geometries are called Tits webs.
Also the Suzuki groups and their generalizations to imperfect fields by Tits
admit Tits webs. These Tits webs just happen to be the Suzuki-Tits ovoids
and their subovoids as defined at the end of Section 3.1, furnished with the
circles (but not with the map ∂). It was shown in [38] that the automorphism
groups of these Tits webs are exactly the Suzuki groups and their generaliza-
tions by Tits. Of course, Tits’ paper [32] was instrumental for such result, as
it introduced the core geometry in this case!

3.4. Intersections of Suzuki-Tits ovoids and maximal subgroups of Suz(q)

The ovoids studied by Tits in [32] were also used to complete a geometric
description of all maximal subgroups of the finite Suzuki groups. Indeed, in
[1], Bagchi & Sastry show that, within the same generalized quadrangle W(q),
the size of the intersection of a Suzuki-Tits ovoid with a classical ovoid, is
either q+

√
2q+1, or q−

√
2q+1. Moreover, there is always a cyclic group of

the same respective order stabilizing the Suzuki-Tits ovoid and acting sharply
transitively on that intersection. The full stabilizer of such an intersection of
size s is a semi-direct product of the cyclic group of order s with a cyclic group
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of order 4, and is a maximal subgroup of Suz(q). All maximal subgroups of
Suz(q) can hence be described as follows.

Theorem 3.1. A subgroup of Suz(q), with associated Suzuki-Tits ovoid O, is
a maximal subgroup if and only if one of the following occurs.

(i) It is the full stabilizer of a point of O;
(ii) it is the full stabilizer of a circle of the inversive plane defined by O;

(iii) it is the full stabilizer of a maximal subovoid of O;
(iv) it is the full stabilizer of an intersection of O with a classical ovoid.

The previous theorem was noted at the end of Section 7.6 of [37] and
follows from the description of the maximal subgroups of Suz(q) as given in
[26], together with Tits’ definition of the Suzuki-Tits ovoid in [32].

3.5. Wilson’s construction of Suz(q)

In [39], Robert Wilson gives a new and quite elementary explicit construction
of the Suzuki groups Suz(q). At the same time he constructs the Suzuki-Tits
ovoid. Let us do the latter here.

Let a symplectic (alternating bilinear) form on a four-dimensional vector
space V over the perfect field K, with charK = 2, be given by x−1y1 +
x1y−1 +x−2y2 +x2y−2, and let {e−2, e−1, e1, e2} be the standard basis (with
self-explaining notation). Suppose K admits an automorphism θ with the
property that ((xθ)θ)2 = x, for all x ∈ K (then θ is a square root of the
inverse of the Frobenius). Define a symmetric product • on the points of V
as follows:

ei • e±i = 0, i ∈ {−2,−1, 1, 2},
e−2 • e−1 = e−2,

e−2 • e1 = e−1,

e−1 • e2 = e1,

e1 • e2 = e2,

v • λw = λθ(v • w), for all v, w ∈ V, λ ∈ K,
(u+ v) • w = (u • w) + (v • w), for all u, v, w ∈ V.

Then the Suzuki-Tits ovoid consists of the projective points 〈v〉 such that
there exists a vector w, with v and w not orthogonal with respect to the
above symplectic form, with v • w = v.

Wilson’s paper appeared in 2009, well 47 years after Tits’ paper ap-
peared. Still, after all this time, a new construction was found of one of Tits’
many creations—perhaps among the most beautiful and simple ones—the
Suzuki-Tits ovoids, originating and studied in [32]. A paper with a lot of
impact on mathematics as the present paper witnesses!
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